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Abstract

We study the effect of H+ and OH− diffusion on the hydrogen evolution

reaction in unbuffered aqueous electrolyte solutions of mildly acidic pH

values. We demonstrate that the cathodic polarization curves measured

on a Ni rotating disk electrode in these solutions can be modelled by as-

suming two irreversible reactions, the reduction of H+ and that of water
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molecules, both following Erdey-Grúz–Volmer–Butler kinetics. The re-

duction of H+ yields a transport-limited and thus, rotation rate-dependent

current at not very negative potentials. At more cathodic potentials the

polarization curves are dominated by the reduction of water and no mass

transfer limitation seems to apply for this reaction. Although prima fa-

cie the two processes may seem to proceed independently, by the means

of finite-element digital simulations we show that a strong coupling (due

to the recombination of H+ and OH− to water molecules) exists between

them. We also develop an analytical model that can well describe polariza-

tion curves at various values of pH and rotation rates. The key indication

of both models is that hydroxide ions can have an infinite diffusion rate

in the proximity of the electrode surface, a feature that can be explained

by assuming a directed Grotthuss-like shuttling mechanism of transport.

1 Introduction

A common problem of base metal electroplating is that the deposition of elec-

troactive metals (e.g., Zn, Co, Fe or Ni) is almost inevitably accompanied by

hydrogen evolution. In aqueous solutions hydrogen evolution always occurs if

current is made high enough to exceed the limiting current of the deposited

metal1. In acidic solutions hydrogen may be formed as a result of H+ reduc-

tion,

H+ + e− → 1
2H2, (1)
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while in solutions of pH > 7, the primary source of hydrogen is the electrore-

duction of water itself:

H2O + e− → 1
2H2 + OH−. (2)

Hydrogen evolution presents several ramifications for electrochemical plating

processes. From a strictly technological point of view, the evolution of hydrogen

is a serious concern because it reduces the Faradaic efficiency of metal deposition,

thereby increasing the amount of time and energy utilized to deposit the desired

amount of metal at a given total current density. Another problem of hydrogen

codeposition is that it can affect the structural and mechanical properties of the

metal and can cause embrittlement1.

Furthermore, hydrogen can also affect the kinetics of layer growth: if hy-

drogen adsorbs more efficiently on certain crystal planes of the metal, it may

block these planes from further deposition so that the metal would preferentially

grow on other planes2. This inhomogeneous growth presents difficulties for the

deposition of compact metal layers at the best — that is, if the accumulated

gas does not impair the entire plating process1.

Finally, hydrogen evolution also results in the removal of H+ ions from the

diffusion layer. Increasing the near-surface pH may alter the intended chemical

and electrochemical reactions at the interface. For example, if the solution at

the interface becomes sufficiently alkaline, it may cause the solubility of a hy-

droxide of the metal ion present to be exceeded, which may cause the inclusion

of hydroxide or oxide species into the deposit1,3. This can be problematic in

terms of deposit properties such as ductility and electrical resistivity. Alterna-
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tively, hydroxide deposition could cause the formation of relatively thick films

on plated parts, thus passivating the cathode surface3–5. While the accumula-

tion of OH− in the diffusion layer is usually negligible in sufficiently buffered

solutions6, severe changes may occur in unbuffered or only slightly buffered

media7.

From the point of view of base metal electroplating, the variation of local

pH presents a challenge because it influences the kinetics of one of the most

important side reactions, hydrogen evolution. However, the change of interfacial

pH can, in general, affect all electrode reactions that involve H+ or OH− ions

in their mechanisms6–24. Therefore, a great deal of research has aimed at the

development of experimental methods for detecting local pH variations near an

electrode surface. Most of these are either electrochemical or optical methods.

Optical methods usually involve the addition of a suitable pH indicator and

detection by means of confocal laser scanning microscopy13–15, an approach

resulting in pH values averaged over a region in front of the electrode with a

thickness depending on the spatial resolution of the instrument.

A straightforward way of electrochemical pH detection is to place a pH sen-

sitive indicator electrode close to the working electrode surface16–18: as the

indicator electrode is carefully positioned in the vicinity of the cathode, its po-

tential is changed in response to the pH of its environment. This method is

capable to map the variation of pH as a function of distance to the electrode

surface if a precise positioning system is used such as in scanning electrochem-

ical microscopy19. Although the indicator used in this approach is usually a
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microelectrode, special care must be taken so that the indicator does not shield

the flux of reacting species to the working electrode. In addition, the effect of

IR drop must be taken into account25,26: that is, the method is only applicable

when low cathode currents are flowing in a solution of low electrical resistance.

The problem of shielding, albeit not the problem of IR drop, can be ef-

ficiently circumvented by using the collector electrode of “generator–collector”

systems in a potential sensing mode. Such experiments were described both

for the rotating ring–disk electrode20,21 and for the impinging jet cell geome-

tries22. These methods are by nature not capable to “map” the pH profile near

the cathode. However, by solving the diffusion-convection equations in the sys-

tem, one can determine the pH in the vicinity of the working electrode based on

the measured “collector” electrode potential. The detection of local pH changes

immediately adjacent to the electrode surface during a redox reaction is, in ad-

dition, also possible by attaching a molecular pH probe to the cathode itself and

carrying out generator–collector experiments using a single electrode23,24.

As can be seen above, there is a variety of experimental techniques available

for determining pH changes adjacent to an electrode surface. However, there are

always some experimental difficulties present and most of these techniques can-

not be used under operando conditions in a metal plating cell. Nonetheless, as

hydrogen evolution is an ubiquitous side-reaction of metal deposition, a selective

control of its rate as well as an understanding of its effects on the technological

process are vital1,3. Hence, there is a strong need for understanding the kinetics

of hydrogen evolution in solutions of different pH.
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In this paper we use numerical simulations for modelling the hydrogen evo-

lution reaction as it occurs on a nickel rotating disk electrode (RDE) immersed

into strongly supported, unbuffered solutions of different pH values. The sta-

tionary polarization curves recorded in solutions of moderately acidic pH values

show two characteristic sections: one associated with the electroreduction of

H+, Reaction (1), and another dominated by the electrolysis of water, Reac-

tion (2)27,28. However, treating these processes independently is not a sound

strategy of describing the overall mechanism due to the fast recombination of

H+, a reactant of Reaction (1) and OH−, a product of Reaction (2):

H+ + OH− 
 H2O. (3)

Taking Reaction (3) into consideration is necessary not only to determine

steady-state pH profiles corresponding to given electrode potentials29, but also

to account for the slight variation of the “limiting” H+-reduction current with

the electrode potential. This latter effect often causes inaccuracies in the deter-

mination of H+ diffusion coefficients based on Levich- and Koutecký–Levich-like

analyses30,31. As is going to be shown, finite element simulations can effectively

model mass transfer to the electrode surface, even under the constraint of a

strong chemical coupling32. By studying the results of finite element simula-

tions and of actual experiments, we also develop an analytical model that can

well-describe the measured polarization curves.

Interestingly, both digital simulation and the analytical model hint that OH−

ions, when present in the solution layers bounding the electrode surface have an

infinitely large diffusion coefficient. This feature can be explained by assuming
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what we call a “directed Grotthuss mechanism” of transport.

2 Experimental

The disk-shaped polycrystalline nickel electrode (diameter: 5 mm) used in this

work was obtained from MaTeck and was embedded in a PTFE shroud (external

diameter: 1.2 cm) to form an RDE tip. Prior to the experiments the electrode

surface was mirror-polished by using a diamond suspension of ≤ 0.01 µm grain

size. In order to further decrease the surface roughness, the electrode was made

subject to electrochemical polishing in a 50% aqueous H3PO4 solution at a

current density of ∼ 1 A cm−2. Prior to use, the electrode was rinsed abundantly

with Milli-Q water (R = 18.2 MΩ cm, used for the preparation of solutions as

well).

The studied solutions of different pH were prepared from 0.1 mol dm−3

HClO4 (70%, Merck, Suprapure) and 0.1 mol dm−3 KOH (Sigma Aldrich, Semi-

conductor grade). The solutions were mixed until the desired pH was reached.

The pH of the solution was measured by a calibrated Metrohm 744 pH meter.

Each solution was boiled prior to the experiment for 30 minutes in order to

remove any carbonate contamination. Later on, the solution volume was cor-

rected by taking into account the evaporated amount of water and the pH was

fine-adjusted.

A lab-made hermetic three-electrode glass cell with a large Pt counter elec-

trode and a Ag | AgCl | 3 mol dm−3 KCl reference electrode (connected to
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the main chamber through Luggin capillary), was used in this work. Prior to

measurements, the solution in the cell was deaerated with a pure Ar flow (5N,

Alphagaz).

The Ni working electrode was submerged to the electrolyte solution while

maintaining its potential at an “inert” Einit value where no current flows. (These

values are typically between −400 and −600 mV vs. Ag | AgCl.) Polarization

curves presented in the paper were recorded point-by-point by steady-state cur-

rent measurements at given electrode potentials and rotation rates, according

to the following sequence: the electrode potential and the rotation rate were

set, and the current was measured until it reached a stationary value. Then

the potential was set back to Einit and a rotation rate of f = 2500 min−1

was applied for 30 s in order to remove any accumulated H2 from the surface.

The current measurement was then repeated with other potential and rotation

rate settings. The measured data were IR-corrected post-experimentally — the

solution resistance can be determined by means of high-frequency impedance

measurements.

The measurements were automated by using an Autolab PGSTAT128N po-

tentiostat in connection with a PINE AFMSRCE rotator and by the application

of the Nova v11.0 software.
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3 Results

Stationary polarization curves recorded on a Ni RDE show a strong pH depen-

dence (Figure 1). In case of pH . 1.5 the measured current is almost entirely

dominated by the reduction of H+, Reaction (1), and due to the high H+ con-

centration there is hardly any mass transfer limitation to this electrode reaction.

On the other hand, in case of pH & 3.0 (very low H+ concentration) practically

no H+ reduction can be measured: significant currents are only yielded by the

reduction of water, Reaction (2), at very negative potentials.

In case of mildly acidic pH values (2 . pH . 3) the afore-mentioned reactions

both play a significant role in determining the shape of stationary polarization

curves. From positive to negative electrode potentials, the polarization curves

recorded at mildly acidic pH values start with a more-or-less exponential section

where the current, due to the reduction of H+, is limited by charge transfer.

At more cathodic overpotentials the rate of charge transfer increases and the

measured current is limited more and more by the transport of H+ from the

bulk of the electrolyte solution to the electrode interface. As mass transfer

becomes the only limiting step, the stationary polarization curves exhibit an

almost but not quite horizontal limiting current section. The limiting current is

in reasonable agreement with predictions of the Levich equation33, see Figure

2:

j`,H+ = −0.620FD
2/3

H+ω
1/2ν−1/6c∞H+ , (4)

where DH+ is the diffusion coefficient and c∞H+ is the bulk concentration of H+
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ions, ω = 2πf is the angular frequency of rotation and ν is the kinematic viscos-

ity of the solution. As the overpotential exceeds the limiting current section in

the negative direction, the cathodic current increases again due to the reduction

of water molecules, Reaction (2).

With respect to Figures 1 and 2, the following comments are of relevance:

i.) The shape of the polarization curves, especially at more cathodic potentials,

remain essentially unchanged when the measurement is carried out in a solution

saturated with H2 gas. This leads us to assume irreversible kinetics (i.e., the

rate of Reactions (1) and (2) in the backward direction is negligible). ii.)

The limiting current sections of the polarization curves recorded in solutions of

mildly acidic pH values are not perfectly constant but show a slight dependence

on the electrode potential (this is best shown in Figure 2).

In order to describe the measured polarization curves we shall, in what

follows, attempt to develop two models that describe the kinetics of the studied

electrode process where both the reduction of H+ ions and the reduction of water

molecules play a significant role in determining the current. As a first step we

devise a numerical method for the simulation of the electrode process; then,

based on the results of numerical simulations, we develop an analytical model

that can explain the behaviour of the system under study and that can even be

used for the fitting of measured polarization curves and for the determination

of kinetic parameters.
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4 Modelling

We start with the simplifying assumption that Reactions (1) and (2) both follow

Erdey-Grúz–Volmer–Butler kinetics34 and the currents yielded by these reac-

tions can be described as

j1 =− Fk1c
0
H+ exp

(
−α1F

RT
(E − Eeq

1 )

)
(5.a)

and

j2 =− Fk2 exp

(
−α2F

RT
(E − Eeq

2 )

)
, (5.b)

where ki is the rate coefficient, αi is the charge transfer coefficient and Eeq
i is

the equilibrium potential of the ith electrode reaction (Reaction (1) or (2)). In

Equation (5.a), c0H+ denotes the near-surface concentration of H+ ions. Here we

note that with this assumption we only wish to state that there exists an ex-

ponential dependence between the stationary partial currents and the electrode

potential35; in what follows we shall not draw any conclusion whatsoever about

the exact mechanism of hydrogen evolution (and whether it follows a “pure”

Volmer, a Volmer–Heyrovsky or a Volmer–Tafel mechanism35).

In order to determine steady state currents one has to assume that the

concentration of H+ and OH− ions in the system is stationary, thus

∂cH+

∂t
= DH+∇2cH+ − v · ∇cH+ − k+3cH+cOH− + k−3

= 0 (6.a)
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and

∂cOH−

∂t
= DOH−∇2cOH− − v · ∇cOH− − k+3cH+cOH− + k−3.

= 0 (6.b)

Here v denotes the vector field of (stationary) fluid flow, and the symbols k+3

and k−3 were introduced to denote the forward and backward rate coefficients of

Reaction (3), respectively. It was assumed at this point that mass transfer occurs

only by means of diffusion and convection, while other means of transport (e.g.,

migration) are ignored. It was further assumed that the diffusion coefficients

DH+ and DOH− are constants, independent of the concentrations and of spatial

coordinates.

Assuming that the radius of the disk electrode is appropriately big, the effect

of transport in the radial direction can be neglected36 and thus instead of solving

the partial differential Equations (6.a)–(6.b), a solution of the set of ordinary

differential equations

DH+

d2

d z2
cH+(z) + k−3 =vz

d

d z
cH+(z) + k+3cH+(z)cOH−(z) (7.a)

DOH−
d2

d z2
cOH−(z) + k−3 =vz

d

d z
cOH−(z) + k+3cH+(z)cOH−(z). (7.b)

is sufficient. Here we invoke the usual assumption37 that in the vicinity of

the electrode plane the magnitude of fluid flow in the axial direction can be

approximated as

vz = −Bz2

√
ω3

ν
, (8)

where B = 0.51. Higher terms in Equation (8) are ignored here for the sake of

simplifying the analytical solution presented in Section 4.2. Due to the finiteness
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of the Schmidt-number in the system, this introduces an ∼ 3% error to the

calculation of the limiting current38.

Due to the kinetic (chemical) coupling terms they contain, Equations (7.a)–

(7.b) describe a strongly non-linear system of ordinary (inhomogeneous) differ-

ential equations that cannot be solved by direct integration. In what follows we

present a few approximate solutions by means of analytical and of numerical

approaches.

4.1 Numerical Solution of the Equations of Transport un-

der the Constraint of Chemical Coupling

It is a very plausible assumption that the recombination of H+ and OH− ions in

Reaction (3) is an extremely fast process and dictates instantaneous equilibrium.

This fast pre-equilibrium assumption enables us to get a numerical solution of

Equations (7.a)–(7.b) by the application of a constraint to the concentration of

H+ and OH− ions, namely that

cH+cOH− = Kwc
−	−2

= 10−14 mol2 dm−6. (9)

Here Kw = 10−14 is the (by definition, dimensionless) autoprotolysis constant

of water and c−	− = 1 mol dm−3 is the standard concentration. Note that with

Equation (9) we assume unit activities for the H+ and OH− ions.

In the finite element simulations we tile the space under the RDE in the z

direction to an n number of small volumes (cylinders of height ∆z). Accordingly,

the concentrations of H+ and OH− ions will be ordered into one-dimensional
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arrays (of size n, denoted by cH+ and cOH−) so that the ith entry of each array

corresponds to the respective concentration in the ith small cylinder counted

from the electrode surface.

The simulation starts from a state when both H+ and OH− are evenly dis-

tributed, thus for every i

cH+
i

= c∞H+ (10.a)

and

cOH−
i

=
Kwc

−	−2

c∞H+

. (10.b)

In every step of the simulation (corresponding to a time interval of ∆t) new

cH+ and cOH− arrays are calculated. To do this, we “update” the array entries

as described in what follows (the operator “ :=” in the following equations means

that “updated” arrays are calculated using “present” concentration values).

1. Realization of charge transfer. Charge transfer affects only the first el-

ements of the concentration arrays; that is,

cH+
1

:=cH+
1

exp

(
−b1∆t

∆z

)
(11.a)

and

cOH−
1

:=cOH−
1

+
b2∆t

∆z
, (11.b)

where b1 = k1 exp
(
−α1F

RT (E − Eeq
1 )
)
and b2 = k2 exp

(
−α2F

RT (E − Eeq
2 )
)
.

2. Realization of mass transport. The effect of mass transfer is realized in

each simulation step by using the (explicit) Euler method39 described by
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the following matrix-vector equations:

cH+ := (I + V ) (I +DH+D) cH+ (12.a)

and

cOH− := (I + V ) (I +DOH−D) cOH− (12.b)

where the I identity, D diffusor and V conveyor operators are all n × n

matrices defined as:

I i,k =


1 if i = k

0 otherwise

(13)

Di,k =



− 2∆t
∆z2 if i = k

∆t
∆z2 if i = k ± 1

0 otherwise

(14)

V i,k =



−
(
i− 1

2

)2
∆z∆tB

√
ω3

ν if i = k

(
i− 1

2

)2
∆z∆tB

√
ω3

ν if i = k − 1

0 otherwise

(15)

3. Recombination of ions. In order to account for the recombination of H+

and OH− ions according to Reaction (3), the following algebraic equation

is solved for every i entry of the concentration arrays:

(
cH+

i
− xi

) (
cOH−

i
− xi

)
= Kwc

−	−2
. (16)
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Then, using the physically relevant xi roots only,

cH+
i

:=cH+
i
− xi (17.a)

and

cOH−
i

:=cOH−,i − xi (17.b)

After setting the electrode potential E to the desired value, the above iter-

ation is run until convergence is reached; i.e., until the concentration profiles

become stationary. Note that step 3 assures that the product of cH+
i
and cOH−

i

entries is in accordance with the autoprotolysis constant at every i index: thus,

by means of this method, one can determine a single pH profile as opposed to

two “independent” profiles for H+ and OH−. Current, as usual in digital simula-

tion40, is calculated by approximating the near-surface concentration gradients

with finite differences. This yields two partial current densities,

jH+ =
FDH+

∆z

(
cH+

2
− cH+

1

)
(18.a)

and

jOH− =− FDOH−

∆z

(
cH+

2
− cH+

1

)
, (18.b)

the sum of which gives the total current density j.

Results of two different simulations (polarization curves and pH profiles cor-

responding to various electrode potential values) are presented in Figure 3 for

the case of pH = 2.0 and f = 900 min−1. We used the same parameter set

listed in Table 1 in both simulations, except that we assumed different values
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for the diffusion coefficient of hydroxide ions, DOH− . When calculating the po-

larization curve shown in Figure 3(a) and the pH profiles shown in Figure 3(b)

we assumed that the β = DOH−/DH+ ratio is small, having a value of 0.5, as

suggested by literature30. On the other hand, the polarization curve seen in

Figure 3(c) and the pH profiles of Figure 3(d) were simulated using a much

larger value of β = 2 · 104.

It is apparent in Figure 3(a) and (c) that regardless of the value of β there is

a good agreement between measured and simulated currents up until the point

where the electrode potential exceeds the limiting current region. Currents

measured at this potential range seem to be in accordance with the Koutecký–

Levich-equation37:

jH+ =

(
1

j`,H+

+
1

jcat, H+

)−1

, (19)

where j`,H+ is defined by Equation (4) and

jcat, H+ = −Fk1c
∞
H+ exp

(
−α1F

RT
(E − Eeq

1 )

)
. (20)

In the β ≈ 0.5 case, Figure 3(a), a big deviation appears between the simu-

lated polarization curve and the measured currents at electrode potentials below

the limiting current region. At potentials less than −1.4 V the reduction of wa-

ter molecules already yields a significant current (Equation (5.b)), which at

approximately −1.6275 V surpasses the limiting current of H+ reduction. This

potential marks a strong transition in the polarization curve: as shown in Fig-

ure 3(b), at approximately −1.6275 V the near-surface pH reaches the value of

7, the flux of H+ ions drops to practically zero and the total current becomes
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entirely dominated by the gradient of OH−.

The situation is somewhat different when the assumption of β � 1 is applied,

see Figures 3(c) and 3(d). Now the diffusion coefficient of OH− is large and this

expands the effect of autoprotolysis within the solution layer. As a result, pH

values at the electrode surface are nivellated (tend to be closer to neutral),

however the “reaction layer” 41 is essentially broader than it was in the case of

β < 1.

In case when β � 1, simulated current densities are in a closer agreement

with measured data and the transition of partial currents is much smoother

than it was in the previous case.

It is worth to note in Figure 3(c) that the partial current calculated from the

gradient of OH− already gives a significant contribution to the overall current at

potentials when the rate of water reduction is still very small. This is due to the

autoprotolysis process which in case of β � 1 can assure that any near-surface

decrease of the H+ concentration would ultimately lead to an increase of cOH− .

Although the numerical simulation described above is in agreement with

measured data, the numerical model by nature cannot give an analytical for-

mula that could be used for the fitting of measured polarization curves and for

the quick determination of reaction parameters. Therefore, in what follows we

attempt to describe the problem using an analytical approximation.
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4.2 Approximate Analytical Solution of the Transport

Problem with the Constraint of Chemical Coupling

The ordinary differential Equations (7.a)–(7.b) could not be solved analytically

due to a strong non-linear coupling introduced by the autoprotolysis process,

Equation (3). In the previous section we discussed that the upper segments of

the measured polarization curves (at potentials more positive than the limiting

current section) can well be described by the simple Koutecký–Levich equation

(19), and we saw that problems start to arise when the flux of OH− ions also

gives a significant contribution to the measured current.

In what follows we describe an essentially analytical model of the problem

that tries to circumvent the non-linearity introduced by Reaction (3). We will

assume that at very cathodic potentials where both H+ and OH− ions have a

role in determining the current density, the solution layer close to the interface

can be divided into two parts. In one part, closer to the surface, only OH− ions

can exist in the solution, while in the other part further away, only H+ ions are

present. The two regimes are separated by a “reaction plane” at a distance λ

measured from the surface, acting as a sink for both ions.

This scenario, which is somewhat similar to that described by Chapman42,43

for other reacting systems, assumes that within the two distinct regimes the

concentrations of the ions obey the general convection/diffusion equation of the

form

Di
d2

d z2
ci(z) = vz

d

d z
ci(z). (21)
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Here the index i stands for the species H+ and OH−, and the differential equa-

tion has to be solved for both ions.

First we note that the general solution37 of the ordinary differential equation

(21) is a function of the form

ci (z) = χ2,i −
1

3
zχ1,i Ei2/3

(
Bz3ω3/2

3Diν1/2

)
, (22)

where χ1,i = lim
z→0

(
d

d z ci (z)
)
and χ2,i = lim

z→∞
(c (z)) are integration constants

and the Eis(x) exponential integral function is defined as

Eis(x) =

∞∫
1

exp (−xu)

us
du. (23)

Then, in order to get appropriate particular solutions we formulate five bound-

ary conditions, four fixing the values of the integration constants and a fifth

defining the reaction plane position λ. The five boundary conditions are as

follows:

i.) As z →∞ the concentration of H+ ions tends to the bulk H+ concentration

and the concentration of OH− vanishes. Thus,

χ2,H+ = c∞H+ (23.a)

and

ii.)

χ2,OH− = 0. (23.b)

iii.) The gradient of the OH− concentration at z → 0 is, according to Fick’s

first law, determined by the j2 current density defined in Equation (5.b).
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Thus,

χ1,OH− =
j2

FDOH−
. (23.c)

iv.) At z = λ, there is an equal concentration of H+ and OH− ions. From this

follows that

χ1,H+ =
3c∞H+FDOH− + j2λEi2/3

(
Bλ3ω3/2

3DOH−ν1/2

)
FDOH−λEi2/3

(
Bλ3ω3/2

3DH+ν1/2

) . (23.d)

v.) Finally, at z = λ, the sum of the fluxes of the two species must be zero.

This gives the following transcendental equation defining λ:

λ =
3c∞H+FDH+DOH−

j2

/(
exp

[
B (DOH− −DH+)λ3ω3/2

3DH+DOH−ν1/2

]
DOH−

Ei2/3

[
Bλ3ω3/2

3DH+ν1/2

]
+DH+ Ei2/3

[
Bλ3ω3/2

3DOH−ν1/2

])
(23.e)

Now at this point it is already possible to determine the value of λ from Equa-

tion (23.e), e.g., by the Newton–Raphson method39 of iterative root-finding.

After obtaining a numerical value of λ, the integration constants can be deter-

mined from Equations (23.a)–(23.d) and substituted into the general solution

given by Equation (22) to obtain stationary concentration profiles for both H+

and OH−.

In Figure 4 we compare H+ and OH− concentration profiles determined by

the method of digital simulation, described in Section 4.1, and by the quasi-

analytical approach presented here. Figure 4(a) shows that in case of β < 1

the analytical method yields concentration profiles that do not match those

obtained by digital simulation. This is due to the boundary conditions of the
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model which assure the equality of concentrations and the cancellation of fluxes

at λ but they fail to maintain the chemical constraint dictated by Reaction (2)

that at the distance λ both concentrations should have a very low value. As

the results of digital simulations suggest, however, we are primarily interested

in an analytical solution that is valid for the β � 1 case, and this condition in

itself will assure zero concentrations at the reaction plane. Thus, in a β � 1

case we can expect better agreement between the simulated and analytically

approximated curves, as it is also shown in Figure 4(b) and (c).

The assumption that β � 1 also has implications on the analytical model,

and this assumption is a step forward to obtain closed-form expressions for the

concentration profiles and the current density. First, by using the substitution

DOH− = βDH+ in Equation (23.e) and then taking the β → ∞ limit of the

right-hand side, we arrive to the following expression containing λ:

1 +
32/3FB1/3ω1/2c∞H+D

2/3

H+

j2ν1/6 exp
(
Bλ3ω3/2

3DH+ν1/2

)
Γ1/3

(
Bλ3ω3/2

3DH+ν1/2

) = 0, (24)

where Γs(x) denotes the (upper) incomplete gamma function defined as

Γs(x) =

∞∫
x

us−1 exp(−u) du. (25)

Equation (24) is still a transcendental equation, solving it by means of an ana-

lytical approximation is however possible. First we note that Equation (24) con-

tains the functions exp(x) and Γ1/3(x) with the same argument x = Bλ3ω3/2

3DH−ν1/2 ,

and that for the system under study (cf. to the results of digital simulation),

x � 1. Thus, by using the asymptotic approximation44 that exp(x)Γs(x) ≈

xs−1 in Equation (24), we arrive to the following approximative closed-form
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expression defining λ:

λ = 4

√
ν

ω3

√
−j2

BFc∞H+

. (26)

As shown in Figure 4(b) and (c), H+ concentration profiles calculated from

a λ value defined by Equation (26) agree well with profiles created by digital

simulations assuming that β � 1. Note that the analytical model yields an OH−

concentration of zero for the 0 ≤ z ≤ λ range where the OH− concentration

determined by digital simulation is also small. Accordingly, at the distance λ

the H+ concentration starts to rise from a value of 0, and this is consistent with

the behaviour of the H+ profile obtained by simulation.

In Figure 4(c), where the electrode potential (and thus j2) is not very neg-

ative, the value of λ is negligibly small, and the current density, as calculated

from the near-surface gradient of the H+ profile, is almost exactly identical to

the limiting current density j`,H+ . As shown in Figure 4(b), at more negative

potentials λ grows larger and the electrode is covered with a seemingly “neu-

tral” solution layer. In this case the current density can be calculated from the

gradient of the H+ profile at the distance λ. This enhanced current density j†

can be given as

j† = −
3c∞H+FDH+ exp

(
− Bλ3ω3/2

3DH+ν1/2

)
λEi2/3

(
− Bλ3ω3/2

3DH+ν1/2

) . (27)

It can be shown that if the applied electrode potential is not very negative,

the value of j† tends to j`,H+ while at very negative potentials j† ≈ j2. Thus

the entire polarization curve can be described as

j = j† −
j2
`,H+

j`,H+ + jcat, H+

, (28)
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which is a closed-form expression of the potential through Equations (4), (5.b),

(20) and (27), when λ is defined as in Equation (26).

The analytical expression of Equation (28) can be used quite efficiently for

the estimation of parameters in non-linear curve fitting, as it is shown in Fig-

ure 5. The parameter values used for the simulation of curves are those listed in

Table 1. In case of certain parameters (such as the T temperature and the ν kine-

matic viscosity), values were assumed and not varied during the iteration. The

equilibrium potentials Eeq
1 and Eeq

2 were determined from the Nernst-equation

Eeq
i = E−	−i − 0.059pH. (29)

Here E−	−1 = −0.225 V vs. Ag|AgCl and E−	−2 = −1.0502 V vs. Ag|AgCl are the

standard potentials corresponding to electrode reactions (1) and (2), respec-

tively. A constant partial pressure of pH2 = p−	− = 1 bar was assumed.

In the non-linear fitting process, the H+ concentration, the diffusion coeffi-

cient of H+ and the reaction rate parameters (k1, α1, k2 and α2) were varied.

The optimized concentrations are not far from those approximated from the

pH and the diffusion coefficient of H+ matches its commonly accepted litera-

ture value30. The determined kinetic parameters are in alignment with those

reported earlier for H+ reduction on Ni electrodes35.

5 Discussion

In the previous section we devised two models (one based on digital simulation,

another on analytical approximation) for the description of hydrogen evolution
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in solutions of mildly acidic pH values where both H+ reduction and the reduc-

tion of water molecules play a significant role in determining the current.

Based on the analytical model it became possible to determine kinetic and

transport parameters of the hydrogen evolution process by means of non-linear

curve fitting (Figure 5). The determined parameters (Table 1), when used in

the simulation-based model, also yielded polarization curves that agree well

with measured data (Figure 3). It is very interesting to note, however, that

both models seem to “work well” (i.e., comply to measurements) only when the

apparent diffusion coefficient of OH− is assumed to be very large. This property

of the models deserves further explanation.

First of all we have to emphasize that DOH− in our interpretation, when

used in Fick’s equation of transport is indeed an apparent diffusion coefficient

and thus special care must be taken when we compare it to literature values. In

literature DOH− is traditionally determined by small-signal perturbations in a

near-equilibrium system, e.g., by ac conductivity measurements in an alkaline

solution. Implicitly utilizing the fluctuation-dissipation theorem, the aim of such

experiments is to give a good measure of the diffusion coefficient as it appears,

for example, in the theory of random walk. DOH− , when determined from

these experiments is reasonably small (approximately one-half of the diffusion

coefficient of H+ ions,45) but it is, again, characteristic to a near-equilibrium

system.

The case studied in this paper is very different, and it is not even close

to equilibrium. In our case OH− ions created at the electrode surface by the
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reduction of H2O are separated from the acidic bulk only by a very thin neutral

solution layer, having a thickness not bigger than a few tens of micrometers.

Within this scheme one can assume that the driving force of transport is very

big, and that the increased diffusivity of OH− can be explained by what we call a

“directed Grotthuss mechanism”. The Grotthuss mechanism—even in case when

small-signal perturbations are applied to a system— is known to be responsible

for the enhanced diffusivity of OH− compared to other ions of similar size46. We

believe, however, that this mechanism can account for an even faster transport

between the close-to-neutral electrode surface and an acidic solution region not

far away from it; then, as illustrated by Figure 6, instead of a displacement of

OH− ions a shuttling of chemical bonds would be responsible for the very large

value of DOH− . A similar effect was already reported for the interdiffusion of

acids and bases47 and, more recently, in theoretical studies dealing with OH−

diffusion in nanoconfined spaces48.

6 Conclusion

In this paper we studied hydrogen evolution as it occurs in unbuffered, mildly

acidic aqueous electrolyte solutions on a Ni RDE. We demonstrated that the

cathodic polarization curves measured in these solutions can be modelled by

assuming two irreversible reactions, the reduction of H+ and that of water

molecules.

By the means of finite-element digital simulations we showed that a strong
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coupling (due to the recombination of H+ and OH− to water molecules) exists

between the two processes. We also developed an analytical model that could

well describe polarization curves at various values of pH and rotation rates and

that can also serve as a good basis for more detailed studies of the mechanism,

e.g., by means of impedance spectroscopy.

The key indication of both models is that hydroxide ions can have an infinite

diffusion rate in the proximity of the electrode surface, a feature we explained

by assuming a directed Grotthuss-like shuttling mechanism of transport.
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Figure 1: Stationary polarization curves measured on a Ni RDE immersed into
solutions of different pH. Dots represent measured values, curves were created
by spline interpolation. Black curves and dots are corrected against uncom-
pensated IR drop; grey curves and dots show raw measurement data. Resis-
tance values used for the IR correction are shown in the figure. Rotation rate:
f = 1225 min−1.

32



Figure 2: Stationary polarization curves measured at pH = 2.0 at different
rotation rates f . Dots represent measured values, curves were created by spline
interpolation. Dotted grey lines show limiting current levels at the different
rotation rates, calculated from Equation (4) using the parameter values listed
in Table 1.
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Figure 3: Results of digital simulation. Rotation rate: 900 min−1, pH = 2.0
The polarization curves in (a) and (c) were calculated by summing the par-
tial currents determined from the concentration gradients of H+ and OH−,
as described by Equations (18.a)–(18.b). The two partial current densities,
the catalytic (Equation (20)) and limiting (Equation (4)) current densities of
H+ reduction, as well as the current density yielded by the reduction of water
molecules (Equation (5.b)) are also plotted, see the legend. Measured data are
shown for comparison. In (b, d) stationary pH profiles are plotted for different
values of the electrode potential (some are marked on the graph). The results
shown in (a, b) were obtained by using a common literature value30 of the
β = DOH−/DH+ ratio of 0.5 while the results (c, d) were generated by using a
much higher β value of 2 · 104. Other parameter values are listed in Table 1.
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Table 1: Parameter values used in calculations at different levels of pH. Param-
eters marked with an asterisk are fixed; the rest of the values were determined
by non-linear curve fitting (see Figure 5.

Symbol Definition Value at Unit
pH = 2.0 pH = 2.5

c∞H+ bulk concentration of H+

ions
15.378 2.017 mmol dm−3

DH+ diffusion coefficient of H+

ions
9.171 9.804 10−5 cm2 s−1

Eeq
1 equilibrium potential, Re-

action (1)*
−0.341 −0.370 V

k1 reaction rate coefficient,
Reaction (1)

2.788 1.633 10−7 cm s−1

α1 charge transfer coeffi-
cient, Reaction (1)

0.550 0.568 —

Eeq
2 equilibrium potential, Re-

action (2)*
−1.169 −1.198 V

k2 reaction rate coefficient,
Reaction (2)

8.440 0.625 10−12 mol s−1 cm−2

α2 charge transfer coeffi-
cient, Reaction (2)

0.598 0.861 —

ν kinematic viscosity* » 0.01 cm2 s−1

T temperature* » 298.15 K
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Figure 4: Concentration profiles determined by simulation (described in Sec-
tion 4.1) and by the analytical approach of Section 4.2. The electrode potential
and the ratio of diffusion coefficients β have different values in (a)–(c) as shown;
pH = 2.0, f = 900 min−1. Further parameters are listed in Table 1.
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Figure 5: Stationary polarization curves measured on a Ni RDE immersed into
a pH = 2.0 (a) and a pH = 2.5 (b) solution. The applied rotation rate f is varied
as shown. Dots represent measured values, curves were created by non-linear
curve fitting using the Levenberg–Marquardt method39 and Equation (28). The
parameter values given in Table 1 were determined by this fitting.
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Figure 6: Scheme of a “directed Grotthuss mechanism” explaining the establish-
ment of a neutral near-surface solution layer when water reduction takes place
at the interface. It seems plausible to assume an extremely fast bond hopping
mechanism between OH− ions, created at the interface, and the large concen-
tration of H+ ions in the acidic bulk. This mechanism can account for the large
(practically infinite) apparent diffusion coefficient of OH− ions.
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