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clasts of different Middle Jurassic sedimentary mélanges from the Western Carpathian
and Dinaric orogen. These igneous clast-bearing sedimentary successions were
deposited on the westernmost passive margin of the Neotethys Ocean. During the
latest Jurassic and Cretaceous, they became parts of different nappe stacks forming
now the Inner Western Carpathians and some inselbergs within the Pannonian Basin.
The Meliata nappe was stacked on the northern passive margin, while the Telekesoldal
and Mónosbél nappes were part of the imbricated western - south-western margin.
U/Pb dating of the 100m-sized blocks and redeposited smaller clasts and fine-grained
sediments formed two age groups: 222.6±6.7 and 209.0±9 Ma. Trace element
geochemistry suggested within plate continental volcanism as magma source.
However, the measured ages are definitely younger than the classic, rift-related
Anisian - Ladinian (238-242 Ma) magmatism, which was widespread along the western
and south-western margin of the Neotethys Ocean (e.g. Dolomites, different Dinaridic
units). On the other hand, similar, Late Triassic ages are reported from tuff
intercalations from the Outer Dinarides and Western Carpathians, along with even
more sparse effusive rocks of the Slovenian Trough. Trace element (incl. rare earth
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element) analysis showed positive correlation between the mélange clasts and the in
situ Late Triassic rhyolites of the Slovenian Trough. This newly established link
between the mélange nappes in NE Hungary and the in situ Late Triassic rhyolites in
the Slovenian Trough make a good opportunity to reconsider both Middle Jurassic
paleogeography, and later tectonic deformations, which led to the separation of the
source area and the redeposited clasts.
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Abstract 11 

U/Pb zircon dating and trace element geochemical analysis were performed on rhyolite clasts of different Middle 12 

Jurassic sedimentary mélanges from the Western Carpathian and Dinaric orogen. These igneous clast-bearing 13 

sedimentary successions were deposited on the westernmost passive margin of the Neotethys Ocean. During the 14 

latest Jurassic and Cretaceous, they became parts of different nappe stacks forming now the Inner Western 15 

Carpathians and some inselbergs within the Pannonian Basin. The Meliata nappe was stacked on the northern 16 

passive margin, while the Telekesoldal and Mónosbél nappes were part of the imbricated western – south-western 17 

margin. U/Pb dating of the 100m-sized blocks and redeposited smaller clasts and fine-grained sediments formed 18 

two age groups: 222.6±6.7 and 209.0±9 Ma. Trace element geochemistry suggested within plate continental 19 

volcanism as magma source. However, the measured ages are definitely younger than the classic, rift-related 20 

Anisian – Ladinian (238–242 Ma) magmatism, which was widespread along the western and south-western margin 21 

of the Neotethys Ocean (e.g. Dolomites, different Dinaridic units). On the other hand, similar, Late Triassic ages 22 

are reported from tuff intercalations from the Outer Dinarides and Western Carpathians, along with even more 23 

sparse effusive rocks of the Slovenian Trough. Trace element (incl. rare earth element) analysis showed positive 24 

correlation between the mélange clasts and the in situ Late Triassic rhyolites of the Slovenian Trough. This newly 25 

established link between the mélange nappes in NE Hungary and the in situ Late Triassic rhyolites in the Slovenian 26 

Trough make a good opportunity to reconsider both Middle Jurassic paleogeography, and later tectonic 27 

deformations, which led to the separation of the source area and the redeposited clasts. 28 
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Introduction 31 

Clast analysis of a subduction and obduction-related sedimentary complexes provides essential information about 32 

the imbricated continental margin and the overriding oceanic crust, both potentially being part of the source area. 33 

In active margin setting the great variety of source areas combined with active tectonism, different depositional 34 

environments and variable sedimentary processes result in special, ‘block-in-matrix’ rocks, which are commonly 35 

called mélanges (Festa et al 2010a, b and references therein). Both sedimentary and tectonic mélanges were formed 36 

in many accretionary orogenic belts during the imbrication of the attenuated continental margin and obduction of 37 

the ophiolite nappe.  38 

We examined three sedimentary mélange nappes, which were formed during the Middle Jurassic to Cretaceous 39 

closure of the Neotethys Ocean. The onset of ophiolite obduction onto the western – south-western continental 40 

margin is relatively well constrained in the Dinarides, Albanides and Hellenides (Dimo-Lahitte et al. 2001). The 41 

ophiolite nappes override a tectonic mélange of sheared serpentinite, a sedimentary mélange of Middle to early 42 

Late Jurassic in age and the imbricated passive continental margin (e.g. Đerić et al. 2007, 2012; Gawlick et al. 43 

2008, 2017). These relatively well-defined nappes form more or less continuous “belts” from Greece to Bosnia-44 

Hercegovina (Dimitrijević 1982; Schmid et al. 2008).  45 

Tectonised fragments of this nappe system are preserved in NE Hungary, in the Bükk Mts. (Dimitrijević et al. 46 

2003). The basic characteristics of the nappe-pile are rather similar: thin slices of the imbricated passive margin 47 

(Bükk nappe system) are overlain by sedimentary mélange nappes (Darnó and Mónosbél nappes). Jurassic gabbro 48 

and pillow lavas of the Neotethys Ocean form the uppermost (preserved) nappe slice (Szarvaskő nappe) (Balla et 49 

al. 1980; Balla 1983; Csontos 1988, 1999; Haas and Kovács 2001; Kiss et al. 2012; Kovács et al. 2010).  50 

More to the north, the uppermost, thin-skinned nappe system of the Inner Western Carpathians also contains 51 

sedimentary mélange nappes, which also derive from a subduction-related basin (trench) of the Neotethys Ocean 52 

(Kozur et al. 1996; Kozur and Mock 1997; Mock et al 1998, Kövér et al. 2009a; Aubrecht et al. 2012). Some of 53 

these rather small, but important occurrences are also the subject of the recent study. These rocks belong to the 54 

Meliata nappe s.s. in Slovakia (Mello et al. 1996) and to the Telekesoldal nappe (TO) in NE Hungary (Grill 1988; 55 
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Kövér et al. 2009a, b). The origin and particularly the juxtaposition of the Meliata and TO nappes are subjects to 56 

be discussed. It seems to be clear, that they participated together in the mid- to late Cretaceous nappe emplacement 57 

of the Western Carpathians, while their original paleogeographic position is still debating.  58 

It is common in all the target sedimentary units that several publications aimed to determine the age of the matrix, 59 

and the age, facies and possible source of the different carbonate clasts (Kovács 1988; Mello 1979; Mock et al. 60 

1998; Gawlick and Missoni 2015; Grill 1988; Csontos 1988, 2000; Kövér et al. 2009b). Geochemical 61 

characteristics of the basalt and gabbro clasts were also studied (Mock et al. 1998). They were formed in mid-62 

oceanic ridge and back-arc environment, thus they do not carry specific information about the precise location 63 

within the strike of the subduction zone.  64 

However, these mélanges contain a large amount of acidic and intermediary volcanic clasts (Csontos 1988; 65 

Szakmány et al. 1989), which lack detailed studies in relation to their age, geochemistry or provenance. In the 66 

present study, trace element (incl. rare earth element) studies, along with zircon U-Pb dating were performed on 67 

rhyolite clasts from three mélange nappes in order to reveal their potential sources.  68 

Geological setting and sample location 69 

The examined volcanic rocks derive from 3 sedimentary mélange nappes which are made up by Middle to Late 70 

Jurassic very low to low-grade metasediments. The Meliata and the Telekesoldal nappes belong to the thin-skinned 71 

nappe-pile of the Inner Western Carpathians, whereas the Mónosbél nappe is part of the Bükk nappe system (Fig. 72 

1d). The two areas are separated by the Late Oligocene to Miocene Darnó Fault Zone (Zelenka et al. 1983; Fodor 73 

et al. 2005), while all structural elements were truncated from their Dinaric continuation by the Late Oligocene–74 

Early Miocene Mid-Hungarian Shear Zone (Fig. 1a) (Csontos and Nagymarosy 1998; Haas et al. 2010b, 2014).  75 

The Western Carpathians are the along-strike continuation of the Alpine orogenic system and built up by Apulia-76 

derived far-travelled nappes once belonged to the northern margin of the Meliata oceanic embayment of the 77 

Neotethys Ocean (Fig. 1a, 2) (Schmid et al. 2008). The lower part of the nappe-system mainly consists of 78 

polymetamorphic crystalline basement rocks with or without preserved Mesozoic cover slices (Fig. 1b). The 79 

uppermost part of the nappe-pile consists of several thin-skinned nappe-slices with variable metamorphic overprint 80 

(from deep diagenesis to blueschist facies). The sedimentary age of these slices generally ranges from 81 

(Carboniferous) Upper Permian to Upper Jurassic. However, the superposition of the different nappes is 82 

controversial in the Slovakian and Hungarian literature. Here we will give a short introduction only for the 83 
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investigated Meliata nappe, and in a later chapter for those nappes, which contain Middle to Upper Triassic igneous 84 

rocks. 85 

The Meliata nappe system s.l. is made up by the remnants of the oceanic crust and sediments formed in a 86 

subduction-related trench of the Triassic–Jurassic Neotethys Ocean (Mock et al. 1998). Based on their 87 

metamorphic features, Mello et al (1998) classified the HP/LT blueschist facies part to the Bôrka nappe, whereas 88 

the overlying low-grade part to the Meliata nappe s.s. It is to note that in the present contribution we consider 89 

Meliata as a low-grade tectono-sedimentary unit, which does not incorporate subduction-related high-pressure 90 

metamorphic rocks (e.g. Bôrka unit of Leško and Varga (1980) and Mello et al. 1996, treated also as Meliata in 91 

several works, e.g. Faryad 1995). This distinction conforms to more recent structural views (Lexa et al. 2003, 92 

Lačný et al. 2016). The Meliata nappe s.s., (in the sense of Mello et al. 1998 and Mock et al. 1998) is considered 93 

as a Middle Jurassic tectono-sedimentary mélange accreted to the overlying units during subduction. These units 94 

are thin-skinned tectonic slices of low-grade (Turňa/Torna nappe) or non-metamorphosed (Silica) Permian – 95 

Jurassic succession. In the investigated Meliata nappe s.s. the most common lithology is dark slate with radiolarite, 96 

sandstone and olistostrome intercalations. Based on radiolarians, the age of the radiolarite interbeds is Middle 97 

Bathonian to Early Oxfordian (Kozur and Mock 1985; Kozur et al. 1996). The large blocks (olistoliths) are Triassic 98 

carbonates, Triassic and Jurassic radiolarites, slightly metamorphosed limestone, siliciclastic rocks, dolomite, 99 

radiolarite, rhyolite, basalt, serpentinite. Sample Mel derives from a 3 m rhyolite block of the Meliata mélange 100 

nappe. It was collected close to Jasov village, where the Meliata nappe is directly overthrust by the uppermost 101 

nappe of the nappe pile, the Silica nappe (Fig. 1b). The locality is close to the contact zone. 102 

The structural equivalent of this mélange-like complex is the Telekesoldal nappe (TO) in NE Hungary (Csontos 103 

1988; Kövér et al. 2009a). TO nappe also represents a subduction-related complex, composed of black shales, and 104 

gravity mass flow deposits: olistostromes and turbiditic sandstones. (Grill 1988; Kovács 1988; Kövér et al. 2009a, 105 

b; Deák-Kövér 2012).  106 

The age, the sedimentological features and the predominance of the Middle to Upper Triassic basin facies 107 

carbonate clasts within the olistostrome are similar to those of the Meliata nappe. However, there are differences 108 

in the composition and particularly in the proportion of the olistostrome components. In the TO metamorphosed 109 

limestone clasts are absent, serpentinite clasts are missing and among the volcanic components rhyolite is 110 

predominant, while basalt is very rare. The size of the studied rhyolite clasts varies between tens of metres down 111 

to crystal fragments. The large, almost 100 m in size rhyolite bodies were considered as subvolcanic intrusions 112 
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with thermal contact towards the host slate (Máthé and Szakmány 1990). Based on the supposed Jurassic age and 113 

basic geochemical data, the rhyolite was interpreted as part of a subduction-related volcanic arc. However, 114 

metamorphic petrological studies discarded a thermal contact between rhyolite and host rock, thus its intrusive 115 

character became questionable (Kövér et al. 2009a).  116 

Within the TO nappe, samples derive from the following localities and positions. To-1 derives from a 1 m rhyolite 117 

olistolith block, which is surrounded by fine-grained, shaley matrix. This type locality of the mélange crops out 118 

along the road between Szalonna and Perkupa villages (Figure 1c). The largest known rhyolite body was penetrated 119 

by borehole Szalonna Sza-10. We investigated samples from 2 different depth intervals: 124 m (To-2, To-4) and 120 

~55 m (To-3). Another 100 m scale rhyolite body is situated 3.5 km to SW, at the Hunter’s house. Sample To-5 121 

was collected from this outcrop. 122 

The other investigated Jurassic metasedimentary complex is part of the Bükk nappe-system (Balla 1983, Csontos 123 

1999). The Mónosbél nappe is composed of of Bajocian – Bathonian deep marine siliciclastics, carbonates and 124 

siliceous sediments with intercalations of olistostrome beds transported into the basin via gravity mass movements. 125 

Along with fragments of acidic and intermediary magmatites, phyllites, siltstones, sandstones, pelagic limestones, 126 

radiolarites, and lithoclasts of redeposited oolitic–bioclastic limestones are common in the olistostrome bodies 127 

(Csontos 1988, 2000; Pelikán et al. 2005; Haas et al. 2006, 2013). There are detailed studies about the carbonate 128 

components, while the knowledge on the volcanic clasts is limited (Haas et al 2013). Sample BüMel derives from 129 

a 10 cm large rhyolite olistolith of the Mónosbél mélange, Odvasbükk locality, Bükk Mts (Fig. 1d, 2). 130 

Methods 131 

Radiometric age determinations were carried out on zircon grain separates from different sized rhyolite pebbles 132 

and blocks of the TO and Mónosbél mélange nappes. Grain separation and morphological investigations were 133 

carried out at the Department of the Mineralogy and Petrology, University of Miskolc (Majoros 2008). Back-134 

scattered electron (BSE) and cathodoluminescence (CL) imaging was performed at the Geological Survey of 135 

Austria (Geologische Bundesanstalt) with a Tescan Vega 2 instrument (10 kV acceleration voltage, 0.5 nA beam 136 

current, 17 mm working distance). 137 

The LA-ICP-MS analytical work was performed at the Department of Lithospheric Research, University of Vienna 138 

in collaboration with the Department of Analytical Chemistry, BOKU. Analytical procedures were identical to the 139 

methodology outlined in Klötzli et al. 2009. Zircon 206Pb/238U and 207Pb/206Pb ratios and ages were determined 140 
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using a 193nm Ar-F excimer laser (NewWave UP193) coupled to a multi-collector ICP-MS (Nu Instruments 141 

Plasma). Ablation using He as carrier gas was raster- and spot-wise according to the CL zonation pattern of the 142 

zircons. Line widths for rastering were 20-25µm with a rastering speed of 5 µm/sec. Energy densities were 5 – 8 143 

J/cm2 with a repetition rate of 10 Hz. The He carrier gas was mixed with the Ar carrier gas flow prior to the ICP 144 

plasma torch. Ablation duration was 60 to 120 sec with a 30 sec gas and Hg blank measurement preceding ablation. 145 

Ablation count rates were corrected accordingly offline. Remaining counts on mass 204 were interpreted as 146 

representing 204Pb. Static mass spectrometer analysis was as follows: 238U was measured in a Faraday detector, 147 

207Pb, 206Pb, 204 (Pb+Hg), and 202Hg in ion counter detectors, respectively. An integration time of 1 sec was 148 

used for all measurements. The ion counter – Faraday and inter-ion counter gain factors were determined before 149 

the analytical session using reference zircon Plesovice (Slama et al. 2008). Sensitivity for 206Pb on reference 150 

zircon Plesovice was c. 30’000 cps/ppm Pb. For 238U the corresponding value was c. 35'000 cps/ppm U. Mass 151 

and elemental bias and mass spectrometer drift of both U/Pb and Pb/Pb ratios, respectively, were corrected 152 

applying the "intercept method" of (Sylvester and Ghaderi 1997). The calculated 206Pb/238U and 207Pb/206Pb 153 

intercept values, respectively, were corrected for mass discrimination from analyses of reference zircon 91500 154 

measured during the analytical session using a standard bracketing method (Klötzli et al. 2009). The correction 155 

utilizes regression of standard measurements by a quadratic function. A common Pb correction was applied to the 156 

final data using the apparent 207Pb/206Pb age and the Stacey and Kramers Pb evolution model (Stacey and 157 

Kramers 1975). The lower intercept ages are calculated using a forced regeression calculation through 158 

207Pb/206Pb = 0.8± 0.5 (common Pb). Final age calculations were performed with Isoplot© 3.0 (Ludwig 2003). 159 

All errors reported for LA data are at the 2-sigma level. Reference zircon Plesovice (Slama et al. 2008) was used 160 

as secondary standard in order to test the overall reproducibility of the analytical method. 22 measurements made 161 

during the analytical sessions result in a concordia age of 338.1 ± 2.9 Ma. This is within error identical to the 162 

accepted reference 206Pb/238U date of 337.13±0.37 Ma (Slama et al. 2008). 163 

We investigated the geochemistry of the studied clasts, and also of the potential in situ magmatic rocks. Trace 164 

element content of six samples were analysed at ALS Global Roșia Montană, where 31 elements (Ba, Ce, Cr, Cs, 165 

Dy, Er, Eu, Ga, Gd, Hf, Ho, La, Lu, Nb, Nd, Pr, Rb, Sm, Sn, Sr, Ta, Tb, Th, Tl, U, V, W, Y, Yb, Zr) were measured 166 

by ICP-MS following acid dissolution after lithium-metaborate fusion. 6 samples were analysed by ACME Lab 167 

Ltd. Vancouver by LA- ICP-MS. The target elements were Ba, Ce, Cr, Cs, Dy, Er, Eu, Ga, Gd, Hf, Ho, La, Lu, 168 

Nb, Nd, Pr, Rb, Sm, Sn, Sr, Ta, Tb, Th, Tl, Tm, U, V, W, Y, Yb, Zr. 3 samples were analysed by ALS Global 169 
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Loughrea by ICP-AES for major elements and ICP-MS for trace elements (Ba, Ce, Cr, Cs, Dy, Er, Eu, Ga, Gd, 170 

Hf, Ho, La, Lu, Nb, Nd, Pr, Rb, Sm, Sn, Sr, Ta, Tb, Th, Tm, U, V, W, Y, Yb, Zr). 171 

Results 172 

Radiometric age of the rhyolite clasts and bodies of the Jurassic mélange nappes 173 

Forty-one U-Pb isotope analyses were performed on core and mantle of 31 prismatic zircon crystals. Measured 174 

and corrected isotopic ratios are summarized on Table 1. 175 

To-1(1) rhyolite block from the TO mélange (Perkupa-Szalonna road cut key-section)  176 

Within this sample, two age groups can be distinguished. 226.6 ±6.2 Ma old group was measured on the core of 177 

an elongated prismatic grain (1-b-a) and two zoned rims (Fig. 3). In case of the 1-c-3 crystal, the 2 billion aged 178 

core partly resorbed during a later event, then it was overgrown by this younger zoned rim. There is no sign of 179 

dissolution or change in crystallographic orientation between the core and rim of the other grain (1-e-6). The 180 

youngest, 206.8 ± 4.9 Ma age was detected on crystals 1-b-1 and 1-a-4. In the latter case there is no age difference 181 

within the core and rim of the grain in spite of the visible solution surface separating the two parts (Fig. 3).  182 

To-1(2) and To-1(3) ‘matrix’ layer of the TO mélange (Perkupa-Szalonna roadcut key-section)  183 

Based on thin section studies the volcanic material was interpreted as redeposited debris (Kövér et al. 2009b) in 184 

contrast with the previous interpretations describing these layers as coeval Jurassic tuff horizons (Grill 1988). 185 

222.1±7.9 Ma age was calculated from measurements carried out on the core of two CL-dark crystals (2-a-1 B 186 

spot, 3-c-8), on one zoned core (3-c-10) and on two highly zoned overgrowths of the equally oriented cores (2-a-187 

4, 2-a-8) (Fig. 4).  188 

To-2(8) and To-3(7) rhyolite blocks within the TO mélange (core Szalonna Sza-10 ~55m (8) and 124m (7)) 189 

Both (7) and (8) samples are from vitroporphyric rhyolite bodies, which were penetrated continuously for tens of 190 

meters by borehole Sza-10. 211.6±15 Ma age was calculated from measurements carried out on the cores of three 191 

CL-dark crystals (8-c-6, 7-a-5, 8-d-6), on one zoned core (8-a-4) and on two highly zoned overgrowths of the 192 

equally oriented cores (7-b-6, 7-d-4) (Fig. 5) 193 
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To-5(4) rhyolite body within the TO mélange, at Hunter’s house locality  194 

Measurements on 6 crystals with different morphological (elongated or tabular) and CL character yielded ages 195 

within the 219.3 ± 6.2 Ma range (Fig. 6). In case of grain 4-b-2 there was no detectable difference in isotopic 196 

composition between the CL dark core and the CL light rim in spite of a well-visible solution event between the 197 

growths of the two chemically different parts.  198 

BüMel(11), rhyolite block from the Mónosbél nappe (Bükk Mts., Odvasbükk locality) 199 

U-Pb zircon dating of the rhyolite clast deriving from the Mónosbél nappe (Bükk Mts.) resulted in 208.6 ± 10 Ma. 200 

Measurements were carried out on the cores of two CL-dark crystals (11-b-5, 11-c-5), on two CL-light cores (11-201 

b-3,11-e-2) and on five highly zoned overgrowths of the equally oriented cores (11-a-4, 11-a-6, 11-d-9, 11-e-5, 202 

11-e-7) (Fig. 7). 203 

The results of the U/Pb age determinations can be summarized as follows. The measurements were carried out on 204 

33 zircon crystals of 7 sample groups. As a result, we have new radiometric age data from different type of the 205 

rhyolite occurrences. Such types are fine-grained beds between the olistostrome layers, cm–dm-sized clasts of the 206 

olistostrome, and even larger decametric big bodies of disputed position/origin. The results are culminating around 207 

two age groups: ~223±7 Ma (late Carnian to Norian) and ~209±9 Ma (Norian to Rhaetian). Both of them indicate 208 

volcanic activities in the Late Triassic.  209 

Geochemistry of the rhyolite mélange clasts 210 

Representative chemical compositions of the samples are presented in Table 2 and 3. CaO, Na2O content and the 211 

loss of ignition (LOI) values were very high, while SiO2 and Al2O3 were low in case of the two pebble-size sample 212 

(To-1 and BüMel), thus they may not reflect original chemical composition of the magmatic clasts. However, the 213 

LOI was not higher than 5% in case of 5 samples. TAS diagram of these ones is indicating rhyolitic composition 214 

(Fig. 8).  215 

The majority of the rhyolite clasts (To1-To5) show uniform REE-patterns with a slight enrichment of LREE (Light 216 

Rare Earth Element) over HREE (Heavy Rare Earth Element) (LaN/LuN=2.24-4.36) with a pronounced negative 217 

Eu-anomaly (2*EuN/(SmN+GdN)=0.17-0.26) (Fig. 9). Two clasts (BüMel and Mel) has higher abundance of 218 

LREEs and similar abundance of HREEs compared to the other clasts (LaN/LuN=6.27 and 7.69, respectively), 219 

therefore a bit higher Eu-anomaly as well (2*EuN/(SmN+GdN)=0.5 and 0.3, respectively) (Fig. 9a).  220 
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N-MORB normalized multi-element diagram show a continuous decrease in abundance from the incompatible 221 

trace elements to the more compatible ones (e.g. Th has 100-fold enrichment, while HREEs are showing N-MORB 222 

values or maximum 2-fold enrichment). Negative anomalies are observed in case of Nb, Eu, Sr and Ti (Fig. 10a, 223 

b).  224 

Discussion 225 

Age of the mélange-related rhyolites and their interpretation 226 

In the Rudabánya Hills, TO nappe, the calculated magmatic ages of the rhyolite bodies significantly differ from 227 

the previously suggested Late Jurassic age of Szakmány et al. (1989) while support the olistolith interpretation 228 

(Kövér et al. 2009a, b). Thus, the Late Triassic volcanic clasts are olistoliths (large clasts) – independently of their 229 

size – within the Middle Jurassic slate matrix. 230 

The main problem of the measured clast ages (~223±7 Ma and ~209±9 Ma) is the age itself. They are considerably 231 

younger than the typical 238-242 Ma Middle Triassic Neotethyan rift-related magmatic ages (Fig. 11), which are 232 

reported from those structural units, which formed the south-western and western passive margin of the Neotethys 233 

Ocean (Mundil et al. 1996, Pálfy et al. 2003, Wotzlaw et al. 2018). On the other hand, there are sporadic 234 

radiometric and stratigraphic data referring to less wide-spread magmatic events during the Late Triassic (for 235 

details, see next chapters). Effusive rocks with Late Triassic radiometric or stratigraphic age are present in the 236 

Dolomites and Slovenian Trough – Julian Alps, tuff horizons were described from the Outer Dinarides (Pamić and 237 

Lovrić 1980; Pleničar et al. 2009; Neubauer et al. 2014), while zircon grains in tuffitic redeposited layers were 238 

reported from the Western Carpathians (Kohút et al. 2017). These occurrences support a Late Triassic magmatic 239 

event at the western termination of the Neothetys embayment. The main centre for this volcanism should have 240 

been located at the western termination or along the south-western margin of the ocean, while the northern, 241 

Western Carpathian margin received only very fine grained tuff supply. On the other hand, lava rocks and dykes 242 

are present in the Southern Alps and Dinarides, deriving from the south-western margin (Fig. 2). 243 

Possible sources of the redeposited volcanic clasts of the Telekesoldal and Mónosbél sedimentary mélange 244 

nappes 245 

On the basis of the newly obtained ages, we supposed that the source of the investigated clasts was a Late Triassic 246 

volcanic field. To establish a genetic link between the clasts and possible sources, we briefly introduce the in-situ 247 

Late Triassic effusive rocks and tuffs, and compare to our samples. 248 
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Central Western Carpathians 249 

Only siliciclastic sediments with syn-depositional magmatic source indicate volcanic activity in the Late Triassic 250 

succession of any Western Carpathian nappes (Kovács et al. 2011; Kohút et al. 2017). The Upper Triassic, 251 

siliciclastic Lunz Formation yielded detrital zircons with 221.2 ±1.6 Ma age (Kohút et al. 2017). These detrital 252 

ages were interpreted as the maximum age of sedimentation, thus the source of these zircon grains was a co-253 

existing volcanic activity. The age interval is overlapping the older age group of our dated olistoliths (Fig. 11). 254 

However, these zircon grains were redeposited as single grains, and may derive from distantly located volcanic 255 

edifices thus the Lunz Formation itself cannot be the direct source of the mélange clasts. 256 

Southern Alps, Dinarides, Slovenian Trough 257 

The Dolomites of the Southern Alps along with the Dinarides are the classical localities of the Middle Triassic 258 

syn-rift volcanic activity. During the latest Anisian to early Ladinian rifting of the Neotethys Ocean tilted blocks 259 

were developed with carbonate platforms and narrow intraplatform basins. Volcanoclastic intercalations (‘Pietra 260 

Verde’) predominantly occur in the deeper water Buchenstein Fm. These volcanoclastics are products of an 261 

explosive, acidic volcanism. Their wide spatial distribution suggests that a number of volcanic centres existed 262 

throughout the western termination of the Neotethys Ocean (Castellarin et al. 1998). The age of the main magmatic 263 

phase was between 238-242 Ma (Mundil et al. 1996, Wotzlaw et al. 2018), thus definitely older than the 264 

investigated rhyolite clasts (Fig. 11). However, there are sporadic indications of a younger magmatic episode. 265 

Németh and Budai (2009) and Budai et al. (2004) reported breccia pipes cross-cutting the Ladinian platform 266 

carbonate (Schlern Dolomite). K/Ar age (204±7.8 Ma) of the diatreme is much younger than the classic syn-rift 267 

magmatic event (Budai et al. 2004). These indices may hint that magmatism could continue, at least locally, into 268 

the Late Triassic. However, the lithology (breccia pipes in the Dolomites vs. rhyolite lava rocks within the clasts) 269 

does not allow direct source – clast link between this occurrence and the investigated mélange clasts. 270 

“Tuffaceous breccia” and sandstone are also described from the Carnian siliciclastic intercalations from the Outer 271 

Dinarides (Slivnica) (Pleničar et al. 2009). The tuff is promising, however, effusive rock is needed for a direct 272 

comparison. 273 

Explosive magmatic activity post-dating the main Middle Triassic magmatic event is also present in some regions 274 

of the Outer Dinarides (Northern Croatia) (Pamić and Lovrić 1980). Carnian and Norian ages of the effusive rocks 275 

are supported by stratigraphy and Rb/Sr data (223±7 Ma). New findings of Neubauer et al. (2014) from the Julian 276 
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Alps and the Slovenian Trough strengthen magmatic activity during the Carnian – Norian (223.7±1.5 Ma, 277 

233.7±1.5 Ma). The younger ages are in positive correlation with the age of the mélange clasts, thus we continued 278 

with geochemical analysis.  279 

Geochemical data of in situ Late Triassic rhyolites 280 

While both the rhyolitic lithology and the age data allowed possible match with the mélange clasts, we took three 281 

samples of two localities for comparative geochemical study. Sample SLO-1 was collected from the Lajše locality, 282 

which was dated as 223.7±1.5 Ma by Neubauer et al. (2014). It is a greenish-grey rhyolite with plagioclase 283 

phenocrysts. Sample SLO-2 is a rhyolite tuff, which intercalates with Late Triassic marl and clastics (Grad et al. 284 

1974). 285 

Representative chemical composition of the three samples is shown in Table 2 and 3. The rhyolites: SLO1 and 286 

SLO2 (Fig. 8) have very high (74 and 81 wt. %) SiO2-, and exceptionally low MgO+Fe2O3 content (3.2 and 2.1 287 

wt. %, respectively). LOI values were low (1-3.5 wt. %).  288 

The Slovenian samples have REE- and multielement patterns similar to the rhyolite clasts of the mélange (Fig. 9a, 289 

10a, b), showing LREE enrichment over HREE (LaN/LuN=8.85 and 9.53), Eu-anomaly (2*EuN/(SmN+GdN)=0.31 290 

and 0.32, respectively), and a continuous decrease from incompatible to compatible trace elements normalized to 291 

N-MORB (Fig. 10a,b.). Negative Nb, Sr, Eu and Ti-anomalies are also present. 292 

All these geochemical data strengthen the similarity between the in situ rhyolite and rhyolite tuff and the dated 293 

clasts from the mélange units. The similar age (Fig. 11) and trace element geochemistry raise the Late Triassic 294 

rhyolites of the Slovenian Trough to a potential source area for the mélange clasts. 295 

Tectonic framework of the Late Triassic rhyolite volcanism on the basis of trace element geochemistry 296 

Geodynamic evaluation of the rhyolite samples is investigated based on the system of Furnes & Dilek (2017). 297 

Patterns of REE and immobile trace elements (Th, Nb, La, Ce, Sr, Nd, Zr, Sm, Eu, Gd, Ti, Dy, Y, Yb, Lu) are 298 

considered along with LaN/LuN-ratios in the determination of the paleogeotectonic setting. Inclining REE-patterns 299 

(with or without Eu-anomaly) occur in every type of igneous suite, as it is a general feature of the more fractionated 300 

(intermediate to acidic) magmas (Fig. 9a). In contrast, immobile trace element patterns are more characteristic, 301 

negative Nb, Sr, Eu and Ti-anomalies are characteristic for igneous suites of Rift/Continental Margin- (R/CM) and 302 

Plume/MOR (P/M) type (Fig. 10a). Negative Sr- and Eu-anomalies might be interpreted as a signature of early 303 
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fractionation during magma evolution, where plagioclase locks away Sr and Eu form the melt. Relative Sr-304 

enrichment of BüMel and To1 samples may be related to weathering processes, where carbonates collect Sr from 305 

fluids interacting with the exposed rocks. This is strengthened by high LOI values (8.71 and 10.7, respectively). 306 

Partition coefficient of Nb and Ti is sensitive to the H2O-content of the melt, as they are more compatible in H2O 307 

-rich magmatic systems. Therefore, they tend to segregate in the early fractionates, or even remain in the solid 308 

component during the melting of the mantle material, if H2O is present during melting. Zr has slightly lower 309 

concentration compared to the average R/CM and P/M magmas (1-3,5-fold enrichment instead of 3-10-fold 310 

enrichment compared to N-MORB), but this may be related to local characteristics of the original mantle material. 311 

Further discrimination would be possible based on the distribution of LaN/LuN ratios (Fig. 9b) . However, the small 312 

amount of data does not show a characteristic distribution, as all of the points are between 2 and 10, as in the case 313 

of both R/CM and P/M magma types.  314 

The Th/Yb-Ta/Yb diagram of Gorton and Schandal (2000) was also made to discriminate between acidic rocks of 315 

different tectonic origin. Elevation of Th/Yb-ratio implies addition of crustal material via subduction, while the 316 

Ta/Yb ratio is depending on the degree of partial melting of the mantle (higher values indicate lower ratio of partial 317 

melting). The clasts from the different mélange nappes are characterized as within plate volcanic rocks, while the 318 

Late Triassic Slovenian samples are plotted in the boundary between the within plate and the adjacent active 319 

continental margin area (Fig. 10c.). 320 

The combined occurrence of the negative anomalies of Nb, Sr, Eu and Ti and the relatively low LaN/LuN-ratios 321 

suspect a subduction-unrelated, yet H2O-rich magma of within plate origin. Rift/Continental Margin-type 322 

volcanism as a source of the rhyolite clasts of the mélange and also for the in situ Slovenian volcanites is suggested. 323 

It needs further analysis to find out the plate tectonic background of this rifting. As preliminary models, two 324 

potential events can be suggested; (1) continuation/renewal of the Middle Triassic Neotethyan rifting and 325 

continental rift-related magmatism (2) far-field echo of the earliest continental phase of the Alpine Tethys 326 

(Penninic) rifting. In case of (1), the large time lag with respect to break-up represents a problem, while in solution 327 

(2) the large distance from known rift axis (oceanic spreading centre) needs explanation. The Atlantic-related 328 

break-up of the Piemont – Ligurian branch of the Penninic Ocean was preceded by a long continental rifting phase, 329 

which affected the whole Adriatic crust. Radiometric ages from the main shear zones of the Ivrea-Verbano zone 330 

(representing the exhumed and thinned Adriatic crust) indicates high temperature deformation and thinning of the 331 

lower and middle crust from 210 Ma (latest Triassic) (Wolff et al. 2012, Langona et al. 2018), while extensional 332 
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sedimentary basins in the Southern Alps (Lombardian Basin, Belluno Basin, Slovenian Trough), Northern 333 

Calcareous Alps (Bajuvaric nappes, ) and Transdanubian Range (Zala Basin) documents the upper crustal 334 

extension from early Norian (228 Ma) (Bertotti et al. 1993, Behrmann and Tanner 2006, Goričan 2012, Héja et al. 335 

2018). Later on, during the Early and Middle Jurassic the depocentre of extensional deformation was migrated 336 

westward, towards the future Alpine Tethys.  337 

Plate tectonic consequences 338 

Middle Jurassic: Potential source areas and paleogeography 339 

While potential source areas of rhyolite clasts can be suggested (Slovenian Trough) and others can be excluded 340 

(northern margin of Neotethys), it gives a possibility to suggest modifications (refinements) for existing Mesozoic 341 

paleogeographic and plate tectonic models. During the Triassic – Late Jurassic interval, the Transdanubian Range, 342 

the future Austroalpine nappes, the Dolomites and the Slovenian Trough were located at the terminating western 343 

embayment of the ocean, while the sub-ophiolitic units of the Dinarides (together with the future Bükk and 344 

Mónosbél nappes) formed the south-western passive margin (Fig. 2, Fig12) (Dercourt et al. 1990; Kozur 1991; 345 

Haas et al. 1995; Stampfli and Borel 2002; Csontos and Vörös 2004; Velledits 2006; Schmid et al. 2008; Handy 346 

et al. 2010). In contrast, those structural units, which build up the present day Western Carpathians are generally 347 

placed north or northeast from the TR, thus onto the northern margin of the Neotethys (Haas et al. 1995; Plašienka 348 

1998). 349 

Units from the south-western (Adriatic-Dinaric) margin: Mónosbél mélange nappe, TO nappe 350 

The footwall of the Mónosbél nappe, the Bükk nappe (Fig. 1d) was always considered as deposited on the SW 351 

Dinaridic margin (Kovács et al. 2011; Csontos 2000; Haas et al. 2011a), although the exact position of the Bükk 352 

is still not fully constrained; it varies from near-reef-slope Zlambach facies zone of Gawlick et al. (2012), to more 353 

ocean-ward proximal zones (Schmid et al. 2008). The overlying Mónosbél unit is generally considered as a nappe 354 

(Csontos 1999), although a continuous succession from the Bükk nappe cannot be completely ruled out (Pelikán 355 

et al. 2005). Recent sedimentological studies clearly indicate that this area received considerable amount of clasts 356 

from the Adriatic Dinaric Carbonate Platform (ADCP) during the Middle Jurassic (e.g. Mid-Jurassic ooidal 357 

limestone and skeletal fragments) (Haas et al. 2006, 2011b). Thus the presumed paleogeographic position (Fig. 358 

12) must be relatively close to the ADCP, but the exact along-strike position cannot be defined more precisely (on 359 

the basis of Jurassic clast-source connection). On the other hand, the now-described Triassic volcanic fragments 360 

can be reconciled with a potential source from the Slovenian Trough, or from the eastern part of the Julian Alps; 361 
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this northerly position, at the eastern continuation of the Slovenian Trough would permit a much shorter transport 362 

route for rhyolite clasts., This paleoposition would also permit an easier juxtaposition of the Bükk nappe pile and 363 

TR units, and their amalgamation into a common Cenozoic tectonic unit (ALCAPA on Figure 1). 364 

In the Rudabánya Hills (Fig. 1c), clast composition of the TO sedimentary mélange nappe is dominated by 365 

pelagic limestones and marlstone derived from the thinned margin; basalts are rare. The investigated large rhyolite 366 

clasts connect this sedimentary mélange-like unit to the SW margin, more precisely, to the vicinity of the Slovenian 367 

Trough (Fig. 12). Other elements in the Rudabánya nappe pile also support this paleogeographic location. The TO 368 

nappe is thrust over the Bódva unit, which contains a relatively deep water (outer shelf) Triassic succession, which 369 

is more similar to Dinaridic units than to some potential Eastern Alpine or Western Carpathian facies (Kovács et 370 

al. 1989, 2011; Gawlick et al. 2012). The rare Ammonite fauna also correlate the Bódva unit more with the south-371 

western, than the northern attenuated margin (Vörös 2010). Finally, its Middle Jurassic formations contain coeval 372 

platform-derived fossils and clasts (Kövér et al. 2009b), which anchors the position of Bódva close to the Adriatic 373 

Dinaric Carbonate Platform (ADCP on Fig. 12). 374 

Units from the north-eastern (Western Carpathian) margin? Meliata mélange nappe 375 

In the present day Inner Western Carpathians, the most characteristic nappe is the subduction related high-pressure 376 

Bôrka unit (Faryad 1997, Faryad et al. 2005). The associated metamorphism is well constrained between 160–377 

150Ma (Maluski et al. 1993; Dallmeyer et al. 1996, 2008; Faryad and Henjes-Kunst 1997). The blueschist-facies 378 

metamorphism is roughly coeval with the age of sedimentation in the sedimentary mélanges. From kinematic 379 

indicators, the direction of subduction was towards the south, thus once it represented the north-eastern passive 380 

margin of the Neotethys Ocean. The Meliata mélange was deposited in a trench between the southward subducting 381 

Inner Western Carpathian thinned margin and the overriding ophiolite unit and its frontal imbricates (Plašienka 382 

1997, 1998; Plašienka et al. 1997; Less 2000; Ivan 2002; Lexa et al. 2003; Dallmeyer et al. 2008). These models 383 

agree that tectonic burial, metamorphism and exhumation of the trench-derived Meliata nappes were also related 384 

to this southward subduction but occurred later, possibly in the earliest Cretaceous (Árkai et al. 2003). 385 

The origin of most carbonatic and basic-ultrabasic magmatic clasts of the Meliata mélange can fit to this model, 386 

while they could derive from the overriding ophiolite, or scrapped off from the down-going Triassic oceanic slab. 387 

The great variety of shallow to deep-water Triassic carbonate clasts could be available on the underthrusting 388 

(northern) passive margin or from slivers attached to the overriding ophiolitic units. 389 
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Late Jurassic to Early Cretaceous strike-slip faulting 390 

The present-day close disposition of the Meliata and TO units either require (1) original close paleogeographical 391 

position, only slightly modified by nappe stacking, or (2) important displacement during or after nappe stacking 392 

of the two mélange units. The rhyolite clasts present in both units permit but not unequivocally confirm the first 393 

solution. (2): large-scale displacement of a formerly SW margin-related units (TO, Bódva) could be possible via 394 

strike-slip faults. 395 

Such sinistral major fault or fault zone was postulated in the Eastern Alps. First, we briefly discuss these ideas 396 

then explain how it helps solving some problems of the Inner Western Carpathians. 397 

Present-day arrangement of characteristic Late Triassic facies-belts in the Eastern and Southern Alps is not in 398 

agreement with a linear or convexly curved passive margin of the Neotethys Ocean. The present-day general trend 399 

in the NCA is that in a N-S section the northern (deeper) nappe-slices represents more proximal, while the southern 400 

nappe-slices more distal segments of the Triassic passive margin. This geometry is partly due to the E-W strike of 401 

the nappes. However, the Dachstein facies zone terminates towards the W in the western part of the NCA. In 402 

contradiction, the same lagoon - platform facies boundary (Dachstein Limestone – Hauptdolomite) is located much 403 

more to the east in the Transdanubian Range. This led Kázmér and Kovács (1985) to suggest sinistral slip along 404 

the north-western and northern boundary of the TR (although they erroneously considered this movement as 405 

Cenozoic). The same kinematics was suggested by Schmidt et al. (1991), shifting the westernmost, marginal part 406 

of the Neotethyan embayment (including TR) towards the east. They suggested Middle Jurassic – Early Cretaceous 407 

timespan for the movement, and a kinematic link towards the opening Ligurian-Piemont Ocean. 408 

This postulated sinistral fault is also shown in paleotectonic reconstruction of Schmid et al. (2008), Handy et al. 409 

(2010) where this fault was named as the proto-Periadriatic Transform line. Moreover, the initiation of the intra-410 

continental subduction within the Austroalpine nappe-system was suggested to be the result of this same sinistral 411 

transfer fault, juxtaposing continental blocks with different crustal thicknesses (Stüwe and Schuster 2010). 412 

Following these data, concepts and interpretations, we also suggest, that the western embayment of the Neotethys 413 

could be dissected by several sinistral transfer faults (Fig. 12). The northern fault could have controlled the E-W 414 

striking intra-continental subduction in the East-Alpine domain, and may have played a role in the subsequent 415 

mid—Cretaceous contraction (Stüwe and Schuster 2010; Janák et al. 2001).  416 
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The delimited blocks contain the Ötztal-Bundschuh basement, the future Silica nappes, the TR, and involved the 417 

future Meliata nappe s.str (Fig. 12). The sinistral slip could be dissipated at the subduction front (e.g. Schmid et 418 

al. 2008; Handy et al. 2010), but also could cut off obducted ophiolite blocks. This latter version would trap 419 

obducted ophiolite blocks within the subsequently forming Eo-Alpine nappe stack. 420 

One of the useful consequences of sinistral faulting would be the southerly position of Silica nappe with respect 421 

to the juxtaposing Meliata-Bôrka assemblage (Fig. 12b). The northern-margin origin of Silica (e.g. Plašienka et al. 422 

1997; Kovács et al. 1989, 2011; Less 2000; Schmid et al. 2008) would imply a lower plate position during the 423 

southward WC subduction, however, its non-metamorphic character and uppermost tectonic position would 424 

suggest upper plate origin. This contradiction puzzled plate-tectonic reconstructions in the WC for a long time (see 425 

Plašienka et al. 1997; Plašienka 1998). The sinistral shift of Silica unit prior to the completion of the Inner Western 426 

Carpathian nappe pile would result in an upper plate position with respect to the subduction (Fig. 12). This version 427 

already suggested by Deák-Kövér (2012), can be an alternative model to the triangle structure of Schmid et al 428 

(2008). Minor sinistral displacement zones within the Silica nappe is supported by local observations and mapping 429 

(Ménes Valley, Grill et al. 1984; Less et al. 1988; Less 2000). 430 

Timing 431 

The sinistral faulting has slightly varying time frame in different works. Schmidt et al. (1991) postulated 432 

continuous transform movements from Middle Jurassic to Early Cretaceous, while a kinematic link was suggested 433 

between the opening of the Piemont – Ligurian ocean and the transfer fault. Stüwe and Schuster (2010) suggested 434 

movements postdating the obduction (post 170-160 Ma) and predating the onset of Eoalpine metamorphism (135 435 

Ma). According to the work of Frank and Schlager (2006), this important deformation was coeval with late Middle 436 

to early Late Jurassic tectonically controlled sedimentation of the Northern Calcareous Alps (Ortner 2017).  437 

In our model, the main argument for timing is the age of the sedimentary mélanges and the juxtaposition of the 438 

Meliata and Bôrka units. Our model would suggest syn- to post- late Middle Jurassic displacement. Meanwhile, 439 

the juxtaposition of the Meliata and Bôrka unit could suggest an upper age limit to this deformation. K-Ar ages of 440 

Meliata sensu stricto metasediments range from ~145 to 128 Ma (Árkai et al. 2003). K-Ar white-mica ages may 441 

indicate the peak metamorphic condition or initial cooling for the low-grade Meliata. Separation of these two 442 

events is difficult, while the maximum temperature condition of Meliata metamorphism is close to the closure 443 

temperature of the K-Ar system. K-Ar cooling ages of the high-pressure Bôrka unit are in the same age interval 444 
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on the basis of K-Ar mica dating (Árkai et al. 2003). However, more recent EMPA monazite ages enables 445 

narrowing of this range to 145-140 Ma (Méres et al. 2013); meaning juxtaposition of Meliata and Bôrka nappes in 446 

this time span.  447 

In conclusion, we prefer a wide time range, from late Middle Jurassic to early Cretaceous (~168 Ma – ~140 Ma), 448 

which may be narrowed by further assumptions in future. 449 

Conclusion  450 

A few mm to 100 m sized rhyolite clasts and blocks were investigated from different Middle Jurassic Neotethyan 451 

sedimentary mélange nappes. New U-Pb isotopic data from zircon grains proved that the age of rhyolite clasts 452 

forms two age groups: 222.6±6.7 and 209.0±9 Ma. These Late Triassic ages are in contradiction with previous 453 

interpretations of a Middle Jurassic, subduction-related island arc origin. In contrast, even the largest (ca. 100-150 454 

m) rhyolite bodies are redeposited Late Triassic magmatic rocks within the Middle Jurassic sedimentary matrix. 455 

The calculated age groups (222.6±6.7 and 209.0±9 Ma) do not fit into the general Late Anisian – Ladinian (~242-456 

238 Ma) magmatism, which was a wide-spread magmatic event on the south-western passive margin of the 457 

opening Neotethys Ocean. However, both geochemical REE and trace element pattern and U/Pb zircon age show 458 

positive correlation between the clasts and in situ Late Triassic rhyolite and rhyolite tuff from the Slovenian 459 

Trough. Selected trace element and REE pattern suggest subduction-unrelated, most probably Rift/Continental 460 

Margin-type volcanism as plate tectonic setting for the Late Triassic magma. Due to the rather large (~20 Ma) 461 

time gap, we prefer connecting this magmatism rather to the early, continental thinning of the Penninic rifting, 462 

than to the elongation/renewal of the Neotethyan one.  463 

While the most probable source of the rhyolite clasts, the Slovenian Trough was located on the south-western 464 

passive margin of the Neotethys Ocean, depositional area of the TO and Mónosbél mélange nappes should have 465 

been close to this area, while long-distance transportation of the large clasts toward the northern margin is less 466 

probable option. Thus we suggest the following model: deposition of the TO and Mónosbél Middle Jurassic 467 

sedimentary mélanges took place on the south-western passive margin of the Neotethys Ocean. Shortly after the 468 

sedimentation, branches of a large-scale, roughly E-W-striking sinistral fault zone made considerable 469 

rearrangement of the stacked ophiolite, sub-ophiolitic mélange and imbricated passive margin nappes. As a result, 470 

the northern, Western Carpathian margin was juxtaposed directly with some fragments of the imbricated south-471 

western margin, e.g. TO and Mónosbél units. During this process, the Meliata sedimentary mélange and the 472 
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exhuming high-pressure Bôrka nappe can get in tectonic contact. A southern branch of this post-obductional 473 

sinistral shear-zone would shift the Silica area to a southern, opposing position with respect to the Meliata-Bôrka 474 

nappe system and the more proximal Western Carpathian margin. Subsequent mid-Cretaceous nappe-stacking 475 

could result in out-of-sequence thrusting of the Silica nappe as a higher unit onto the Meliata-Bôrka system and, 476 

together, further to the N onto other Western Carpathian units.  477 
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Figure captions 751 

Fig. a) Main structural units of the Northern Pannonian Basin and surrounding areas (modified after Schmid et al. 752 

2008). The areas of interest and location of more detailed maps are indicated by boxes. RW – Rechnitz window, 753 

TW – Tauern window b) Structural sketch of the Jasov area (Less and Mello 2004) and nappe superposition of the 754 

Inner Western Carpathians. Sample Mel was taken from a rhyolite block of the Meliata mélange nappe. c) 755 

Structural sketch map of the Telekesoldal area, and nappe superposition of the Rudabánya Hills (Kövér et al. 756 

2009b). Samples To-1-5 were taken from different rhyolite blocks of the Telekesoldal mélange nappe. d) Structural 757 

sketch map and nappe superposition of the Bükk Mts (modified from Less and Mello 2004 with the nappe concept 758 

of Balla 1983 and Csontos 1988). Sample BüMel was taken from a rhyolite block of the Mónosbél mélange nappe. 759 

Location is indicated by blue circle. e) Geological map of the Lajse area, Slovenia (after Grad et al. 1974). Samples 760 

Slo-1 and -2 are indicated by orange diamonds. 761 

Fig. 1 Late Jurassic paleogeographic reconstruction of the Vardar oceanic embayment (Neotethys Ocean) after 762 

Schmid et al. 2008. Blue signs indicate the possible paleogeographic locations for investigated Jurassic mélange 763 

nappes with redeposited rhyolite and andesite clasts. (To – Telekesoldal nappe, Mel – Meliata nappe, BüMel – 764 

mélange nappe of the Bükk Mts.: Mónosbél nappe). Paleogeographic location of in-situ Late Triassic acidic 765 

effusive rocsk is indicated. (Slo-Slovenian Trough). 766 

Fig. 3 Cathodoluminescence (CL) and back-scattered electron (BSE) images of the zircon crystals from sample 767 

To-1(1) of the TO mélange nappe. Measured spots and tracks are indicated. U-Pb concordia and Tera-Wasserburg 768 
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plots of the adjacent zircon samples. Plot 1: 1-b-a track, 1-c-3 track A, 1-e-6 track; Plot 2: 1-b-1 track, 1-a-4 spot 769 

B 770 

Fig. 4 Cathodoluminescence (CL) and back-scattered electron (BSE) images of the zircon crystals from sample 771 

To-1(2) and To-1(3) of the TO mélange nappe. Measured spots and tracks are indicated. Tera-Wasserburg plot of 772 

the adjacent zircon samples is presented. 773 

Fig. 5 Cathodoluminescence (CL) and back-scattered electron (BSE) images of the zircon crystals from sample 774 

To-3(8) and To-2(7) of the TO mélange nappe. Measured spots and tracks are indicated. Tera-Wasserburg plot of 775 

the adjacent zircon samples is presented. 776 

Fig. 6 Cathodoluminescence (CL) and back-scattered electron (BSE) images of the zircon crystals from sample 777 

To-5(4) of the TO mélange nappe. Measured spots and tracks are indicated. Tera-Wasserburg plot of the adjacent 778 

zircon samples is presented. 779 

Fig. 7 Cathodoluminescence (CL) and back-scattered electron (BSE) images of the zircon crystals from sample 780 

BüMel/11 of the Mónosbél mélange nappe, Bükk Mts. Measured spots and tracks are indicated. Tera-Wasserburg 781 

plot of the adjacent zircon samples is presented. 782 

Fig. 8 TAS diagram of the rhyolite clast and block samples from the different Middle – Upper Jurassic mélange 783 

nappes and in situ Upper Triassic samples from the Slovenian Trough. For sample locations see Fig 1. 784 

Fig. 9 a) Chondrite normalized (McDonough, Sun 1985, Sun, McDonough 1989) REE pattern of the rhyolite clasts 785 

from different mélange nappes and in situ Upper Triassic rhyolite/tuff samples showing considerable enrichment 786 

LREE, while significantly smaller enrichment in HREE. Grey band corresponds to Rift/Continental Margin-type 787 

magma of Furnes and Dilek 2017 b) distribution of La/Lu numbers within the analysed rhyolite clasts and in situ 788 

Upper Triassic samples 789 

Fig. 2 a,b) Chondrite normalized (McDonough, Sun 1985, Sun, McDonough 1989) trace element pattern of the 790 

rhyolite clasts from different mélange nappes and in situ Upper Triassic rhyolite/tuff samples (blue signs are for 791 

TO mélange nappe, red is for Meliata mélange, yellow is for Mónosbél mélange, Bükk Mts, while orange is for 792 

the in situ Upper Triassic samples). Grey band corresponds to Rift/Continental Margin-type magma of Furnes and 793 

Dilek 2017. c) Th/Yb vs Ta/Yb discrimination diagram of Gorton and Schandal 2000. Within plate volcanism is 794 
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the most probable tectonic setting for rhyolite clasts from different mélange nappes and in situ Upper Triassic 795 

rhyolite/tuff samples. 796 

Fig. 3 Radiometric ages of magmatic events in the western termination of the Neotethys Ocean. Blue signs are 797 

from present study. The typical, rift-related pietra verda-type magmatism is represented by samples from the 798 

Silvretta nappe, Dolomites and TR. Younger events are present in form of detrital zircons in the Lunz beds (WC), 799 

as dykes and diatremes in the Dolomites and as volcanic layers in the Dinarides. 800 

Fig. 12 Paleogeographic sketch of the western termination of the Neotethys Ocean. a) Middle – Late Jurassic b) 801 

Early Cretaceous. Transparent grey represents the obducting ophiolite nappe. Deformation of the lower plate is 802 

indicated below it. Late Triassic facies zones on the continental margin (purple letters): HD Haupdolomite facies 803 

zone (lagoon), D Dachstein facies zone (platform) R Reef of the Dachstein platform, Zl Zlambach facies zone 804 

(slope), H Hallstatt facies zone (pelagic basin), Meli Meliata facies zone (ocean – continent transition). Supposed 805 

palinspastic position of the Mesozoic structural units: ADCP Adriatic-Dinaric Carbonate Platform, Bó Bódva 806 

nappe (Rudabánya Hills), Bô Bôrka nappe, Bu (Buda Hills of TR), Bü Bükk nappe, Da Darnó mélange nappe 807 

(Bükk Mts.), Dr Drauzug, Dol Dolomites, Ju Julian Alps, Mel Meliata nappe, Mó Mónosbél nappe (Bükk Mts.), 808 

Sl-T Slovenian Trough, SOM Sub-ophiolitic mélange, Sz Szarvaskő nappe (Bükk Mts.), Tn Turňa/Torna nappe 809 

(Western Carpathians), TR Transdanubian Range, To Telekesoldal nappe (Rudabánya Hills) 810 

Table captions 811 

Table 1 Corrected isotope ratios of the measured samples. 812 

Table 2 Representative major element chemical compositions of rhyolite clasts from different mélange nappes 813 

and in situ Upper Triassic rhyolite/tuff samples. For sample locations see Fig 1. 814 

Table 3 Representative trace element chemical compositions of rhyolite clasts from different mélange nappes and 815 

in situ Upper Triassic rhyolite/tuff samples. For sample locations see Fig 1. 816 
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Plot
Sample 

number
Zircon indivicual number

Part of 

crystal
CL character

207Pb235

U
2 ơ

Fig. 03A To-1(1) 100301_1b_6_a whole medium zonated 0.3648 ±0.0483

Fig. 03A To-1(1) 100301_1c_3_b core light zonated 0.6426 ±0.0353

Fig. 03A To-1(1) 100301_1e_6_a rim light zonated 0.2545 ±0.0087

Fig. 03B To-1(1) 100301_1a_4_b rim medium zonated 0.2421 ±0.0373

Fig. 03B To-1(1) 100301_1b_1_a rim medium (dark) zonated 0.2481 ±0.0112

Fig. 04 To-1(2) 100301_2a_1_b core dark 0.3524 ±0.0440

Fig. 04 To-1(2) 100301_2a_4_a rim medium zonated 0.3636 ±0.0626

Fig. 04 To-1(2) 100301_2a_8_a core, rim light zonated 0.2767 ±0.0411

Fig. 04 To-1(3) 100316_3_c_08_A_low ratios core dark 0.2885 ±0.0165

Fig. 04 To-1(3) 100316_3_c_10_A rim +  core medium zonated 0.3547 ±0.0413

Fig. 05 To-2 100317_8_A_04_A_low whole dark-medium zonated 0.3933 ±0.1606

Fig. 05 To-2 100317_8_C_06_A_low whole dark-medium zonated 0.3011 ±0.0917

Fig. 05 To-2 100317_8_D_06_A_low whole dark 0.4025 ±0.0399

Fig. 05 To-3 100317_7_A_05_A whole dark 0.3332 ±0.1117

Fig. 05 To-3 100317_7_B_06_A rim dark zonated 0.5577 ±0.2576

Fig. 05 To-3 100317_7_D_04_A rim dark zonated 0.4099

Fig. 06 To-5 100316_4_A_06_A core medium zonated 0.3274 ±0.0244

Fig. 06 To-5 100316_4_A_07_A core light 0.3080 ±0.1303

Fig. 06 To-5 100316_4_A_10_A core medium zonated 0.3824 ±0.0404

Fig. 06 To-5 100316_4_B_02_A core dark 0.3838 ±0.1408

Fig. 06 To-5 100316_4_c_08_A core medium zonated 0.3534 ±0.0222

Fig. 06 To-5 100316_4_d_03_A rim +  core medium zonated 0.2461

Fig. 07 BüMel 100317_11_A_4_A_low rim medium zonated 0.9884 ±0.3217

Fig. 07 BüMel 100317_11_A_6_A rim zonated medium 0.2864 ±0.1200

Fig. 07 BüMel 100317_11_B_3_A whole zonated medium 0.2527 ±0.0344

Fig. 07 BüMel 100317_11_B_5_A core + (rim) dark 0.4997 ±0.0965

Fig. 07 BüMel 100317_11_C_5_A_low core + (rim) dark 0.3478 ±0.0197

Fig. 07 BüMel 100317_11_D_9_A_low rim light zonated 0.3549 ±0.0532

Fig. 07 BüMel 100317_11_E_2_A_low whole zonated medium 0.2573 ±0.0366

Fig. 07 BüMel 100317_11_E_5_A core dark 0.3422 ±0.1329

Fig. 07 BüMel 100317_11_E_7_A_high rim medium zonated 0.8555 ±0.3447

Table 01



206Pb23

8U
2 ơ

207Pb20

6Pb
2 ơ

0.0391 ±0.0024 0.0666 ±0.0077

0.0787 ±0.0035 0.0587 ±0.0013

0.0357 ±0.0010 0.0529 ±0.0010

0.0326 ±0.0031 0.0548 ±0.0062

0.0332 ±0.0008 0.0546 ±0.0021 ±

0.0385 ±0.0038 0.0663 ±0.0033

0.0372 ±0.0022 0.0706 ±0.0105

0.0378 ±0.0051 0.0542 ±0.0023

0.0363 ±0.0013 0.0582 ±0.0019

0.0348 ±0.0021 0.0720 ±0.0062

0.0363 ±0.0150 0.0806 ±0.0075

0.0351 ±0.0104 0.0606 ±0.0065

0.0366 ±0.0021 0.0780 ±0.0037

0.0320 ±0.0115 0.0780 ±0.0170

0.0320 ±0.0097 0.1320 ±0.0609

0.0426 0.0682

0.0362 ±0.0019 0.0649 ±0.0028

0.0383 ±0.0117 0.0583 ±0.0082

0.0377 ±0.0020 0.0725 ±0.0060

0.0458 ±0.0165 0.0626 ±0.0026

0.0360 ±0.0016 0.0718 ±0.0035

0.0329 0.0560 ±0.0033

0.0385 ±0.0148 0.1878 ±0.0292

0.0314 ±0.0119 0.0670 ±0.0107

0.0342 ±0.0038 0.0537 ±0.0042

0.0385 ±0.0037 0.0938 ±0.0154

0.0341 ±0.0010 0.0712 ±0.0033

0.0333 ±0.0053 0.0729 ±0.0041

0.0321 ±0.0041 0.0560 ±0.0055

0.0336 ±0.0084 0.0705 ±0.0125

0.0404 ±0.0190 0.1594 ±0.0288



SAMPLE To-1 To-2 To-3 To-4 To-5 Mel
BüMe

l
SLO1 SLO2 To-2

SiO2 57.10 70.90 70.80 72.29 76.50 75.50 61.00 73.66 80.70 73.72

TiO2 0.19 0.16 0.14 0.15 0.17 0.18 0.32 0.34 0.33 0.17

Al2O3 10.60 15.40 14.05 14.18 12.65 13.00 10.65 15.49 10.68 16.01

Fe2O3 0.54 2.11 1.95 2.21 1.41 1.88 3.07 2.59 1.84 2.19

MnO 0.22 2.72 3.17 2.66 0.65 1.16 1.54 0.04 0.01 2.83

MgO 0.04 0.01 0.04 0.02 0.01 0.01 0.06 0.60 0.27 0.01

CaO 13.50 0.67 1.17 0.90 0.30 0.10 8.73 0.10 0.04 0.70

Na2O 5.88 1.40 1.38 1.41 4.16 1.40 4.04 3.84 1.62 1.46

K2O 0.09 2.67 2.72 2.28 2.20 4.27 1.04 3.22 4.43 2.78

P2O5 0.09 0.11 0.09 0.10 0.11 0.02 0.09 0.07 0.02 0.11

SrO 0.03 0.01 0.01 0.01 0.01 <0,01 0.03 0.01

Cr2O3 <0,01 <0,01 <0,01 <0.002 <0,01 <0,01 <0,01

BaO <0,01 0.02 0.02 0.01 0.01 0.03 0.01 0.05 0.05 0.02

LOI 10.70 4.10 4.68 3.7 1.72 2.49 8.71

Total 98.99 100.28 100.20 99.92 99.89 100.01 99.26 100.36 100.79 100.00

Na2O plus K2O 4.23

Chemical composition without LOI, recalcualted to 100%

Table 02



To-3 To-4 To-5 Mel SLO1 SLO2

74.12 75.13 77.93 77.42 73.66 80.70

0.15 0.16 0.17 0.18 0.34 0.33

14.71 14.74 12.89 13.33 15.49 10.68

2.04 2.30 1.44 1.93 2.59 1.84

3.32 2.76 0.66 1.19 0.04 0.01

0.04 0.02 0.01 0.01 0.60 0.27

1.22 0.94 0.31 0.10 0.10 0.04

1.44 1.47 4.24 1.44 3.84 1.62

2.85 2.37 2.24 4.38 3.22 4.43

0.09 0.10 0.11 0.02 0.07 0.02

0.01 0.01 0.01

0.02 0.01 0.01 0.03 0.05 0.05

100.02 100.00 100.01 100.03 100.00 100.00

4.29 3.83 6.48 5.81 7.06 6.06

without LOI, recalcualted to 100%



Element To-1 To-2 To-3 To-4 To-5 Mel BüMel SLO1 SLO2

Cs 0.31 4.87 4.66 4.30 3.34 5.82 1.64 9.79 7.3

Rb 3.00 124.00 133.50 99.70 109.50 174.50 37.90 136.5 120.5

Ba 22.00 146.50 185.50 109.00 67.20 282.00 83.10 394 421

Th 13.60 14.30 13.75 13.40 14.00 21.10 13.70 20.7 16

U 2.26 5.54 4.01 5.00 2.74 5.23 1.47 4.65 3.05

Nb 8.60 11.60 11.50 9.60 9.40 16.50 7.60 10.9 9.5

Ta 1.00 1.50 1.50 1.20 1.60 1.60 0.90 0.9 0.8

La 17.10 13.90 10.40 11.10 13.40 49.50 26.80 47.9 41.8

Ce 36.60 32.90 24.40 28.20 30.60 104.00 60.80 87.5 76.6

Pr 4.78 3.90 3.05 3.29 3.75 11.85 7.49 10.5 9.14

Sr 217.00 99.30 66.80 86.50 58.70 26.50 238.00 32.6 31.5

Nd 18.30 14.90 11.40 13.20 13.80 45.40 30.90 39.6 34.5

Zr 112.00 102.00 98.00 92.20 107.00 186.00 180.00 263 152

Hf 3.20 3.40 3.20 3.20 3.40 6.10 5.50 7 4.1

Sm 4.05 4.59 3.67 3.50 3.53 8.65 6.07 8.29 6.13

Eu 0.34 0.39 0.22 0.32 0.21 0.83 0.97 0.79 0.58

Gd 4.36 4.66 4.14 4.25 3.94 8.04 5.54 6.69 4.54

Tb 0.78 1.00 0.90 0.91 0.78 1.31 0.84 1.07 0.76

Dy 5.20 6.85 6.19 6.40 5.12 8.09 4.94 6.36 4.49

Ho 0.99 1.38 1.23 1.26 1.06 1.62 0.95 1.37 0.9

Er 3.25 4.35 3.69 3.80 3.20 4.93 2.82 4.08 3

Tm 0.44 0.63 0.56 0.61 0.45 0.70 0.39 0.61 0.44

Yb 3.00 4.06 3.52 3.63 2.90 4.78 2.93 3.7 2.93

Y 29.30 42.90 35.80 36.00 29.60 44.70 26.70 38 25.9

Lu 0.42 0.56 0.48 0.53 0.43 0.69 0.46 0.58 0.47

Ga 5.50 23.40 21.30 18.50 17.90 19.70 9.40 18.3 12.5

V 8.00 6.00 8.00 9.00 8.00 9.00 32.00

Cr 10 below det. below det. 10 10 below det. 10

Rhyolite clasts from Middle Jurassic olistostrome

T3 in situ samples 

from the Slovenian 

Trough

Table 03


