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A B S T R A C T

Markers of brittle faulting are widely used for recovering past deformation phases. Rocks often have oriented
magnetic fabrics, which can be interpreted as connected to ductile deformation before cementation of the sedi-
ment. This paper reports a novel statistical procedure for simultaneous evaluation of AMS (Anisotropy of Mag-
netic Susceptibility) and fault-slip data.The new method analyzes the AMS data, without linearization tech-
niques, so that weak AMS lineation and rotational AMS can be assessed that are beyond the scope of classical
methods. This idea is extended to the evaluation of fault-slip data. While the traditional assumptions of stress in-
version are not rejected, the method recovers the stress field via statistical hypothesis testing. In addition it pro-
vides statistical information needed for the combined evaluation of the AMS and the mesotectonic (0.1 to 10m)
data. In the combined evaluation a statistical test is carried out that helps to decide if the AMS lineation and the
mesotectonic markers (in case of repeated deformation of the oldest set of markers) were formed in the same or
different deformation phases. If this condition is met, the combined evaluation can improve the precision of the
reconstruction. When the two data sets do not have a common solution for the direction of the extension, the
deformational origin of the AMS is questionable. In this case the orientation of the stress field responsible for the
AMS lineation might be different from that which caused the brittle deformation. Although most of the exam-
ples demonstrate the reconstruction of weak deformations in sediments, the new method is readily applicable to
investigate the ductile-brittle transition of any rock formation as long as AMS and fault-slip data are available.

1. Introduction

Reconstruction of the former orientations of past deformations of
geological units is one of the key questions in the geosciences. In sev-
eral cases the small amount of overall deformation is reflected in only
a few, weak markers making historical analysis difficult, often impossi-
ble. The ductile to brittle sequence of deformation styles is widely pre-
sumed during the deformation history for most rocks (lithifying sed-
iments, cooling magmatic and some metamorphic rocks). If the basic
cause of the deformation – namely stress – prevails beyond the early
(ductile) phase of deformation, then it might lead to brittle fracture
(faults, joints, deformation bands) in the rock unit (Talbot, 2008). Our
work aims to approach this transition, in particular cases, when it takes

place in a predominantly steady stress field. An integrated method that
facilitates two, frequently available indicators, and exploits relatively
low range of deformation, might shed light on the transitional field of
the ductile and brittle deformation styles.

Both magnetic fabric (AMS, Anisotropy of Magnetic Susceptibility)
and mesotectonic markers are widely used for reconstructing past defor-
mation phases (following Turner and Weiss (1963) and Hancock (1985),
the mesotectonic scale refers to the range between 0.1m and 10m).
Although later deformation phases may occur, this transition phase is
unique as it is the only one that is reflected by both quasi-simultaneous
magnetic and mesotectonic markers. In the terms of continuum mechan-
ics, we thus consider the first increment of the strain.

* Corresponding author at: Department of Mechanics, Materials and Structures, Budapest University of Technology and Economics, Hungary.
Email address: siposa@eik.bme.hu (A.A. Sipos)

https://doi.org/10.1016/j.tecto.2018.01.019
Received 3 April 2017; Received in revised form 5 January 2018; Accepted 18 January 2018
Available online xxx
0040-1951/ © 2017.



UN
CO

RR
EC

TE
D

PR
OO

F

A.A. Sipos et al. Tectonophysics xxx (2018) xxx-xxx

In both AMS and fault-slip methods there are doubts about whether
the directions of the stress field are reflected more precisely in AMS
or in brittle deformations. Some studies (e.g. Haernick et al., 2013))
point out that AMS is an unreliable predictor of not only stress, but even
strain. Others simulate well-defined multiphysical models and demon-
strate the highly nonlinear dependence of the susceptibility tensor on
the finite strain during successive events of deformations (Ježek and
Hrouda, 2002). Undoubtedly, such observations and models must be
valid for the general situation in which any material under any specific
deformation is distorted to an arbitrary extent. However, in the case of
weak deformation of homogeneous sediments, a correlation has been
demonstrated between stress (reflected by brittle deformation markers)
and AMS data ((Borradaile and Hamilton, 2004; Cifelli et al., 2005;
Ferré et al., 2014) and references therein). These studies, in principle,
state that the formation of the AMS fabric takes place during the early,
unconsolidated stage.

The intuitive physical picture outlined above relies on the following
assumptions:

• the AMS reflects the weak deformation of the early, ductile phase,
prior to advanced lithification;

• the cause of the deformation lasted sufficiently to produce brittle
markers;

• in sedimentary rocks, the deformation happened while the layers
were horizontal.

Unfortunately, even if the above criteria are met, statistical analy-
sis is difficult because we are dealing with weak deformations and both
AMS and mesotectonic markers are sparse. So the available data tend
to be noisy, making statistical treatment of such data-sets uncertain. In
the case of tensor quantities some linearization technique can usually
be applied to statistically evaluate eigendirections of the tensor (e.g. Cai
and Grafarend, 2007)). If the eigendirections are considered as indepen-
dent vectors, then procedures developed for vectors can be used, such
as Fisher statistics over the sphere (Fisher et al., 1993), or its modi-
fied version by Bingham (1974) or Henry and Le Goff (1995). Random
sampling with replacement known as “bootstrapping ” might help to
overcome the difficulties of small sample size or unknown distribution
type (Tauxe et al., 1990, 1991). Several authors point out that these ap-
proaches completely neglect the tensor nature of the observed quantities
(Constable and Tauxe, 1990). Methods, which aim to keep consistency
with the underlying physics strongly rely on linearization techniques
(Hext, 1963; Jelinek, 1978), but as pointed out in Hext (1963), the error
due to the linearization (i.e. neglecting higher order terms in the Taylor
series of a tensor) can be quite large, hence the approximation of the
confidence intervals might be poor. It is not difficult to see that two, suf-
ficiently close eigenvalues of the tensor (which situation is referred to as
rotational anisotropy throughout the paper) lead to the underestimation
of the confidence regions by any method built on linearization.

In this paper a statistical framework for tensor quantities is pre-
sented that – apart from a mild assumption about normal distribution of
the input data – is free from other a-priori assumptions (i.e. it is able to
handle data-sets represented by closely rotationally anisotropic tensors),
and the accuracy of the computed confidence intervals does not depend
on intrinsic characteristics of the outcome (such as the degree of AMS
lineation).

Our approach is readily applicable for AMS data sets and can be
extended to the stress inversion applied in mesotectonics. The idea of
using both sources simultaneously in reconstructing the orientation of
past stress field is common practice and relies heavily on visual com-
parison of stereograms and hence biased by human intuition. The new
method of combined statistical evaluation of the AMS and mesotec

tonic data can be applied to several kinds of geological objects. It can be
used to study the ductile to brittle transition and investigate the steadi-
ness of the stress field. However, it is particularly powerful when the
maximum and intermediate axes of the AMS ellipsoid are of similar
length, as in moderately deformed samples of soft and fine grained sed-
iments, and where the availability of the mesotectonic data is limited.

Although this paper is devoted to the statistical procedure itself, the
methods to obtain AMS and mesotectonic data will also be discussed
briefly and the applicability of the method will be demonstrated using
field examples from the Pannonian basin, Central Europe.

1.1. AMS measurements and the interpretation of the results in terms of
deformation

The AMS ellipsoid is determined on oriented field samples. The mag-
netic susceptibility tensor for each sample is measured on different in-
struments (Studýnka et al., 2014). During the measurement the sample
is placed in a magnetic field (H) and its magnetization (M) is deter-
mined for several spatial orientations. The magnetic susceptibility ten-
sor describes the linear transformation between the vectors H and M via
M=k H. It can be represented by a 3×3, symmetric, real valued ma-
trix,

(1)

Several devices and testing procedures are available to carry out the
measurements, details for which are provided by Jelinek (1988) and
Studýnka et al. (2014), and references therein. The AMS ellipsoid char-
acterizes the magnetic fabric of a rock. It is considered as primary in a
sediment formed during deposition and, in igneous rocks, during cool-
ing in the absence of external forces. In sediments, the AMS ellipsoid is
oblate, the orientation of the maximal principal axis (denoted as K1) ex-
tends over a wide range of azimuths, sometimes even in a single layer,
but always throughout a stratigraphic sequence, due to the temporal
changes of the flow direction within the sedimentary basin. In some
cases a general trend can be observed that is maintained throughout
a stratigraphic sequence, especially in the fine grained clastics (mud-
stones). This trend can be attributed to weak tectonic deformation (Mattei
et al., 1997; Cifelli et al., 2005; Márton et al., 2006; Márton et al., 2009,
2012), especially when K3 is close to the bedding pole, i.e. the magnetic
foliation is subparallel with the bedding plane. The deformation leav-
ing a magnetic imprint in these sediments is primary, the first one af-
ter the deposition. Overprinting of this early AMS fabric by subsequent
tectonic phases is unlikely, as the magnetic fabric of the sediment more
readily reflects strain while the sediment is relatively soft, i.e., able to
undergo continuous (ductile) deformation and did not go through ce-
mentation process (Borradaile, 1988). The magnetic fabrics of igneous
(lava) rocks can be affected by strain while they are not yet completely
cooled (Márton et al., 2006; Lesić et al., 2013). Afterward which their
fabrics are difficult to modify (Tarling and Hrouda, 1993).

1.2. Methodology of fault-slip analysis

Field measurements generally comprise the measurement of strike
and dip data of striated fault planes, joints, deformation bands or other
types of brittle elements. Fault kinematics can be determined using
divers criteria described in several papers (Angelier, 1979; Hancock,
1985; Petit, 1987). Starting from fault-slip data several algorithms were
elaborated for calculation of the σ stress tensor (Angelier, 1984, 1990;
žalohar and Vrabec, 2007, 2008). In most cases only the reduced
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stress tensor is determined incorporating the orientation of stress axes
and their ratio, but not their absolute value (Carey and Brunier, 1974).

In the case of multiple faulting phases, a combination of automatic
(Angelier and Manoussis, 1980) and manual separation, or their combi-
nation, can be used to separate faults into phases. Some of the data in
this paper were analyzed in a combined way (Sipos-Benkő et al., 2014;
Fodor et al., 2014). The tilt test is useful and important for sedimen-
tary rocks in order to establish the relative chronology between fault-
ing and tilting around a horizontal axis. For a conjugate set of faults,
that underwent tilting, the symmetry plane of faults and also the stress
axes deviate from vertical and horizontal; thus backtilting of faults to
their horizontal bed position would reconstruct the original position of
the stress axes at the time of faulting. Although the tilting itself and the
faulting could belong to the same deformation phase, these successive
events could be coaxial. Early faulting while in a horizontal bed posi-
tion and tilting could equally be separated in time and characterized by
different stress/strain axes.

1.3. Assumptions

We aim to treat cases in which the first deformation phase induced
the magnetic fabric (at grain scale) as well as causing brittle fractur-
ing (at meter scale) in a practically horizontal position. We restrict our-
selves to the following assumptions. Let k⁠i,0 denote the specimen mag-
netic susceptibility tensor. k⁠i,0 is determined with a negligible error (i.e.
the maximal semi-major axis of the confidence-ellipse of the principal
directions, E⁠12 < 15°) and its elements are positive reals, hence the ten-
sor can be associated with an ellipsoid (Fig. 1). A locality is represented
by N pieces of oriented samples. Even within one locality the volumes of
the ellipsoids may differ. Since we aim to analyze the eigendirections of
the resultant tensor, normalization of all measured tensor is desirable.
To be consistent with normal practice, normalization is carried out by
the first scalar invariant I⁠1 of k, namely

(2)

although any of the two other invariants would be appropriate. The
mean (k⁠e) and variance-covariance matrix (V) of the statistical sample
is defined in the usual way (Jelinek, 1978):

(3)

(4)

Note, that due to normalization the number of independent quantities
in k⁠i equals 5.

We assume that the elements of the mean tensor k⁠e are indepen-
dent random variables and that they have univariate normal distribu-
tion. Although the normality is approximate for normalized data sets,
based on our experience, the error here is negligible (see the Appen-
dix example). We investigate the closeness of the AMS and the mesotec-
tonic stress tensors. Their nearness is not formulated as a strict equal-
ity as there are many observations that contradict such a strong rela-
tion, but it is expressed on statistical grounds. As both k⁠e and σ are
tensor valued random variables, it is argued that these two are able
to mutually tighten the range of plausible principal directions. Let

denote the set of unit eigenvectors
of the 3×3 matrix A with the corresponding eigenvalues λ ∈ℝ. The main
hypothesis expresses that the eigenspaces of the two tensors are statisti-
cally indistinguishable,

(5)

where sign ≅ denotes statistical equivalence. Our main interest is closely
rotationally anisotropic data sets as close intermediate and maximal
eigenvalues (i.e. nearly oblate ellipsoids, Fig. 1 b) are typical for soft
sediments (Hrouda et al., 2009).

Fig. 1. Ellipsoids associated with 3×3, positive definite tensors: a) sphere (λ⁠1=λ⁠2=λ⁠3) isotropic; b) oblate spheroid (λ⁠1=λ⁠2 > λ⁠3) rotationally anisotropic; c) prolate spheroid (λ⁠1 > λ⁠2=λ⁠3)
rotationally anisotropic; d) ellipsoid (λ⁠1 > λ⁠2 > λ⁠3) anisotropic.

3



UN
CO

RR
EC

TE
D

PR
OO

F

A.A. Sipos et al. Tectonophysics xxx (2018) xxx-xxx

2. Stochastic method for nearly isotropic tensors

The classical approach of tensor statistics assumes that the tensor is
sufficiently anisotropic (Hext, 1963). In this case the confidence intervals
of the eigendirections can be approximated with ellipses and can be de-
rived analytically, so the applied linearization leads to negligible errors.
(Jelinek (1978) introduced this method in geosciences, since which it
has been widely used.)

As both Hext and Jelinek point out, close to rotationally anisotropic
tensors cannot be evaluated by classical methods due to the non-linear
dependence of the eigenvectors on the matrix elements. It is worth to
mention that, even for rotationally anisotropic or isotropic tensors, three
mutually orthogonal eigendirections can be computed by the widely
used algorithms (let us call the later procedures direct methods). Direct
methods, in general, fail to recognize that linear combinations of the
computed eigendirections might also belong to the eigenspace of the
tensor. Rigorous treatment of such non-linearity has been carried out
for 2×2 matrices (Xu and Grafarend, 1996). Instead of facing the even
more complicated case of 3×3 matrices, our method resolves the above
mentioned non-linearity by performing a large number of linear investiga-
tions. This enables simple hypothesis testing appropriate for determining
eigendirections and distinguishing between eigenvalues within the data
set.

2.1. Identification of eigendirections

By definition, the λ⁠i eigenvalue and the u⁠i eigenvector of the tensor
k⁠e fulfills

(6)

where i ∈{1,2,3}, the eigenvector is normed (∥u⁠i∥=1) and due to sym-
metry the eigenvalues λ⁠i are real. Let U denote a finite set of unit vec-
tors (u) pointing to the vertices of some (more or less) regular and suf-
ficiently fine triangulation of the unit sphere. Typically a unit vector u
∈ U fails to be an eigenvector of k⁠e, however, based on Eq. (6) one can
define a scalar as

(7)

With this in mind, the vector e can be calculated via

(8)

Note, that ∥e∥ is a measure of the deviation for u meeting Eq. (6).
Our construction guarantees, that e=0 iff u=u⁠i, and then λ=λ⁠i. The
right-hand side of Eq. (8) is linear respect to the elements of the matrix
k⁠e. We aim to decide about each elements of U, whether it meets to be
an eigenvector of k⁠e. Hence, the null and alternative hypotheses of the
multivariate statistical test (Timm, 2002) are formulated as

(9)

A linear combination of normally distributed random variables is
also normal, hence the elements of e follow a normal distribution and
hence we use the one-side version of Hotelling's T⁠2 test (Sipos, 2013).
The test statistics has an F-distribution with parameters p⁠1=2 and
p⁠2=N−2. (Detailed explanation of the method is provided in the Ap-
pendix.) All u ∈ U vectors fulfilling H⁠0 are accepted as possible eigen-
vectors of the statistical sample, they form a subset of U:

(10)

Nevertheless, acceptance criteria strongly rely on the variation of the
original sample. Result of the computation can be easily visualized by
marking points related to the elements of Ũ in a stereonet.

2.2. Identification of eigenvalues

As in Eq. (7), an eigenvalue-like quantity can be computed for any
unit vector. This implies, that a statistical test can be used to distinguish
between significantly different eigenvalues. This test might be evaluated
pairwise for all elements of Ũ, although it seems to be more natural to
compare λ against the directly computed eigenvalues (λ⁠i) of k⁠e. It is clear
from Eq. (7) that λ is a random variable which depends linearly on the
elements of k⁠e, hence it follows a normal distribution. A statistical test
is defined with the null and alternative hypotheses:

(11)

where i ∈{1,2,3}. As λ is a scalar quantity, here a one-sided t-test is ap-
propriate for the test statistics. If H⁠0 is valid at any value of i then our
data do not provide any reason to distinguish between λ and λ⁠i, in other
words they are indistinguishable based on the statistical sample. The easi-
est way to indicate statistically different eigenvalues is a consequent col-
oring of the accepted eigendirections in the above mentioned stereonet
(see Fig. 2).

2.3. Statistical analysis

So far statistical tests have been introduced to identify eigendirec-
tions and identify significantly different eigenvalues from the input
data. While in the case of deterministic matrices it is sufficient to in-
vestigate either the eigenvalues or the disjointness of the eigenspaces to
decide about isotropy or rotational anisotropy (see Fig. 2a), stochastic
tensors require both. The fact, that both the eigenvalues and the eigen-
spaces are needed for such an investigation, stems from the nonlinear
dependence of the eigendirections and eigenvalues on the matrix ele-
ments in case of direct computation. Since the variation of the elements
influence the confidence intervals of the eigendirections and eigenval-
ues differently, it is possible to have disjoint eigenspaces with indistin-
guishable eigenvalues as well as separable eigenvalues that may be ac-
companied by a (partially) unified eigenspace (Fig. 2b). As the simu-
lated data sets clearly show in Fig. 2b, all the possible pairing accord-
ing to the number of different eigenvalues and number of disjoint eigen-
spaces might occur. For our later work we distinguish similar cases in
the table by names: cells, which are anisotropic based on either the mul-
tiplicity of the eigenvalues or the number of disjoint eigenspaces are
called weakly anisotropic (WA) as they fail to be fully anisotropic (A3,
B3, C1, and C2). Likewise, the cases which happen to fulfill exactly one
of the requirements of rotational anisotropy are called weakly rotation-
ally anisotropic (WRA, cases A2 and B1). The completely filled table of
stochastic tensors underscores the importance of evaluation based on
both the disjointness of the eigenspace and the multiplicity of the eigen-
vectors; the methods in the literature focusing solely on the eigenvalues
are incomplete.

3. Stress inversion in a stochastic way

Stress inversion is a synthetic term for methods used to reconstruct
former stress fields by investigating observed faulting patterns of rocks.
Most of the methods in the literature are based on the Wallace-Bott hy-
pothesis (Bott, 1959; Wallace, 1951). We are aware about the ambigu-
ity of stress inversion methods, namely whether the stress, or the in-
finitesimal strain tensor is approximated by their application (e.g. com-
ments of Twiss and Unruh (1998) or Gapais et al. (2000)). However,
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Fig. 2. Classification of 3×3 tensors with respect to the number of different eigenvalues (A–C) and disjoint eigenspaces (1–3). (a) Deterministic tensors can be associated with the ellip-
soids in Fig. 1. (b) In case of tensors with stochastic elements all classes are filled. The coloring of the stereograms encodes the following magnitudes of the eigenvalues: red - maximal,
blue - intermediate, yellow - minimal, green: indistinguishable minimal and intermediate, purple: indistinguishable intermediate and maximal or isotropic. Abbreviations: WA: weakly
anisotropic, WRA: weakly rotationally anisotropic, ≅ refers to the situation, when two eigenvalues are indistinguishable for a statistical test. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

our mild constitutive assumption (see Eq. (5)) guarantees that the
eigendirections of the infinitesimal strain and stress tensors coincide,
thus this ambiguity is resolved. From the numerical point of view, each
stress inversion methodology (for example Angelier (1984), Hardebeck
and Michael (2006)) sets up an optimality condition considered as the
best approximation of the Wallace-Bott hypothesis for noisy input data.
Even though the appropriateness of the Wallace-Bott hypothesis might
be challenged on mechanical and statistical grounds (Lisle, 2013), in
this work we accept it as an adequate assumption for sediments. Instead
of an arbitrary optimality condition, a stochastic approach can be ar-
gued to provide a deeper insight. It highlights fault patterns that are
more probable under a given loading. By keeping a probabilistic view-
point, a path similar to the weakly anisotropic procedure in the previous
section can be followed. In other words an appropriate vector space can
be sought that can be associated with the space of stress tensors point-
wise (as we associated the unit-sphere with the eigendirections of k⁠e).

As is well-known, the balance of angular momentum leads to the
conclusion that in a fixed orthonormal basis the stress tensor σ can be
represented by a symmetric matrix. We produce it's orthogonal diago-
nalization as

(12)

where Q is an orthogonal matrix, i.e. Q⁠TQ=Q Q⁠T= I with I being the
identity. Δ is a diagonal matrix with real elements (in fact, it contains
the eigenvalues of σ, also known as principal stresses). It is easy to show
that for a given σ each with fulfilling Eq. (12) can be sub-
stituted with another Q, of which the determinant equals 1 by simply
multiplying one or three columns of by −1. As we seek eigendirec-
tions plotted on the lower hemisphere, this study is invariant under such
a transformation. Hence only orthogonal matrices of real rotations are
sought, i.e. we associate the space of stress tensors with the special or-
thogonal group SO(3).

The Wallace-Bott hypothesis states that the slip direction t (mea-
sured as a striae on the fault surface) coincides with the shear direction
s computed for σ at a fault plane, itself characterized by its unit normal
n. It is also known (Angelier, 1990; Sipos, 2013), that the eigendirec-
tions and the shear direction are invariant under the following transfor-
mation of an arbitrary stress tensor σ⁠0:

(13)

where α ∈ℝ∖{0} and β ∈ℝ. Since stress-inversion in its own is not suf-
ficient to determine α and β we choose the most convenient value for
these parameters: for a given σ⁠0 one can find a unique pair of α and β
such way, that the traction of σ coincides with the slip direction t and
consequently with the shear direction s. Whence we seek σ to fulfill

(14)

Most of the other methods aim to find an optimal σ to explain the mea-
sured data t⁠i and n⁠i (i=1…N). Applying Eq. (12) for any fault-slip data
(after multiplying by Q⁠T from the left) Eq. (14) can be reformulated as

(15)

Observe that, for a fixed Q and measured t⁠i and n⁠i, the three non-zero
elements in the diagonal of Δ⁠i is uniquely determined. For brevity we
define δ⁠i=diag(Δ⁠i). Let us discretize SO(3) with a sufficiently finite grid
and associate each gridpoint with a positive integer j ∈{1,…,M}. Such
a discretization can be carried out by unit quaternions (Kuipers, 1999).
Our construction produces a vector of principal stresses, δ⁠i,j for each
measurement (i=1…N) and each gridpoint in the discretization. Nev-
ertheless, the principal stresses at a given gridpoint (i.e. at a fixed Q)
might differ significantly as i is varied. For a fixed the principal
stresses can be collected for all fault-stria in a 3×N matrix as

5
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(16)

Each row of forms a statistical sample and can be tested, that none
of them has a standard deviation exceeding a given threshold v⁠l. Let us
denote unit vectors in the standard basis of ℝ⁠3 to g⁠k, where k ∈{1,2,3}.
Thus the test-hypothesis is formulated as:

(17)

If all three rows of exhibit an acceptably small variation (below
v⁠l), then there is no reason to exclude Q as a matrix of the eigenvec-
tors of σ and as a most probable solution for its three
eigenvalues. The check of the test hypothesis (which depends on the
parameter v⁠l) is carried out by the properly scaled χ⁠2 distribution (de-
tails in Appendix). As it is inherent in the method, the three mutually
orthogonal directions (the columns of Q) are accepted or rejected. The
three directions can then be plotted on a stereonet and colored based on
the magnitudes of the elements of . Increasing the value of v⁠l leads to
a larger cover of the stereonet of accepted eigendirections of plausible
stress tensors.

4. Combined evaluation of AMS and mesotectonic field data

Combined evaluation of tensor-related data sets might have different
levels (Sipos, 2013). A simple comparison of the eigendirections of the
tensors can be made using standard tools of vector statistics. Such an ap-
proach has a serious shortcoming as it drops the tensor nature of the in-
volved quantities. If the matrices representing the tensor quantities and
even the covariance matrices are available, then an element-wise test
for parity can be made. However such a procedure can be regarded as
too strict in this case as the ellipsoids of the AMS and the stress tensor
might have different eccentricities due to non-deformational reasons. In
this work we introduce a hypothesis test to confirm that the mutually
orthogonal eigendirections of k⁠e and σ are sufficiently close as it is pos-
tulated in Eq. (5).

To reach this goal, all accepted eigendirections and eigenvalues
of the mesotectonic data (encoded by the matrices Q and , respec-
tively) are tested against the AMS data. If all the three columns of
Q=[q⁠1,q⁠2,q⁠3] can be accepted as principal directions of the magnetic
susceptibility tensor and even the eigenvalues of the two tensors are
plausibly close, then they can be considered to be reflecting the same

deformational phase. As a hypothesis test of these requirements can be
formulated as

(18)

Observe the linearity of these expressions: as Q is fixed by the dis-
cretization of SO(3), the random variables of the above test are k⁠e and

. As shown in the Appendix, Hotelling's T⁠2 squared test is used for Eq.
(18). As a byproduct, T⁠0 and the maximal value of T⁠2 (as Q is varied)
can be used for characterize the closeness of the principal directions via

(19)

The value of C, by definition, is smaller than one. If it was negative,
then the two data sets express different tensors thus there is no reason
to assume a common origin. For positive C a common (deformational)
origin of the AMS and the fault-slip data is probable, higher values hint
at even better agreement between the two data sets. The applicability of
the new method is illustrated by seven field examples in the next sec-
tion. A custom-made algorithm in MATLAB was implemented for the
computations. It uses several subroutines for the visualization of stere-
onets from Allmendinger et al. (2012).

5. Field examples

Although the data presented below are of extensional or strike-slip
types (as sediments of the Pannonian Basin were dominantly deformed
by extension or transtension), the method can be predicted to be readily
applicable to compressional stress fields situations. After having applied
a tilt-test, in all cases examined here, the deformation registered by the
magnetic fabric occurred early in the deformation history, i.e., while in
a sub-horizontal bed position. Therefore they can be compared to early
faults and related stress axes that also formed before tilting. To provide
a detailed view, the entire fault-slip data set for two of our examples in
the Appendix are presented. This shows the deformation history involv-
ing tilting of the sedimentary beds and it also demonstrates that we are
only dealing with the earliest brittle deformation event which affected
the studied outcrops.

All of our calculations were carried out at the usual α=0.05 signif-
icance level, the geographical data are shown in Table 1. The classical
AMS plots were obtained by Anisoft 4.2. (Chadima and Jelinek, 2008);
and the method of Angelier (1984, 1990) was used for stress tensor cal

Table 1
Geographical data for the analyzed field examples. The source of the first published AMS and mesotectonic evaluation are also listed for each site.

Site Country X Y Age Rock
AMS-
source Evaluation source Field data

Cezlak SLO 46°25′13.07⁠′′ 15°26′18.70⁠′′ E.Miocene Granodiorite This
work

Fodor et al. (2008) Vrabec

Rošpoh SLO 46°36′28.15⁠′′ 15°36′10.41⁠′′ E.Miocene Siltstone This
work

This work Fodor, Vrabec,
Jelen

Lovrenc SLO 46°33′7.42⁠′′ 15°24′45.1⁠′′ E.Miocene Siltstone This
work

Fodor et al. (2014) Fodor, Jelen,
Trajanova

Fenyőfő HU 47°22′14.67⁠′′ 17°47′58.40⁠′′ Eocene Clay This
work

Márton and Fodor
(2003)

Fodor

Óbarok HU 47°30′34.55⁠′′ 18°34′3.43⁠′′ Oligocene Clay Sipos-Benko ̋ et al. (2014) Fodor
Sárisáp HU 47°40′0.63⁠′′ 18°40′16.12⁠′′ Oligocene Siltstone This

work
Sipos-Benko ̋ et al.
(2014)

Bada, Fodor,
Maros

Pesnica SLO 46°36′33.75⁠′′ 15°39′51.11⁠′′ E.Miocene Marl This
work

Márton et al.
(2002)

Fodor, Vrabec,
Jelen
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culations. For the v⁠l parameter of the stress-inversion method v⁠l=1.5
was taken, in the case of an extensional field, and v⁠l=2.0 for strike-slip
fields. (An accepted result of any stress-inversion method can be used to
determine a plausible value for v⁠l, c.f. Appendix.) Beyond the stereonets,
the value of C (defined in the previous section) was calculated for all
examples. Furthermore, the maximal extension of the confidence inter-
vals of the K1 direction were determined using both the classical AMS
and the new combined evaluation methods. In detail, the double of the
semi-major axis E⁠12 was computed using the classical method and then
compared to the furthest angular distance between accepted eigendirec-
tions belonging to the maximal eigenvalue in the combined evaluation.
This latter angle is denoted by ψ. These results are in Table 2, a step by
step presentation of the method is given in the Appendix for one of our
examples (Fenyőfő).

A benchmark-like test is given based on Cezlak, Slovenia (Fig. 3A).
Even though this is a magmatic rock, the additional information about
strain makes it a perfect example to introduce the new procedure. Here
the K1 direction of AMS is parallel to the strain markers observable in
the field and under the microscope, while the markers of brittle defor-
mation are weak (Márton et al., 2017). The formation is made of gra-
nodiorite, which suffered ductile deformation at an estimated tempera-
ture of 400–450°C followed by brittle deformation after cooling (Fodor
et al., 2008). This rock has a high susceptibility (≈ 10⁠- 2 SI), extremely
high degree of AMS (≈ 35% in average) and lineation (≈ 20% in aver-
age) (Márton et al., 2006). In this case the classical method by V. Jelinek
is a perfect procedure to determine the orientation of the AMS ellip-
soid. Observe, that the confidence ellipses of the classical and the new
solutions overlap precisely. Although the small number of fault-striae
make the stress-inversion uncertain, it nonetheless reflects an exten-
sional stress field. The possible principal directions calculated from the
markers of brittle deformation cover almost the entire stereonet under-
scoring the insufficient number of measurements. Finally, the simulta-
neous evaluation not only selects a few solutions from the vast ortho-
normal bases in the mesotectonic side, but it also tightens the region of
acceptance for the AMS measurements.

As it was mentioned earlier, the real targets of the proposed method
are sediments with low degree of magnetic susceptibility and even
lower degree of lineation such as the data set from Rošpoh, Slovenia
(Fig. 3B). For this first example locality the susceptibility is weak (≈
10⁠- 4 SI) and accompanied by moderate anisotropy (≈ 7.6%) and weak
lineation (≈ 1%). In terms of AMS the new method yields an identi-
cal solution with the classical method. Brittle markers on conjugated
faults reflect an extensional stress field. The loose definition of the ex-
tensional direction in the mesotectonic data is also reflected well in the

Table 2
Comparison of the maximal confidence interval of the extensional direction by the classi-
cal and the combined methods. v⁠l is the threshold parameter of acceptance in the stochas-
tic stress inversion, 2E⁠12 is the semi-major diameter of the confidence-ellipse in the classi-
cal AMS procedure, ψ is the maximal angular distance between two accepted eigenvectors
which both belong to the maximal eigenvalue in the combined evaluation. 2E⁠12 and ψ both
measure the extent of the confidence region. Note that the combined evaluation results
in tighter confidence intervals in all cases (except Pesnica where it is meaningless). It is
especially powerful in case of nearly rotationally AMS (Óbarok and Sárisáp).

Locality v⁠l Trend of extension 2E⁠12 ψ

Cezlak, SLO 1.5 86–266° 14.8° 4.9°
Rošpoh, SLO 1.5 58–238° 19.4° 11.7°
Lovrenc, SLO 1.5 82–262° 30.4° 21.5°
Fenyőfő, H 2.0 42–222° 18.2° 10.6°
Óbarok, H 1.5 15–195° 62.4° 15.2°
Sárisáp, H 2.0 13–193° 57.4° 14.8°
Pesnica, SLO 2.0 – – –

evaluation of the new method, however the combined evaluation with
the AMS narrows down the direction of the extension.

In the case of Lovrenc, Slovenia (Fig. 3C, susceptibility 3.5 ⋅ 10⁠- 4 SI,
anisotropy 9.6%, lineation 0.7%) the number of AMS data is lower. A
small number of faults represent the first deformation event that oc-
curred in horizontal bed position. Comparison against the mesotectonic
data underscores the directions suggested by the AMS stereonet.

The next example is from Fenyőfő, Hungary (Fig. 4A, susceptibility
3.5 ⋅ 10⁠- 4 SI, anisotropy 9.6%, lineation 0.7%). At this locality measure-
ments tightly constrain the direction of the AMS. The new method leads
to a similar outcome to the classical method. The mesotectonic data re-
flect a well-defined pattern of a strike-slip type deformation. Joint eval-
uation enhances the precision of the extensional direction. Note also
that the two, well-defined data sets indeed reflect the same stress field.

The AMS measurements for Óbarok, Hungary (Fig. 4B, susceptibility
1.6 ⋅ 10⁠- 4 SI, anisotropy 7.9%, lineation 0.8%) represent a case where
the maximum and intermediate directions exhibit a rather large scat-
ter. Although there is no overlap between the two populations, such
an extended confidence interval (40°) is not appropriate for the classi-
cal method. Evaluating with the new method produces an overlapping
set which demonstrates that the classical method significantly underes-
timate the confidence regions in this case. Weakly anisotropic (C2 type)
AMS data hint at no extensional direction. Despite the large number
of mesotectonic markers, tensional direction determined from fault-slip
data also have considerable uncertainty. The combined evaluation re-
veals a clear extensional direction in NNE-SSW.

The other weakly anisotropic (3B type) type occurs in case of Sárisáp,
Hungary (Fig. 4C, susceptibility 4.7 ⋅ 10⁠- 4 SI, anisotropy 10.2%, lin-
eation 0.8%) in the horizontal plane of the classical AMS diagram two
clusters are obvious. However, there is an indication of uncertainty for
the character of the axes of the ellipsoid: one maximum falls in the dom-
inant intermediate directions, consequently one intermediate direction
is associated with the other maxima. The new method reveals that this
uncertainty is indeed significant: statistically there is no hint of which
cluster represents the maximal or the intermediate direction. This ex-
ample also demonstrates that any acceptance of data sets solely based
on their confidence intervals (which can be even tighter, than in pre-
sent case) is not reliable: it is advisable to check the clusters on the
stereograms. Luckily, a few mesotectonic markers constrain a strike-slip
stress field, which is reflected as a narrow ranged extensional direction
computed by the new method. The combined evaluation shows that the
stress field has a definite extensional direction that is close to the classi-
cal mesotectonic evaluation.

The final example is from Pesnica, Slovenia (Fig. 4D, susceptibility
1.7 ⋅ 10⁠- 4 SI, anisotropy 6.2%, lineation 0.3%). Here the AMS ellipsoid is
closer to a rotationally anisotropic type than in the previous examples.
At first sight it is similar to Sárisáp (Fig. 4) as the resultant susceptibility
is of the 3B type: in the magnetic foliation plane two populations are
clearly distinguished, but it is impossible to say, which is the popula-
tion of maxima and that of the intermediate directions. The orientation
of the stress field is well constrained by the mesotectonic markers, as
is confirmed by the new method. The combined evaluation provides an
empty stereonet which means, that either the AMS is not of deforma-
tional origin or at least it only reflects, very weakly, an earlier deforma-
tional phase than those suggested by the fault-slip data.

6. Discussion

The field examples illustrate the power of the new method using a
statistical approach. On one hand, nearly rotationally anisotropic AMS
data sets with high confidence angles can be evaluated reliably, as the
method is based on a new, linearization-free technique. It extends the
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Fig. 3. AMS data, main axes, fault-slip data and calculated stress axes for the sites Cezlak (A), Rošpoh (B) and Lovrenc (C), Slovenia. The panels for each site are AMS with classical
approach (a) and with the novel method (c); stress axes calculated by the method of Angelier (1984) (b) and the novel method (d), respectively. Comparison of commonly obtained AMS
and stress axes (e). For coordinates, data source see Table 1. Goodness of the fit for the three sites: C⁠Cezlak=0.3769, C⁠Rošpoh=0.9747, C⁠Lovrenc=0.9920.

classical method into this regime. On the other hand, stress-inversion is
also carried out statistically, enabling a hypothesis test for the degree of
coincidence of the AMS and stress tensors.

The idea of combination of AMS with mesotectonic data for sedi-
ments is not new – generally axes K1 and S3 tend to have similar ori-
entations. This suggests that the two techniques depict the same defor-
mation, as pointed out in several examples and in the literature (Cifelli
et al., 2005). A slight temporal difference might have existed between

grain-scale and mesoscale deformation, because the AMS pattern could
be imprinted in relatively soft status of sediments, prior to the progres-
sive lithification events that are a pre-requisite to brittle faulting (with-
out lithification, most of the studied rocks would show deformation
bands, not faults and joints). However, tilt test of fractures clearly indi-
cate that the extensional direction (S3 axis) was deduced from the ear-
liest mesoscale deformation events. It is clear that the new method may
not be sensitive enough to demonstrate differences between the strain

8
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Fig. 4. AMS data, main axes, fault-slip data and calculated stress axes for the sites Fenyőfő (A), Óbarok (B) Sárisáp (C), Hungary and Pesnica (D), Slovenia. The panels for each site are AMS
with classical approach (a) and with the novel method (c); stress axes calculated by the method of Angelier (1984) (b) and the novel method (d), respectively. Comparison of commonly
obtained AMS and stress axes (e). For coordinates, data source see Table 1. Goodness of the fit for the four sites: C⁠Fenyőfő=0.9088, C⁠Óbarok=0.4366, C⁠Sárisáp=0.9769, C⁠Pesnica=0.0000.

and AMS axes, as indicated by theoretical approaches (Haernick et
al., 2013; Ježek and Hrouda, 2002). However, considering the small
amount of deformation, and the lack of pronounced shear zones, the
coaxial nature of deformation seems highly probable.

Nevertheless, this uncertainty might have introduced errors into the
analysis. The comparison of the two data sets (AMS and fractures)
seems to suggest that - on a statistical grounds - the obtained exten-
sional axes cannot be separated. This similarity may give grounds for

9



UN
CO

RR
EC

TE
D

PR
OO

F

A.A. Sipos et al. Tectonophysics xxx (2018) xxx-xxx

thinking that such comparison might have value and could be used for
refined analysis of deformation in weakly deformed sediments. In ad-
dition, the common treatment of AMS and fault-slip data by the new
method facilitates a tighter range for the extensional direction (example
of Fenyőfő) than that calculated by the traditional, separated evaluation
of AMS and stress, respectively. When the AMS lineations are well de-
veloped but the mesotectonic markers do not constrain the extensional
direction precisely (examples Rošpoh and Lovrenc), the combined data
set may help to better constrain the latter - if the previous conclusion
about similarity is taking into account. Moreover, a more precise exten-
sional direction can be defined when both the AMS and fault-slip data
issued ill-defined axes (examples Óbarok, Sárisáp).

Finally, as the example from Pesnica shows, it is possible to exclude
a common origin for the AMS and mesotectonic markers. While in the
previous examples it is highly probable that AMS and the mesotectonic
markers originated from the same stress-field, then in the case of Pes-
nica such a possibility can be excluded. There are two options: either
the AMS is not of deformational origin or the stress fields imprinting the
magnetic fabric and causing the brittle deformation are not coeval.

7. Conclusions

In this paper a novel stochastic procedure for combined evaluation
of AMS and mesotectonic data is presented. This method has a general
application for the study of the ductile-brittle transition of rocks; it is
particularly useful, when the AMS and mesotectonic observations come
from weakly deformed soft sediments. The reason is that the AMS fabric
of poorly cemented sediments tend to be nearly rotationally anisotropic
and the mesotectonic markers are limited in number and quality. The
new method in AMS evaluation is a perfect extension of the classical
methods. Stress inversion methods in the literature for evaluating meso-
tectonic data operate on arbitrary optimality conditions. In the work
presented here the standard methods are substituted by a stochastic ap-
proach which provides not only the principal directions, but also the sta-
tistical information needed for the combined evaluation. The hypothe-
ses tests based on the two methods are recommended because they en-
hance the precision of the determination of the extensional direction of
the stress field and in the same time able to recognize cases, where the
AMS may not be of deformational origin or the AMS lineation and the
extension direction derived from the mesotectonic data do not belong to
the same tectonic regime.
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Appendix A. Detailed derivation of the statistical tests

A.1. Hypothesis test for the AMS data

The linear equation (8) might be written as

(A.1)

where is a vector containing the independent elements of the sus-
ceptibility tensor k⁠e. (In particular, without normalization

and with normalization we have
.) A and B in the above equation are

determined by the components of u=[u⁠1,u⁠2,u⁠3]⁠T (note that ∥u∥=1). In
case of data sets without normalization A=[0,0,0] ⁠T and the 3×6 ma-
trix is

(A.2)

For normed data sets they are

(A.3)

(A.4)

We remark, that the rank of B equals 2, in other words, one of the
three elements of e is linearly dependent on one of the other two ele-
ments. In the statistical test that element (and the corresponding rows
in A and B, respectively) should be deleted. The adjusted objects are
denoted to , and , respectively. It means, the W variance-covari-
ance matrix used for the test statistics is 2×2, formally it is obtained via

. The test statistics for Hotelling's T⁠2 is obtained as

(A.5)

which (based on the above explanation of rank-deficiency) follows the
F-distribution with parameters p⁠1=2 and p⁠2=N−2 at the α signifi-
cance level. For the test hypothesis in Eq. (9) we need to rescale the in-
verse of the F-distribution as

(A.6)

For T⁠2 <=T⁠0 there is no reason to reject H⁠0 in Eq. (11), otherwise
H⁠1 is accepted.

A.2. Hypothesis test for the mesotectonic data

In Eq. (15) Q is a fixed orthogonal matrix (an element from the
discretization of SO(3)), n⁠i and t⁠i are a measured fault and stria pair
(i=1..N). For each measured fault-stria pair the elements of the vector
δ⁠i,j=diag(Δ)=[δ⁠i,j,1,δ⁠i,j,2,δ⁠i,j,3]⁠T are computed. For fixed and
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is assumed to follow normal distribution. We fix a parame-
ter v⁠l as a threshold of accepted variance. A known stress-inversion so-
lution can be used to fix v⁠l, see the example below. The test statistics is
computed as

(A.7)

where σ is the corrected sample standard deviation. As we carry out an
upper one-tailed test, it follows a χ⁠2 distribution with (N−1) degrees of
freedom at the α significance level. If

(A.8)

holds for any k, then the H⁠0 hypothesis in Eq. (17) is rejected.

A.3. Hypothesis test for the combined evaluation

Let q⁠1, q⁠2 and q⁠3 denote the directions of the maximal, interme-
diate and minimal tensile stresses, respectively. Nevertheless, each of
these vectors is one the columns for Q. These vectors are orthogonal
unit vectors of the S⁠2 sphere, thus they are not independent. We define

. Following Eq. (A.1) a vector can be defined to express
the deviation from q being an orthonormal basis of eigenvectors. Sim-
ilarly to definitions (A.3) and (A.4) a system matrix and a vector
can be derived by the elements of q to fulfill . Neglecting
the linearly dependent rows of (and consequently ) one arrives to a
Hotelling's T⁠2 test with parameters p⁠1=3 and p⁠2=N−3. Formally the
test is given by Eqs. (A.5) and (A.6).

Appendix B. A complete fault-slip analysis of two sites

Although this paper does not aim to analyze the deformation history
of the studied sites, we briefly present two localities with a complete
fault-slip data set (Fig. B.5). In both sites the tilt of layers were preceded
by brittle faulting, because the tilt test (left side of Fig. B.5) shows that
the fault set is more symmetrical to the sub-vertical plane at sub-hor-
izontal bed position than today (after tilting). This first episode of de-
formation was followed by the tilt itself. In Rošpoh, the variable dip
direction is due to drag folding near the measured normal faults. The
stress field, responsible for the tilting event can only be estimated and
not properly calculated. After the tilt, normal faults (Rošpoh) and joints
(Sárisáp) could be formed in the same extensional stress field than the
pre-tilt faults. The three events can be considered to belong to one tec-
tonic phase. Regional analysis (Fodor et al., 1999) shows that this was
the main rifting phase of the Pannonian basin. This phase was followed
by a slightly different extension in Rošpoh, while it was not observed
in Sárisáp. On the other hand, in this latter site, a markedly different,
ESE-WNW extension induced the formation of joints and small faults.
This third phase can be considered as the post-rift phase of the Pannon-
ian basin (Fodor et al., 1999; Sipos-Benkő et al., 2014). This evolution
occurred during the Miocene, during the progressive burial of the stud-
ied sediments. During our analysis, only the first increment of deforma-
tion, the pre-tilt faulting was compared to AMS data.

Fig. B.5. Stress field evolution in Rošpoh and Sárisáp. Note the tilt test for faults (first two
columns on the left side), coaxial deformation events (within one phase) and successive
faulting phases with clockwise rotating stress axes. Numbers at right bottom corners indi-
cate relative chronology of events.

Appendix C. Detailed example of application

In this appendix we provide the detailed computational results for
one of our examples: Fenyőfő (Fig. 4A). The AMS measurements consist
of 13 samples, their data are given in Table C.6.

The k⁠i (i=1..13) susceptibility tensors are computed based on the
15 directions and calibration coefficients of the KappaBridge tool. For
each measurement normalization is carried out (Eq. (2)) Applying Eqs.
(3) and (4) we get the following mean and variance-covariance matri-
ces:

(C.1)

(C.2)

Observe that the standard deviation of the elements along the main
diagonal is approximately , which compared to the
mean values around 0.333 can be regarded as small.

These matrices are used in the hypothesis test formulated in Eq. (9),
which produces the c) subfigure in Fig. 4A. The test in Eq. (11) is used
to color the figure. The discretization of the lower hemisphere is ob
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tained as the intersections of equally spaced N⁠1=50 latitude lines and
N⁠2=200 longitudinal lines.

The measured fault-stria data (altogether 19 measurements) is col-
lected in Table C.7. For the computation of the plausible stress tensor
one has to define the variation limit vl to apply the test in Eq. (17). One
way of choosing this parameter is taking a result (i.e Q) of a traditional
stress-inversion method and determine standard deviations for each row
for Eq. (16). Either the maximum or the average of the variations are
good candidates for v⁠l. In our case the method of Angelier (depicted on
part b) of Fig. 4A) determined 291°/20° for the maximal, 112°/70° for
the intermediate and 21°/0° for the minimal stress after tilting. With
these directions in hand the computed eigenvalues in Eq. (16) have a
standard deviation as v⁠l=3.87 in average. To keep consistence with the
other sites presented in the paper a more strict, v⁠l=2.00 threshold is
applied in the stochastic stress inversion. For the discretization of SO(3)
altogether 260,000 points (i.e. different Q rotation matrices) are inves-
tigated, and at v⁠l=2.0 about 20,000 are accepted as plausible explana-
tion of the measured data, these are plotted in the d) part of Fig. 4A.

Finally, the accepted directions are tested against the AMS data as
it is given in Eq. (18). Accepted directions are plotted in the e) part of
Fig. 4A and finally the C-value of fit is computed (Eq. (19)).

Table C.6
Measured AMS data of Fenyőfő. Notations: s: sign of the sample o: orientation in degrees
d: dip in degrees h: magnetization of the sample holder r: range of the measurement f: data
in the 15 directions.

s 7913n1 7914n1 7915an1 7918an1 7919an1 7915bf1.350 7916af2.350 7916bn1 7917f1.150 7918bf1.150 7919bf1.150 7920n1 7921n1

o 70 78 70 71 83 70 78 78 79 71 83 82 82
74 70 70 78 83 70 71 71 85 78 83 82 76

d 360 360 360 360 360 360 360 360 360 360 360 360 360
0 0 0 0 0 0 0 0 0 0 0 0 0

h −111 −111 −111 −111 −110 −112 −113 −112 −112 −112 −112 −112 −110
r 4 4 4 4 4 3 3 3 3 3 3 3 4
f 760 709 711 698 747 1613 1562 1525 1497 1750 1816 1599 736

765 704 712 681 740 1635 1505 1496 1471 1702 1794 1604 716
732 680 682 660 713 1558 1474 1460 1423 1666 1731 1539 698
759 710 711 696 745 1614 1563 1526 1497 1750 1815 1598 738
762 702 711 677 738 1636 1501 1495 1472 1701 1793 1602 717
780 722 729 710 767 1649 1596 1563 1540 1784 1869 1659 747
787 728 732 709 771 1683 1572 1558 1546 1781 1876 1670 746
788 731 739 712 771 1677 1593 1574 1545 1789 1876 1669 750
782 724 731 711 767 1648 1595 1562 1540 1783 1869 1658 748
787 729 732 710 771 1683 1572 1558 1547 1781 1874 1671 746
781 727 734 705 752 1676 1586 1564 1508 1772 1834 1636 743
732 671 673 662 724 1534 1459 1437 1449 1665 1759 1564 698
781 719 725 708 768 1656 1572 1547 1542 1776 1869 1661 744
781 727 735 704 754 1673 1589 1565 1506 1772 1837 1635 743
732 671 672 662 723 1534 1461 1435 1448 1667 1759 1563 698

Table C.7
Measured mesotectonic data. Notations: s: sign of the sample f: orientation of the fault r:
rake of the stria.

s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19

f 155 150 84 96 356 354 350 160 180 3 340 162 162 350 2 354 357 165
75 75 80 66 72 85 75 85 85 85 82 80 82 76 78 88 64 80

r 16 5 175 162 20 11 5 171 170 178 5 165 178 178 10 10 20 165
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