Electronic Supporting Information for

Selection between separation alternatives: Membrane Flash Index (MFLI) to compare pervaporation and flash distillation

Andras Jozsef Toth^{a,*}, Eniko Haaz^a, Nora Valentinyi^a, Tibor Nagy^a, Ariella Janka Tarjani^a, Daniel Fozer^a, Anita Andre^a, Selim Asmaa Khaled Mohamed^a, Szabolcs Solti^c, Peter Mizsey^{a,b}

a Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111, Budapest, Budafoki Street 8., Hungary

b Institute of Chemistry, Faculty of Material Science and Engineering, Department of Fine Chemicals and Environmental Technology, University of Miskolc, H-3515, Miskolc, Egyetemvaros C/1 108., Hungary

c Szelence Kamionmoso, Ipartelep, H-2431, Szabadegyhaza, Hungary

* Corresponding author. E-mail address: ajtoth@envproceng.eu, Tel: +36 1 463 1490; Fax: +36 1 463 3197

Content

I	Example calculation for Membrane Flash Index (MFLI)	3		
II	Separation of methanol and water	5		
II/1	Organophilic pervaporation	5		
II/2	Hydrophilic pervaporation	9		
III	Separation of ethanol and water	13		
III/1	Organophilic pervaporation	13		
III/2	Hydrophilic pervaporation	21		
IV	Separation of isobutanol and water	29		
Nomenclature				
References 34				

I Example calculation for Membrane Flash Index (MFLI)

Baseline data:

- organophilic pervaporation
- EtOH-Water binary mixture
- separation factor: $\alpha = 14$
- feed EtOH weight fraction: $x_{EtOH}^F = 0.015$

Mori, Y.; Inaba, T., Ethanol production from starch in a pervaporation membrane bioreactor using Clostridium thermohydrosulfuricum. *Biotechnology and Bioengineering* **1990**, 36, (8), 849-853.

• vapor equilibrium EtOH weight fraction: $y_{EtOH}^{D}NRTL = 0.093$

From ChemCAD program, VLE database: J. Gmehling et al.: Azeotropic data, VCH, 1994; DDB VLE data

1. Calculation of permeate weight fraction (y_i^{PV}) :

$$y_{i}^{PV} = \frac{\alpha * x_{i}^{F}}{(\alpha - 1) * x_{i}^{F} + 1}$$

$$y_{EtOH}^{PV} = \frac{\alpha * x_{EtOH}^{F}}{(\alpha - 1) x_{EtOH}^{F} + 1} = \frac{14 * 0.015}{(14 - 1) * 0.015 + 1} = \frac{0.21}{1.195} = 0.176$$
(S1)

Control calculation:

$$x_{EtOH}^{F} = 0.015$$

$$x_{Water}^{F} = 1 - 0.015 = 0.985$$

$$y_{EtOH}^{PV} = 0.176$$

$$y_{Water}^{PV} = 1 - 0.176 = 0.824$$

$$\alpha = \frac{y_{i*x_j}}{x_{i*y_j}}$$
$$\alpha = \frac{y_{EtOH}^{PV} * x_{Water}^F}{x_{EtOH}^F * y_{Water}^{PV}} = \frac{0.176 * 0.985}{0.015 * 0.824} = \frac{0.1734}{0.0124} = 14$$

(S2)

In the case of hydrophilic pervaporation **Eq. S1** is the following:

$$y_{Water}^{PV} = \frac{\alpha * x_{Water}^{F}}{(\alpha - 1) * x_{Water}^{F} + 1}$$
(S3)

2. Calculation of Membrane Flash Index (*MFLI*):

$$MFLI = \frac{y_i^{PV}}{y_i^{D}TT}$$
(S4)

$$MFLI = \frac{y_{EtOH}^{PV}}{y_{EtOH}^{D}IT} = \frac{0.176}{0.093} = 1.89$$

4

II Separation of methanol and water

II/1 Organophilic pervaporation

PDMS and hydrophobic zeolite membranes are evaluated in the case of organophilic methanol– water separation. **Table 1** and **Table 2** contain the MFLIs with regressed vapor equilibria, feed and calculated permeate weight fractions. **Fig. 1** and **Fig. 2** show the calculated permeate methanol weight fractions of OPV.

Table 1 Comparison of Membrane Flash Indexes in methanol–water organophilic pervaporation with
PDMS membranes

		DIZ	DIZ	D		
DDMC mombranes		x_{MeOH}^{PV}	У _{МеОН}	$y_{MeOH}^{D}NRTL$	MFLI	Peference
	P DIVIS ITTETTIST attes	[wf]	[wf]	[wf]	[-]	Reference
1	PDMS/silica nanocomposite	0.04	0.49	0.19	2.60	Shirazi et al., 2012 ¹
2	PDMS copolymer	0.05	0.31	0.24	1.32	Guo and Hu, 1998 ²
3	PDMS-ZIF-71 matrix 10:3	0.05	0.30	0.24	1.26	Y Li et al., 2014 ³
4	PDMS - CA s.	0.05	0.27	0.24	1.15	Luo et al., 2008 ⁴
5	PDMS - CA s. 16 μm	0.05	0.269	0.24	1.15	L Li et al., 2004 ⁵
6	PDMS - CA s. 8 μm	0.05	0.25	0.24	1.08	L Li et al., 2004 ⁵
7	PERVAP™ 1060	0.05	0.24	0.24	1.02	Kujawski et al., 2000 ⁶
8	PERVAP™ 4060	0.20	0.56	0.61	0.92	Toth and Mizsey, 2015 ⁷
9	PPMS - CA s.	0.05	0.21	0.24	0.90	Luo et al., 2008 ⁴
10	PERVAP™ 1060	0.20	0.43	0.61	0.70	Molina et al., 2002 ⁸

Fig. 1 Calculated permeate methanol weight fractions of organophilic pervaporation with PDMS membranes

As it can be seen, the MFLIs are close to 1, therefore PDMS membranes do not mean the good solution for methanol removal from water mixtures with OPV.

	Hydrophobic zeolite membranes	x ^{PV} _{MeOH} [wf]	У _{МеОН} [wf]	y _{MeOH} NRTL [wf]	MFLI [-]	Reference
1	B-ZSM-5, SS s.	0.05	0.84	0.24	3.58	Tuan et al., 2002 ⁹
2	Silicalite-1, SS s.	0.05	0.74	0.24	3.16	Tuan et al., 2002 ⁹
3	Silicalite-1, SS s.	0.03	0.40	0.14	2.87	Chen et al., 2008 ¹⁰
4	Ge-ZSM-5, SS s.	0.05	0.65	0.24	2.79	S Li et al., 2003 ¹¹
5	ZIF-71	0.05	0.53	0.24	2.25	Dong and Lin, 2013 ¹²
6	Silicalite-1, SS s.	0.04	0.34	0.19	1.82	Liu et al., 1996 ¹³
7	Crosslinked PBD	0.03	0.25	0.14	1.77	Yoshikawa et al., 1992 ¹⁴
8	Zeolite-filled (60 m/m% silicone)	0.05	0.41	0.24	1.73	Hennepe et al., 1987 ¹⁵
9	B-ZSM-5, α-alumina s.	0.05	0.39	0.24	1.65	Bowen et al., 2003 ¹⁶
10	Silicalite-1, SS s.	0.05	0.37	0.24	1.56	Sano et al., 1994 ¹⁷

 Table 2 Comparison of Membrane Flash Indexes in methanol–water organophilic pervaporation with

 hydrophobic zeolite membranes

Fig. 2 Calculated permeate methanol weight fractions of organophilic pervaporation with hydrophobic zeolite membranes

Hydrophobic zeolite membranes have already significantly better efficiency than flash distillation (see **Fig. 2**), but considering the MFLIs of this group in **Table 2**, it can be seen that, they cannot reach breakthrough separation capability.

II/2 Hydrophilic pervaporation

Polyvinyl alcohol based membranes are the most utilized membranes in the case of dehydration of methanol mixtures with pervaporation. The Membrane Flash Indexes are found in **Table 3** and **Table 4**. **Fig. 3** shows the comparison of PVA membranes with flash distillation and **Fig. 4** depicts another hydrophilic membranes.

	Polywinyl alcohol (P)(A) membranes	x_{MeOH}^{PV}	y_{Water}^{PV}	$y_{Water}^{D} NRTL$	MFLI	Peference
		[wf]	[wf]	[wf]	[-]	Kererence
1	Composite PVA/P(AA-co-AN/SiO ₂)	0.90	0.96	0.04	24.17	Pang et al., 2006 ¹⁸
2	PVA with 0.1% nano SiO_2	0.90	0.94	0.04	23.50	Bano et al., 2013 ¹⁹
3	PVA with 0.125% nano SiO ₂	0.98	0.19	0.01	22.55	Liu et al., 2008 ²⁰
4	PVA with 0.075% nano SiO ₂	0.98	0.17	0.01	20.74	Liu et al., 2008 ²⁰
5	PVA with 0.05% nano SiO ₂	0.98	0.15	0.01	18.30	Liu et al., 2008 ²⁰
6	PVA with 0% nano SiO ₂	0.99	0.07	0.004	16.03	Sarkar et al., 2010 ²¹
7	PVA with citric acid	0.90	0.51	0.04	12.82	Burshe et al., 1997 ²²
8	PVA by GFT	0.60	0.52	0.15	3.54	Wesslein et al., 1990 ²³
9	PVA grafted with hydrazine reacted SMA	0.75	0.23	0.09	2.44	Chiang and Chen, 1998 ²⁴
10	PVA-60°C	0.30	0.15	0.29	0.50	Shah et al., 2000 ²⁵

Table 3 Comparison of Membrane Flash Indexes in methanol–water hydrophilic pervaporation with
PVA membranes

Fig. 3 Calculated permeate methanol weight fractions of hydrophilic pervaporation with PVA membranes

	Other hydrophilic membranes	x ^{PV} _{MeOH} [wf]	У _{Water} [wf]	y _{Water} NRTL [wf]	MFLI [-]	Reference
1	T type zeolite (Mitsui)	0.90	0.996	0.04	24.96	Sommer and Melin, 2005 ²⁶
2	Polyamide-6	0.90	0.99	0.04	24.81	El-Gendi and Abdallah, 2013 ²⁷
3	Amorphous silica (ECN)	0.90	0.86	0.04	21.54	Sommer and Melin, 2005 ²⁸
4	Poly(Amidesulfonamide) PASA2	0.90	0.73	0.04	18.24	He et al., 2001 ²⁹
5	Crosslinked chitosan	0.84	0.97	0.06	15.49	Won et al., 2003 ³⁰
6	Chitosan	0.95	0.28	0.02	13.54	Won et al., 2002 ³¹
7	5% sPPSU	0.85	0.66	0.06	11.14	Tang et al., 2012 ³²
8	Poly(Amidesulfonamide) PASA1	0.90	0.40	0.04	10.12	He et al., 2001 ²⁹
9	Tubular membr. Pervatech+silica	0.85	0.55	0.06	9.37	ten Elshof et al., 2003 ³³
10	PAI-PEI Hollow fiber	0.85	0.45	0.06	7.69	Wang et al., 2009 ³⁴

Table 4 Comparison of Membrane Flash Indexes in methanol–water hydrophilic pervaporation with other hydrophilic membranes

Fig. 4 Calculated permeate methanol weight fractions of hydrophilic pervaporation with other hydrophilic membranes

Table 3 and **Table 4** show that T type zeolite membrane from Mitsui has the highest Membrane Flash Indexes between methanol dehydration membranes.

III Separation of ethanol and water

Ethanol removal and dehydration pervaporation membranes are the most attractive in industrial application and research too.

III/1 Organophilic pervaporation

MFLIs of four different membrane types are evaluated in the case of organophilic separation. **Table 5** and **Fig. 5** show the characteristics of PDMS membranes, **Table 6** and **Fig. 6** interpret other polymeric membranes for ethanol removal from water. Hydrophobic zeolite types are found in **Table 7** and **Fig. 7**. Finally silicalite-silicone rubber mixed membranes are presented in **Table 8** and **Fig. 8**.

	PDMS membranes	x_{EtOH}^{PV}	y_{EtOH}^{PV}	$y_{EtOH}^{D}NRTL$	MFLI	Reference
		[wf]	[wf]	[wf]	[-]	hererenee
1	Porous PTFE	0.02	0.18	0.09	1.89	Mori and Inaba, 1990 ³⁵
2	PDMS oil in porous s.	0.04	0.34	0.19	1.86	Kashiwagi et al., 1988 ³⁶
3	PDMS - PTFE s.	0.02	0.17	0.09	1.83	Zhang et al., 2009 ³⁷
4	PDMS	0.05	0.34	0.23	1.49	Slater et al., 1990 ³⁸
5	PDMS	0.02	0.14	0.09	1.47	Mori and Inaba, 1990 ³⁵
6	PDMS - CA s.	0.05	0.33	0.23	1.42	Luo et al., 2008 4
7	PDMS - PA s.	0.04	0.26	0.19	1.41	Shi et al., 2007 ³⁹
8	PDMS - CA s.	0.05	0.31	0.23	1.33	Li et al., 2004 ⁵
9	GE 615 PDMS	0.06	0.36	0.28	1.31	Moermans et al., 2000 40
10	Cross-linked oligodimethylsiloxane	0.08	0.48	0.37	1.31	Ishihara and Matsui, 1987 ⁴¹
11	MTR PDMS	0.06	0.33	0.28	1.18	Schmidt et al., 1997 ⁴²
12	PDMS	0.06	0.31	0.28	1.10	Mulder et al., 1986 ⁴³
13	PDMS	0.07	0.35	0.32	1.09	Jia et al., 1992 ⁴⁴
14	Fuji System PDMS	0.09	0.44	0.42	1.06	Nakao et al., 1987 ⁴⁵
15	Tisso Co Ltd PDMS	0.17	0.61	0.61	1.00	Takegami et al 1992 ⁴⁶

Table 5 Comparison of Membrane Flash Indexes in ethanol–water organophilic pervaporation with

 PDMS membranes

Fig. 5 Calculated permeate ethanol weight fractions of organophilic pervaporation with PDMS membranes

	Other polymeric membranes	x ^{PV} [wf]	У _{Еtон} [wf]	y _{EtOH} NRTL [wf]	MFLI [-]	Reference
1	Copolymer of polysiloxane and phosphate ester	0.05	0.62	0.23	2.67	Chang et al., 2004 ⁴⁷
2	IPAA/FA-PDMS blend	0.03	0.34	0.14	2.41	Aoki et al., 1993 ⁴⁸
3	PTMSP	0.02	0.22	0.09	2.39	Mori et al., 1990 ³⁵
4	Plasma polymerized silane	0.04	0.43	0.19	2.31	Kashiwagi et al., 1988 ³⁶
5	30 μm thick PTMSP	0.06	0.62	0.28	2.24	Baker et al., 1997 ⁴⁹
6	Plasma polymerized silanes	0.04	0.41	0.19	2.23	Kashiwagi et al., 1988 ³⁶
7	Styrene-fluoroalkyl acrylate graft copolymer	0.08	0.80	0.37	2.16	Ishikara and Matsui, 1987 ⁴¹
8	PTMSP	0.06	0.59	0.28	2.13	Schmidt et al., 1997 ⁴²
9	PTMSP/PDMS graft copolymer	0.07	0.68	0.32	2.10	Nagase et al., 1990 50
10	14–43 μm thick PTMSP	0.06	0.56	0.28	2.01	Volkov et al., 2004 ⁵¹
11	PTMSP	0.06	0.56	0.28	2.01	Fadeev et al., 2003 ⁵²
12	10–20 μm thick PTMSP	0.06	0.55	0.28	1.98	Volkov et al., 1997 ⁵³
13	Phenyl propyne/PDMS graft copolymer	0.07	0.64	0.32	1.97	Nagase et al., 1989 ⁵⁰
14	n-Decane substituted PTMSP	0.06	0.53	0.28	1.91	Nagase et al., 1991 ⁵⁴
15	Trimethylsilyl substituted PTMSP	0.06	0.53	0.28	1.90	Nagase et al., 1991 ⁵⁴

Table 6 Comparison of Membrane Flash Indexes in ethanol–water organophilic pervaporation with other polymeric membranes

Fig. 6 Calculated permeate ethanol weight fractions of organophilic pervaporation with other polymeric membranes

The PDMS and other polymer membranes show the same picture and conclusion, comparing with methanol removal membranes (cf. **Table 1** and **Table 2** with **Table 5** and **Table 6**). The PTMSP types have the high MFLIs in the group of organophilic polymer membranes (see **Table 6**).

	Hydrophobic zoolito mombropos		y_{EtOH}^{PV}	$y_{EtOH}^{D}NRTL$	MFLI	Peference
	Hydrophobic zeolite membranes	[wf]	[wf]	[wf]	[-]	Reference
1	Silicaite-1 with PDMS coating - SS s.	0.04	0.84	0.19	5.52	Matsuda et al., 2002 ⁵⁵
2	Silicaite-1 - SS s.	0.04	0.714	0.19	3.85	Sano et al., 1994 ¹⁷
3	Silicaite-1 - SS s.	0.04	0.711	0.19	2.83	Sano et al., 1997 ⁵⁶
4	Silicaite-1 - SS s.	0.04	0.68	0.19	3.67	Matsuda et al., 2002 55
5	Silicaite-1 - mullite porous s.	0.05	0.85	0.23	3.66	Lin et al., 2003 ⁵⁷
6	Silicaite-1 - alumina s.	0.05	0.82	0.19	3.55	Lin et al., 2003 ⁵⁷
7	Silicaite-1, silane treated - SS s.	0.04	0.65	0.19	3.52	Sano et al., 1995 ⁵⁸
8	Silicaite-1 - SS s.	0.05	0.64	0.23	3.43	Ikegami et al., 1997 ⁵⁹
9	Ge-ZSM-5 - SS s., Si/Ge=41	0.05	0.71	0.23	3.07	Li et al., 2003 ¹¹
10	PDMS - Silicalite-1	0.05	0.69	0.23	2.99	Vane et al., 2008 ⁶⁰
11	Silicaite-1 - SS s.	0.05	0.68	0.23	2.95	Nomura et al., 2002 ⁶¹
12	Silicaite-1 - SS s.	0.04	0.54	0.19	2.90	Ikegami et al., 1997 ⁵⁹
13	B-ZSM-5 - alumina s.	0.05	0.62	0.23	2.67	Bowen et al., 2003 ¹⁶
14	Silicaite-1 - mullite tubular s.	0.10	0.889	0.41	1.92	Lin et al., 2000 ⁶²
15	Silicaite-1 - SS s.	0.10	0.888	0.41	1.91	Ikegami et al., 2002 ⁶³

 Table 7 Comparison of Membrane Flash Indexes in ethanol–water organophilic pervaporation with

 hydrophobic zeolite membranes

Fig. 7 Calculated permeate ethanol weight fractions of organophilic pervaporation with hydrophobic zeolite membranes

It can be seen that the hydrophobic zeolite membranes are slightly better than PTMSP types.

	Silicalite-silicone rubber mixed matrix membranes	x_{EtOH}^{PV}	y_{EtOH}^{PV}	$y_{EtOH}^{D}NRTL$	MFLI	Reference
	Sincance sincone rubber mixed matrix membranes	[wf]	[wf]	[wf]	[-]	Kelerenee
1	Silicalite particles treated with acid and steam	0.04	0.57	0.19	3.10	Chen et al., 1998 ⁶⁴
2	20 μm thick with microporous s.	0.05	0.64	0.23	2.77	Jia et al., 1992 ⁴⁴
3	125 μm thick	0.07	0.82	0.32	2.51	Jia et al., 1992 ⁴⁴
4	GE RTV615 PDMS	0.05	0.47	0.23	2.04	Adnadjevic et al., 1997 65
5	GE 615 PDMS	0.05	0.46	0.23	2.00	te Hennepe et al., 1987 ¹⁵
6	GE 615 PDMS	0.05	0.44	0.23	1.90	te Hennepe et al., 1987 ¹⁵
7	Nanoscale silicalite	0.06	0.50	0.28	1.80	Moermans et al., 2000 40
8	4–12 μm thick with microporous s.	0.07	0.55	0.32	1.68	Jia et al., 1992 ⁴⁴
9	Supported membrane	0.05	0.27	0.23	1.18	Liu et al., 1996 ¹³
10	GFT composite membrane	0.06	0.31	0.28	1.11	Vankelecom et al., 1995 66

Table 8 Comparison of Membrane Flash Indexes in ethanol–water organophilic pervaporation with silicalite-silicone rubber mixed matrix membranes

Fig. 8 Calculated permeate ethanol weight fractions of organophilic pervaporation with silicalitesilicone rubber mixed matrix membranes

III/2 Hydrophilic pervaporation

In the case of HPV, four different membrane groups are also represented. The characteristics of PVA membranes are found in **Table 9** and **Fig. 9**. **Table 10** and **Fig. 10** summarize specificities of the chitosan-based membranes. The further two classes are the Membranes containing charged groups (see **Table 11** and **Fig. 11**) and Membranes formed from polysalts (**Table 12** and **Fig. 12**) in our study.

	Polyvinyl alcohol (PVA) membranes	x ^{PV} [wf]	Y ^{PV} [wf]	y _{Water} NRTL [wf]	MFLI [-]	Reference
1	PVA-75°C	0.95	0.97	0.05	20.17	Sun and Zou, 2003 ⁶⁷
2	y-aminopropyl-triethoxysilane	0.95	0.97	0.05	20.04	Zhang et al., 2007 ⁶⁸
3	Sulphated zirconia	0.95	0.93	0.05	19.35	Kim et al., 2001 ⁶⁹
4	PVA/GA containing PAA/EG IPNs	0.95	0.72	0.05	15.03	Ruckenstein and Liang, 1996 ⁷⁰
5	PVA with glutaraldehyde	0.90	0.95	0.09	11.01	Yeom et al., 2001 ⁷¹
6	PVA by GFT	0.90	0.94	0.09	10.91	Wesslein et al., 1990 ⁷²
7	TEOS (130°C)	0.85	0.99	0.12	8.49	Uragami et al., 2002 ⁷³
8	TEOS (160°C)	0.85	0.98	0.12	8.40	Uragami et al., 2002 ⁷³
9	PEG blend and TEOS	0.85	0.98	0.12	8.39	Ye et al., 2007 ⁷⁴
10	Poly(acrylic acid) copolymer and TEOS	0.85	0.98	0.12	8.36	Uragami et al., 2005 ⁷⁵

Table 9 Comparison of Membrane Flash Indexes in ethanol–water hydrophilic pervaporation with

 PVA membranes

Fig. 9 Calculated permeate ethanol weight fractions of hydrophilic pervaporation with PVA membranes

Chitosan-based membranes		x ^{PV} EtOH [wf]	y _{Water} [wf]	y _{Water} NRTL [wf]	MFLI [-]	Reference
1	Acetate salt	0.96	0.99	0.04	25.02	Uragami and Takigawa, 1990 ⁷⁶
2	GA crosslinked	0.96	0.99	0.04	25.01	Uragami and Takigawa, 1990 ⁷⁶
3	Uncrosslinked	0.96	0.89	0.04	22.60	Uragami and Takigawa, 1990 ⁷⁶
4	73% deacetylated	0.92	0.99	0.07	13.72	Maeda and Kai, 1991 ⁷⁷
5	Hydroxyethylcellulose 50% blend	0.90	0.999	0.09	11.55	Chanachai et al., 2000 ⁷⁸
6	Sulphonated & GA	0.90	0.99	0.09	11.49	Lee and Shin, 1991 ⁷⁹
7	Carboxymethylated	0.90	0.99	0.09	11.48	Lee and Shin, 1991 ⁷⁹
8	98% deacetylated-H ₂ SO ₄	0.90	0.99	0.09	11.46	Maeda and Kai, 1991 ⁷⁷
9	98% deacetylated-HCl	0.90	0.99	0.09	11.39	Maeda and Kai, 1991 ⁷⁷
10	Phosphorylated	0.90	0.98	0.09	11.37	Lee and Shin, 1991 ⁷⁹

 Table 10 Comparison of Membrane Flash Indexes in ethanol–water hydrophilic pervaporation with chitosan-based membranes

Fig. 10 Calculated permeate ethanol weight fractions of hydrophilic pervaporation with chitosanbased membranes

		DV	DV	D		
	Membranes containing charged groups	x_{EtOH}^{PV}	\mathcal{Y}_{Water}^{PV}	$y_{Water}^{D}NRTL$	MFLI	Peference
	Membranes containing charged groups	[wf]	[wf]	[wf]	[-]	Reference
1	Alg/DNA-Mg ²⁺	0.97	0.996	0.03	33.19	Uragami et al., 2015 ⁸⁰
2	Anionic PVA/GA	0.96	0.97	0.04	24.58	Praptowidodo, 2005 ⁸¹
3	Cationic PVA/GA	0.96	0.97	0.04	24.46	Praptowidodo, 2005 ⁸¹
4	PVA/GA	0.96	0.93	0.04	23.59	Praptowidodo, 2005 ⁸¹
5	Cationic PVA	0.95	0.95	0.05	19.78	Sun and Zou et al., 2003 ⁶⁷
6	Anionic PVA	0.95	0.95	0.05	19.72	Sun and Zou et al., 2003 ⁶⁷
7	PVA/sericin blend	0.92	0.89	0.07	12.37	Gimenes et al., 2007 ⁸²
8	Rb ⁺ alginate	0.90	0.9992	0.09	11.55	Mochizuki et al., 1990 ⁸³
9	Li ⁺ alginate	0.90	0.9992	0.09	11.55	Mochizuki et al., 1990 ⁸³
10	Cs ⁺ alginate	0.90	0.9991	0.09	11.55	Mochizuki et al., 1990 ⁸³
11	PVA/9% acrylic acid graft	0.90	0.99	0.09	11.43	Semenova et al., 1997 ⁸⁴
12	2% NaA-Modified PASA2	0.90	0.99	0.09	11.43	He et al., 2001 ²⁹
13	Na ⁺ alginate-PVA blend	0.90	0.98	0.09	11.29	Dong et al., 2006 ⁸⁵
14	PVA/7 m/m% sulphosuccinic acid	0.90	0.95	0.09	11.00	Rhim et al., 1998 ⁸⁶
15	5% NaA-Modified PASA1	0.90	0.89	0.09	10.26	He et al., 2001 ²⁹

 Table 11 Comparison of Membrane Flash Indexes in ethanol–water hydrophilic pervaporation with membranes containing charged groups

Fig. 11 Calculated permeate ethanol weight fractions of hydrophilic pervaporation with membranes containing charged groups

Mombranes formed from polycalts		x_{EtOH}^{PV}	\mathcal{Y}_{Water}^{PV}	$y_{Water}^{D} NRTL$	MFLI	Peference
	Membranes formed from polysaits		[wf]	[wf]	[-]	Nererence
1	A: Anionic PVA, DS 2.3% - C: Cationic PVA, DS 2.9%	0.95	0.99	0.05	20.56	Sun and Zou, 2003 ⁶⁷
2	A: Na ⁺ polystyrene sulphonate - C: Polyallylamine	0.94	0.82	0.06	14.52	Krasemann and Tieke, 1998 ⁸⁷
3	A: Poly(acrylonitrile-co-acrylic acid) - C: Poly(acrylonitrile-co-vinyl pyridine)	0.90	0.998	0.09	11.54	Won et al., 1993 ⁸⁸
4	A: Na ⁺ CMC - C: Chitosan	0.90	0.99	0.09	11.46	Zhao et al., 2009 ⁸⁹
5	A: Na ⁺ CMC - C: N-ethyl-4-vinyl-pyridinium bromide	0.90	0.99	0.09	11.43	Jin et al., 2010 ⁹⁰
6	A: Cellulose-SO ₃ -Na ⁺ - C: Polyethyleneimine	0.84	0.98	0.12	8.05	Zhao et al., 2009 ⁸⁹
7	A: Cellulose-SO ₃ -Na ⁺ - C: PolyDADMAC, linear	0.84	0.96	0.12	7.90	Zhao et al., 2009 ⁸⁹
8	A: Cellulose-SO ₃ -Na ⁺ - C: PolyDADMAC, branched	0.84	0.96	0.12	7.86	Zhao et al., 2009 ⁸⁹
9	A: Aromatic polyamide sulphonate - C: Polyethyleneimine	0.80	0.79	0.14	5.60	Kirsh et al., 1996 ⁹¹

 Table 12 Comparison of Membrane Flash Indexes in ethanol–water hydrophilic pervaporation with membranes formed from polysalts

Fig. 12 Calculated permeate ethanol weight fractions of hydrophilic pervaporation with membranes formed from polysalts

Studying ethanol dehydration pervaporation membranes, it can be determined, there is no major difference in the MFLIs. The highest values from these hydrophilic membranes are calculated in the case of membranes containing charged groups.

IV Separation of isobutanol and water

Table 13 shows the comparison of MFLIs in the case of OPV and the hydrophilic membranes are interpreted in **Table 14**. Finally, **Fig. 13** depicts the permeate isobutanol weight fractions in the function of VLE.

Organophilic membranes		x ^{PV} [wf]	y _{IBU} [wf]	y _{IBU} NRTL [wf]	MFLI [-]	Reference
1	(TX-PDMS) _n	0.01	0.36	0.04	9.75	Schnabel et al., 1998 ⁹²
2	(T-PDMS) _n	0.01	0.35	0.04	9.45	Schnabel et al., 1998 ⁹²
3	(T-PDMS-T-BFH) _n	0.01	0.34	0.04	9.18	Schnabel et al., 1998 ⁹²
4	(IP-PDMS) _n	0.01	0.32	0.04	8.85	Schnabel et al., 1998 ⁹²
5	(TX-PDMS-T-BFCH) _n	0.01	0.32	0.04	8.63	Schnabel et al., 1998 ⁹²
6	(IP-PDMS-IP-BFCH) _n	0.01	0.31	0.04	8.47	Schnabel et al., 1998 ⁹²
7	PDMS	0.01	0.29	0.04	7.94	Böddeker et al., 1990 ⁹³
8	silicalite-filled GFT-PDMS	0.05	0.73	0.18	4.00	Jonquieres and Fane, 1997 ⁹⁴
9	PERVAP™ 4060	0.01	0.12	0.04	3.15	Toth et al., 2015 ⁹⁵
10	PERVAP™ 4060	0.07	0.71	0.26	2.79	Toth et al., 2015 ⁹⁵

 Table 13 Comparison of Membrane Flash Indexes in isobutanol–water with organophilic membranes

Table 14 Comparison of Membrane Flash Indexes in isobutanol–water with hydrophilic membranes

	Hydrophilic membranes	x_{IBU}^{PV} [wf]	y _{Water} [wf]	y _{Water} NRTL [wf]	MFLI [-]	Reference
1	PERVAP™ 1510 (PVA)	0.99	0.998	0.05	21.70	Toth et al., 2015 ⁹⁵
2	PERVAP™ 1510 (PVA)	0.99	0.97	0.05	21.15	Valentinyi et al., 2014 ⁹⁶
3	zeolite LTA, porous Al ₂ O ₃	0.95	0.99	0.17	5.71	Huang et al., 2014 ⁹⁷
4	PERVAP™ 2510 (PVA)	0.95	0.95	0.17	5.47	Guo et al., 2004 ⁹⁸
5	Pervasiv hollow-fiber	0.96	0.78	0.15	5.21	Kujawski and Krajewski, 2004 ⁹⁹
6	zeolite TFN, PAN support	0.90	0.97	0.26	3.76	Fathizadeh et al., 2013 ¹⁰⁰
7	PAI/PEI dual-layer hollow fiber	0.85	0.9999	0.30	3.31	Wang et al., 2009 ³⁴
8	PERVAP™ 1510 (PVA)	0.85	0.98	0.30	3.24	Toth et al., 2015 ⁹⁵
9	PERVAP™ 2210 (PVA)	0.90	0.57	0.26	2.21	Omidali et al., 2014 101

Fig. 13 Calculated permeate isobutanol weight fractions of organophilic and hydrophilic pervaporations

Nomenclature

F	Feed	
i	Component number	
j	Component number	
V	Vapour equilibrium	
x_i^F	Feed alcohol or water weight fraction	[-]
x_i^D	Equilibrium liquid alcohol or water weight fraction	[-]
y_i^D	Equilibrium vapour alcohol or water weight fraction	[-]
x_i^{PV}	Retentate alcohol or water weight fraction	[-]
y_i^{PV}	Permeate alcohol or water weight fraction	[-]

Abbreviations

CA	Cellulose acetate
EtOH	Ethanol
HPV	Hydrophilic pervaporation
hydr	hydrophilic
IBU	Isobutanol
IPAA/FA	Copoly(N-isopropylacrylamide/1H,1H,2H,2H-perfluorododecyl acrylate)
LTA	Linde Type A
MDMS	1,3-bis(3-aminopropyl) tetramethyldisiloxane
MeOH	Methanol
MFLI	Membrane Flash Index
NRTL	Mon-random two-liquid model
ODMS	α , ω -(bisaminopropyl) dimethylsiloxane oligomer
OPV	Organophilic pervaporation
org	organophilic

PAE	Polyamide-imide
PAN	Polyacrylonitrile
PASA	Poly(Amidesulfonamide)
PBD	Polybutadiene
PEBA	Polyether-block-amide
PEI	Polyetherimide
PDMS	Polydimethylsiloxane
PMDA	1,2,4,5-benzenetetracarboxylic dianhydride
PTFE	Polytetrafluoroethylene
PTMSP	Poly[1-(trimethylsilyl)-1-propyne]
PUR	Polyurethane
PVA	Polyvinyl alcohol
PV	Pervaporation
sPPSU	Sulfonated polyphenylsulfone
SS	stainless steel
TEOS	Tetraethoxysilane
TFN	Thin film Nanocomposite
VLE	Vapor-Liquid Equilibrium
wf	weight fraction

Greek letters

α Separation factor

References

1. Shirazi, Y.; Ghadimi, A.; Mohammadi, T., Recovery of alcohols from water using polydimethylsiloxane-silica nanocomposite membranes: Characterization and pervaporation performance. *Journal of Applied Polymer Science* **2012**, 124, (4), 2871-2882.

2. Guo, Z.; Hu, C., Pervaporation of organic liquid/water mixtures through a novel silicone copolymer membrane. *Chinese Science Bulletin* **1998**, 43, (6), 487-490.

3. Li, Y.; Wee, L. H.; Martens, J. A.; Vankelecom, I. F. J., ZIF-71 as a potential filler to prepare pervaporation membranes for bio-alcohol recovery. *Journal of Materials Chemistry A* **2014**, 2, (26), 10034-10040.

4. Luo, Y.; Tan, S.; Wang, H.; Wu, F.; Liu, X.; Li, L.; Zhang, Z., PPMS composite membranes for the concentration of organics from aqueous solutions by pervaporation. *Chemical Engineering Journal* **2008**, 137, (3), 496-502.

5. Li, L.; Xiao, Z.; Tan, S.; Pu, L.; Zhang, Z., Composite PDMS membrane with high flux for the separation of organics from water by pervaporation. *Journal of Membrane Science* **2004**, 243, (1-2), 177-187.

6. Kujawski, W., Pervaporative Removal of Organics from Water Using Hydrophobic Membranes. Binary Mixtures. *Separation Science and Technology* **2000**, 35, (1), 89-108.

7. Toth, A. J.; Mizsey, P., Methanol removal from aqueous mixture with organophilic pervaporation: Experiments and modelling. *Chemical Engineering Research and Design* **2015**, 98, 123-135.

8. Molina, J. M.; Vatai, G.; Bekassy-Molnar, E., Comparison of pervaporation of different alcohols from water on CMG-OM-010 and 1060-SULZER membranes. *Desalination* **2002**, 149, (1-3), 89-94.

9. Tuan, V. A.; Li, S.; Falconer, J. L.; Noble, R. D., Separating organics from water by pervaporation with isomorphously-substituted MFI zeolite membranes. *Journal of Membrane Science* **2002**, 196, (1), 111-123.

10. Chen, H.; Li, Y.; Zhu, G.; Liu, J.; Yang, W., Synthesis and pervaporation performance of high-reproducibility silicalite-1 membranes. *Chinese Science Bulletin* **2008**, 53, (22), 3505-3510.

11. Li, S.; Tuan, V. A.; Falconer, J. L.; Noble, R. D., Properties and separation performance of Ge-ZSM-5 membranes. *Microporous and Mesoporous Materials* **2003**, 58, (2), 137-154.

12. Dong, X.; Lin, Y. S., Synthesis of an organophilic ZIF-71 membrane for pervaporation solvent separation. *Chemical Communications* **2013**, 49, (12), 1196-1198.

13. Liu, Q.; Noble, R. D.; Falconer, J. L.; Funke, H. H., Organics/water separation by pervaporation with a zeolite membrane. *Journal of Membrane Science* **1996**, 117, (1–2), 163-174.

14. Yoshikawa, M. M.; Wano, T.; Kuno, S.; Kitao, T., Separation of aqueous alcohol solutions through modified polybutadiene membranes. *Proceedings of the 6th International Conference on Pervaporation Processes in the Chemical Industry* **1992**, 178.

15. te Hennepe, H. J. C.; Bargeman, D.; Mulder, M. H. V.; Smolders, C. A., Zeolite-filled silicone rubber membranes. Part 1. Membrane preparation and pervaporation results. *Journal of Membrane Science* **1987**, 35, (1), 39-55.

16. Bowen, T. C.; Kalipcilar, H.; Falconer, J. L.; Noble, R. D., Pervaporation of organic/water mixtures through B-ZSM-5 zeolite membranes on monolith supports. *Journal of Membrane Science* **2003**, 215, (1-2), 235-247.

17. Sano, T.; Hasegawa, M.; Kawakami, Y.; Kiyozumi, Y.; Yanagishita, H.; Kitamoto, D.; Mizukami, F., Potentials of silicalite membranes for the separation of alcohol/water mixtures. In *Studies in Surface Science and Catalysis*, 1994; Vol. 84, pp 1175-1182.

18. Peng, F.; Jiang, Z.; Hu, C.; Wang, Y.; Lu, L.; Wu, H., Pervaporation of benzene/cyclohexane mixtures through poly(vinyl alcohol) membranes with and without β -cyclodextrin. *Desalination* **2006**, 193, (1-3), 182-192.

19. Bano, S.; Mahmood, A.; Lee, K. H., Vapor permeation separation of methanol-water mixtures: Effect of experimental conditions. *Industrial and Engineering Chemistry Research* **2013**, 52, (31), 10450-10459.

20. Liu, X.; Sun, Y.; Deng, X., Studies on the pervaporation membrane of permeation water from methanol/water mixture. *Journal of Membrane Science* **2008**, 325, (1), 192-198.

21. Sarkar, B.; Sridhar, S.; Saravanan, K.; Kale, V., Preparation of fatty acid methyl ester through temperature gradient driven pervaporation process. *Chemical Engineering Journal* **2010**, 162, (2), 609-615.

22. Burshe, M. C.; Sawant, S. B.; Joshi, J. B.; Pangarkar, V. G., Sorption and permeation of binary water-alcohol systems through PVA membranes crosslinked with multifunctional crosslinking agents. *Separation and Purification Technology* **1997**, **1**2, (2), 145-156.

23. Wesslein, M.; Heintz, A.; Lichtenthaler, R. N., Pervaporation of liqued mixtures through poly (vinyl alcohol) (PVA) membranes. II. The binary systems methanol/1- propanol and methanol/dioxane and the ternary system water/ methanol/1-propanol. *Journal of Membrane Science* **1990**, **5**1, (1-2), 181-188.

24. Chiang, W.-Y.; Chen, C.-L., Separation of water—alcohol mixture by using polymer membranes—6. Water—alcohol pervaporation through terpolymer of PVA grafted with hydrazine reacted SMA. *Polymer* **1998**, 39, (11), 2227-2233.

25. Shah, D.; Kissick, K.; Ghorpade, A.; Hannah, R.; Bhattacharyya, D., Pervaporation of alcohol-water and dimethylformamide-water mixtures using hydrophilic zeolite NaA membranes: Mechanisms and experimental results. *Journal of Membrane Science* **2000**, 179, (1-2), 185-205.

26. Sommer, S.; Melin, T., Performance evaluation of microporous inorganic membranes in the dehydration of industrial solvents. *Chemical Engineering and Processing: Process Intensification* **2005**, 44, (10), 1138-1156.

27. El-Gendi, A.; Abdallah, H., Selectivity performance for polyamide-6 membranes using pervaporation of water/methanol mixtures. *Desalination and Water Treatment* **2013**, 51, (16-18), 3263-3272.

28. Sommer, S.; Melin, T., Influence of operation parameters on the separation of mixtures by pervaporation and vapor permeation with inorganic membranes. Part 1: Dehydration of solvents. *Chemical Engineering Science* **2005**, 60, (16), 4509-4523.

29. He, X.; Chan, W.-H.; Ng, C.-F., Water–alcohol separation by pervaporation through zeolite-modified poly(amidesulfonamide). *Journal of Applied Polymer Science* **2001**, 82, (6), 1323–1329.

30. Won, W.; Feng, X.; Lawless, D., Separation of dimethyl carbonate/methanol/water mixtures by pervaporation using crosslinked chitosan membranes. *Separation and Purification Technology* **2003**, 31, (2), 129-140.

31. Won, W.; Feng, X.; Lawless, D., Pervaporation with chitosan membranes: Separation of dimethyl carbonate/methanol/water mixtures. *Journal of Membrane Science* **2002**, 209, (2), 493-508.

32. Tang, Y.; Widjojo, N.; Shi, G. M.; Chung, T. S.; Weber, M.; Maletzko, C., Development of flat-sheet membranes for C1-C4 alcohols dehydration via pervaporation from sulfonated polyphenylsulfone (sPPSU). *Journal of Membrane Science* **2012**, 415-416.

33. ten Elshof, J. E.; Abadal, C. R.; Sekulić, J.; Chowdhury, S. R.; Blank, D. H. A., Transport mechanisms of water and organic solvents through microporous silica in the pervaporation of binary liquids. *Microporous and Mesoporous Materials* **2003**, 65, (2-3), 197-208.

34. Wang, Y.; Goh, S. H.; Chung, T. S.; Na, P., Polyamide-imide/polyetherimide duallayer hollow fiber membranes for pervaporation dehydration of C1–C4 alcohols. *Journal of Membrane Science* **2009**, 326, (1), 222-233.

35. Mori, Y.; Inaba, T., Ethanol production from starch in a pervaporation membrane bioreactor using Clostridium thermohydrosulfuricum. *Biotechnology and Bioengineering* **1990**, 36, (8), 849-853.

36. Kashiwagi, T.; Okabe, K.; Okita, K., Separation of ethanol from ethanol/water mixtures by plasma-polymerized membranes from silicone compounds. *Journal of Membrane Science* **1988**, 36, 353-362.

37. Zhang, Q. G.; Liu, Q. L.; Zhu, A. M.; Xiong, Y.; Ren, L., Pervaporation performance of quaternized poly(vinyl alcohol) and its crosslinked membranes for the dehydration of ethanol. *Journal of Membrane Science* **2009**, 335, (1-2), 68-75.

38. Slater, C. S.; Hickey, P. J.; Juricic, F. P., Pervaporation of Aqueous Ethanol Mixtures through Poly(Dimethyl Siloxane) Membranes. *Separation Science and Technology* **1990**, 25, (9-10), 1063-1077.

39. Shi, E.; Huang, W.; Xiao, Z.; Li, D.; Tang, M., Influence of binding interface between active and support layers in composite PDMS membranes on permeation performance. *Journal of Applied Polymer Science* **2007**, 104, (4), 2468-2477.

40. Moermans, B.; Beuckelaer, W. D.; Vankelecom, I. F. J.; Ravishankar, R.; Martens, J. A.; Jacobs, P. A., Incorporation of nano-sized zeolites in membranes. *Chemical Communications* **2000**, (24), 2467-2468.

41. Ishihara, K.; Matsui, K., Pervaporation of ethanol-water mixture through composite membranes composed of styrene-fluoroalkyl acrylate graft copolymers and cross-linked polydimethylsiloxane membrane. *Journal of Applied Polymer Science* **1987**, 34, (1), 437-440.

42. Schmidt, S. L.; Myers, M. D.; Kelley, S. S.; McMillan, J. D.; Padukone, N., Evaluation of PTMSP membranes in achieving enhanced ethanol removal from fermentations by pervaporation. *Applied Biochemistry and Biotechnology* **1997**, 63, (1), 469.

43. Mulder, M. H. V.; Smolders, C. A., Continuous ethanol production controlled by membrane processes. *Process Biochemistry* **1986**, 21, (2), 35-39.

44. Jia, M. D.; Pleinemann, K. V.; Behling, R. D., Preparation and characterization of thin-film zeolite-PDMS composite membranes. *Journal of Membrane Science* **1992**, 73, (2-3), 119-128.

45. Nakao, S. i.; Saitoh, F.; Asakura, T.; Toda, K.; Kimura, S., Continuous ethanol extraction by pervaporation from a membrane bioreactor. *Journal of Membrane Science* **1987**, 30, (3), 273-287.

46. Takegami, S.; Yamada, H.; Tsujii, S., Pervaporation of ethanol/water mixtures using novel hydrophobic membranes containing polydimethylsiloxane. *Journal of Membrane Science* **1992**, 75, (1), 93-105.

47. Chang, C. L.; Chang, M. S., Preparation of multi-layer silicone/PVDF composite membranes for pervaporation of ethanol aqueous solutions. *Journal of Membrane Science* **2004**, 238, (1-2), 117-122.

48. Aoki, T.; Yamagiwa, K.; Yoshino, E.; Oikawa, E., Temperature-sensitive ethanol permselectivity of poly(dimethylsiloxane) membrane by the modification of its surface with copoly(N-isopropylacrylamide 1H,1H,2H,2H-perfluorododecyl acrylate). *Polymer* **1993**, 34, (7), 1538-1540.

49. Baker, R. W.; Athayde, A. L.; Daniels, R.; Le, M.; Pinnau, I.; Ly, J. H.; Wijmans, J. G.; Kaschemekat, J. H.; Helm, V. D. *Development of Pervaporation to Recover and Reuse Volatile Organic Compounds from Industrial Waste Streams*; 1997.

50. Nagase, Y.; Ishihara, K.; Matsui, K., Chemical modification of poly(substituted-acetylene). II. Pervaporation of ethanol / water mixture through poly(1-trimethylsilyl-1-

propyne) / poly(dimethylsiloxane) graft copolymer membrane. *Journal of Polymer Science, Part B: Polymer Physics* **1990,** 28, (3), 377-386.

51. Volkov, V. V.; Fadeev, A. G.; Khotimsky, V. S.; Litvinova, E. G.; Selinskaya, Y. A.; McMillan, J. D.; Kelley, S. S., Effects of synthesis conditions on the pervaporation properties of poly[1-(trimethylsilyl)-1-propyne] useful for membrane bioreactors. *Journal of Applied Polymer Science* **2004**, 91, (4), 2271-2277.

52. Fadeev, A. G.; Kelley, S. S.; McMillan, J. D.; Selinskaya, Y. A.; Khotimsky, V. S.; Volkov, V. V., Effect of yeast fermentation by-products on poly[1-(trimethylsilyl)-1-propyne] pervaporative performance. *Journal of Membrane Science* **2003**, 214, (2), 229-238.

53. Volkov, V. V.; Khotimsky, V. S.; Litvinova, E. G.; Fadeev, A. G.; Selinskaya, Y. A.; Plate, N. A.; McMillan, J.; Kelley, S. S., Development of novel poly[-1-(trimethylsilyl)-1-propyne] based materials for pervaporation separation in biofuel production. *Polymer Materials Science and Engineering* **1997**, 77.

54. Nagase, Y.; Takamura, Y.; Matsui, K., Chemical modification of poly(substitutedacetylene). V. Alkylsilylation of poly(1-trimethylsilyl-1-propyne) and improved liquid separating property at pervaporation. *Journal of Applied Polymer Science* **1991**, 42, (1), 185-190.

55. Matsuda, H.; Yanagishita, H.; Negishi, H.; Kitamoto, D.; Ikegami, T.; Haraya, K.; Nakane, T.; Idemoto, Y.; Koura, N.; Sano, T., Improvement of ethanol selectivity of silicalite membrane in pervaporation by silicone rubber coating. *Journal of Membrane Science* **2002**, 210, (2), 433-437.

56. Sano, T.; Ejiri, S.; Yamada, K.; Kawakami, Y.; Yanagishita, H., Separation of acetic acid-water mixtures by pervaporation through silicalite membrane. *Journal of Membrane Science* **1997**, 123, (2), 225-233.

57. Lin, X.; Chen, X.; Kita, H.; Okamoto, K., Synthesis of silicalite tubular membranes by in situ crystallization. *AIChE Journal* **2003**, 49, (1), 237-247.

58. Sano, T.; Hasegawa, M.; Ejiri, S.; Kawakami, Y.; Yanagishita, H., Improvement of the pervaporation performance of silicalite membranes by modification with a silane coupling reagent. *Microporous Materials* **1995**, *5*, (3), 179-184.

59. Ikegami, T.; Yanagishita, H.; Kitamoto, D.; Haraya, K.; Nakane, T.; Matsuda, H.; Koura, N.; Sano, T., Production of highly concentrated ethanol in a coupled fermentation/pervaporation process using silicalite membranes. *Biotechnology Techniques* **1997**, 11, (12), 921-924.

60. Vane, L. M.; Namboodiri, V. V.; Bowen, T. C., Hydrophobic zeolite-silicone rubber mixed matrix membranes for ethanol-water separation: Effect of zeolite and silicone component selection on pervaporation performance. *Journal of Membrane Science* **2008**, 308, (1-2), 230-241.

61. Nomura, M.; Bin, T.; Nakao, S. I., Selective ethanol extraction from fermentation broth using a silicalite membrane. *Separation and Purification Technology* **2002**, 27, (1), 59-66.

62. Lin, X.; Kita, H.; Okamoto, K. I., A novel method for the synthesis of high performance silicalite membranes. *Chemical Communications* **2000**, (19), 1889-1890.

63. Ikegami, T.; Yanagishita, H.; Kitamoto, D.; Negishi, H.; Haraya, K.; Sano, T., Concentration of fermented ethanol by pervaporation using silicalite membranes coated with silicone rubber. *Desalination* **2002**, 149, (1-3), 49-54.

64. Chen, X.; Ping, Z.; Long, Y., Separation properties of alcohol-water mixture through silicalite-I-filled silicone rubber membranes by pervaporation. *Journal of Applied Polymer Science* **1998**, 67, (4), 629-636.

65. Adnadjević, B.; Jovanović, J.; Gajinov, S., Effect of different physicochemical properties of hydrophobic zeolites on the pervaporation properties of PDMS-membranes. *Journal of Membrane Science* **1997**, 136, (1-2), 173-179.

66. Vankelecom, I. F. J.; Depre, D.; De Beukelaer, S.; Uytterhoeven, J. B., Influence of zeolites in PDMS membranes. Pervaporation of water/alcohol mixtures. *Journal of Physical Chemistry* **1995**, 99, (35), 13193-13197.

67. Sun, B.; Zou, J., Poly(vinyl alcohol)-based polyelectrolyte pervaporation membranes. In *Annals of the New York Academy of Sciences*, 2003; Vol. 984, pp 386-400.

68. Zhang, Q. G.; Liu, Q. L.; Jiang, Z. Y.; Chen, Y., Anti-trade-off in dehydration of ethanol by novel PVA/APTEOS hybrid membranes. *Journal of Membrane Science* **2007**, 287, (2), 237-245.

69. Kim, K. J.; Park, S. H.; So, W. W.; Moon, S. J., Pervaporation separation of aqueous organic mixtures through sulfated zirconia-poly(vinyl alcohol) membrane. *Journal of Applied Polymer Science* **2001**, 79, (8), 1450-1455.

70. Ruckenstein, E.; Liang, L., Poly(acrylic acid)-poly(vinyl alcohol) semi- and interpenetrating polymer network pervaporation membranes. *Journal of Applied Polymer Science* **1996**, 62, (7), 973-987.

71. Yeom, C. K.; Lee, S. H.; Lee, J. M., Pervaporative permeations of homologous series of alcohol aqueous mixtures through a hydrophilic membrane. *Journal of Applied Polymer Science* **2001**, 79, (4), 703-713.

72. Wesslein, M.; Heintz, A.; Lichtenthaler, R. N., Pervaporation of liquid mixtures through poly (vinyl alcohol) (PVA) membranes. I. Study of water containing binary systems with complete and partial miscibility. *Journal of Membrane Science* **1990**, 51, (1-2), 169-179.

73. Uragami, T.; Okazaki, K.; Matsugi, H.; Miyata, T., Structure and permeation characteristics of an aqueous ethanol solution of organic - Inorganic hybrid membranes composed of poly(vinyl alcohol) and tetraethoxysilane. *Macromolecules* **2002**, 35, (24), 9156-9163.

74. Ye, L. Y.; Liu, Q. L.; Zhang, Q. G.; Zhu, A. M.; Zhou, G. B., Pervaporation characteristics and structure of poly(vinyl alcohol)/poly(ethylene glycol)/tetraethoxysilane hybrid membranes. *Journal of Applied Polymer Science* **2007**, 105, (6), 3640-3648.

75. Uragami, T.; Matsugi, H.; Miyata, T., Pervaporation characteristics of organicinorganic hybrid membranes composed of poly(vinyl alcohol-co-acrylic acid) and tetraethoxysilane for water/ethanol separation. *Macromolecules* **2005**, 38, (20), 8440-8446.

76. Uragami, T.; Takigawa, K., Permeation and separation characteristics of ethanol-water mixtures through chitosan derivative membranes by pervaporation and evapomeation. *Polymer* **1990**, 31, (4), 668-672.

77. Maeda, Y.; Kai, M., Recent progress in pervaporation membranes for water/ethanol separation. *Pervaporation Membrane Separation Processes* **1991**, 391-435.

78. Chanachai, A.; Jiraratananon, R.; Uttapap, D.; Moon, G. Y.; Anderson, W. A.; Huang, R. Y. M., Pervaporation with chitosan/hydroxyethylcellulose (CS/HEC) blended membranes. *Journal of Membrane Science* **2000**, 166, (2), 271-280.

79. Lee, Y. M.; Shin, E. M., Pervaporation separation of water-ethanol through modified chitosan membranes. IV. Phosphorylated chitosan membranes. *Journal of Membrane Science* **1991**, 64, (1-2), 145-152.

80. Uragami, T.; Banno, M.; Miyata, T., Dehydration of an ethanol/water azeotrope through alginate-DNA membranes cross-linked with metal ions by pervaporation. *Carbohydrate Polymers* **2015**, 134, 38-45.

81. Praptowidodo, V. S., Influence of swelling on water transport through PVA-based membrane. *Journal of Molecular Structure* **2005**, 739, (1-3), 207-212.

82. Gimenes, M. L.; Liu, L.; Feng, X., Sericin/poly(vinyl alcohol) blend membranes for pervaporation separation of ethanol/water mixtures. *Journal of Membrane Science* **2007**, 295, (1-2), 71-79.

83. Mochizuki, A.; Amiya, S.; Sato, Y.; Ogawara, H.; Yamashita, S., Pervaporation separation of water/ethanol mixtures through polysaccharide membranes. IV. The relationships between the permselectivity of alginic acid membrane and its solid state structure. *Journal of Applied Polymer Science* **1990**, 40, (3-4), 385-400.

84. Semenova, S. I.; Ohya, H.; Soontarapa, K., Hydrophilic membranes for pervaporation: An analytical review. *Desalination* **1997**, 110, (3), 251-286.

85. Dong, Y. Q.; Zhang, L.; Shen, J. N.; Song, M. Y.; Chen, H. L., Preparation of poly(vinyl alcohol)-sodium alginate hollow-fiber composite membranes and pervaporation dehydration characterization of aqueous alcohol mixtures. *Desalination* **2006**, 193, (1-3), 202-210.

86. Rhim, J. W.; Yeom, C. K.; Kim, S. W., Modification of poly(vinyl alcohol) membranes using sulfur-succinic acid and its application to pervaporation separation of water-alcohol mixtures. *Journal of Applied Polymer Science* **1998**, 68, (11), 1717-1723.

87. Krasemann, L.; Tieke, B., Ultrathin self-assembled polyelectrolyte membranes for pervaporation. *Journal of Membrane Science* **1998**, 150, (1), 23-30.

88. Won, H. J.; Yong, S. K.; Hyo, J. K., Association behavior in copolymer blend membranes and the pervaporation of water/ethanol mixtures. *Journal of Membrane Science* **1993**, 85, (1), 81-88.

89. Zhao, Q.; Qian, J.; An, Q.; Gao, C.; Gui, Z.; Jin, H., Synthesis and characterization of soluble chitosan/sodium carboxymethyl cellulose polyelectrolyte complexes and the pervaporation dehydration of their homogeneous membranes. *Journal of Membrane Science* **2009**, 333, (1-2), 68-78.

90. Jin, H.; An, Q.; Zhao, Q.; Qian, J.; Zhu, M., Pervaporation dehydration of ethanol by using polyelectrolyte complex membranes based on poly (N-ethyl-4-vinylpyridinium bromide) and sodium carboxymethyl cellulose. *Journal of Membrane Science* **2010**, 347, (1-2), 183-192.

91. Kirsh, Y. E.; Vdonin, P. A.; Fedotov, Y. A.; Semenova, S. I., Pervaporation membranes for dehydration of organic solvents based on sulfonate containing aromatic polyamides: effects of configurational structure and counterion nature on their selectivity and permeability. *Proceedings of the International Congress on Membranes and Membrane Processes* **1996**, 432-433.

92. Schnabel, S.; Roizard, D.; Nguyen, T.; Lochon, P.; Aptel, P., Synthesis of novel block siloxane polymers for the removal of butanols from aqueous feed solutions. *Colloids and Surfaces A: Physicochemical and Engineering Aspects* **1998**, 138, (2-3), 335-343.

93. Böddeker, K. W.; Bengtson, G.; Pingel, H., Pervaporation of isomeric butanols. *Journal of Membrane Science* **1990**, 54, (1-2), 1-12.

94. Jonquières, A.; Fane, A., Filled and unfilled composite GFT PDMS membranes for the recovery of butanols from dilute aqueous solutions: Influence of alcohol polarity. *Journal of Membrane Science* **1997**, 125, (2), 245-255.

95. Toth, A. J.; Andre, A.; Haaz, E.; Mizsey, P., New horizon for the membrane separation: Combination of organophilic and hydrophilic pervaporations. *Separation and Purification Technology* **2015**, 156, (2), 432–443.

96. Valentínyi, N.; Mizsey, P., Comparison of pervaporation models with simulation of hybrid separation processes. *Periodica Polytechnica: Chemical Engineering* **2014**, 58, (1), 7-14.

97. Huang, B.; Liu, Q.; Caro, J.; Huang, A., Iso-butanol dehydration by pervaporation using zeolite LTA membranes prepared on 3-aminopropyltriethoxysilane-modified alumina tubes. *Journal of Membrane Science* **2014**, 455, 200-206.

98. Guo, W. F.; Chung, T. S.; Matsuura, T., Pervaporation study on the dehydration of aqueous butanol solutions: A comparison of flux vs. permeance, separation factor vs. selectivity. *Journal of Membrane Science* **2004**, 245, (1-2), 199-210.

99. Kujawski, W.; Krajewski, S. R., Sweeping gas pervaporation with hollow-fiber ion-exchange membranes. *Desalination* **2004**, 162, (1-3), 129-135.

100. Fathizadeh, M.; Aroujalian, A.; Raisi, A.; Fotouhi, M., Preparation and characterization of thin film nanocomposite membrane for pervaporative dehydration of aqueous alcohol solutions. *Desalination* **2013**, 314, 20-27.

101. Omidali, M.; Raisi, A.; Aroujalian, A., Separation and purification of isobutanol from dilute aqueous solutions by a hybrid hydrophobic/hydrophilic pervaporation process. *Chemical Engineering and Processing: Process Intensification* **2014**, 77, 22-29.