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Abstract—Voting protocols, such as the push and the pull
protocol, are designed to model the behavior of people during
an election, but they have other applications. These processes
have been studied in many areas, including but not limited to
social models of interaction, distributed computing in peer-to-
peer networks, and to describe how viruses or rumors spread in
a community. In this paper we study the runtime of discordant
linear protocols on the cycle graph, and the probability for each
consensus to win in the end.

Index Terms—Markov chain, voting protocol, cycle.

I. INTRODUCTION

Models of voting in finite graphs have been studied
intensively for decades, see e.g., [1], [2], [3], [4], [5], [6].
Throughout this paper, a discrete time voting protocol is
defined by specifying a graph and a set of nondeterministic
rules. Then the process is divided into rounds. In each round,
the participants, i.e., vertices of the graph, can affect the vote
of their neighbors according to the given rules.

We note that many alternative definitions were investigated
in the literature. Continuous time voting processes were
studied in [1], [7]. Somewhat surprisingly, the thorough
mathematical investigation of the continuous version pre-
ceded that of the discrete analogue of the protocols [2], [7].
In [8] the graph evolves together with the opinions of the
vertices. This models the behavior of people who in each
round try to convince one another and succeed with a given
probability. Whenever they fail, they cease to communicate
with each other, that is, we delete the edge linking them
from the graph. In such a model there are many potential
final results, as the graph can disconnect, and in fact we may
end up with many connected components. For more details,
see [6], [9]. The application of these randomized protocols
in studying how rumor spreads in a society goes back to
decades, and it is still an active area [10], [3], [4]. The same
can be said about peer-to-peer networks, see e.g., [11], [5],
[12]. In this application, opinion is replaced by a piece of
information that each computer has at a given time, and they
share the data in a randomized way. Connections of voting
processes and coalescing random walks were investigated in
[7], [13], and for other recent applications see [14], [15].

However, we consider discrete time voting models where
the graph is fixed, and the vote is a binary decision. The two
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options to choose from are 0 and 1, but we usually refer to
vertices with opinion 0 as blue vertices, and red vertices are
the ones with opinion 1. Such a protocol can be synchronous
(see [16] for examples), i.e., it is allowed that several vertices
of the graph change their opinion in one round; otherwise
it is asynchronous. The so-called linear voting model was
introduced in [16] as a common generalization of many well-
studied voting protocols. Three of the most common special
cases of asynchronous linear voting are the

• Oblivious protocol: in each round an edge uv is chosen
uniformly at random, and then either u adopts the
opinion of v or the other way around, with equal
probability.

• Push protocol: in each round a vertex u is chosen
uniformly at random, and that vertex forces a randomly
chosen neighbor to adopt the opinion of u.

• Pull protocol: in each round a vertex u is chosen
uniformly at random, and that vertex is forced by a
randomly chosen neighbor v to adopt the opinion of v.

From a practical viewpoint, all linear voting models have a
common weakness: it is typical that nothing changes in many
steps of the process, as it is possible that every participant
keeps his own opinion for the next round. E.g., consider push,
pull or oblivious voting on the complete graph Kn; in this
particular case, the three protocols coincide. If one opinion
is significantly more popular than the other, then with very
high probability, both chosen vertices have the more popular
opinion. So usually many idle rounds go by before the
opinion of some vertex is altered. This example demonstrates
the advantage of discordant (oblivious, push, pull) voting
protocols, defined in [17]. An edge uv is discordant if u and
v have different opinion, and a vertex is discordant if it is in
a discordant edge. To define discordant oblivious, push and
pull voting, the above three definitions are modified so that
whenever a random choice is made, we only allow discordant
edges or vertices to be picked (always uniformly at random).
Note that in our restricted framework when there are only two
opinions, the definition of discordant pull voting simplifies
to picking a discordant vertex in each round randomly and
switching its opinion.

The goal of every voting scheme that we study now is
to reach consensus, that is, a state where all participants
have the same opinion. The topic of the present paper is
the expected time T to reach consensus with the discordant
push, pull and oblivious processes on the n-cycle. It was
proven in [17] that all three processes have a quadratic
runtime at worst. In particular, push voting is expected to
terminate in at most 33n2 steps regardless of the initial state,
and from some initial state it is indeed expected to take
at least n2/4 + O(n) time to reach a unanimous vote [17,
Section 4]. We improve the bounds and obtain the precise
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asymptotical behavior of the expected runtime of the three
discordant protocols on the n-cycle. It is shown that the
expected time for all three protocols to reach consensus on
the cycle graph with n vertices satisfies |T −β%| = O(n3/2),
where β and % are the number of blue and red vertices in
the initial state, respectively. In other words, on the n-cycle
Toblivious, Tpush and Tpull differ in an O(n3/2) term, which is
negligible compared to the typically quadratic runtime. The
result combined with the lower estimation shows that the
worst case is β = ρ = n/2, where the expected time is
asymptotically T ∼ n2/4.

The other vital problem in case of a random protocol is to
compute the probability of each outcome to win. We show
that in case of the cycle graph the probability of each opinion
to win with the discordant push, pull or oblivious protocol is
asymptotically proportionate to the number of vertices with
that opinion in the initial state, provided that there are few
runs to begin with. More precisely, we demonstrate that the
the blue vertices have winning probability β

n +O( kn ), where
k is the number of runs in the initial state. By using some
probability theory, it can be shown that there must be a state
for arbitrarily large n such that the estimation β

n has error
greater than 0.1. However, computer simulations suggest that
in highly symmetrical initial states (such as the one with
alternating runs of lengths one and two), the estimation β

n is
quite accurate, a phenomenon we cannot explain yet.

II. PRELIMINARIES

A. General tools

Throughout this section, P is an absorbing Markov chain
with transient states T . We denote by Pen the set of potential
penultimate states in T , that is, the states t ∈ T such that the
probability of moving from t to an absorbing state in one step
is positive. As usual, we denote by Q the upper left minor of

the canonical form of P =

(
Q R
0 I

)
. So Q is the transition

matrix restricted to the transient states. Following standard
notations, N = (I−Q)−1 denotes the fundamental matrix of
the Markov chain. In this paper, vectors are column vectors
of length |T |, usually denoted by u, v, ε, etc. The coordinates
are identified with the transient states, so precisely speaking,
these are vectors in RT . We denote by 1 the column vector
of length |T | all of whose entries equal to 1. The entry
corresponding to the coordinate t in the vector u is denoted
by u[t]. It is well-known that if we sum up the entries u[t]
while randomly walking on the coordinates starting from
t0 ∈ T , then the expected value of this sum before the walk
is absorbed is (Nu)[t0]. In particular, the expected times to
absorption from each transient state as initial state are the
coordinates of the vector N1.

The following lemma is the basic observation of the
elementary method we use to improve the upper estimations
for the expected time to absorption presented in [17]. We
can think about x[t] as a “guesstimate” of the expected value
of the sum of the entries of u during a random walk with
initial state t before reaching an absorbing state. In particular,
if u = 1, then x is the guesstimate vector for the time to
absorption starting from each transient state.

Elementary Lemma: Let u, x, ε ∈ RT be vectors such that
Qx = x − u + ε. Then Nu = x + Nε. In particular, if
Qx ≤ x− u, then Nu ≤ x (coordinate-wise).

As we mentioned earlier, the vectors Nu and Nε are the
expected value vectors of the sum of the entries of u and
ε during a random walk (on the coordinates) starting from
each transient state. The Elementary Lemma is particularly
useful when the transition matrix is large but sparse, and
the fundamental matrix cannot be computed or represented
in a transparent way. This is often the case with evolu-
tionary processes. Note that Qx is easy to compute if the
matrix is sparse. Furthermore, because of the probabilistic
interpretation of Nε and the possibility of applying the
Elementary Lemma iteratively, it is possible to estimate this
vector without computing N , as we see later. By successive
application of this method, the error can shrink to such a
small vector that it is very easy to estimate it, providing us
with an efficient estimation of the expected value vector. We
spell out an immediate application.

Let u ∈ RT be such that u[t] = 0 for all t ∈ T \ Pen.
Define p ∈ RT where p[t] is the probability of absorption in
state t. Let M := max

t∈Pen
u[t]/p[t]. Then the expected sum of

the entries of u during a random walk from any initial state
is at most M . (We can apply the Elementary Lemma with
the guesstimate vector M · 1.)

This observation is very advantageous when we are able
to cut a process to several phases, and we want to estimate
the expected sum of an expression between two phase
transitions. In our case, the phases are those parts of the
process where the number of runs, i.e., maximal intervals in
the cycle that consist of vertices with the same opinion, is
constant. Note that the number of runs cannot increase during
the process, and it decreases by two whenever the opinion of
a singleton vertex is switched. The only exception is when
we reach consensus in the last step: in that case, the number
of runs drops down from two to one.

B. Further terminology

We now turn to the problems under consideration, defined
in the introduction. Note that the proof is briefly presented
for discordant push voting on the n-cycle: the case of pull
voting can be done in a similar fashion, and the case of
oblivious voting is trivial. Clearly, the voting process is an
absorbing Markov chain with 2n states, whose absorbing
states are exactly those two where all the vertices agree.

As in the introduction, the number of blue and red vertices
are denoted by β and %, respectively. A vertex is a singleton
if its color differs from both its neighbors’ color. The number
of singleton blue and red vertices are sβ and s%, respectively.
The number of non-singleton blue vertices with (exactly) one
red neighbor is mβ ; the number m% is defined analogously
for red vertices. Maximal sets of consecutive vertices around
the cycle with the same color are called runs. Note that
the number of runs is even in every state, except for the
two absorbing states where the whole cycle is one run.
Furthermore, the number of red runs equal to the number
of blue runs in the transient states, as red and blue runs
alternate around the table.

III. CUTTING THE PROCESS

It turns out to be advantageous in the calculation to cut
the process into two parts. We choose a number k0 whose
order of magnitude is

√
n (in fact, 8

√
5
√
n is optimal for
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estimating the runtime). The first part finishes when we reach
a state with k0 runs.

A. The first part: down to O(
√
n) runs

In this subsection, we show an estimation of the expected
length of the first part. The following bound can be extracted
from [17, Section 4]. In that paper, a quadratic upper estima-
tion was given to the runtime of the discordant push protocol
using some results about stopped martingales. They obtained
that it takes at most 33n2 steps to reach consensus from any
initial state, that is, to reach a state with one run. However,
by carefully modifying their calculations, it can be shown
that the expected time to reach a state with k runs is at most
80n2/k from any initial state. Thus if k0 = Θ(

√
n), then the

first part is expected to terminate in O(n3/2) steps.
In [17, Lemma 8] and the argument before that, it was

shown that the expected time to reach a state with k = 2r1
runs from one with 2r0 runs is at most T ∗, where T ∗ is the
optimal solution of the following linear program:

T ∗ = max 10
√

2n3/2
r0∑
r=r1

xr
r3/2

such that
r∑

j=r1

xj ≤
√

2rn for all r1 ≤ r ≤ r0

and xr ≥ 0 for all r1 ≤ r ≤ r0
Moreover, it can be shown that such a linear program

attains its optimal solution at xr1 =
√

2r1n and xr =√
2rn −

√
2(r − 1)n for all r1 + 1 ≤ j ≤ r0. Hence, by

using standard estimations we obtain T ∗ ≤ 40n2

r1
= 80n2

k .

B. The second part: from O(
√
n) runs to consensus

As we suggested earlier, it seems impossible to compute
the fundamental matrix of our Markov chain. However, the
upper-left minor Q of the transition matrix is sparse, so the
Elementary Lemma and its consequences can be applied.

The way we phrased the result in the introduction provides
the right heuristics for the guesstimate vector. The expected
runtime of the oblivious protocol is clearly β%: it is simply
the runtime of a drunkard walk with parameter n = β + %
and initial state β (see [17] for details). Computer simulations
(in SAGE) suggested that the runtime of the three discordant
protocols should be close to each other, but it is not so easy to
turn this intuition into a precise proof. That is why we use the
Elementary Lemma with guesstimate vector x whose entries
are β% for each transient state (where β and % depends on
the state).

The probability of the number of blue vertices to increase
by 1, i.e., a blue vertex is pushing, is

sβ +mβ

sβ +mβ + s% +m%

Similarly, the probability of the number of red vertices to
increase by 1 is (s% + m%)/(sβ + mβ + s% + m%). If we
multiply the value of the vector x at those states with the
transition probabilities, and add them up, i.e., we calculate
Qx, we obtain that the error vector in the Elementary Lemma
is (%−β)(sβ+mβ−s%−m%)

sβ+mβ+s%+m%
. In this expression, |%− β| ≤ n, so

it is enough to estimate the sum of | sβ+mβ−s%−m%sβ+mβ+s%+m%
| during

a random walk.

It can be shown by the above presented corollary of the
Elementary Lemma that the expected value of the sum of
| sβ+mβ−s%−m%sβ+mβ+s%+m%

| during a random walk between two phase
transitions (while the number of runs is constant) is at most
1/2. We omit the complicated combinatorial argument.

In particular, the expected sum of the above expression
during the second part of the voting process is at most
O(
√
n), as there are O(

√
n) phase transitions from a state

with O(
√
n) runs.

Thus by adding up these estimations in the first and second
parts of the process, we obtain that the expected time of
reaching consensus is

O(n3/2) + (β%+O(n3/2)) = β%+O(n3/2)

.

IV. WINNING PROBABILITIES

It is enough to estimate the winning probability p of the
color blue, the other color then wins with probability 1− p.
Again, we know from standard theory that the matrix NR
consists of the probabilities to reach from transient state i the
absorbing state j in the process. So we are only interested in
the first column of this (2n− 2)× 2 matrix. The Elementary
Lemma can be applied, as the problem is to estimate the
vector Nu where u is the first column of R. The calculation
is similar to the estimation of the expected runtime, and
in fact, a very similar error term is obtained using the
guesstimate vector with entries β

n , namely sβ+mβ−s%−m%
n(sβ+mβ+s%+m%)

.
As there are k/2 phase transitions from a state with k
runs until reaching consensus, and the expected value of
the sum sβ+mβ−s%−m%

sβ+mβ+s%+m%
is 1/2, we obtain the estimation

|p− β
n | = O( kn ).

V. FURTHER RESULTS AND FUTURE WORK

It is also possible to obtain asymptotically sharp estimates
for the corresponding problems in the star graph with n
vertices. This is a typical network, when one server is
connected to several clients. It was already pointed out
in [17] that, quite counter-intuitively, the discordant pull
protocol is faster than the discordant push protocol on such
graphs if n is large enough. We were able to refine this
result, and obtain asymptotically sharp estimations for both
runtimes. The author also managed to show that the three
discordant protocols presented in the introduction differ from
their linear counterparts in terms of winning probabilities by
an error whose order of magnitude is o(1), if the underlying
graph is the random graph G(n, p). The most intriguing open
problem is the one mentioned in the introduction. The proof
that the estimation β

n must have an error at least 0.1 on some
initial state of the cycle graph strongly hints at the initial state
whose runs have alternating lengths one and two. However,
computer simulations suggest that in this particular case the
winning probability for the blue vertices converges to 2

3 as
n tends to infinity. Thanks to the O(n3/2) estimation to the
runtime of the first part, it is possible to estimate the desired
probability up to an error term O(1/

√
n) if one is willing to

run the process for O(n3/2) steps. This is a good trade-off,
as the expected time to reach consensus from the worst initial
case is quadratic. In fact, using this observation, it is possible
to write a relatively fast program that runs the discordant
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push protocol on the cycle with 5000 vertices 5000 times
from the initial state above. If this empirical result is correct,
then there must be a more complicated formula that takes into
consideration the position of blue vertices around the cycle as
well as their number, and coincidentally this formula should
assign 2

3 to the above mentioned initial state.
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