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Abstract

We consider a two dimensional continuous model describing the ecology of Easter

Island. We show that increasing the parameter corresponding to the di�usion of the

trees on the island has a stabilizing e�ect on the system, potentially preventing collapse
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experiments are also conducted which con�rm these theorems.
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1 Introduction

In recent decades several theories and papers took the challenge to describe the events that
could lead to the ecological catastrophe that led to the 12th century fall of a developed
ancient civilization on Easter Island, and also to the disappearance of the trees. Most of
these theories (like [2]) blamed the inhabitants whose irresponsible harvest of the trees could
lead to a demographic collapse.

However, recent works of Hunt [7, 8] show that the fall of civilization occurred on the
island much faster than it was thought before. He proposed a new theory which involved
not only the human activity on the island, but also the negative e�ect of the rats. These
animals could have been brought to the island initially by the inhabitants themselves, but
as the rats consumed the seeds of the trees, the plants could not cope with the constant
harvest done by the humans, which led to the ecological collapse.

The theories of Hunt were formulated by Basener et al. [3, 4] in the following way:

dP s(t)

dt
= aP s(t)

(
1− P s(t)

T s(t)

)
+DP (P s−1(t)− 2P s(t) + P s+1(t)),

dRs(t)

dt
= cRs(t)

(
1− Rs(t)

T s(t)

)
+DR(Rs−1(t)− 2Rs(t) +Rs+1(t)),

dT s(t)

dt
=

b

1 + fNRs(t)
T s(t)

1− T s(t)
M

N

− hP s(t),

(1)

in which the authors thought of the island as a circular land with a volcano in the middle,
so its only habitable part was its coast. This way, they denoted the number of people, rats
and trees in region s with P s(t), Rs(t) and T s(t) respectively (where s ∈ {1, 2, . . . N} and
region 1 and N are neighboring regions). Also, a, b and c denote the rate of reproduction of
the people, trees and rats respectively, M is the maximum number of trees which can live
on the island, f is the negative e�ect of the rats on the reproduction of the trees, h is the
harvest of the trees done by the humans and DP and DR are di�usion constants describing
the movement of the people and the rats respectively. Note that in these models P = 1
means one person, T = 1 means the number of trees used by a person in a year, and R = 1
is the number of rats which could be supported by T = 1 trees.

In [4] it turned out that the increase of the di�usion parameters DP and DR destabilizes
the initially stable coexistence equilibrium point of the system, which contradicts the usual
assumption that the addition of di�usion stabilizes the physical or biological systems. In
order to investigate the e�ect of the di�usion of the trees, we added a tree di�usion term to
the third equation in (1). In this way we got the following system [12, 13], in which DT is
the di�usion parameter of the trees.
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dP s(t)

dt
= aP s(t)

(
1− P s(t)

T s(t)

)
+DP (P s−1(t)− 2P s(t) + P s+1(t)),

dRs(t)

dt
= cRs(t)

(
1− Rs(t)

T s(t)

)
+DR(Rs−1(t)− 2Rs(t) +Rs+1(t)),

dT s(t)

dt
=

b

1 + fNRs(t)
T s(t)

1− T s(t)
M

N

− hP s(t) +DT (T s−1(t)− 2T s(t) + T s+1(t)).

(2)
In [12] it turned out that the increase of DT actually stabilizes the coexistence equilibrium.

However, an issue with the original Basener model is that it models the island as a land
with a volcano in the middle, while in reality it has only two craters, and they are closer to
the shores of the island (see Figure 1). For this reason it is more realistic to model the island
in two dimensions.

In the second section of this paper, we construct a system of partial di�erential equations,
and analyze the e�ect of the tree di�usion to the stability of the coexistence equilibrium.
We show that this model behaves similarly to the disc model described in [12]. In the third
section, some numerical solutions of the model are given.

Fig. 1. The Island of Rapa Nui with the two uninhabitable volcanos

2 A continuous model and its stability properties

A natural extension of model (2) would be to construct a grid on the island (see Figure
2). However, note that in the one dimensional case we used Fourier transformation which
required the connectedness of regions 1 and N in that model. It is easy to see that in two
dimensions we do not have such properties, so the use of the aforementioned transformation
is not bene�cial. Also, such grids are much more complicated to handle in the stability
investigations than that of the one dimensional model. Because of all of these, we will not
use such models, but will construct a system of partial di�erential equation to describe not
only the evolution in time, but also the spatial propagation of the di�erent species.
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Fig. 2. A possible grid for the island

2.1 Constructing the model

Although we will not use the grid method mentioned above, it is easier to understand the
continuous model if we construct it from such a semi-discrete one. First let us neglect the
di�usion terms in (2). These models take the form

dPα(t)

dt
= aPα(t)

(
1− Pα(t)

Tα(t)

)
,

dRα(t)

dt
= cRα(t)

(
1− Rα(t)

Tα(t)

)
,

dTα(t)

dt
=

b

1 + fÑRα(t)
Tα(t)

1− Tα(t)
M

Ñ

− hPα, (t)

(3)

where α denotes the index of the examined region and Ñ is the number of regions.
Let us examine the number of individuals of a given species in a given region on the

island. If we denote by P (t, x), R(t, x) and T (t, x) the density of the given species at time t
at a point x on the island, then the number of individuals of a given species can be calculated
in the following way: ∫

Ωα

Q(t, x) dx = Qα(t),

where Q ∈ {P,R, T} and Ωα denotes the domain corresponding to the region indexed by α.
Also, let us represent the island as a domain on R2 denoted by Ω, and let its boundary be
∂Ω. Now let us assume that the density of a given species is the same inside a given region.
(For a su�ciently large Ñ , this is a good approximation.) This way we get the equation

AαQ(t, x) = Qα(t),

where Aα is the area of region Ωα and x ∈ Ωα is arbitrary. For the sake of simplicity let us
suppose that the areas of the regions are equal. Writing these into equation (3) we get the
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following:

∂P (t, x)

∂t
= aP (t, x)

(
1− P (t, x)

T (t, x)

)
,

∂R(t, x)

∂t
= cR(t, x)

(
1− R(t, x)

T (t, x)

)
,

∂T (t, x)

∂t
=

b

1 + fAR(t, x)
T (t, x)

1− T (t, x)
M

A

− hP (t, x),

(4)

where we used that ÑAα = A, where A denotes the area of the island. Let us introduce the
notations f̃ = fA and M̃ = M/A. In order to model the motion of the species we add some
di�usion terms to the equations:

∂P (t, x)

∂t
= aP (t, x)

(
1− P (t, x)

T (t, x)

)
+DP∆P (t, x),

∂R(t, x)

∂t
= cR(t, x)

(
1− R(t, x)

T (t, x)

)
+DR∆R(t, x),

∂T (t, x)

∂t
=

b

1 + f̃R(t, x)
T (t, x)

(
1− T (t, x)

M̃

)
− hP (t, x) +DT∆T (t, x).

(5)

We also know the boundary conditions for this problem, because the species will not
leave the island, so we can state a homogeneous Neumann boundary condition:

∂vP (t, x) = ∂vR(t, x) = ∂vT (t, x) = 0, x ∈ ∂Ω,

where ∂v denotes the directional derivative taken on the vector v which is the outward
normal vector of the set ∂Ω. The previous system can be rewritten as follows:

∂tQ(t, x) = F (Q(t, x)) +DQ∆Q(t, x),

∂vQ(t, x) = 0, ∀x ∈ ∂Ω,

Q(0, x) = ϕ(x),

(6)

where Q(t, x) = (P (t, x), R(t, x), T (t, x)), F is the R3 → R3 function describing the inter-
actions between the species, ∂t is the time derivative, DQ denotes the matrix containing
the di�usion coe�cients and ϕ(x) is a function describing the initial distribution of the
species on the island. This way we got a reaction-di�usion equation with Neumann bound-
ary conditions. We are searching for the classical solution Q(t, x) which is in C1,2(Ω) i.e. is
continuously di�erentiable in its time variable once, and in the spatial coordinates twice.

2.2 The e�ect of the di�usion of trees

To understand the behaviour of system (6), we will examine the stability of its constant
stationary solutions, i.e. which take the same value at every point of the island and do not
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change in time. It is easy to see that these are equivalent to the equilibrium points of the
system (3). In other words, Q(t, x) = (P ∗, R∗, T ∗) is a stationary solution of (6) if and only if
Q(t) = (AP ∗,AR∗,AT ∗) is an equilibrium point of (3), where P ∗, R∗ and T ∗ are constants.
Because of this, we can state the following lemma:

Lemma 1. System (6) has only one coexistence constant stationary solution, which is

P ∗(t, x) = R∗(t, x) = T ∗(t, x) ≡ M̃(b− h)

b+ hM̃f̃
, ∀x ∈ Ω, t ∈ R+. (7)

Proof. This is a corollary of the similar property of (3), which can be easily proved.

Now we would like to state similar theorems about the stability properties of the tree
di�usion to the ones given in the one dimensional case [12]. For this, we will use the following
result.

Theorem 1 (See [5] or [10]). Consider the following reaction-di�usion equation given on a
bounded domain Ω with smooth boundary in a �nite dimensional Euclidean space:{

∂tu(t, x) = F (u(t, x)) +D∆u(t, x), ∀x ∈ Ω,

∂vu(t, x) = 0, ∀x ∈ ∂Ω,
(8)

in which D is a positive valued diagonal matrix. Let us suppose that it has a constant
stationary solution, namely u(t, x) = C∗. This is asymptotically stable if and only if the real
parts of the eigenvalues of the matrix L − λnD are negative for every n ∈ N, in which L is
the linearisation of F (u(t, x)) around the point C∗, and λn is a Neumann eigenvalue, i.e. it
is the solution of the eigenvalue problem:{

−∆wn(x) = λnwn(x),

∂vwn(x) = 0, ∀x ∈ ∂Ω.
(9)

It is well known that on a domain described in the theorem the eigenvalues of (9) are
0 = λ0 ≤ λ1 ≤ λ2 ≤ . . . (see e.g. [6]).

Now we have to calculate the matrix L − λnD around equilibrium (7). Because of the
aforementioned connection between systems (3) and (6), L is the same as the matrix in
equation (4) in [13], which was

L =


−a 0 a

0 −c c

−h −f̃M̃h(b− h)

b(1 + f̃M̃)

f̃M̃h− b+ 2h

1 + f̃M̃

 . (10)
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From now on let us use the notations A =
−f̃M̃h(b− h)

b(1 + f̃M̃)
and B =

f̃M̃h− b+ 2h

1 + f̃M̃
. Hence,

the matrix L− λnD takes the form

L− λnD =


−a− λnDP 0 a

0 −c− λnDR c

−h A B − λnDT

 . (11)

Now we have to determine whether the eigenvalues of this matrix have a negative real part.
For this, we use the Routh-Hurwitz criteria [9, 11], which can be formulated as follows: a
3 × 3 matrix E has eigenvalues with negative real parts if and only if the following three
conditions hold:

1. The determinant of the matrix E is negative, i.e. det(E) < 0.

2. The trace of the matrix E is negative, i.e. tr(E) < 0.

3. tr(E) · pm2(E) < det(E) (pm2(E) denotes the sum of the three 2× 2 principal minors
of E)

For a proof, see [1]. We will use these three conditions to determine the signs of the eigen-
values of matrix L− λnD.

First we would like to show that the increase of the di�usion term in the third equation
of (5) does not destroy stability, i.e. if the constant solution was stable for DT = 0, then it
will remain stable for any positive value of DT . For this, we will use the following theorem,
which is an extension of the previous one, this time allowing zero values in D.

Theorem 2 (Corollary 2 in [5]). Consider the following reaction-di�usion equation given on
a bounded domain Ω with smooth boundary in a �nite dimensional Euclidean space:{

∂tu(t, x) = F (u(t, x)) +D∆u(t, x),

∂vu(t, x) = 0, ∀x ∈ ∂Ω,
(12)

in which the diagonal matrix D has the form

D =

(
D̃ 0

0 0

)
. (13)

Let us suppose that (12) has a constant stationary solution, namely u(t, x) = C∗. Matrix L
is the linearisation of F (u(t, x)) around the point C∗. Let us write matrix L in the form

L =

(
L̃ L1

L2 L3

)
, (14)
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where L̃ has the same size as D̃. We also suppose that all the eigenvalues of L3 have a
negative real part.

The constant solution u(t, x) = C∗ is asymptotically stable if and only if the real parts
of the matrix L − λnD are negative, in which λn is a Neumann eigenvalue de�ned as the
solution of (9).

We can now state the result regarding the stability of our system. From now on we call
our system (11) stable if the coexistence constant solution (7) is stable, and call it unstable
if (7) is unstable.

Theorem 3. Let us suppose that the model parameters satisfy the conditions

B2 − Ac− ah < 0, (15)

f̃ <
b− 2h

M̃h
. (16)

Moreover, let us suppose that DP and DR are �xed positive di�usion values. Then, if system
(6) is stable for DT = 0 then it is stable for all positive DT values.

Proof. Let us use the notation of L0 for the matrix L of the case of DT = 0, and L+

for DT > 0. We know that our system is stable in the case of DT = 0, and because of the
assumption (16) we get that B < 0, so we can use Theorem 2. By this and the Routh-Hurwitz
criteria we can conclude that det(L0) < 0, tr(L0) < 0 and tr(L0) · pm2(L0) < det(L0). We
will prove that similar relations hold also for L+. By simple calculations we get

det(L+) = det(L0)− λnDT (a+ λnDP )(c+ λnDR),

tr(L+) = tr(L0)− λnDT ,

pm2(L+) = pm2(L0) + (a+ λnDP )DTλn + (c+ λnDR)DTλn,

Using the original assumption and the fact that λn ≥ 0, we get that det(L+) < 0 and
tr(L+) < 0. For the third term we obtain:

tr(L+) · pm2(L+)− det(L+) =

= (tr(L0)−λnDT )(pm2(L0)+(a+c+(DP+DR)λn)DTλn)−(det(L0)−λnDT (a+DPλn)(c+DRλn)) =

= tr(L0)·pm2(L0)− det(L0)−DTλn(a+ c+ (DP +DR)λn)DTλn+

+tr(L0)(a+ c+ (DP+DR)λn)DTλn −DTλn(pm2(L0)− (a+DPλn)(c+DRλn)).
(17)

Now we use the fact that

pm2(L0)− (a+DPλn)(c+DRλn) = −B(a+ c+ (DP +DR)λn) + Ac+ ah, (18)

and let us introduce the notation X := a+ c+ (DP +DR)λn for which we know that X > 0.
Using this latter remark and (18) in the calculations we can rewrite (17) as:

tr(L0) · pm2(L0)− det(L0) +DTλn[−XDTλn +X(B −X)− (Ac+ ah−BX)] =
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= tr(L0) · pm2(L0)− det(L0) +DTλn[−X2 + 2BX − (Ac+ ah)−XDTλn].

We are �nished if the expression −X2 + 2BX − (Ac+ ah) in the last term is negative. This
expression is a quadratic function in X which will always be negative if its discriminant is
negative, i.e. if

4B2 − 4(Ac+ ah) < 0,

but this holds because of our original assumption.

Remark 1. Assumption (16) is needed for the use of Theorem 2, in which the condition for
the eigenvalues of submatrix L3 is only su�cient, but we do not know whether it is necessary
(see Remark 10. in [5]).

Now we formulate the theorem that states that for a su�ciently large DT the equilibrium
will be stable.

Theorem 4. Let DP and DR be two �xed positive numbers, and suppose that the following
conditions hold:

B <min{a+ c, A+ h},
B(Ac+ ah+ (a+ c)2) <c2(A+ a) +B2(a+ c) + a2(c+ h).

(19)

Then there is a positive number D̃T such that the system (6) is stable for all DT > D̃T values.

Proof. Condition (19) guarantees that the matrix L− λ0D = L is stable, i.e. its eigenvalues
have negative real parts. From now on we suppose that λn is positive (i.e. n > 0).

We have to prove that if DT tends to in�nity, then the three conditions from the Routh-
Hurwitz criteria will hold for a su�ciently large value of DT . Looking at the calculations
of the previous theorem, it is clear that in the case of the determinant and the trace it will
tend to −∞. For the third term, it is enough to prove that the last term tends to −∞ as
DT tends to in�nity. Examining the last term we get

−X2 + 2BX − (Ac+ ah)−XDTλn = −DT

[
Xλn −

−X2 + 2BX − (Ac+ ah)

DT

]
.

The fraction tends to zero and −DTXλn tends to −∞, which completes the proof.

3 Numerical solution

In this section we solve equation (6) numerically, and for this we use the �nite element
method. First we state the weak form of the problem: we multiply both sides of our equation
by a function v ∈ H1(Ω), and then integrate them on Ω. This way we get the equation∫

Ω

v(x)∂tQ(t, x) =

∫
Ω

F (Q(t, x))v(x) + v(x)DQ∆Q(t, x). (20)
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For the sake of simplicity, we use the usual L2 scalar product:

(u, v) :=

∫
Ω

uv.

In this way the previous equation takes the form

(∂tQ(t, x), v(x)) = (F (Q(t, x)), v(x)) + (DQ∆Q(t, x), v(x)). (21)

Using the Gauss�Ostrogradsky theorem and the Neumann boundary condition, we can
rewrite the right side in the following way:

(∂tQ(t, x), v(x)) = (F (Q(t, x)), v(x))− (DQ∇Q(t, x),∇v(x)). (22)

Let us search for our numerical solution in a Vh ⊂ H1(Ω) subspace in the form

Q(t, x) ≈
∑
j

cj(t)bj,

where {bj}j=1,...n is a basis in Vh. Also, let us choose our v function to be these basis functions.
This way equation (22) has the form(

∂t
∑
j

cj(t)bj, bk

)
=

(
F

(∑
j

cj(t)bj

)
, bk

)
−

(
DQ

∑
j

cj(t)∇bj,∇bk

)
, (23)

for every k = 1, 2, . . . n.
Let us denote our mass matrix byM, which is de�ned as

Mk,j := (bj, bk),

and our sti�ness matrix by S with the de�nition

Sk,j := −(DQ∇bk,∇bj).

We also use the notation

Fk(c(t)) :=

(
F

(∑
j

cj(t)bj

)
, bk

)
.

In this way equation (23) can be rewritten as

Mc′(t) = Sc(t) + F (c(t)). (24)

This is a system of ordinary di�erential equations, which can be solved with any standard
method. Here we use the BDF method to solve (24). Moreover, quadratic Lagrange elements
are used as a base on a triangular grid. The numerical simulations were conducted in ComSol.
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In the numerical experiments we choose the initial distribution as follows. People are
only present near one of the shores of the island, rats are chosen similarly and trees are
distributed homogeneously on the island. This initial condition corresponds to the time of
the arrival of the settlers. We will use the following values for the parameters in system (5),
similarly as in [12, 13].

a = 0.03, b = 1, c = 10, M = 12000, f = 0.001, h = 0.25, A = 162.

Now we examine whether the analytic results can be veri�ed numerically. As we can
see in Figure 3, for parameters (DP , DR, DT ) = (0.1, 0.3, 0.01) the system is unstable as the
population of the trees dies out where people �rst start to harvest. Note that in the case
of T = 0 the derivatives in the �rst two equations will become in�nitely large, resulting in
the loss of validity of our model. To avoid such problems we will only consider the case of
su�ciently large values of T and say that for values near zero the populations will die out.

However, as we increase the value of DT , system (6) becomes stable e.g. for values
(DP , DR, DT ) = (0.1, 0.3, 1) as the solution converges to the coexistence equilibrium (7) (see
Figure 4). Note that in this case the su�cient condition in Theorem 3 does not hold, but
Theorem 4 does hold, i.e. the system may become unstable for certain DT values but will
become stable for su�ciently large ones.

Fig. 3. The unstable case - the number of trees at times t = 1 (upper left), t = 57 (upper
right) and t = 105 (bottom) for constants (DP , DR, DT ) = (0.1, 0.3, 0.01). The trees die out
at time t = 106 at the �rst human settlement

11



Fig. 4. The stable case - the number of trees at times t = 6 (upper left), t = 120 (upper
right) and t = 476 (right) for constants (DP , DR, DT ) = (0.1, 0.3, 1). Although the number
of the trees decreases as time goes by, they do not die out, but rather have a constant positive
density on the island, which corresponds to the value which can be computed from (7)

4 Conclusions

In this paper we extended the original models of [12, 13] into a system of partial di�erential
equations. We examined the properties described before involving the stabilizing e�ect of
tree di�usion. It turned out that these are more or less similar to the ones of the one-
dimensional case, i.e. the increase of the di�usion of the trees stabilizes the system. We also
conducted some numerical experiments, which also con�rm our theorems.
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