
I.J. Information Technology and Computer Science, 2017, 12, 11-18
Published Online December 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2017.12.02

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 12, 11-18

Multi-Platform Code Generation Supported by

Domain-Specific Modeling

Gábor Kövesdán and László Lengyel
Department of Automation and Applied Informatics, Budapest University of Technology

and Economics, Budapest, Hungary

E-mail: {gabor.kovesdan, lengyel}@aut.bme.hu

Received: 01 August 2017; Accepted: 26 August 2017; Published: 08 December 2017

Abstract—Code generation is widely used to make

software development more efficient and less prone to

human errors. A significant use case of code generation is

processing of Domain-Specific Languages (DSLs) and

Domain-Specific Models (DSMs). Sometimes, it is

desired to generate semantically equivalent or similar

functionality to different languages to better support

multiple platforms and achieve better reuse in the tooling.

For example, it is convenient if a single tool supports

code generating from a DSM to either Java or C#. There

has been relevant research on using modeling and model

transformations for code generation to multiple platforms.

The Model-Driven Architecture (MDA) inherently

supports multi-platform code generation based on models.

Nevertheless, the MDA standard is a high-level general

framework that includes standards, notions and principles

but does not specify more concrete methods or workflows

about their efficient adoption. Our research focuses on the

efficient and practically usable application of MDA

principles to generate multi-platform code. This paper

reports on our results on multi-platform code generation

and the difficulties that we are about to addressed in

future research. The approach and the challenges

presented in the paper are useful for tool developers, such

as developers of DSLs, who generates code for several

platforms.

Index Terms—Domain-Specific Modeling, Model

Transformation, Code Generation.

I. INTRODUCTION

Code generation is a powerful instrument for making

software development easier and faster. It has already

gained wider adoption in software engineering. Multi-

platform code generation is especially demanded because

it promotes reuse of models and tools, keeping the

development cost and effort low. The Model-Driven

Architecture (MDA) [1] maintained by the Object

Management Group (OMG) inherently supports multi-

platform code generation. Despite the existence of current

research and advances in MDA, it still has not gained

wider adoption [2]. Reasons include that MDA is

idealistically based on a forward engineering approach,

making it inflexible. It also requires a deep understanding

of the huge amount of related standards or a tool that

makes the use of these standards easier. Furthermore,

parts of these standards are still not clearly defined, such

as the semantics of UML, which is still a subject of

research under the term Executable UML [3]. Authors of

this paper also consider MDA a high-level general

framework rather than a concrete architecture or a

method. MDA categorizes models as Platform-

Independent Models (PIMs) or Platform-Specific Models

(PSMs) and aims to produce PSMs and then executable

code from the PIMs provided by developers through a

series of model transformations. There is a model

transformation chain for each target platform that

produces the corresponding PSM. However, nearly any

system that generates code from models may fit into this

schema. This is why we consider that MDA is an overly

general high-level framework that does not guarantee the

success of the resulting system in itself. Apart from this,

MDA is a general-purpose technology, it aspires

modeling a whole system.

As opposed to MDA, Domain-Specific Modeling [4]

cannot be used to describe general problems but it aims to

efficiently solve problems that belong to a specific

problem domain. Because of the domain-specific nature,

Domain-Specific Models (DSMs) work with the notions

of the problem domain. These are more concrete notions

that are more meaningful for domain experts than the

notions used in general-purpose modeling. Therefore,

DSMs are also more concise and are better understood

and contributed to by domain experts, who know the

domain but are not necessarily skilled in modeling and

computer programming. The advantages of DSMs are

further detailed in a large set of books and papers [4][5].

To visualize the information contained in a DSM, usually

a Domain-Specific Language (DSL) is used. A DSL may

be a textual DSL, which resembles a General-Purpose

Language (GPL) but has a syntax that is more suitable for

expressing the domain; or the DSL may be a visual DSL

that represents the model with an expressive graphical

format. The DSM may be interpreted and processed

directly as well. However, another common approach is

to generate code from the DSM in a GPL. As opposed to

general-purpose approaches such as MDA, the code

generated from a DSM is not a whole system but a well-

defined part of a system that is easy to express with a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/163099188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

12 Multi-Platform Code Generation Supported by Domain-Specific Modeling

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 12, 11-18

DSL, such as business logic from a specific domain. This

code is later integrated with manually written components

or with code generated from DSMs covering other

problem domains that occur in the system. These

components together make up the whole software.

The goal of our research is to find an efficient

approach for multi-platform code generation that fits into

the MDA point of view but is more concretely described

to be reusable and does not have the other difficulties of

the general MDA approach. We are about to provide a

pattern how to do effectively multi-platform code

generation. More specifically, we focus on the practical

modeling of program logic that can easily be transformed

to the concrete syntax. In a full MDA approach, this is the

end of the transformation chain that produces executable

code in GPLs. We have developed a metamodel that can

express general imperative strongly and statically typed

object-oriented program code. This metamodel is based

on the fact that the semantics of these languages are

similar. For example, they deal with class definitions,

member variables, method definitions, variable

assignments, method calls, and further components that

can be handled in a formal way. We use this metamodel

to capture the generated code in a way that is as free of

language-dependent elements as possible. Once the initial

model is transformed to an instance of this metamodel, it

can be easily used for code generation. The way the

initial model is created and transformed is beyond the

scope of this paper. In this paper, we explain our

approach that we successfully applied with DSM. It does

not aspire to generate complete systems but simpler

modules that are later integrated into a larger system. The

approach does not require a deep understanding of MDA

and can be applied with arbitrary modeling and model

transformation tools, without having to comply with the

standards suggested by MDA. We believe that our

approach explained in the paper supports tool developers

in developing software that leverages multi-platform code

generation.

The rest of the paper is organized as follows. Section 2

lists related work. Section 3 describes an application of

DSM, where multi-platform code generation is required.

This example helps understanding better the motivation

behind multi-platform code generation and the context in

which it may be used. Section 4 presents the approach

used for multi-platform code generation in the tool

described in the previous section. Section 5 explains the

challenges and difficulties that were met in the

implementation of the tool. We describe three major

difficulties with examples and we provide solutions for

them that we applied in our implementation. Moreover,

we list further potential solutions that are subject of future

research. Section 6 concludes the paper and summarizes

the results.

II. RELATED WORK

Related work encompasses mainly two groups of

papers. The first set is related to MDA and its general

approach. These pieces of work contribute to the rich set

of standards and principles, such as Executable UML [3].

Nevertheless, as explained in the introduction, these

approaches are too general and warrant further

elaboration for the guarantee of success. The present

paper aims to provide a more concrete approach that is

easily applicable.

The second set includes other concrete languages and

tools that try to increase the efficiency of modeling and

code generation. ThingML [6] is a tool and a modeling

language suggested in place of UML. Interaction Flow

Modeling Language (IFML) [7] is another modeling

language that aspires making modeling and multi-

platform code generation more efficient, especially

regarding user interfaces and flow of interaction. The

approach explained in the paper is different from these in

that it does not focus on how the initial model is created

but on the

WOLD [8] is a wizard for generating forms for data

manipulation in databases for different platforms. The

WL++ [9] tool aims to generate multi-platform mobile

clients to RESTful backends. The approach is based on

generating code that dispatches platform-dependent tasks

to a middleware, PhoneGap, that has a uniform API under

several mobile platforms. These tools are different from

our approach because they concentrate on specific

domains and they generate related code. The method

presented in the paper is different because it concentrates

on the representation of the code that will be generated.

Provided that a model transformation is implemented that

transforms the input model into this representation, our

approach can be used for any domain.

An earlier work [10] of the authors of the paper is also

related because it describes an earlier version of the

ProtoKit tool described in Section 3.

III. A MOTIVATING EXAMPLE ON MULTI-PLATFORM

CODE GENERATION

Nowadays, there are several high-level communication

standards that allow for network communication between

two pieces of software. One group of these technologies

consists of object-oriented remoting standards, like

Common Object Request Broker Architecture (CORBA)

[11] or Java’s Remote Method Invocation (RMI) [12].

The other kind of commonly used technologies includes

variants of Web Services, namely, the Simple Object

Access Protocol (SOAP) [13] and RESTful Web Services

[14]. Despite the availability of these mechanisms, still

numerous software vendors decide to develop a

lightweight binary application-level protocol that has a

lower network footprint and does not require depending

on resource-intensive libraries and application servers.

We have not found a domain-specific language with code

generator that allowed for the modeling of message

structure. Existing tools focus more on communication

states and interactions [15][16]. Nevertheless, in cloud-

enabled applications, the message structure is more

relevant. First, these systems do not maintain a permanent

connection and their messaging is often limited to

notifications and request-response messages. Secondly,

 Multi-Platform Code Generation Supported by Domain-Specific Modeling 13

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 12, 11-18

lower level protocols hide the establishment and the

termination of connections. Because of these factors, the

development of cloud messaging primarily consists of

determining the message structure and developing the

supporting code. Using binary messaging is more

challenging to implement than relying on commonly

supported formats, such as XML or JSON, that have

extensive support in third-party libraries. However, this is

the most concise form and thus it generates less network

footprint and it is faster to parse. The messaging logic is

required for both the client application and the cloud

server. If they do not run on the same platform, the

supporting code must be developed twice. A DSL and

code generation techniques can remedy these difficulties.

A code generator can be constructed that uses the model

of the message structure and generates the supporting

classes and the boilerplate code, even for multiple

platforms, if necessary. Such a tool facilitates

development and can ensure that the implementations in

different languages are consistent. Furthermore, the

supporting classes are not that trivial to develop as we

would initially imagine. Binary messages often have

fields that are not so easy to map to member variables of

classes. For example, an integer value may be of diverse

lengths, while in GPLs, there are only a fixed number of

different integer types. Sometimes, the length of these

types is unambiguously defined, such as in Java,

sometimes it is platform-dependent, such as in C. This

problem must be addressed when protocol messages are

mapped to supporting classes in the code generator.

Another similar difficulty is using bitfields. To spare with

bandwidth, it is common to split one or several bytes into

fields of less than eight bits. Such bitfields should

practically be accessed with getter/setter methods in the

generated classes as if they were regular member

variables. At the same time, they require a suitable

representation that can easily be serialized and

deserialized according to the protocol specification.

In the first version of our ProtoKit tool, we

implemented generating Java classes, whereas, as we

described in our motivations, the concept supports well

generating code in several languages. We have realized

that it is quite prone to errors to generate the same thing

in several languages with the kind of templates we had in

the first version because it is difficult to maintain the

templates of different languages in sync. The different

versions of the generated code can easily become

inconsistent, leading to inconsistent behavior in the

application, where the generated code is used. Our new

approach for multi-platform code generation that is

explained in the next section, successfully solved this

problem in the second version of ProtoKit.

IV. THE SUGGESTED CODE GENERATION APPROACH

The second version of the ProtoKit tool is continuously

evolving. At the moment, we support generating C++ and

Java classes. In this version, we used two separate models.

The semantic model describes the message structure as

defined in the ProtoKit definition language. This is then

t r a n s f o r me d w i t h a Mo d e l - t o - M o d e l (M2 M)

transformation into another model, which will be referred

to as output model. This is an instance of our metamodel

that we designed for multiplatform code generation. This

model describes elements of general-purpose imperative

strongly and statically typed object-oriented languages,

such as class, member, method, parameters, return value,

assignments, statements, and further elements. Despite

programming languages being semantically different in

smaller details, languages from this kind share a large

amount of commonalities. This makes our approach

transparent, efficient and reusable. Since the output

model semantically resembles the generated code, it is

quite trivial to generate code from it and the approach

makes it possible to use a single transformation chain

until a very late phase of code generation. In the case of

ProtoKit, we only used a single M2M transformation.

Although the outcome of this transformation is still a

model, the resulting model can be considered as a

program that has semantics but not materialized in the

concrete syntax of Java or C++. This means that this

single M2M transformation is the main place where code

generation takes places. Therefore, extensions and

bugfixes in the generated code almost always need to be

applied only once to the M2M transformation, and the

Fig.1. The architecture of ProtoKit 2.

14 Multi-Platform Code Generation Supported by Domain-Specific Modeling

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 12, 11-18

effects of these changes are automatically propagated to

the generated classes in both languages. Through this

reuse of transformation logic, our approach highly

supports multi-platform code generation. The architecture

of ProtoKit 2 is depicted in Figure 1.

The metamodel we used for the output model is too

large to be represented as a whole in a diagram, therefore

we include a subset of it. Basically, it is an object-

oriented representation of object-oriented code. For

example, it defines packages that are composed of classes.

Classes have names and may aggregate member variables

and methods. Methods may have return values and a list

of parameters and body statements. Statements may be

assignments, conditional branches, loops etc. Figure 2

depicts a subset of the metamodel.

Fig.2. A subset of the object-oriented code metamodel.

MDA is often criticized as being an idealistic forward

engineering approach. Our method is also a forward

engineering approach because changes in the code will

not be reflected in the semantic model. Nevertheless, we

believe that Domain-Specific Modeling complemented

with manually written code is more efficient than

general-purpose modeling. Therefore, our research and

the method described herein, address Domain-Specific

Modeling. In the common workflow of Domain-Specific

Modeling, self-contained modules are generated that

address specific domains of the whole system. These

modules can then be easily integrated with manually

written code. Because of this, generated code is

practically never modified manually but by updating the

DSM and regenerating the code.

The approach was successfully applied and greatly

simplified multi-platform code generation in ProtoKit 2.

However, it was not possible to represent the code

generated for different target languages in a completely

universal way. Section 5 explains the difficulties and the

solutions we applied.

V. CHALLENGES

In this section, the challenges are explained that were

faced during the application of our approach. We have

identified three main difficulties that are described in the

following subsections. For each challenge, we describe

the nature of the problem and the possible solutions we

considered.

 Multi-Platform Code Generation Supported by Domain-Specific Modeling 15

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 12, 11-18

A. Supporting Class Libraries

Class libraries are required for basic operations, such

as reading a file or printing to the screen. Even simple

programs require features from class libraries. However,

supporting class libraries in our model-driven approach is

challenging because of two reasons. The first reason is

that the class libraries of different languages and

platforms are different, so the universal nature of the

model cannot be maintained. The second reason is that

class library code is ordinary code like the program being

modeled. They are instances of the same metamodel and

class library model should be implicitly part of instance

models despite that it is not a base of code generation.

This relation is depicted in Figure 3.

Fig.3. The relations of the program model and the class library.

Class libraries of widely used programming languages

are extensive and complex and it is impractical to

manually build a model about them. Nor is it

considerably easier to build the model of a class library

with a tool because it would require a complex parser to

process the source code of the class library. Furthermore,

not all class libraries are necessarily open sourced. We

have considered the following solutions for this challenge:

(1) Introducing conditional elements and custom code

snippets in the model: it is possible to add custom code

snippets in the model to allow the inclusion of code into

the output that would be impractical to model otherwise.

If this is combined with the support of conditional

elements, such as classes, methods or statements, that will

make it possible to embed language-specific arbitrary

pieces in the model. This approach is suboptimal since

the model loses its universality but it is easy and fast to

implement.

(2) Building model from class libraries: it requires

complex tooling but it is possible to build a model from

class libraries and reference classes from the library in the

model of the program to generate. However, class

libraries of different languages differ. We expect to solve

this problem by introducing an additional transformation

between the common model and the M2T transformation

that generates code. This transformation step would add

language-specific parts to the general model.

Nevertheless, this mechanism requires further research.

(3) Integrating class library functionality in the

language-independent metamodel: by analyzing several

different programming languages, it is found that the

dividing line between language and library is blurry. For

example, in Basic, printing output to the screen is done

by the PRINT statement, which is integral part of the

language, whereas other languages tend to provide the

same functionality in their standard libraries. Another

example is how some compound data types are

implemented. In PHP, arrays are maps that have integral

keys and maps are part of the language not the class

library. In turn, other languages usually support only

conventional arrays with numeric indexes, and maps are

supported by the standard library. Similarly, in the

metamodel of object-oriented programs that we use to

model the generated code, we are able to model some

features as language elements despite that they are

usually implemented in the class library. When the actual

code generation happens in the M2T transformation,

these can be mapped to class library calls. This approach

is convenient for simple functionality, such as lists, sets,

maps and other compound types or simple functionality

from the class library, such as data conversion.

(4) Designing a universal abstract class library: we

have also contemplated the possibility of designing a

fictional class library for our object-oriented metamodel

that could be used in models. This class library is

unimplemented and does not have a concrete syntax, it

only exists as a concept. By using the API of the class

library in the models, we can model the behavior of

programs. At a later stage, we define the mappings from

this conceptual API to concrete APIs of target languages.

This indirection allows us generating code to libraries of

different platforms without requiring them to have a

common interface. Like the second approach, this also

requires an extra step in the transformation chain. This

extra transformation and the need for mapping API calls

to concrete libraries require more development effort in

the tool but this mechanism can preserve the universal

nature of the model.

16 Multi-Platform Code Generation Supported by Domain-Specific Modeling

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 12, 11-18

In our prototype, we added some compound types,

such as list, in the metamodel and in other cases, we

added language-specific custom snippets. In the ProtoKit

tool, these two were sufficient but we plan to lead further

research on supporting class libraries either by parsing

the class libraries of the languages or by creating an

abstract class library.

B. Semantic Differences in Target Languages

Object-oriented GPLs share a large subset of common

notions, such as class, static variable, instance method,

constructor etc. Nevertheless, more thorough analysis

reveals that there are features that only apply to a

particular GPL or a set of GPLs. For example, C++

supports multiple inheritance and operator overloading,

whereas Java supports neither. In turn, Java supports

nested classes, default methods in interfaces and enums

with methods. Another fundamental difference in the two

languages is the semantics of how parameters are passed

to methods. C++ determines the semantics by the

parameter list in the definition of the method, whereas

Java always passes variables of primitive type by value

and objects by reference. We have considered the

following solutions for this challenge:

(1) Introducing conditional elements in the model: it is

possible to add qualifiers to the model and mark certain

elements, such as methods, operators, statements

language-specific. This helps dealing with some of the

semantic differences, for example, we can define an

operator and mark it as C++-specific. In turn, it is

possible to add an equivalent method as Java-specific.

Statements involving the operator or the method must

also be added twice, marked as C++ and Java-specific,

respectively. On the other hand, there are some semantic

differences that cannot be efficiently solved with the

mechanism of conditional model elements, such as

default methods.

(2) Using a common subset of the features of target

languages: the semantic differences could be avoided if

we only used a common subset of features that have the

same semantics in all of the target languages. For some

scenarios, this approach indeed works. For example, in

Java, we can perfectly live without nested classes.

However, some of the language-specific features

contribute to the usability and maintainability of the code.

If the generated code does not leverage these features, for

example operator overloading in C++ or Java enum

methods, programmers will not feel comfortably when

using the generated code. The generated code will not be

perceived as well-designed code. Furthermore, some

fundamental differences, such as the one regarding

parameter passing cannot be avoided because methods

and parameters are essential parts of any software

program.

(3) Allow the union of all of the features of the target

languages and define a mapping to supported features:

the model of the program can support any features and

this is later mapped to supported features. For example, in

Java, nested classes can access members of the enclosing

class. Nested classes can be mapped to independent

classes in C++ and the privileged access can be ensured

with friend methods. This mechanism works well, if a

convenient mapping is found for all of the supported

features. Nevertheless, some specific features are

challenging. For example, passing an object by value is

not possible in Java. If that is required, we must either

pass a list of primitive variables from the object state or a

clone of the original object.

In our reference implementation, we have used the first

two mechanisms so far. Conditional elements are

supported and some artifacts are only generated for only

one of the target languages, whereas same statements

have conditional equivalents for both. Furthermore, we

limited the supported elements excluding the features that

were not needed in our ProtoKit tool. We have not yet

defined any language-specific mappings of features but

we aim to do further research on this and improve our

tool with this mechanism.

C. Conventional Differences in Target Languages

There are some differences between languages that are

not strictly related to semantics but to conventions. For

example, classes that define a natural order usually

implement the Comparable interface and the compareTo()

method in Java. It is technically possible to provide a

compareTo() method in other languages, such as C++, the

use of this method is a Java convention and is not natural

in other languages. In C++, overloading the relational

operators is the preferred way to define natural order. We

have considered the following solutions for this challenge:

(1) Introducing conditional elements in the model: it is

possible to add qualifiers to the model and mark certain

elements, such as methods, operators, statements

language-specific. This helps supporting conventions by

marking the conventional additions as specific to a

particular target language. This approach very well

supports conventions. Nevertheless, it leads to

duplication of elements that actually belong to the same

function. For example, support of natural order would be

implemented twice: first in the Java-specific compareTo()

method, secondly in the C++-specific overridden

operators.

(2) Supporting higher-level concepts in the metamodel:

another idea for dealing with this difficulty is supporting

higher-level concepts in the metamodel, such as

semantical equality, natural order, cloning etc. These can

determine how these features should work and these can

then be mapped to concrete code in different target

languages. The advantage of this approach is that it

allows for handling these features at a single place. The

disadvantage is that it requires an extra step in the

transformation chain before the M2T transformation,

where these concepts are mapped to concrete language

constructs.

In our prototype, we have used conditional elements

because they helped addressing several issues explained

 Multi-Platform Code Generation Supported by Domain-Specific Modeling 17

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 12, 11-18

earlier. However, using these conditional elements

deteriorate the readability of the model transformation

and the model, so we plan to add support for higher-level

concepts in future research.

VI. CONCLUSION

Despite these limitations, the approach still made our

ProtoKit tool more flexible, better readable and less error-

prone because of the following reasons:

(1) A large amount of code is still unconditional and

thus generated universally from the same subset of the

model.

(2) The templates are simpler and easier to read

because of the general object-oriented model.

(3) Although there are conditional parts in the M2M

transformation, their number is low and corresponding

conditional parts are located near in the code. This makes

it easy to understand the M2M transformation.

In the ProtoKit tool, our novel method has proven to be

useful in achieving better flexibility, easier

maintainability and more robust software that supports

multi-platform code generation. Future research will

explore more in depth the techniques that are described in

Section 5 to aid the limitations. We believe that our

method will contribute to the success of adopting model-

driven approaches and generating code to multiple

platforms. The results explained in the paper will be of

great use for tool developers.

ACKNOWLEDGMENT

This work was partially supported by the CONCERTO

(ART-2012-333053) EU-Artemis project, co-financed by

the ARTEMIS Joint Undertaking and the Hungarian

National Research, Development and Innovation Fund.

This paper was supported by the János Bolyai Research

Scholarship of the Hungarian Academy of Sciences and

supported by the ÚNKP-16-4-III. New National

Excellence Program of the Ministry of Human Capacities.

REFERENCES

[1] D. S. Frankel, “Model Driven Architecture: Applying

MDA to Enterprise Computing”, John Wiley & Sons,

2003.

[2] D. Thomas, “UML - Unified or Universal Modeling

Language? UML2, OCL, MOF, EDOC - The Emperor

Has Too Many Clothes”, Journal of Object Technology,

vol. 2, no. 1, 2003, pp. 7-12.

[3] E. Seidewitz, “UML with meaning: executable modeling

in foundational UML and the Alf action language”,

Proceedings of the 2014 ACM SIGAda annual conference

on High integrity language technology, Portland, Oregon,

USA, 2014, October 18-21.

[4] M. Fowler, “Domain-Specific Languages”, Addison-

Wesley, 2010.

[5] S. Kelly and J. P. Tolvanen, “Domain-Specific Modeling:

Enabling Full Code Generation”, Wiley-IEEE Computer

Society Press, 2008.

[6] N. Harrand, F. Fleurey, B. Morin and K. E. Husa,

“ThingML: a language and code generation framework

for heterogeneous targets”, Proceedings of the ACM/IEEE

19th International Conference on Model Driven

Engineering Languages and Systems (MoDELS 2016),

Saint-malo, France, 2016 October 2-7.

[7] J. Stocq and J. Vanderdonckt, “A domain model-driven

approach for producing user interfaces to multi-platform

information systems”, Proceedings of the working

conference on Advanced visual interfaces, Gallipoli, Italy,

2004 May 25-28.

[8] E. Umuhoza, H. Ed-douibi, M. Brambilla, J. Cabot and A.

Bongio, “Automatic code generation for cross-platform,

multi-device mobile apps: some reflections from an

industrial experience”, Proceedings of the 3rd

International Workshop on Mobile Development

Lifecycle, Pittsburgh, PA, USA, 2015 October 26.

[9] E. Stroulia, B. Bazelli, J. W. Ng and T. Ng, “WL++: code

generation of multi-platform mobile clients to RESTful

back-ends”, Proceedings of the Second ACM

International Conference on Mobile Software Engineering

and Systems, Florence, Italy, 2015 May 16-17.

[10] G. Kövesdán, M. Asztalos and L. Lengyel, “Modeling

Cloud Messaging with a Domain-Specific Modeling

Language”, Proceedings of the 2nd International

Workshop on Model-Driven Engineering on and for the

Cloud, Valencia, Spain, 2014 September 30.

[11] The Object Management Group, “CORBA 3.3

Specification”, http://www.omg.org/spec/CORBA/3.3/.

[12] W. Grosso, “Java RMI”, O’Reilly Media, 2001.

[13] World Wide Web Consortium, “Simple Object Access

Protocol (SOAP) Specification”,

http://www.w3.org/TR/soap/.

[14] L. Richardson and S. Ruby, “RESTful Web Services”,

O’Reilly Media, 2007.

[15] International Telecommunication Union, “ITU-T Z.100

Standard. Specification and Description Language (SDL)”,

http://www.itu.int/ITU-

T/studygroups/com10/languages/Z.100_1199.pdf.

[16] J. Quaresma, “A Protocol Implementation Generator,

Master Thesis”,

http://nordsecmob.aalto.fi/en/publications/theses_2010/jos

e_quaresma.pdf.

Authors’ Profiles

Gábor Kövesdán earned his MSc degree

in computer engineering in 2013. Currently,

he is a teaching assistant at the Department

of Automation and Applied Informatics of

the Budapest University of Technology and

Economics and his area of interest is

domain-specific modeling, model

transformations and code generation.

László Lengyel received his PhD in 2006.

He is an Associate Professor and fellow in

the Department of Automation and Applied

Informatics at the Budapest University of

Technology and Economics. His various

research fields focus on software

development methods, the engineering of

domain-specific languages, model-driven

application development, cyber-physical systems, Internet of

Things, and cloud-based solutions. The most important

18 Multi-Platform Code Generation Supported by Domain-Specific Modeling

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 12, 11-18

milestones in his professional career include, but are not limited

to: the Bolyai János professorship (2007-2010 and 2015-2018),

the Siemens Excellence Award (2008), and being chosen as the

recipient of the NJSZT Kemény János-award (2012), BME

Innovation Price (SensorHUB concept and framework) (2015),

ÚNKP-16-4-III. New National Excellence Program of the

Ministry of Human Capacities (2016-2017).

How to cite this paper: Gábor Kövesdán, László Lengyel,

"Multi-Platform Code Generation Supported by Domain-

Specific Modeling", International Journal of Information

Technology and Computer Science(IJITCS), Vol.9, No.12,

pp.11-18, 2017. DOI: 10.5815/ijitcs.2017.12.02

