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ABSTRACT: Collision energy is a key parameter determining the information content of beam-

type collision induced dissociation MS/MS spectra, and its optimal choice largely affects 

successful peptide and protein identification in MS-based proteomics. For an MS/MS spectrum, 

quality of peptide match based on sequence database search, often characterized in terms of a 

single score, is a complex function of spectrum characteristics, and its collision energy dependence 

has remained largely unexplored. We carried out ESI-Q-TOF-MS/MS measurements on 2807 

peptides from tryptic digest of HeLa and E. coli at 21 different collision energies. Agglomerative 

clustering of the resulting Mascot score vs. energy curves revealed that only few of them display 

a single, well-defined maximum; rather, they feature either a broad plateau or two clear peaks. 

Non-linear least squares fitting of one or two Gaussian functions allowed the characteristic 

energies to be determined. We found that the double peaks and the plateaus in Mascot score can 

be associated with the different energy dependence of b and y type fragment ion intensities. We 

determined that the energies for optimum Mascot scores follow separate linear trends for the 

unimodal and bimodal cases with rather large residual variance even after differences in proton 

mobility are accounted for. This leaves room for experiment optimization and points to the possible 

influence of further factors beyond m/z. 

INTRODUCTION 

In recent years, major development of experimental techniques and data processing, relying on 

bioinformatics, has largely extended the capabilities of mass spectrometry (MS) based proteomics 

research. Thanks to the combination of advances in instrumentation, fragmentation methods, and 

analysis strategies, MS has become an indispensable tool for the study of protein expression, 

protein interactions, and modifications.1–10 A typical strategy for obtaining proteomics information 
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from a biological sample consists of the combination of enzymatic digestion (usually by trypsin) 

followed by (nano)-liquid chromatography electrospray ionization tandem MS of the resulting 

peptides. One of the fragmentation approaches is the data-dependent MS/MS analysis (DDA), 

where first an MS scan is measured, and then precursor ions are selected for sequential MS/MS 

events during the cycle time using mass and charge dependent fragmentation parameters. The 

fragment ion spectrum of a peptide is then searched against a sequence database to identify the 

peptide sequence, and the search score measures the similarity between the experimental and 

theoretical spectrum, thereby shows the confidence of the peptide-spectrum match. 

In the frequently employed beam-type collision induced dissociation (CID) experiments, collision 

energy is one of the most important parameters influencing the quality of an MS/MS spectrum. 

Although its choice significantly affects the information content of the spectra and thereby the 

efficiency of data-dependent analysis experiments, optimization of collision energy is far from 

being straightforward; moreover, different objectives may require different optimal values. In fact, 

numerous investigations have addressed the optimal choice of collision energy for peptides. The 

target variables for optimization were either a) maximum intensity of a parent–fragment 

transition,11–17 or b) the optimum was defined as the value providing a given survival yield (ratio 

of the parent ion intensity to the summed intensity of parent and all fragments).18–20 The former 

has outstanding importance in peptide quantitation but is not necessarily the best indicator for 

confident peptide identification characterized by the typically employed scoring functions. 

Regarding the latter, it has not been studied how it correlates with successful peptide identification. 

Furthermore, in proteomics MS experiments, use of much lower, close to zero survival yields is 

typical. Last but not least, most of the above mentioned studies only covered a very small number 

of peptides (typically less than 100), making it harder to form general conclusions. 
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The question is also relevant in the field of post-translational modifications (PTMs), where an 

additional complexity stems from different optimal conditions for determining peptide sequence 

and PTM structure. Several types of modifications (e.g., phosphorylation, glycosylation) are more 

labile than the peptide backbone itself, and significantly reduced collision energy may provide 

correct information on structure and/or attachment site.21–29 In this respect, a relevant work by 

Hinneburg et al.23 targeted maximum information on both the glycan and peptide moiety in a single 

tandem MS experiment. The latter was characterized by the peptide intensity coverage score, 

defined as the sum of intensities of all fragments explained by peptide fragmentation divided by 

the sum of intensities of all product ions. Due to the specific focus of the study, again a relatively 

small number of peptides derived from only 4 different proteins were involved in the examination. 

Other approaches targeted higher number of identified peptides or proteins, but in these cases, the 

detailed peptide level information is lacking.30–32 

With respect to individual peptide ions, these above mentioned collision energy dependence 

studies in general reveal a charge dependent linear trend between the optimal collision energy and 

peptide m/z value, although the correlation coefficient varies significantly. Neta et al.18 also found 

that the amino acid composition and the number of mobile protons also influence the collision 

energy for 50 % fragmentation. Further, in a systematic study aiming maximum fragment ion 

intensity, Holstein et al.11 showed that b ions tend to require lower collision energy than y ions. In 

line with these findings, MS instrument vendors provide default collision energy choices that are 

linear with m/z.33 On the other hand, systematic studies aiming to explore the correlation between 

collision energy and successful peptide identification at level of individual peptides are still lacking 

in the literature. Such studies could provide important background information for data dependent 
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analysis experiment design, including the potential use of multiple collision energies 

simultaneously, which has been explored to some extent.23,30,34,35  

In light of the above, we set out to investigate how confidence in peptide identification varies with 

collision energy. Several types of identification scores have been devised and are commonly 

employed;36,37 here, we focus on the behavior of one of the most frequently employed approaches, 

the Mascot score.38 The Mascot score characterizes the probability p that the observed match 

between the experimental peaks and the sequence is a random event. The score is computed as 

−10×log p, with higher scores indicating lower probability, hence, higher confidence. During the 

scoring of an MS/MS spectrum, Mascot does not take into account all peaks. Instead, the spectrum 

is divided into 110 Da wide segments, and only the most intense peak from each segment is 

considered. The score is determined in this way, and then the approach is iteratively repeated, 

adding the next most intense peak from each segment in each round, until the score cannot be 

improved any more. The highest value obtained in this way will be the final score.38,39 

In this article, we thus present the investigation of the MS/MS collision energy dependence of 

confident peptide identification as characterized by the Mascot score. We identify the optimal 

choice of collision energy and its dependence on peptide m/z value, and we provide an explanation 

for the markedly different behavior from other optimization targets. Our aim is to carry out this 

analysis on a relatively large number of tryptic peptides, trypsin being the most frequently 

employed digestion enzyme. We targeted the simultaneous processing of many proteins/peptides, 

present in various concentrations in complex samples. We chose two commercially available 

standards, the tryptic digests of HeLa and E. coli cells for this purpose. We believe that the findings 

obtained from a large array of systematic measurements can help to better exploit the potential 

present in current LC-MS/MS techniques.  
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EXPERIMENTAL SECTION 

Chemicals and reagents 

LC-MS grade solvents and HeLa tryptic digest standard were purchased from Sigma Aldrich 

(Sigma-Aldrich Kft., Budapest, Hungary) and Thermo Fisher Scientific (Thermo Fisher Scientific, 

Waltham, MA, USA), respectively. MassPREP enolase digestion and MassPREP E. coli digestion 

standards were from Waters (Waters, Milford, MA, USA). 

Mass spectrometry analysis 

Liquid chromatography-mass spectrometry investigations were carried out on a Bruker Maxis II 

ETD Q-TOF (Bruker Daltonics, Bremen, Germany) mass spectrometer equipped with a 

CaptiveSpray nanoBooster ionization source coupled to an Ultimate 3000 NanoRSLC System 

(Dionex, Sunnyvale, CA, USA) under the control of Hystar v. 3.2 (Bruker Daltonics, Bremen, 

Germany). In each run, 50 ng HeLa or 100 ng E. coli digest standard was injected onto an Acclaim 

PepMap 100 C-18 trap column (5 μm, 100 Å, 100 µm × 20 mm, Thermo Fisher Scientific, 

Waltham, MA, USA) using 0.1% trifluoroacetic acid (TFA). Peptides were separated on an 

Acclaim PepMap RSLC C-18 analytical column (2 μm, 100 Å, 75 µm × 500 mm, Thermo Fisher 

Scientific, Waltham, MA, USA) at 48 oC using a flow rate of 270 nl/min. The gradient was as 

follows: 4% B from 0 to 11 min, followed by a 90 min gradient to 50% B, then the concentration 

of the solvent B was elevated to 90% in 1 min and kept there for 5 min; solvent A was 0.1% formic 

acid (FA) in water, while solvent B was 0.1% FA in acetonitrile. 

Sample ionization was achieved in the positive electrospray ionization mode via a CaptiveSpray 

nanoBooster ion source. The capillary voltage was set to 1300 V, the nanoBooster pressure was 
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0.2 bar, the drying gas was heated to 150 oC, and the flow rate was 3 l/min. Internal mass calibration 

was performed via lock mass for each run using sodium formate. The ion transfer parameters were 

set as follows: prepulse storage 10 µs, quadrupole ion energy 5 eV, Funnel 1 RF 400 Vpp, 

Multipole RF 400 Vpp. The collision RF was set to 1200 Vpp, and the ion transfer time was 120 

µs. For the MS measurements, a fix cycle time of 2.5 sec was used. MS spectra were acquired over 

a mass range of 150–2200 m/z at 3 Hz. CID using default intensity threshold (15000) was 

performed at 16 Hz for abundant precursors (intensity>40000) and at 4 Hz for ones of low 

abundance (intensity<40000). Note, that in order to limit run-to-run variability of DDA 

experiments (see below), increased intensity thresholds (400000 and 100000 in case of HeLa and 

E. coli digest, respectively) were used in the energy dependent examinations, which led to MS/MS 

acquisition at 16 Hz for all these measurements. 

The collision energies applied to fragment the peptides were chosen to be the sum of an m/z 

dependent default collision energy, given by 

  collision energy (eV) = 0.0368 × (precursor m/z) + 4.2786,  (1) 

and a collision energy shift, mapping the –20 eV to +20 eV range in 2 eV steps in 21 separate runs. 

Hence, 21 different collision energy values for each peptide were measured, centered at a peptide 

specific default value, subject to lower limit on the applied collision energy of 5 eV. Note that the 

2 eV steps in energy meant different step sizes in voltages for the different charge states. The 

default linear correlation was determined earlier empirically by tuning the manufacturer’s 

recommendations to provide a large number of identified proteins and is used routinely in our 

laboratory for proteomics investigations. Note, however, that the significance of using a default 

linear correlation is only to avoid measuring peptides at highly irrelevant energies, and its exact 
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coefficients do not affect our conclusions. An active exclusion of 2 min after 1 spectrum was used 

except if the intensity of the precursor was elevated threefold. The LC-MS/MS measurements for 

HeLa at each collision energy shift were run at least twice on two different days, allowing the 

reproducibility of the results to be assessed, which we present in the SI. In order to obtain statistics 

on the run-to-run variability of a simple standard, we measured enolase (50 fmol/run) using the 

LC-MS/MS method described above, applying the default collision energy. 

Data Analysis 

The raw Q-TOF data were first recalibrated using Bruker Compass DataAnalysis software 4.3 

(Bruker Daltonik GmbH, Bremen, Germany) for the internal calibrant. MS/MS peak list generation 

was performed using ProteinScape software 3.1 (Bruker Daltonik GmbH, Bremen, Germany). The 

samples were matched with the human SwissProt (2015_08) database using the Mascot search 

engine v.2.5 (Matrix Science, London, UK). The parameters for the Mascot search were set as 

follows: trypsin as the enzyme, maximum 2 missed cleavages allowed, cysteine 

carbamidomethylation as fixed and methionine oxidation, glutamine and asparagine deamidation 

as variable modifications. Precursor tolerance was set to 7 ppm; the MS/MS tolerance was 0.05 Da, 

the minimum peptide length was 6, and decoy database was generated by Mascot. The Mascot ion 

score corresponding to p < 0.05 varied in the range from 13 to 28, on average, it was 22. To ensure 

confident peptide identifications, we only considered a peptide identified at a given collision 

energy if its Mascot score exceeded 15, and only peptides identified with a score above 25 at least 

at one collision energy were included in the investigations.  

We studied energy dependence of peptide behavior by combining the results from all runs, 

obtaining Mascot score vs. collision energy shift curves for all identified peptide ions. Different 
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charge states of the same sequence were treated separately. Only peptide ions successfully 

identified at least at 3 consecutive collision energy values were taken into account in the energy 

dependence analysis. 

The score vs. energy shift functions were first normalized by dividing all points with the maximum 

score for the given peptide ion. The normalized curves were then subjected to an agglomerative 

cluster analysis40 to identify classes of similar overall behavior. We employed a Euclidean distance 

measure between curves, computing square root of sum of squared differences at each energy shift. 

For the purpose of distance calculation, zero score was assumed for all collision energy shifts 

where the peptide could not be identified. Ward’s method40 was employed to choose pairs of 

clusters to merge. 

For each peptide ion, the optimum energy was determined from the normalized score vs. collision 

energy shift data sets by fitting one or two Gaussian functions. This approach allowed us to reduce 

noise and reliably determine peak positions. The Levenberg–Marquardt algorithm41,42 was 

employed to directly estimate parameters of the nonlinear model functions: 

f1(t) = A exp [–B(t–C)2]     (2) 

f2(t) = A exp [–B(t–C)2] + D exp [–E(t–F)2]   (3) 

The A,B,D,E parameters were constrained to be nonnegative. As we did not have any data point 

with score below 15, we decided to add two points with zero score at a shift of ±35 eV. Thorough 

manual checking of the data and the resulting fits ensured that these additional points were 

compatible with the measured trends and in fact improved fit quality by avoiding erroneously wide 
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peaks to be fitted. The initial parameters of the fit (1 trial set for f1, 4 trial sets for f2) were chosen 

manually and were the same for all peptide ions.  

Where there were less than 12 data points in the original data, we only attempted to fit f1. We 

accepted the fit and considered peak position C as the optimum collision energy shift if C fell 

between the highest and lowest shift where we had measured data points. Otherwise, we simply 

determined the optimum energy by calculating the score-weighted average of all shift values where 

the peptide appeared. 

Data for peptide ions with at least 12 points were fitted using both f1 and f2. The two-peak fit was 

accepted, and two optimum energies (C and F) were assigned to the peptide ion if all of the 

following conditions were met: 

 sum of squares of residuals for the two-peak fit was less than 80% of that of the one-peak 

fit, 

 neither of the two peaks was exceedingly narrow (e.g., fitted to a single outlier data point), 

specifically, B and E were both less than 0.05, 

 neither of the two peaks had its maximum outside the actually measured collision energy 

shift range, i.e., C and F both fell between the highest and lowest shift where we had 

measured data points, 

 the maximum value of the fitted curve was less than 1.2, 

If these conditions were not met, only the fit of f1 or the weighted average were considered, as 

described above. These criteria were determined empirically, and confirmed by manual inspection 
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to provide reasonable distinction between experimental curves requiring one or two Gaussians to 

be described. 

The combination of the data from the 21 separate runs for all peptides was carried out using in-

house developed Perl scripts built on top of the Mascot Parser API.43 The data were output into 

Microsoft Excel, where clustering studies were done using the XLSTAT add-on.44 The non-linear 

fits were carried out, and the corresponding plots were generated by our Perl scripts using the 

levmar45 and PGPLOT46 libraries through their Perl Data Language interfaces. 

RESULTS AND DISCUSSION 

To determine the optimal collision energy for tryptic peptides from proteomics identification point 

of view, we constructed energy dependence curves of Mascot score simultaneously for a large set 

of peptides identified from standard HeLa and E. coli tryptic digests. Overall, 21 different collision 

energies were examined for all peptides, mapping the energy dependence in steps of 2 eV. If a 

peptide was identified more than once in the same LC-MS/MS run, i.e., measured several times at 

the same collision energy, the best scoring match was accepted.  

For a DDA sampling strategy on complex samples, it may happen that there is insufficient time to 

measure MS/MS for all MS peaks. In such cases, it becomes essentially random which peptides 

are actually measured in a given run.47,48 To overcome this phenomenon and limit run-to-run 

variability of the set of identified peptides, we increased MS intensity threshold for carrying out 

MS/MS. In this way, variability statistics on these complex samples (HeLa and E. coli) are notably 

improved and match those on a very simple one (enolase). Specifically, the fraction of common 

peptides found in repetitions of identical measurements is significantly higher than with the default 

threshold (see Figure 1). Of course, this can be achieved at the price of significantly reduced 
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number of identified peptides. Overall, we identified 3531 peptide ions within the 21+21 runs from 

the two tryptic digests (2152 from HeLa, 1379 from E. coli). To ensure a meaningful study of 

energy dependence, only peptide ions identified at least at 3 consecutive collision energy shift 

values, having a score of at least 25 at least at one of the energies were included in the analysis, 

yielding 2807 (1721 from HeLa, 1086 from E. coli) peptide ions to process. About three fourth of 

them were doubly charged, and most of the rest had a charge of +3, with only a few examples for 

singly and quadruply charged ions. 

 

Figure 1. Overlap of identified peptides from repeated experiments using default MS intensity 

threshold to select an ion for DDA analysis (15000 cps) for HeLa (a) and E. coli (c), and increased 

MS intensity threshold  for HeLa (b, 400000 cps) and E. coli (d, 100000 cps). The total number of 

identified peptide ions with increased threshold was about one third of that with default threshold 

for both samples.  
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Examples of the energy dependence of Mascot score for a few peptides with different 

characteristics are depicted in Figure 2a. As apparent, peptides behave quite differently; even the 

shape of curves varies widely. Further, in contrast to the case of survival yield or maximum 

intensity of a fragment ion, it becomes very difficult to identify one single optimal energy in many 

cases. Sometimes a wide plateau appears in the curves, or even two separate maxima can be found. 

To characterize this variability on the large set of investigated peptides and thereby get idea how 

to define collision energy maximizing Mascot score for a given peptide, we employed clustering 

techniques. As a result of agglomerative cluster analysis, it turned out that the curves can be ranked 

into three main classes, whose averages are shown in Figure 2b. Results from clustering support 

the assignment of 3 materially different classes, further details can be found in the SI. Apparently, 

there are one or two maxima on the curves. Qualitatively, class 3 (13 % of the members) has one 

narrow maximum somewhat above 0 eV energy shift. Class 2 (66 % of the members) shows 2 

separate maxima, one at around energy shift 0–5 eV and another one at ca. 10 eV lower collision 

energy. Interestingly, the latter one can even belong to higher Mascot score for some of the 

peptides under study. Class 1 (21 % of the members) has one maximum centered around –5 – 0 

eV collision energy shift value, but it shows significant broadening, implying the possible presence 

of two peaks close to each other. The emergence of a second lower energy peak may be the reason 

for class 1’s maximum lying at lower energies than that of class 3. 

 



 14 

  

Figure 2. a) Selected examples of normalized Mascot score vs. collision energy shift curves. For 

each curve, the coloring shows to which class it belongs. b) Averages of all curves belonging to 

the three main classes, respectively, coming from cluster analysis. 

While cluster averages shown on Figure 2b are rather smooth and possess easily identifiable 

characteristics, results for individual peptides (Figure 2a) are more affected by noise. It is 

remarkable that the variance of Mascot scores across measurements is rather high, in spite of using 

an MS/MS threshold higher than typical in proteomics experiments. In order to reliably determine 

the optimum energy shifts, we decided to employ non-linear fitting. The results of the clustering 

strongly suggest that the observed shape of the energy vs score function corresponds to either one 

or two overlapping peaks. We therefore modeled them using one or two Gaussian functions, and 

we term these “unimodal” and “bimodal” behavior. We identified the position of the fitted peaks 
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as the characteristic (optimum) energies. As measurement noise may affect the clustering and the 

fitting differently, the decision between unimodal and bimodal was made on the basis of the fit 

quality, and not from the cluster assignment. Nevertheless, in line with expectations, more than 

97% of class 3 was unimodal, while for class 1, this number decreases to 89%, reflecting the 

widening. Similarly, more than 75% of class 2 was bimodal.  

Figure 3a shows the fitting results for a typical class 2 peptide. The obtained fits for all the rest of 

peptides can be found in the SI. It can be seen that the sum of two Gaussian functions (solid black 

curve) provides a very good fit giving optimum energies at –9.6 eV and 5.6 eV, while one Gaussian 

function (dotted gray curve) is not satisfactory to model these data.  

In order to get further insight into the nature of the two maxima on the energy dependent Mascot 

score curve, we determined the summed intensities of the two types of fragment ions (b- and y-

type ions, including variants with H2O loss, NH3 loss etc.) produced in the collision induced 

dissociation experiments as functions of collision energy. The results are illustrated for the 

VESLQEEIAFLK2+ peptide in Figure 3b. We found that the summed b ion intensity shows a sharp 

maximum at a collision energy shift roughly corresponding to the first peak of the Mascot score 

vs energy shift curve. When going to the higher energy peak from the lower energy peak, the 

summed intensity decreases by 59%. On the other hand, the summed y ion intensity gives a broad 

plateau, having maximum around the second peak of the Mascot score curve. The summed 

intensity increases by 32% when going to the higher energy peak from the lower energy peak. 

Note, however, that in absolute terms, y ions are equally or more intense than b ions even at low 

collision energies optimal for b type fragments. The number of b- and y-type ions behave similarly, 

although the number of y fragments is less sensitive to the applied collision energy in this case. 

These differences are also nicely illustrated by the two annotated MS/MS spectra taken at collision 
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energies closest to the characteristic optimum values for VESLQEEIAFLK2+ peptide, namely –10 

eV and 6 eV (see Figures 3c-d). A similar analysis for a bimodal but class 1 peptide 

CMPTFQFFK2+ (also displayed on Figure 2a above) shows analogous trends though the peak 

positions are closer to each other; details can be found in the SI. 

 

Figure 3. a) Result of the Gaussian fitting procedure of the energy dependence curve for a class 2 

peptide (VESLQEEIAFLK2+). Orange triangles – measured data, solid black line, and solid black 

crosses – two-Gaussian model function and its peak positions, dotted gray line – one-Gaussian 

model function. b) Summed intensities of y- and b-type fragments, normalized to their respective 

maxima, as function of collision energy shift for VESLQEEIAFLK2+ peptide. Black crosses on 

the horizontal axis show the fitted peak positions. Gray arrows and numbers show the changes 

when going to the high energy peak from the low energy peak. c) and d) Annotated MS/MS spectra 
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of VESLQEEIAFLK2+ peptide at two different energies closest to the determined peak positions 

(–10 eV and 6 eV, respectively).  

To establish the general trends exemplified by the observations described above for 

VESLQEEIAFLK2+ peptide, we considered and compared features of the two MS/MS spectra 

taken at collision energies that were closest to the peak positions of the Gaussian fitting procedure 

for all the peptides having bimodal behavior. In complete agreement with the above discussed 

specific example, we found large energy dependence in the number and summed intensity of b 

ions, where they prefer lower collision energy. Specifically, the average of the above discussed 

change in summed intensity when going to the higher energy peak from the lower energy peak 

amounts to –69% (see Table 1). The average change in their number is comparable, –73%. The y 

ions are less sensitive to the collision energy but are more intense and more numerous at higher 

collision energy (average increase of 19% and 13%, respectively). 

Table 1. Average change in summed intensity and number of b/y fragment ions in MS/MS spectra 

when going to the higher from the lower energy peak across all peptide ions 

b ions y ions 

Intensity Number Intensity Number 

–69% –73% +19% +13% 

 

The above observations on the behavior of b and y ion intensities are well in line with the known 

characteristics of peptide fragmentation processes.11,49–52 Expectedly, such multiply charged 

tryptic peptide ions produce b and y type fragments at identical rates, but the relative stability of 

these differ. While y ions are fairly stable, b ions easily fragment further to produce smaller b ions, 

a ions or internal ions. a ions and internal ions are not taken into account or annotated by Mascot 



 18 

at all for ESI/QTOF spectra, and for b ions, the further fragmentation leads to a decreased overall 

intensity, particularly at elevated collision energies. In fact, collision energy optimization toward 

maximum fragment intensity yields lower optimum for b ions than for y ions.11 On the other hand, 

it is remarkable to observe that the presence of two maxima in the Mascot score vs energy function 

can be associated with the different energy dependence of two types of fragment ions. While b 

ions are less intensive even at their optimum energy, and Mascot only takes into account the most 

intense peaks in the scoring, the contribution of b ions to reliable identification is significant 

enough to induce a second Mascot score peak at low energies. Notably, this low energy peak is 

often higher than the peak at higher energies. 

In addition to the varying contributions from b and y ions, another factor that may become 

important, particularly in the case of +3 or higher charge states, is the formation of doubly charged 

daughter ions, which easily fragment further at higher energies. For the 3+ or higher charged 

bimodal peptides, on average we identified 0.92 and 0.34 doubly charged fragment ions at the 

lower and higher energy peak position, respectively, in line with the expectations. However, the 

summed intensity of doubly charged fragments was less than 5% of the summed intensity of all 

fragments in ~90% of the considered MS/MS spectra, meaning that the potential effect on the 

overall energy dependent behavior of Mascot score is limited.  
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Figure 4. Peak positions in eV as a function of m/z for a) doubly charged peptides b) triply charged 

peptides. Blue circles indicate the position of the sole peak for peptides having unimodal behavior, 

while orange and gray circles are the higher and the lower collision energies, respectively, for 

bimodal peptides.  
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On the basis of the fitted Mascot score vs. collision energy shift curves, we then plotted the peak 

positions, i.e., the optimum values, as a function of m/z, separately for +2 and +3 charged peptides 

(Figure 4). To allow the trends to be determined without any bias toward our original default 

collision energy calibration, we display the peak positions as absolute eV values rather than shifts. 

For a given peptide, the graphs show either the position of a single peak (blue circles, when one 

Gaussian was fitted to the Mascot score-collision energy curve), or the positions of the two peaks 

(orange and gray circles, corresponding to the positions of the two Gaussians). Peak positions in 

each group follow linear trends with respect to m/z as expected, but the three groups have different 

m/z dependence. We therefore fitted three separate lines on the peak positions. Even so, we find 

that the residual variance is large, the R2 values range from 0.45 to 0.75. Some of this variance 

may be associated with the above discussed noise in our experimental data, but it also indicates 

that factors other than the m/z can be relevant in determining the optimum energy values. 

As discussed widely in the literature,50,53–55 one of the key factors determining the energetics of 

peptide fragmentation is the presence of mobile proton(s). Three cases are usually distinguished: 

1) non-mobile protons, where the number of ionizing protons is less than or equal to the number 

of Arg residues; 2) partially mobile protons, where the number of ionizing protons is greater than 

the number of Arg residues, but less than or equal to the number of all basic sites (Lys, Arg, His, 

N-terminus) 3) mobile protons, where the number of ionizing protons is greater than the number 

of all basic sites. The fragmentation requires less and less energy in this order, because the presence 

of protons not sequestered in very basic sites opens up charge-directed fragmentation pathways. 

In our experiments, the peptide ions bearing +2 charge are almost always tryptic with no missed 

cleavages. Hence, they fall into the partially mobile category, and proton mobility cannot account 

for the observed residual variance. On the other hand, only roughly two thirds of the analyzed +3 
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ions were in the partially mobile category, while the rest had mobile protons, allowing a 

meaningful comparison. As expected, we found that the presence of mobile protons lowers the 

optimum collision energy for the unimodal peptides, as well as the lower optimum for the bimodal 

peptides, by ~4.5 eV on average. The lowering is only ~1 eV for the higher optimum of bimodal 

peptides, but the difference is still significant at the 5% confidence level in a Welch’s t-test (see 

Supporting Information for details). At the same time, linear fits of optimum energy vs. m/z 

separately for peptides with mobile and partially mobile protons show comparable R2 values to the 

overall fits, indicating that other factors are also important for the +3 ions. In the literature, several 

studies investigated the effects of sequence on fragmentation patterns and energetics,18,19,54–62 but 

the question in connection with (Mascot) score optimization has remained open and might warrant 

further investigation. 

In general, approximately half of the peptides have bimodal behavior, and for higher m/z, it is even 

more typical to have double maxima. The presence of the double maximum in the energy 

dependence of Mascot score thus seems to be a widespread, and so far, overlooked phenomenon. 

The two fitted slopes for the two positions of the double peak are different, but still the lines are 

remarkably parallel, not showing any tendency to meet at a common origin. In other words, 

difference between the two peaks shows only weak m/z dependence, and it is ~17 eV on average 

for both +2 and +3 ions. Notably, an analogous phenomenon was observed, although not 

commented on, by Holstein et al. in their regressions for optimal collision energies targeting 

highest intensities of individual b and y ions in MRM experiments.11 The weak m/z dependence of 

the difference might thus be related to the specific behavior of b and y ions under collisional 

activation.  
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As expected, +2 ions require larger energies, as evidenced by the larger slopes with comparable 

intersects. For the more prevalent +2 ions, the one-peak trendline is very close to our original 

collision energy vs m/z function (the “zero shift”). This indicates that our previous strategy 

targeting large number of identified peptides already yielded quite reasonable energy values in 

terms of Mascot score optimization. Specifically, for unimodal peptides and considering all charge 

states, average of Mascot scores obtained from the measurements closest to the peak position was 

approximately 4% higher than from the measurement at zero shift, i.e., the earlier default, which 

is a slight increase. For the peptides having bimodal behavior, measurements closest to the position 

of the higher peak yielded a ca. 15% increase in average Mascot score over the zero shift. As 

apparent from Figure 4, the optimum is farther away from the earlier default for these ions, so the 

higher increase is expected. Nevertheless, the Mascot score vs. collision energy curves are rather 

flat in these cases, limiting the possible gain in score. Importantly, since it has been demonstrated 

in the literature that Q-TOF MS/MS data share high degree of similarity with HCD MS/MS data, 

our findings gathered on a Bruker Q-TOF equipment may be relevant for the state-of-the art 

Orbitrap mass spectrometers most frequently used in shotgun proteomics.13,14 

CONCLUSIONS 

In this work, we investigated the collision energy dependence of Mascot score for all high intensity 

peptides from tryptic digests of HeLa and E. coli cells. To our knowledge, this is the first study to 

investigate the energy dependence of a measure directly related to peptide identification via 

database searches on a large number of tryptic peptides (2807). We mapped this dependence via 

repeated experimental runs with collision energies systematically shifted by a constant amount 

from a default linear m/z dependent value. Following peptide identification by the Mascot search 

engine, we collected data from the separate runs, applied agglomerative clustering to identify 
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patterns among the resulting curves, and carried out non-linear least squares fitting of Gaussian 

model functions to estimate characteristic energies pertaining to Mascot score optima. Our studies 

allowed us to draw the following conclusions for tryptic peptides: 

1. In the Mascot score vs. collision energy curves, several distinct behaviors can be identified. 

Some peptide ions show a well-defined maximum around a certain energy. In the majority 

of cases, however, the curves feature either a broad plateau with one ill-defined maximum 

or two well-separated peaks with somewhat lower scores in-between them. 

2. While the maxima are not well defined, and the determination of their positions are further 

hampered by experimental noise, we found that the observed curve shapes can be well 

modeled using one or two Gaussian functions. Peak positions could thus be determined 

reliably using a non-linear curve fitting approach. 

3. Our analysis of the number and intensities of the b and y type fragment ions revealed that 

the presence of the two maxima in the Mascot score curve is linked to the different energy 

dependence of b and y fragment ion intensities. While this behavior of b and y ions was 

already described in the literature, our study is the first to quantify how the less abundant 

b ions can give rise to favorable peptide identification at significantly smaller energies than 

the intensity optimum for y ions. 

4. The determined energies maximizing Mascot score were found to show the expected linear 

m/z dependence, though with a rather large residual variance. Where two maxima exist, 

their difference is surprisingly m/z independent. Proton mobility is uniform for +2 ions, 

while for +3 ions, we found that its differences have a marked effect on the optimum 

energy. Still, there seem to be further factors influencing the optimum. 
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5. Collision energy optimization specific to Mascot score can offer some gain over a 

preliminary optimization toward high number of identified peptides/proteins. For unimodal  

and bimodal peptide ions, ~4% and ~15% increase in average score could be obtained by 

measuring at the optimum energies. The observed gain is limited because the single-peak 

optimum is close to the earlier optimization, and the double-peak curves are generally flat. 

The above findings corroborate that successful peptide identification in proteomics experiments 

can depend in a complex way on parameters, and it is determined by several factors. While the 

underlying processes have been amply discussed in the literature, high level studies of the resulting 

behavior also seem to be warranted to understand their interplay. Further work is ongoing in our 

laboratory to shed more light on the peptide characteristics responsible for the various observed 

behavior classes, and to better describe optimum energies by relating them to other variables 

beyond mass and charge.  
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