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Abstract—Code generation is widely used to make 

software development more efficient and less prone to 

human errors. A significant use case of code generation is 

processing of Domain-Specific Languages (DSLs) and 

Domain-Specific Models (DSMs). Sometimes, it is 

desired to generate semantically equivalent or similar 

functionality to different languages to better support 

multiple platforms and achieve better reuse in the tooling. 

For example, it is convenient if a single tool supports 

code generating from a DSM to either Java or C#. There 

has been relevant research on using modeling and model 

transformations for code generation to multiple platforms. 

The Model-Driven Architecture (MDA) inherently 

supports multi-platform code generation based on models. 

Nevertheless, the MDA standard is a high-level general 

framework that includes standards, notions and principles 

but does not specify more concrete methods or workflows 

about their efficient adoption. Our research focuses on the 

efficient and practically usable application of MDA 

principles to generate multi-platform code. This paper 

reports on our results on multi-platform code generation 

and the difficulties that we are about to addressed in 

future research. The approach and the challenges 

presented in the paper are useful for tool developers, such 

as developers of DSLs, who generates code for several 

platforms. 

 

Index Terms—Domain-Specific Modeling, Model 

Transformation, Code Generation. 

 

I.  INTRODUCTION 

Code generation is a powerful instrument for making 

software development easier and faster. It has already 

gained wider adoption in software engineering. Multi-

platform code generation is especially demanded because 

it promotes reuse of models and tools, keeping the 

development cost and effort low. The Model-Driven 

Architecture (MDA) [1] maintained by the Object 

Management Group (OMG) inherently supports multi-

platform code generation. Despite the existence of current 

research and advances in MDA, it still has not gained 

wider adoption [2]. Reasons include that MDA is 

idealistically based on a forward engineering approach, 

making it inflexible. It also requires a deep understanding 

of the huge amount of related standards or a tool that 

makes the use of these standards easier. Furthermore, 

parts of these standards are still not clearly defined, such 

as the semantics of UML, which is still a subject of 

research under the term Executable UML [3]. Authors of 

this paper also consider MDA a high-level general 

framework rather than a concrete architecture or a 

method. MDA categorizes models as Platform-

Independent Models (PIMs) or Platform-Specific Models 

(PSMs) and aims to produce PSMs and then executable 

code from the PIMs provided by developers through a 

series of model transformations. There is a model 

transformation chain for each target platform that 

produces the corresponding PSM. However, nearly any 

system that generates code from models may fit into this 

schema. This is why we consider that MDA is an overly 

general high-level framework that does not guarantee the 

success of the resulting system in itself. Apart from this, 

MDA is a general-purpose technology, it aspires 

modeling a whole system. 

As opposed to MDA, Domain-Specific Modeling [4] 

cannot be used to describe general problems but it aims to 

efficiently solve problems that belong to a specific 

problem domain. Because of the domain-specific nature, 

Domain-Specific Models (DSMs) work with the notions 

of the problem domain. These are more concrete notions 

that are more meaningful for domain experts than the 

notions used in general-purpose modeling. Therefore, 

DSMs are also more concise and are better understood 

and contributed to by domain experts, who know the 

domain but are not necessarily skilled in modeling and 

computer programming. The advantages of DSMs are 

further detailed in a large set of books and papers [4][5]. 

To visualize the information contained in a DSM, usually 

a Domain-Specific Language (DSL) is used. A DSL may 

be a textual DSL, which resembles a General-Purpose 

Language (GPL) but has a syntax that is more suitable for 

expressing the domain; or the DSL may be a visual DSL 

that represents the model with an expressive graphical 

format. The DSM may be interpreted and processed 

directly as well. However, another common approach is 

to generate code from the DSM in a GPL. As opposed to 

general-purpose approaches such as MDA, the code 

generated from a DSM is not a whole system but a well-

defined part of a system that is easy to express with a 
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DSL, such as business logic from a specific domain. This 

code is later integrated with manually written components 

or with code generated from DSMs covering other 

problem domains that occur in the system. These 

components together make up the whole software. 

The goal of our research is to find an efficient 

approach for multi-platform code generation that fits into 

the MDA point of view but is more concretely described 

to be reusable and does not have the other difficulties of 

the general MDA approach. We are about to provide a 

pattern how to do effectively multi-platform code 

generation. More specifically, we focus on the practical 

modeling of program logic that can easily be transformed 

to the concrete syntax. In a full MDA approach, this is the 

end of the transformation chain that produces executable 

code in GPLs. We have developed a metamodel that can 

express general imperative strongly and statically typed 

object-oriented program code. This metamodel is based 

on the fact that the semantics of these languages are 

similar. For example, they deal with class definitions, 

member variables, method definitions, variable 

assignments, method calls, and further components that 

can be handled in a formal way. We use this metamodel 

to capture the generated code in a way that is as free of 

language-dependent elements as possible. Once the initial 

model is transformed to an instance of this metamodel, it 

can be easily used for code generation. The way the 

initial model is created and transformed is beyond the 

scope of this paper. In this paper, we explain our 

approach that we successfully applied with DSM. It does 

not aspire to generate complete systems but simpler 

modules that are later integrated into a larger system. The 

approach does not require a deep understanding of MDA 

and can be applied with arbitrary modeling and model 

transformation tools, without having to comply with the 

standards suggested by MDA. We believe that our 

approach explained in the paper supports tool developers 

in developing software that leverages multi-platform code 

generation. 

The rest of the paper is organized as follows. Section 2 

lists related work. Section 3 describes an application of 

DSM, where multi-platform code generation is required. 

This example helps understanding better the motivation 

behind multi-platform code generation and the context in 

which it may be used. Section 4 presents the approach 

used for multi-platform code generation in the tool 

described in the previous section. Section 5 explains the 

challenges and difficulties that were met in the 

implementation of the tool. We describe three major 

difficulties with examples and we provide solutions for 

them that we applied in our implementation. Moreover, 

we list further potential solutions that are subject of future 

research. Section 6 concludes the paper and summarizes 

the results.

II.  RELATED WORK 

Related work encompasses mainly two groups of 

papers. The first set is related to MDA and its general 

approach. These pieces of work contribute to the rich set 

of standards and principles, such as Executable UML [3]. 

Nevertheless, as explained in the introduction, these 

approaches are too general and warrant further 

elaboration for the guarantee of success. The present 

paper aims to provide a more concrete approach that is 

easily applicable. 

The second set includes other concrete languages and 

tools that try to increase the efficiency of modeling and 

code generation. ThingML [6] is a tool and a modeling 

language suggested in place of UML. Interaction Flow 

Modeling Language (IFML) [7] is another modeling 

language that aspires making modeling and multi-

platform code generation more efficient, especially 

regarding user interfaces and flow of interaction. The 

approach explained in the paper is different from these in 

that it does not focus on how the initial model is created 

but on the  

WOLD [8] is a wizard for generating forms for data 

manipulation in databases for different platforms. The 

WL++ [9] tool aims to generate multi-platform mobile 

clients to RESTful backends. The approach is based on 

generating code that dispatches platform-dependent tasks 

to a middleware, PhoneGap, that has a uniform API under 

several mobile platforms. These tools are different from 

our approach because they concentrate on specific 

domains and they generate related code. The method 

presented in the paper is different because it concentrates 

on the representation of the code that will be generated. 

Provided that a model transformation is implemented that 

transforms the input model into this representation, our 

approach can be used for any domain. 

An earlier work [10] of the authors of the paper is also 

related because it describes an earlier version of the 

ProtoKit tool described in Section 3. 

 

III.  A MOTIVATING EXAMPLE ON MULTI-PLATFORM  

CODE GENERATION 

Nowadays, there are several high-level communication 

standards that allow for network communication between 

two pieces of software. One group of these technologies 

consists of object-oriented remoting standards, like 

Common Object Request Broker Architecture (CORBA) 

[11] or Java’s Remote Method Invocation (RMI) [12]. 

The other kind of commonly used technologies includes 

variants of Web Services, namely, the Simple Object 

Access Protocol (SOAP) [13] and RESTful Web Services 

[14]. Despite the availability of these mechanisms, still 

numerous software vendors decide to develop a 

lightweight binary application-level protocol that has a 

lower network footprint and does not require depending 

on resource-intensive libraries and application servers. 

We have not found a domain-specific language with code 

generator that allowed for the modeling of message 

structure. Existing tools focus more on communication 

states and interactions [15][16]. Nevertheless, in cloud-

enabled applications, the message structure is more 

relevant. First, these systems do not maintain a permanent 

connection and their messaging is often limited to 

notifications and request-response messages. Secondly, 
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lower level protocols hide the establishment and the 

termination of connections. Because of these factors, the 

development of cloud messaging primarily consists of 

determining the message structure and developing the 

supporting code. Using binary messaging is more 

challenging to implement than relying on commonly 

supported formats, such as XML or JSON, that have 

extensive support in third-party libraries. However, this is 

the most concise form and thus it generates less network 

footprint and it is faster to parse. The messaging logic is 

required for both the client application and the cloud 

server. If they do not run on the same platform, the 

supporting code must be developed twice. A DSL and 

code generation techniques can remedy these difficulties. 

A code generator can be constructed that uses the model 

of the message structure and generates the supporting 

classes and the boilerplate code, even for multiple 

platforms, if necessary. Such a tool facilitates 

development and can ensure that the implementations in 

different languages are consistent. Furthermore, the 

supporting classes are not that trivial to develop as we 

would initially imagine. Binary messages often have 

fields that are not so easy to map to member variables of 

classes. For example, an integer value may be of diverse 

lengths, while in GPLs, there are only a fixed number of 

different integer types. Sometimes, the length of these 

types is unambiguously defined, such as in Java, 

sometimes it is platform-dependent, such as in C. This 

problem must be addressed when protocol messages are 

mapped to supporting classes in the code generator. 

Another similar difficulty is using bitfields. To spare with 

bandwidth, it is common to split one or several bytes into 

fields of less than eight bits. Such bitfields should 

practically be accessed with getter/setter methods in the 

generated classes as if they were regular member 

variables. At the same time, they require a suitable 

representation that can easily be serialized and 

deserialized according to the protocol specification. 

In the first version of our ProtoKit tool, we 

implemented generating Java classes, whereas, as we 

described in our motivations, the concept supports well 

generating code in several languages. We have realized 

that it is quite prone to errors to generate the same thing 

in several languages with the kind of templates we had in 

the first version because it is difficult to maintain the 

templates of different languages in sync. The different 

versions of the generated code can easily become 

inconsistent, leading to inconsistent behavior in the 

application, where the generated code is used. Our new 

approach for multi-platform code generation that is 

explained in the next section, successfully solved this 

problem in the second version of ProtoKit. 

 

IV.  THE SUGGESTED CODE GENERATION APPROACH 

The second version of the ProtoKit tool is continuously 

evolving. At the moment, we support generating C++ and 

Java classes. In this version, we used two separate models. 

The semantic model describes the message structure as 

defined in the ProtoKit definition language. This is then 

t r a n s f o r me d  w i t h  a  Mo d e l - t o - M o d e l  ( M2 M ) 

transformation into another model, which will be referred 

to as output model. This is an instance of our metamodel 

that we designed for multiplatform code generation. This 

model describes elements of general-purpose imperative 

strongly and statically typed object-oriented languages, 

such as class, member, method, parameters, return value, 

assignments, statements, and further elements. Despite 

programming languages being semantically different in 

smaller details, languages from this kind share a large 

amount of commonalities. This makes our approach 

transparent, efficient and reusable. Since the output 

model semantically resembles the generated code, it is 

quite trivial to generate code from it and the approach 

makes it possible to use a single transformation chain 

until a very late phase of code generation. In the case of 

ProtoKit, we only used a single M2M transformation. 

Although the outcome of this transformation is still a 

model, the resulting model can be considered as a 

program that has semantics but not materialized in the 

concrete syntax of Java or C++. This means that this 

single M2M transformation is the main place where code 

generation takes places. Therefore, extensions and 

bugfixes in the generated code almost always need to be 

applied only once to the M2M transformation, and the  

 

 

Fig.1. The architecture of ProtoKit 2. 



14 Multi-Platform Code Generation Supported by Domain-Specific Modeling  

Copyright © 2017 MECS                                          I.J. Information Technology and Computer Science, 2017, 12, 11-18 

effects of these changes are automatically propagated to 

the generated classes in both languages. Through this 

reuse of transformation logic, our approach highly 

supports multi-platform code generation. The architecture 

of ProtoKit 2 is depicted in Figure 1. 

The metamodel we used for the output model is too 

large to be represented as a whole in a diagram, therefore 

we include a subset of it. Basically, it is an object-

oriented representation of object-oriented code. For 

example, it defines packages that are composed of classes. 

Classes have names and may aggregate member variables 

and methods. Methods may have return values and a list 

of parameters and body statements. Statements may be 

assignments, conditional branches, loops etc. Figure 2 

depicts a subset of the metamodel. 

 

 

Fig.2. A subset of the object-oriented code metamodel. 

MDA is often criticized as being an idealistic forward 

engineering approach. Our method is also a forward 

engineering approach because changes in the code will 

not be reflected in the semantic model. Nevertheless, we 

believe that Domain-Specific Modeling complemented 

with manually written code is more efficient than 

general-purpose modeling. Therefore, our research and 

the method described herein, address Domain-Specific 

Modeling. In the common workflow of Domain-Specific 

Modeling, self-contained modules are generated that 

address specific domains of the whole system. These 

modules can then be easily integrated with manually 

written code. Because of this, generated code is 

practically never modified manually but by updating the 

DSM and regenerating the code. 

The approach was successfully applied and greatly 

simplified multi-platform code generation in ProtoKit 2. 

However, it was not possible to represent the code 

generated for different target languages in a completely 

universal way. Section 5 explains the difficulties and the 

solutions we applied. 

 

V.  CHALLENGES 

In this section, the challenges are explained that were 

faced during the application of our approach. We have 

identified three main difficulties that are described in the 

following subsections. For each challenge, we describe 

the nature of the problem and the possible solutions we 

considered.
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A.  Supporting Class Libraries 

Class libraries are required for basic operations, such 

as reading a file or printing to the screen. Even simple 

programs require features from class libraries. However, 

supporting class libraries in our model-driven approach is 

challenging because of two reasons. The first reason is 

that the class libraries of different languages and 

platforms are different, so the universal nature of the 

model cannot be maintained. The second reason is that 

class library code is ordinary code like the program being 

modeled. They are instances of the same metamodel and 

class library model should be implicitly part of instance 

models despite that it is not a base of code generation. 

This relation is depicted in Figure 3. 

 

 

Fig.3. The relations of the program model and the class library. 

Class libraries of widely used programming languages 

are extensive and complex and it is impractical to 

manually build a model about them. Nor is it 

considerably easier to build the model of a class library 

with a tool because it would require a complex parser to 

process the source code of the class library. Furthermore, 

not all class libraries are necessarily open sourced. We 

have considered the following solutions for this challenge: 

 

(1) Introducing conditional elements and custom code 

snippets in the model: it is possible to add custom code 

snippets in the model to allow the inclusion of code into 

the output that would be impractical to model otherwise. 

If this is combined with the support of conditional 

elements, such as classes, methods or statements, that will 

make it possible to embed language-specific arbitrary 

pieces in the model. This approach is suboptimal since 

the model loses its universality but it is easy and fast to 

implement. 

(2) Building model from class libraries: it requires 

complex tooling but it is possible to build a model from 

class libraries and reference classes from the library in the 

model of the program to generate. However, class 

libraries of different languages differ. We expect to solve 

this problem by introducing an additional transformation 

between the common model and the M2T transformation 

that generates code. This transformation step would add 

language-specific parts to the general model. 

Nevertheless, this mechanism requires further research. 

(3) Integrating class library functionality in the 

language-independent metamodel: by analyzing several 

different programming languages, it is found that the 

dividing line between language and library is blurry. For 

example, in Basic, printing output to the screen is done 

by the PRINT statement, which is integral part of the 

language, whereas other languages tend to provide the 

same functionality in their standard libraries. Another 

example is how some compound data types are 

implemented. In PHP, arrays are maps that have integral 

keys and maps are part of the language not the class 

library. In turn, other languages usually support only 

conventional arrays with numeric indexes, and maps are 

supported by the standard library. Similarly, in the 

metamodel of object-oriented programs that we use to 

model the generated code, we are able to model some 

features as language elements despite that they are 

usually implemented in the class library. When the actual 

code generation happens in the M2T transformation, 

these can be mapped to class library calls. This approach 

is convenient for simple functionality, such as lists, sets, 

maps and other compound types or simple functionality 

from the class library, such as data conversion. 

(4) Designing a universal abstract class library: we 

have also contemplated the possibility of designing a 

fictional class library for our object-oriented metamodel 

that could be used in models. This class library is 

unimplemented and does not have a concrete syntax, it 

only exists as a concept. By using the API of the class 

library in the models, we can model the behavior of 

programs. At a later stage, we define the mappings from 

this conceptual API to concrete APIs of target languages. 

This indirection allows us generating code to libraries of 

different platforms without requiring them to have a 

common interface. Like the second approach, this also 

requires an extra step in the transformation chain. This 

extra transformation and the need for mapping API calls 

to concrete libraries require more development effort in 

the tool but this mechanism can preserve the universal 

nature of the model. 
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In our prototype, we added some compound types, 

such as list, in the metamodel and in other cases, we 

added language-specific custom snippets. In the ProtoKit 

tool, these two were sufficient but we plan to lead further 

research on supporting class libraries either by parsing 

the class libraries of the languages or by creating an 

abstract class library. 

B.  Semantic Differences in Target Languages 

Object-oriented GPLs share a large subset of common 

notions, such as class, static variable, instance method, 

constructor etc. Nevertheless, more thorough analysis 

reveals that there are features that only apply to a 

particular GPL or a set of GPLs. For example, C++ 

supports multiple inheritance and operator overloading, 

whereas Java supports neither. In turn, Java supports 

nested classes, default methods in interfaces and enums 

with methods. Another fundamental difference in the two 

languages is the semantics of how parameters are passed 

to methods. C++ determines the semantics by the 

parameter list in the definition of the method, whereas 

Java always passes variables of primitive type by value 

and objects by reference. We have considered the 

following solutions for this challenge: 

 

(1) Introducing conditional elements in the model: it is 

possible to add qualifiers to the model and mark certain 

elements, such as methods, operators, statements 

language-specific. This helps dealing with some of the 

semantic differences, for example, we can define an 

operator and mark it as C++-specific. In turn, it is 

possible to add an equivalent method as Java-specific. 

Statements involving the operator or the method must 

also be added twice, marked as C++ and Java-specific, 

respectively. On the other hand, there are some semantic 

differences that cannot be efficiently solved with the 

mechanism of conditional model elements, such as 

default methods. 

(2) Using a common subset of the features of target 

languages: the semantic differences could be avoided if 

we only used a common subset of features that have the 

same semantics in all of the target languages. For some 

scenarios, this approach indeed works. For example, in 

Java, we can perfectly live without nested classes. 

However, some of the language-specific features 

contribute to the usability and maintainability of the code. 

If the generated code does not leverage these features, for 

example operator overloading in C++ or Java enum 

methods, programmers will not feel comfortably when 

using the generated code. The generated code will not be 

perceived as well-designed code. Furthermore, some 

fundamental differences, such as the one regarding 

parameter passing cannot be avoided because methods 

and parameters are essential parts of any software 

program. 

(3) Allow the union of all of the features of the target 

languages and define a mapping to supported features: 

the model of the program can support any features and 

this is later mapped to supported features. For example, in 

Java, nested classes can access members of the enclosing 

class. Nested classes can be mapped to independent 

classes in C++ and the privileged access can be ensured 

with friend methods. This mechanism works well, if a 

convenient mapping is found for all of the supported 

features. Nevertheless, some specific features are 

challenging. For example, passing an object by value is 

not possible in Java. If that is required, we must either 

pass a list of primitive variables from the object state or a 

clone of the original object.  

 

In our reference implementation, we have used the first 

two mechanisms so far. Conditional elements are 

supported and some artifacts are only generated for only 

one of the target languages, whereas same statements 

have conditional equivalents for both. Furthermore, we 

limited the supported elements excluding the features that 

were not needed in our ProtoKit tool. We have not yet 

defined any language-specific mappings of features but 

we aim to do further research on this and improve our 

tool with this mechanism. 

C.  Conventional Differences in Target Languages 

There are some differences between languages that are 

not strictly related to semantics but to conventions. For 

example, classes that define a natural order usually 

implement the Comparable interface and the compareTo() 

method in Java. It is technically possible to provide a 

compareTo() method in other languages, such as C++, the 

use of this method is a Java convention and is not natural 

in other languages. In C++, overloading the relational 

operators is the preferred way to define natural order. We 

have considered the following solutions for this challenge: 

 

(1) Introducing conditional elements in the model: it is 

possible to add qualifiers to the model and mark certain 

elements, such as methods, operators, statements 

language-specific. This helps supporting conventions by 

marking the conventional additions as specific to a 

particular target language. This approach very well 

supports conventions. Nevertheless, it leads to 

duplication of elements that actually belong to the same 

function. For example, support of natural order would be 

implemented twice: first in the Java-specific compareTo() 

method, secondly in the C++-specific overridden 

operators. 

(2) Supporting higher-level concepts in the metamodel: 

another idea for dealing with this difficulty is supporting 

higher-level concepts in the metamodel, such as 

semantical equality, natural order, cloning etc. These can 

determine how these features should work and these can 

then be mapped to concrete code in different target 

languages. The advantage of this approach is that it 

allows for handling these features at a single place. The 

disadvantage is that it requires an extra step in the 

transformation chain before the M2T transformation, 

where these concepts are mapped to concrete language 

constructs. 

 

In our prototype, we have used conditional elements 

because they helped addressing several issues explained 
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earlier. However, using these conditional elements 

deteriorate the readability of the model transformation 

and the model, so we plan to add support for higher-level 

concepts in future research. 

 

VI.  CONCLUSION 

Despite these limitations, the approach still made our 

ProtoKit tool more flexible, better readable and less error-

prone because of the following reasons: 

 

(1) A large amount of code is still unconditional and 

thus generated universally from the same subset of the 

model. 

(2) The templates are simpler and easier to read 

because of the general object-oriented model. 

(3) Although there are conditional parts in the M2M 

transformation, their number is low and corresponding 

conditional parts are located near in the code. This makes 

it easy to understand the M2M transformation. 

 

In the ProtoKit tool, our novel method has proven to be 

useful in achieving better flexibility, easier 

maintainability and more robust software that supports 

multi-platform code generation. Future research will 

explore more in depth the techniques that are described in 

Section 5 to aid the limitations. We believe that our 

method will contribute to the success of adopting model-

driven approaches and generating code to multiple 

platforms. The results explained in the paper will be of 

great use for tool developers. 
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