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ABSTRACT: 4.8 nm Pt nanoparticles were anchored onto the surface of mesoporous nickel-

oxide supports (NiO). Pt/NiO samples were compared to pristine NiO and Pt/SBA-15 silica 

catalysts in CO2 hydrogenation to form carbon-monoxide, methane and ethane at 473-673 K. 

1 % Pt/NiO were ~20 times and ~1.5 times more active at 493 K compared to Pt/SBA-15 and 

NiO catalysts, respectively. However, the Pt-free NiO support has an activity of 120% 

compared to Pt/NiO catalysts at 673 K. In the case of 1% Pt/SBA-15 catalyst, selectivity 

towards methane was 13 %, while it was 90% and 98% for NiO and 1% Pt/NiO at 673 K, 

respectively. Exploration of the results of the reactions was performed by Near Ambient 

Pressure X-ray Photoelectron Spectroscopy (NAP-XPS) as well as in-situ Diffuse Reflectance 
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Infrared Fourier Transform Spectroscopy (DRIFTS). In the case of pure NiO, we found that 

the surface of the support was mainly covered by elemental Ni under reaction condition, 

where the Ni/NiOx system is responsible for the high activity of Pt-free catalyst. In the case of 

Pt/NiO, Pt improves the reduction of NiOx towards metallic Ni. In the case of the 1 % Pt/NiO 

catalysts, the presence of limited amount of Pt resulted in an optimal quantity of oxidized Pt 

fraction at 673 K showing the presence of a Pt/PtOx/Ni/NiOx mixed phase where the different 

interfaces may be responsible for the high activity and selectivity towards methane. In the 

case of pure NiO under reaction condition, small amounts of formaldehyde as well as 

hydrogen perturbed CO [HnCO (n=1,2)] were detected. However, in the case of 1 % Pt/NiO 

catalysts, besides the absence of formaldehyde a significant amount of HnCO (n=2-3) was 

present on the surface responsible for the high activity and methane selectivity.  

 

INTRODUCTION 

Carbon-dioxide conversion into fuels is highly relevant today both from the process 

improvement and from the environmental points of view1,2,3. Heterogeneous catalysis4, 

electrochemistry5, photochemistry6 or photoelectrochemistry7,8 etc. are used to find the perfect 

solution for carbon dioxide reduction towards sufficient energy forming methods. 

Noble metal (Rh, Ru, Pt, Pd) or Ni, Fe, Co based catalysts are productive materials for 

methanation reactions9,10 and CuO/ZnO/Al2O3 systems are used for methanol synthesis11. 

MnOx/CoOx hybrid catalysts are promising candidates for low pressure high energy fuel 

synthesis4. Pt supported on Nb2O5 or ZrO2 is also active in low temperature CO2 

hydrogenation12. Nickel based catalysts are cost efficient and have high efficiency in CO2 

methanation reactions9. Pt/NiO systems are active in C=O bond activation13, where the 

Pt/NiO interface as well as the oxidation state of the support play a role in the reaction 

pathways. Size controlled Pt nanoparticles anchored onto the surface of designed mesoporous 

NiO films resulted in a high efficiency photoelectrochemical catalyst7. 

Recent developments in engineering the metal–support interaction in Co3O4, MnO2, and CeO2 

supported Pt nanoparticle systems have resulted in catalysts with enhanced activity in the CO 

oxidation reaction13. Another major achievement was the 50% reduction of the CO2 

methanation activation energy by deliberately exploiting the hydrogen spillover 

phenomenon14. In-situ investigation methods were used successfully to facilitate the in-depth 

understanding of the reactions, reactants, intermediates, and the surface chemistry of the 
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catalysts under reaction conditions15,16,17. Based on the knowledge accumulated about the 

activity, mechanism, and selectivity of the CO2 hydrogenation reaction, such advances 

correspond to major steps beyond trial-and-error catalyst exploration. 

Despite the potential advantages of Pt/NiO systems, studies on the rational design of Pt/NiO 

catalysts are scarce and somewhat contradictory. The structure of the active catalysts as well 

as the mechanism of the reaction and the nature of the surface intermediates are hardly 

investigated under reaction conditions in CO2 hydrogenation. From earlier reports one could 

infer that the CO2 hydrogenation reaction over Pt/NiO catalysts may include nickel-oxide 

reduction towards elemental nickel with or without Pt enhancement18, carbonate and formate 

formation on the surface of the metal or the oxide19,20, formation of CO and hydrogen 

perturbed CO on the metal surface which can turn into CO as well as low weight hydrocarbon 

(e.g. CH4) products21. The debate on these questions is a hot issue today in the field.  

We report here on anchoring size controlled Pt nanoparticles with 4.8 nm diameter onto the 

surface of a designed 3D mesoporous nickel-oxide support. Pt/NiO, pristine NiO as well as Pt 

supported SBA-15 catalysts were tested in CO2 hydrogenation in the gas phase in a flow 

reactor between 493-673 K.  The catalysts were monitored with Temperature Programmed 

Reduction (TPR) and Near Ambient Pressure X-ray Photoelectron Spectroscopy (NAP-XPS) 

as well as in-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) 

under reaction conditions. 1% Pt/NiO sample had the highest activity in CO2 hydrogenation at 

693 K, where the main product was CH4. Pure mesoporous nickel-oxide support showed 

significant activity due to the Ni/NiO interface on the surface. 

The reducibility of oxide supports in the presence of metal catalysts is crucial for deep 

understanding of hydrogenation reactions. The lack of knowledge on nickel-oxide supported 

Pt systems also conducted our attention to investigate mesoporous nickel oxide supported Pt 

nanoparticles with in-situ techniques under parameters of hydrogenation of CO2. 

We found that under reaction conditions, in the case of Pt/NiO catalyst, there is a complex 

interface of Ni/NiOx/PtO/Pt where Pt boosts the reduction of NiO to metallic Ni on the top 

layers via the assistance of oxygen migration to the surface from the bulk. Furthermore, in the 

case of the most active 1 % Pt/NiO catalyst, the surface was highly covered by hydrogen 

perturbated CO under reaction condition showing the important role of such intermediates 

towards the high CH4 activity and selectivity. Interestingly, in the case of the pristine NiO and 
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the high Pt content Pt/NiO catalyst, formaldehyde was found on the surface, which was stable 

and may decompose towards CO and carbonate. 

 

EXPERIMENTAL SECTION 

Synthesis of 4.8 nm Pt nanoparticles 

Synthesis of 4.8 nm particles is based on a modified version of the polyol-method22,7. Briefly, 

0.04 g Pt(C5H7O2)2 and 0.035 g polyvinylpyrrolidone (PVP, MW = 40,000) are solved in 5 ml 

ethylene-glycol and ultrasonicated for 30 minutes to obtain a homogenous solution. The 

reactor is a three-necked round bottom flask, which is evacuated and purged with atmospheric 

pressure argon gas for several cycles to get rid of additional oxygen and water. After three 

purging cycles, the flask was immersed in an oil bath heated to 200 °C under vigorous stirring 

of the reaction mixture as well as the oil bath. After 10 minutes of reaction, the flask was 

cooled down to room temperature. The suspension is precipitated by adding acetone and 

centrifuging. The nanoparticles are washed by centrifuging with hexane and redispersing in 

ethanol for at least 2-3 cycles, and finally redispersed in ethanol. 

Synthesis of Mesoporous Nickel Oxide support 

For the preparation of mesoporous nickel-oxide support (NiO), hard template replica method 

was applied13. For the synthesis, KIT-6 silica was used as a hard template. For the synthesis of 

KIT-6, 27 g of Pluronic-123 block copolymer and 43.5 ml HCl was dissolved in 980 ml 

water. After 30 min, 33.3 ml n-butanol was added to the solution at 35 °C under vigorous 

stirring. After 1 h of stirring, 58 g of Tetraethyl orthosilicate (TEOS) was added dropwise to 

the solution followed by stirring for 24 h at 35 °C. The solution is stored in a capped plastic 

autoclave at 40 °C for another 24 h. Then the solid product was filtered, dried at 90 °C 

overnight and calcined at 550 °C for 6 h. 

NiO was prepared through the hard template method using the as-prepared KIT-6. In a typical 

synthesis, 4,65 g Ni(NO3)2·6 H2O was dissolved in 8 ml water at 65 °C and in another flask 4 

g KIT-6 was dissolved in 40 ml toluene at 65 °C. They were stirring separetly for 30 min, 

then the second suspension was transferred into the first with 10 ml of toluene. Vigorous 

stirring was applied to the mixture at 65 °C until the total evaporation of toluene. After the 

evaporation, the precipitated product was collected and dried at 60 °C overnight, followed by 

calcination at 300 °C for 6 h. The silica template was completely removed by several washing 
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steps using 200 ml, 2 M aqueous NaOH solution and destilled H2O. The sample was washed 

to neutral pH. The filtered product was dried at 50 °C overnight. 

 

Synthesis of SBA-15 mesoporous silica support 

SBA-15 mesoporous silica support was synthesized from tetraethyl orthosilicate (TEOS) by a 

soft template method. Here, 8 g of pre-melted Pluronic-123, 60 ml distilled water and 240 ml 

of 2 M HCl solution were mixed at 40 °C for 2 hours. After the dissolution of P-123, 17 g of 

TEOS was added dropwise to the mixture at 40 °C and continuous stirring was applied for 20 

hours. Stirring was continued for 36 hours at 60 °C. After the synthesis, the product was 

filtered and washed with distilled water. Then, the product was heated to 100 °C with a 

heating rate of 2 °C·min-1 and aged for 5 hours; then the temperature was elevated to 550 °C 

with a heating rate of 1 °C·min-1. After 4 hours of calcination, the product was ready for 

further use. 

 

Synthesis of Mesoporous NiO and SBA-15 supported Pt catalysts 

To fabricate supported catalysts, the ethanol suspension of Pt nanoparticles and the different 

supports (NiO, SBA-15) were mixed in ethanol and sonicated in an ultrasonic bath (40 kHz, 

80 W) for 3 hrs. The supported nanoparticles were collected by centrifugation. The products 

were washed with ethanol three times before they were dried at 80 ⁰C overnight.  

 

Hydrogenation of carbon-dioxide in a continuous flow reactor 

Before the catalytic experiments either in a continuous-flow reactor or in the ambient pressure 

XPS chamber the as received catalysts were oxidized in O2 atmosphere at 573 K for 30 min to 

remove the surface contaminants as well as the PVP capping agent23,24 and thereafter were 

reduced in H2 at 573 K for 60 min. 

Catalytic reactions were carried out in a fixed-bed continuous-flow reactor (200 mm long with 

8 mm i.d.), which was heated externally. The dead volume of the reactor was filled with 

quartz beads. The operating temperature was controlled by a thermocouple placed inside the 

oven close to the reactor wall, to assure precise temperature measurement. For catalytic 

studies small fragments (about 1 mm) of slightly compressed pellets were used. Typically, the 

reactor filling contained 20-150 mg of catalyst. In the reacting gas mixture, the CO2:H2 molar 
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ratio was 1:4, if not denoted otherwise. The CO2:H2 mixture was fed with the help of mass 

flow controllers (Aalborg), the total flow rate was 50 ml/min. The reacting gas mixture flow 

entered and left the reactor through an externally heated tube to avoid condensation. The 

analysis of the products and reactants was performed with an Agilent 6890 N gas 

chromatograph using HP-PLOTQ column. The gases were detected simultaneously by 

thermal conductivity (TCD) and flame ionization (FID) detectors. The CO2 was transformed 

by a methanizer to methane, and it was also analyzed by FID. 

In a typical measurement, after the pretreatment process, the samples were cooled in flowing 

H2 to 473 K and the catalysts were introduced to CO2:H2 mixture with a molar ratio of 1:4 

with a total flow rate of 50 ml/min at 473 K and the reactor was heated linearly at a rate of 5 

K/min up to 673 K and equilibrated for 120 min. After this method, we started measurements 

in the case of 1% Pt/SBA-15 and 5 % Pt/SBA-15 at 673 K, 643 K, 623 K, 593 K and then 

were heated back to 613 K, 653 K, 673 K after waiting for constant activity at each 

temperature (~1 hr). In the case of NiO, 1% Pt/NiO and 5% Pt/NiO catalysts, we used 

temperatures of 673 K, 583 K, 568 K, 553 K, 538 K and 523 K. We plotted corresponding 

Arrhenius-plots in the conversion regime of 0.5-10 %. 

 

Temperature Programmed Reduction (TPR) 

The temperature-programmed reduction (TPR) was carried out in a BELCAT-A apparatus 

using a reactor (quartz tube with 9 mm outer diameter) that was externally heated. Before the 

measurements, the catalyst samples were treated in oxygen at 573 K for 30 min. Thereafter, 

the sample was cooled in flowing Ar to room temperature and equilibrated for 15 min. The 

oxidized sample was flushed with Ar containing 10% H2, the reactor was heated linearly at a 

rate of 20 K·min-1 up to 1373 K and the H2 consumption was detected by a thermal 

conductivity detector (TCD). 

Furthermore, after the catalytic experiments, TPR measurements were performed on the spent 

catalysts to gain information on the quality and quantity of deposited carbon. After running 

the reactions of CO2:H2 mixtures at 673 K for 120 min, the reactor was flushed with He at the 

reaction temperature. The sample was subsequently cooled to ambient temperature, the 

helium flow was changed to H2, and the sample was heated up to 1173 K with a 20 K·min-1 

heating rate. The in situ formed products were analyzed and quantified by gas 

chromatography. 
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Near Ambient Pressure X-ray Photoelectron Spectoscropy (NAP-XPS) 

An ultra-high vacuum system equipped with a hemispherical analyzer (PHOIBOS series with 

1 DLD detector) and a monochromatic AlKα (hν=1486.6 eV) X-ray radiation source was 

employed to perform the X-ray photoelectron spectroscopy25. The binding energy scale of all 

XPS spectra was calibrated according to the C 1s reference (284.3 eV, which corresponds to 

the adventitious carbon). However, only the relative energy position of XPS photoelectron 

lines in each sample is needed to determine the valence band offset (VBO) and the absolute 

energy calibration for a sample does not affect the ultimate result. The XPS spectra were 

analysed by fitting the Shirley-type function, which is commonly used in XP spectra 

deconvolution26 and a sum of Voigt functions to the experimental results, using the KolXPD 

software24. The catalysts were pre-treated (oxidized and reduced) before the experiments the 

same way as before the catalytic measurements. The partial pressure of the oxygen under the 

oxidation was 20 mbar and in the case of reduction the hydrogen was set to 5 mbar. Under 

reaction conditions, the ratio of the CO2:H2 was set to 1:4 with a total pressure of 5 mbar.  

 

In-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) 

Infrared spectroscopy measurements were carried out with an ‘Agilent Cary-670’ FTIR 

spectrometer equipped with ‘Harrick Praying Mantis’ diffuse reflectance attachment. The 

sample holder had two BaF2 windows in the infrared path. The spectrometer was purged with 

dry nitrogen. The spectrum of the pretreated catalyst was used as background. At room 

temperature, a CO2-to-H2 molar ratio of 1:4 was introduced into the DRIFTS cell. The tubes 

were externally heated to avoid condensation. The catalyst was heated under the reaction feed 

linearly from room temperature to 773 K, with a heating rate of 20 K·min-1 and IR spectra 

were measured at 50 K intervals. All spectra were recorded between 4000 and 900 cm-1 at a 

resolution of 2 cm-1. Typically, 32 scans were registered. Due to the short optical path within 

the DRIFTS cell, the contribution of the reactant gases was negligibly small, and from gas 

phase products only the most intense features were observable. 

 

High Resolution Transmission Electron Microscopy (HR-TEM) 

Imaging of the different silica supports, Pt nanoparticles and derived catalysts, as well as the 

size distribution of the nanoparticles before and after the catalytic reaction, was performed by 

an FEI TECNAI G2 20 X-Twin high-resolution transmission electron microscope (equipped 
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with electron diffraction) operating at an accelerating voltage of 200 kV. The samples were 

drop-cast onto carbon film coated copper grids from ethanol suspension. 

 

Powder X-ray Diffraction (XRD) 

XRD studies of the silica supports were performed on a Rigaku MiniFlex II instrument with a 

Ni-filtered CuKα source in the range of 2θ = 10-80°. 

 

Gas Sorption Measurements 

The specific surface area (BET method), the pore size distribution and the total pore volume 

were determined by the BJH method using a Quantachrome NOVA 2200 gas sorption 

analyzer by N2 gas adsorption/desorption at - 196 °C. Before the measurements, the samples 

were pre-treated in vacuum (<~ 0.1 mbar) at 473 K for 2 hours.  

 

3. RESULTS AND DISCUSSION 

3.1 Characterization of the catalysts 

Platinum nanoparticles were synthesized by a polyol method from platinum-chloride 

precursor using ethylene glycol as a media and PVP as a capping agent7. The as-prepared Pt 

nanoparticles have a narrow size distribution with an average diameter of 4.8 ± 1.5 nm (Fig. 

1/A.). Electron Diffraction patterns confirm the presence of Pt (111), Pt (200), Pt (220) and Pt 

(311) crystallite planes characteristic for metallic face-centered cubic (fcc) platinum. 

Mesoporous nickel oxide was prepared by the replica method using KIT-6 mesoporous silica 

as a hard template and SBA-15 silica for reference state support were synthetized by the soft 

method using tetraethyl orthosilicate (TEOS) as a template13. TEM investigations confirm the 

mesoporous structure of the as-prepared mesoporous NiO and SBA-15 supports with a pore 

diameter of 3-6 nm (Fig. 1/B., Fig. 1/C.). 

4.8 nm Pt nanoparticles were successfully loaded onto the surface of the catalyst supports in 

both 1 wt% (Fig. 1/C., Fig. 1/D.) as well as in 5 wt% (Fig. 1/E., Fig. 1/F.) concentration. In 

case of 1% loading, there is a smooth distribution of the Pt nanoparticles. In the case of 5 % 

loading, clusters of 3-7 pieces of Pt nanoparticles were also observed. 
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Figure 1. Typical TEM images of 4.8 ± 1.5 nm metallic Pt nanoparticles with narrow size 

distribution (ED pattern shows the presence of metallic Pt) (A), mesoporous nickel-oxide 

support (B), and 4.8 nm PtNPs supported on SBA-15 and NiO with a loading of 1 wt% (C, D) 

as well as of 5 wt% (E, F) 

The N2 adsorption/desorption isotherms for pure NiO as well as for SBA-15 silica supports 

show a type V isotherm characteristic for mesoporous materials (Fig. S1/A., Fig. S1/B.). The 

type H1 hysteresis loop further strengthening the presence of an ordered structure. The 

specific surface area was found to be as high as 127 m2/g and 820 m2/g for pure NiO and 

SBA-15, respectively. The XRD patterns of the as-prepared NiO confirms the presence of 

Ni(II)O (100), (200), (220), (311) and (222) crystal planes, characteristic to the face centered 

cubic (fcc) nickel(II)- oxide structure (Fig. S1/C.). The broadened diffractions with lower 

intensity show the amorphous nature of the NiO, which further correlates with the TEM 

images. In the case of the SBA-15 support, only the weak, broadened diffraction of SiO2 

(101) was observed indicating the low crystallinity of the silica material (Fig. S1/D.) 
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3.2 Hydrogenation of CO2 over mesoporous NiO and 4.8 nm Pt nanoparticles supported on 

SBA-15 and NiO 

1% and 5 % 4.8 nm Pt nanoparticles supported on mesoporous nickel oxide as well as pure 

NiO and 4.8 nm Pt nanoparticle/SBA-15 samples for reference state were tested in CO2 

hydrogenation to form carbon-monoxide, methane, and ethane at 593-673 K in a fix bed flow 

catalytic reactor. The summarized catalytic results are collected on Fig. 2. 

1 % Pt/NiO was ~45 times and ~1.5 times more active at 593 K compared to Pt/SBA-15 and 5 

% Pt/NiO catalysts, respectively (Fig. 2/A.). However, the Pt-free NiO support has an activity 

of ~120% compared to 1 % Pt/NiO catalysts at both 593 K and 673 K (Fig. 2/B.). In the case 

of 1% Pt/SBA-15 catalyst, selectivity towards methane was 13 %, while it was 90% and 98% 

for NiO and 1% Pt/NiO at 673 K, respectively (Fig. 2/C., Fig. 2/D.). 

In the case of Pt/SiO2 catalysts, the main product was CO via the water-gas-shift reaction 

from CO2 which was formed at the interface of the Pt and SiO2
27. In the case of pure NiO, the 

high selectivity towards CH4 indicates the formation of metallic nickel on the NiO surface 

under reaction condition as metallic nickel is a well-known catalyst in CO2 methanation9,28. Pt 

has no significant conversion enhancing effect on the reactivity of mesoporous nickel-oxide. 

In the case of the most active 1% Pt/NiO catalyst, 78% conversion was reached at 673K. Size 

controlled Pt nanoparticles have an activity increasing effect in 1 % loading. However, the 

activity of 5% Pt/NiO is lower than that of pure NiO catalysts. Also, the excess amount of Pt 

resulted in enhanced CO production showing the presence of individually working Pt surfaces 

blocking some of the active NiO sites and Pt/Ni/NiOx interphases. 

A small amount of ethane was detected in the case of nickel-oxide support. 5% Pt/NiO 

catalysts produced 3 times more ethane (0.12 %) compared to pure NiO (0.04 %) and 1% 

Pt/NiO catalyst (0.03 %) (Fig. S2/A.). The catalysts remained stable at 673 K under the 

reaction condition for at least 2.5 hours (Fig. S2/B.). 
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Figure 2. CO2 hydrogenation over 1% and 5% Pt/NiO, Pt/SBA-15 and pure NiO catalysts at 

593 K and 673K 

 

Activation energy calculation was determined for all catalysts in the kinetical regime (0.5-

10% conversion) at 523-623 K (Fig. S3.). For 1% Pt/SBA-15 and 5 % Pt/SBA-15, the 

activation energies were 16.7 kcal/mol and 19.4 kcal/mol, respectively. This results are 

correlated with other studies10. 

In the case of Pt free mesoporous nickel oxide support, the higher activation energy (25.2 

kcal/mol) show the presence of different mechanism. This phenomenon shows different 

pathway of the reaction as it is clearly seen from the fact that the selectivity towards CH4 is 

higher compared to the Pt/SBA-15 systems. These activation energy values for CO as well as 

for CH4 formation is comparable for the results from literature29. 

In the case of mesoporous nickel oxide supported catalyst, the presence of the Pt nanoparticles 

resulted in a slight decrease of the activation energies. For 1% Pt/NiO and 5 % Pt/NiO, the 
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activation energies were 22.8 kcal/mol and 20.7 kcal/mol, respectively. Pt plays an important 

role in the reduction of nickel oxide as well as preferring other reaction routes. For deeper 

understanding of Pt/NiO system in this reaction, H2 TPR, NAP-XPS as well as DRIFTS 

studies were performed. 

  

3.3 Temperature programmed reduction 

The reduction profile of supported metal catalysts depends on the interaction of the metal with 

its support30. In present cases the catalysts were oxidized at 573 K for 30 min. In the case of 

Pt/SBA-15, there is no significant interaction between Pt and support. The platinum oxide 

formed during oxidation treatment can be reduced at 500-850 K. The lower TPR peak is at 

580 K, the higher is at 697 K (Fig. S4.). Pt0 can be obtained in this temperature range on 

SBA-15 and SiO2 according to the literature31,32. Where the interaction of Pt with oxide 

support is strong as in Pt/NiO case33, the positively charged platinum (Pt2+ or Pt4+) is 

relatively unstable and is easily reduced to Pt0. 

In the case of the Pt anchored onto mesoporous nickel oxide support, part of the platinum is 

reduced at 488 K. However, the reduction of the other part of the platinum take places at 

higher temperatures (at the low temperature tailing of the feature of NiO) (Fig. 3.).  

The reducibility of NiO as catalyst and as catalyst support depends on the morphology, 

porosity and the preparation methods. In harmony with the literature34, the NiO can be 

reduced in two steps (Fig. 3.); the peak at 673 K could be attributed to reduction from Ni2+ to 

Niδ+ and the peak at 788 K is the characteristic temperature of the Niδ+ to Ni0 reduction. A 

very small TPR peak at 522 K is probably due to the reduction of a trace amount of Ni3+.  

The reducibility of NiO dramatically changes in the presence of Pt. Both characteristic TPR 

peaks moved to lower temperature. These changes are increasing with Pt metal content even 

at same sizes (4.8nm). In the case of the 1 % Pt/NiO, the TPR peaks are at 668 and 731 K. At 

5 % metal content, the peak temperatures moved further to 664 and 713 K (Fig. 3.). In the 

case of 5 % Pt content, the H2 consumption of second peak is less than that of first step, 

suggesting that NiO can be reduced to a great degree during the first step. It should be 

emphasized that TPR is a dynamic method therefore, if the reduction was carried out under 

isothermic condition, the same reduction trend would be achieved at lower temperatures. 
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Figure 3. TPR profile for NiO and NiO supported 4.8 nm Pt nanoparticles with a loading of 1 

% as well as 5 % showing the enhancing effect of Pt on NiO reduction towards metallic 

nickel. 

 

3.4 NAP-X-ray photoelectron spectroscopy during the catalytic reaction 

Pure nickel oxide, 5 % Pt/NiO catalyst was tested in NAP-XPS measurements under reaction 

conditions (573 K – 673 K, p = 5 mbar, CO2:H2 ratio was 1:4). Before catalytic reactions the 

catalysts were oxidized in O2 at 573 K, and then reduced at 573 K in H2 for 30 min. (The XPS 

spectra recorded during different treatments are presented in the Supporting Information). 

In the case of the as-prepared and oxidized NiO, the Ni 2p shows two different Ni states: one 

corresponds to NiO (853.4 eV) the other is very close to Ni(OH)2 form (855.6 eV) (Fig. 

S5/A.). A strong satellite appeared at 860.6 eV, which is characteristic for NiO. After 

oxidation a typical Ni 2p3/2 structure appeared at 853.1 and 855.1 eV and an intense satellite 

was detected at 860.4.0 eV. Very similar spectrum was reported previously for polycrystalline 

and macro-mesoporous NiO35,36,33. After reduction at 573 K, the main peak moved to 852.4 
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eV, and a peak developed at 858.1 eV as a satellite indicated that metallic Ni is dominant37, a 

small but remarkable oxidized fraction remained at 853.2 eV. 

The C 1s signals are shown in Fig. S5/B. The as prepared sample contains C 1s features 

(284.3 and around 288.2 eV) due to the adventitious carbon and precursor molecules. After 

oxidation-reduction, only a small intensity carbon feature was left at 284.3 eV. 

Similar spectra were obtained on Pt/NiO for Ni 2p with only differences that after reduction 

Ni2+ contribution was not detected. The C 1s due to the template and PVP were removed in 

oxidation-reduction cycle. The Pt 4f shows mainly Pt0 chemical state; only a small fraction 

remained in the partially oxidized state. 

 

 

 

Figure 4. Ni 2p XP spectra of NiO (A) and 5 % Pt/NiO (B) under CO2 hydrogenation 

conditions and subsequent evacuation at 673 K 

 

Under reaction conditions at 573 K – 673 K, on the surface of NiO the Ni 2p3/2 appeared at 

852.4 eV which corresponds to zero valent Ni0 (Fig. 4/A.). A shoulder can be detected at 

853.1 eV due to Ni2+ with its satellites at 855.1 and 860.4 eV, which are characteristic for 

NiO33,35,36 the latter one appeared only with very small intensity. Two obvious satellites are 

fitted by peaks with BE near 856.3 eV (hardly detectable) and at 858.1 eV (major) above the 
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main emission of Ni0 at 852.4 eV which is characteristic for metallic Ni37. The satellite for 

NiO at 860.4 eV is in well-detectable in the deconvoluted spectrum obtained after vacuum 

treatment at 673 K (Fig. 4/A.). In the determination of the ratio of metallic and oxidized 

fraction we considered all the six emissions in deconvolution in the Ni 2p3/2 range. 

At 5 mbar total pressure and at 573 K, in the case of pure nickel-oxide, the nickel is mainly in 

reduced state (74% Ni0/ΣNi). The metallic nature of the surface became less significant in 

CO2 hydrogenation at 673 K (~69% Ni0/ΣNi) and the following UHV conditions (~ 56 %). 

These phenomena may be attributed to the fast migration of the oxygen atoms to the surface 

as well as the slow reoxidation of the elemental nickel on the surface by the adsorbed CO2
38 

or water39.   

Beside Ni 2p, C1s and O1s XP signals were also monitored during reaction conditions at 573 

and 673 K (Fig. S6. and Fig.S7.). Intense photoemission peaks developed at 292.7 and 291.3 

eV in the case of C1s spectra. These peaks can be attributed to gas phase CO2 and gas phase 

CO formed in the reaction40, respectively. These XPS signals disappeared when the surface 

was evacuated at 573 or 673 K (Fig. S6.). It is an important observation that a carbon species 

remained at 283.2 eV (except adventitious carbon) on the surface after reaction at 573 K. 

Very likely this peak corresponds to carbidic carbon41,42. The origin of this species is the 

result of decomposition of CHx.  This form markedly decreased on the surface after reaction at 

673 K. We suppose in harmony with the literature the carbon on Ni dissolves to the bulk. 

This was confirmed by TPR spectroscopy when the used catalyst was heated in hydrogen at a 

heating rate of 10 K·min-1. The amount of the carbon was below the detection (not shown). 

Corresponding O 1s signals for gas phase CO and CO2 were detected at 536.4 and 537.6 eV, 

respectively43 (Fig. S7.). Besides surface (531.0 eV) and lattice (530.0 eV) oxygen XPS 

peaks, a relatively broad peak centered at 533 eV was also present. Detailed analysis did not 

attempt because the DRIFTS give much precise identification of intermediates and adsorbed 

species. This complex peak may contain formate and different carbonates and adsorbed CO 

contributions27,44,8 which were identified by DRIFTS (see below). After evacuation at 673 K, 

the intensity of the O 1s region decreased due to desorption (not shown), but it became more 

complex as a significant fraction of formate (and formaldehyde) might be transformed to 

carbonate as independently detected by DRIFTS (see below). Note that the possibility of 

readsorption from background during evacuation cannot be completely excluded. 
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Figure 5. Pt 4f XPS spectrum of 5 % Pt/NiO under pretreatment (in O2 and H2) as well as 

reaction conditions at 5 mbar total pressure of CO2:H2 with a ratio of 1:4 at 573 K and 673 K. 

 

In the case of the 5 % Pt/NiO catalyst, the Ni 2p3/2 was also followed during reactions at 573 

and 673 K and after evacuation at 673 K, respectively (Fig. 4B.). The obtained results are 

relevant compared to the NAP-XPS studies of the pure NiO catalyst. (In the determination of 

the ratio of metallic and oxidized fraction we considered all the six emissions of Ni and NiO 

in deconvolution.) During CO2 hydrogenation at 573 K, the surface concentration of metallic 

nickel is 69 % (Fig. 4B.). In the case of the pure nickel-oxide catalyst, at 673 K and after 

reaction at 673 K, the concentration of the Ni0 decreased from ~69% to ~56 %. However, in 

the case of Pt containing catalyst this trend was opposite. This shows a metallic nickel 

enrichment on the surface after CO2 hydrogenation at 673 K (~69 %). After reaction at 673 K 

under UHV condition, the concentration was ~71.5 %. Probably, oxygen diffusion from the 
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bulk also takes place, where the oxygen atoms from the bulk as well as from the surface of the 

nickel-oxide support migrate to the Pt nanoparticles helping in the reduction of nickel-oxide. 

During reaction at 573 K, a small amount of oxidized Pt was observed (Fig. 5.). Under 

reaction conditions at 673 K, the amount of the oxidized fraction decreased. However, when 

the catalyst was evacuated at 673 K, the oxidized fraction was regained showing the presence 

of the oxygen transferring properties of the Pt nanoparticles from the nickel-oxide to the Pt 

catalyst. In addition, we may suppose that the enhanced electron transfer from Pt 

nanoparticles to NiO or Ni/NiO interface40 and oxidation of Pt nanoparticles by CO2 or CO2 

derivatives (carbonate-like surface species) also contribute to the increased oxidized Pt 

fraction. 

The other important observation is that the intensity of Ni 2p3/2 is increasing with the 

temperature in the presence of Pt. Besides the reduction of the surface from NiO to elemental 

nickel, the bulk 5 % Pt/NiO catalyst showed the presence of a high amount of metallic Ni 

observed by separate XRD studies (Fig. S8.). Furthermore, a slight sharpening of the Pt (111) 

diffraction peak was observed showing the aggregation of the Pt nanoparticles during the 

catalytic reaction resulting in the increase of the Ni 2p3/2 intensity after reaction. These 

phenomena show that Pt assist nickel (Ni + NiO) enrichment on the surface which is crucial 

in the activity and selectivity of the catalyst in the hydrogenation of CO2. 

On Pt/NiO catalysts the oxidation states of platinum, Pt 4f7/2 and Pt 4f5/2 were also monitored 

(Fig. 5.). The as received sample contains Pt0 and Pt2+ states in 3:1 ratio. After reduction of 

the catalyst at 573 K, the 4f5/2 appeared at 71.1 eV indicating that the platinum is in metallic 

state45. After careful analyzing of the spectrum, a small shoulder could be detected at 71.9 eV. 

This weak shoulder may indicate that a small fraction is in a partially oxidized state probably 

due to the electronic interaction of Pt with  Ni/NiO interface46. The final state effect arising 

from the small particles size47 probably can be ruled out because the particle sizes of Pt did 

not change during the reaction and after vacuum treatment according to our HRTEM 

experiments. Carbon XPS signal was hardly detectable after high temperature evacuation. 

TPR spectroscopy was able to detect a small amount of methane formation (Tp = 600 K) when 

the used catalyst was heated in hydrogen (not shown). 

The carbon and oxygen signals during the reaction were identical with that obtained with pure 

nickel oxide catalyst. Typical O 1s obtained on Pt/NiO in the reaction is shown in Fig. S7/B. 

The freshly reduced Pt surface is very active, so CO adsorption always occurs from the 

background in a certain amount. Therefore, we focus to the spectra obtained under reaction 
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conditions (573 and 673 K). It is remarkable that when increasing the reaction temperature, 

the intensities of lattice oxygen (530.1 eV) and surface oxygen (531.1 eV) slightly decreased 

due to the further reduction of NiO. Peaks at 537.6 and 536.4 eV corresponds to gas phase 

CO2 and CO, respectively43. A broad peak between 531 and 535 eV may compose C=O 

bonded species (probably formaldehyde), adsorbed CO and adsorbed formate and carbonate 

intermediates (which were identified by DRITS; see below). After evacuation at 673 K, the 

intensities of gas phase components (CO and CO2) drastically decreased. The intensities of 

other components decreased only slightly (not shown). 

 

3.5 Infrared spectra during CO2 hydrogenation at elevated temperatures 

For catalytic reactions, the exploration of surface species formed during the catalytic 

processes plays a decisive role in the understanding of the reaction mechanism. Towards this 

goal, DRIFT spectra were monitored at increasing reaction temperatures, in the presence of 

the reactant mixture/products. In all cases the different catalysts were pretreated in oxygen at 

573 K followed by reduction in H2 at 573 K. The assignment of IR bands and the detailed 

description is based on the vibrational fingerprints of relevant surface species, which were 

reported in previous publications. The IR bands observed during the present work and their 

origins are collected in Table 1. Note that the denoted wave numbers may vary by ± 5 cm-1 

within one data set as a function of temperature.  

When the reaction mixture was introduced to the Pt-free SBA-15, no adsorption forms were 

detected at any temperatures. The DRIFT spectra for 5% 5nm Pt/SBA-15 in the CO2:H2 

mixture are shown in Fig. S9. The band at 2072 cm-1 started to develop already at 300 K. 

From 373 K, the intensity increased and it was present even at high temperature (723 K). This 

peak is attributed to the formation of adsorbed CO which forms during the catalytic reaction. 

This kind of CO bonds to the Pt particles in linear form 48,49. This peak was also detected 

when the Pt content was 1% in the case of the Pt/SBA-15 catalysts (not shown). In that case 

the peak corresponding to the linear CO appeared first at 423 K with lower intensity. No other 

absorption band for adsorbed CO was detected. The linearly adsorbed CO form appeared 

when CO was introduced to this surface at 300 K, too.  
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Table 1. Characteristic frequencies (±5 cm-1) for surface intermediates formed in the CO2 + 
H2 reaction on pure NiO, Pt/NiO and Pt/SBA-15 catalysts 

 

 

The evaluation of the low wavenumber region of Pt/SBA-15 is particularly difficult, since the 

silica-like sample itself has very strong absorptions at ~1940, ~1820-1570 and ~1200-1000 

cm-1 52. Although these features should be accounted for by the background spectrum, they 

might also change as a function of temperature and thus disturb our spectra. We tentatively 

assign the features observed to this effect. We cannot exclude that a small absorption bands at 

1942 and 1825 cm-1 reflect the appearance of bridge bonded CO62. The latter could be 

influenced by adsorbed hydrogen. This feature was also detected on Rh/SiO2
21. The low-

frequency shift in the presence of hydrogen has been attributed to the formation of Rh 

carbonyl hydrides53,63,54. It is assumed that the CO in this complex could easily dissociate. It is 

important to mention that C-H stretching was not observed (Fig. S9.). These phenomena 

correlate with the catalytic tests, where the SBA-15 supported Pt nanoparticles produced 

Intermediates Vibration 

mode 

NiO 1% 

Pt/NiO  

5% Pt/ 

NiO 

Pt/ 

SBA-

15 

Ref. 

bidentate 
carbonate 
CO3

- 

 
ν3(O-C-O)a 

ν3(O-C-O)s 

 

1302 
1383 
1538 
1620 

1305 
1576 

1305 
1530 

  
 

50,51 

 
bicarbonate 
HCO3

-
  

 
ν2(O-C-O)a 

ν3(O-C-O)s 

δ(COH) 
 

 
1648 
1375 
1214 

1630 
1378 
1214 

 
1626 
1376 
1214 

  
 

51 

 
carbon 
monoxide 
CO 

 
linear 

 bridge 

  
2052 
1912 

(weak) 

 
2061 
1918 

 

 
2078 
1940 

 
48,49, 

52 

carbonyl 
hydrides 
HnCO (n=1,2) 

  1880 
(weak) 

1840 
(strong) 

1840 
(weak) 

 
1817 

 
21,53, 

19,54 
 
formaldehyde 
H2CO 

 
νCO 
νCH 

 

1770 
(weak) 
 

-  
1770 

(strong) 
2840 

  
55,56, 

57,58 

 
formate 
HCOO- 

 

 
νa(OCO) 
νS(OCO) 
γ(OCO) 

ν CH 

 
1576 
1340 

 
2837 

 
1572 
1376 

 
1576 
1350 
1379 
2838 

 

 
 
 
 

2840 

 
 
 

59,60, 

61,57 
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mainly CO and almost no other products. At the Pt/SiO2 interfaces, the reverse-water-shift gas 

(RWSG) reaction resulted in the formation of CO from CO2
27. 

 H2(g) → 2H(a)  (1) 

 CO2(g) → CO2(a)
* (2) 

 CO2(a)
*   +  H(a)   →  HOCO(a)

* (3) 

 HOCO(a)
* + H(a)     →  CO(a) + H2O(a)    →  CO(g) + H2O(g) (4) 

 

Figure 6. DRIFT spectra obtained during linear heating (20 K·min-1) in CO2:H2 mixture (1:4) 

on NiO (A), 1% Pt/NiO (B) and 5% Pt/NiO (C) catalysts (average Pt particle size is 4.8 nm). 

 

When CO2:H2 mixture was introduced to the pretreated NiO catalyst, a broad band appeared 

at 1648 cm-1 and two narrow ones at 1375 and 1209 cm-1 at 300 K, as represented in Fig. 6/A. 

These bands correspond to the bicarbonate (HCO3
-) species and can be assigned to ν2(OCO)a, 

ν3(OCO)s and δ4(COH), respectively51. The adsorption of CO2 on NiO gives two adsorption 

bands in the IR spectrum at 1620 and 1383 cm-1 (not shown), which are assigned to carbonate 

ion on the oxide50. Carbonate structures may be formed via coordination of a bent CO2
δ- 

towards an oxygen atom64. 

When the sample was heated to 473 K, two peaks developed at 1576 and 1340 cm-1. These 

bands can be assigned to the formation of formate species. These species were observed on 
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Rh/MgO catalyst during CO2:H2 adsorption19, and after adsorption of HCOOH on TiO2 

powder59,60 and TiO2 (110)61 due to asymmetric and symmetric stretch of (OCO). The 

corresponding ν(CH) vibration is detected at 2837 cm-1 from 473 K (Fig. S9/A.). Around 473 

K a weak band appeared at 1875-1900 cm-1 probably due hydrogen perturbed CO. 

When the sample was further heated (573-673 K), the intensity of C-H stretching vibrational 

features decreased. Two peaks remained or developed at 1576 and 1302 cm-1, very probably 

due to asymmetric and symmetric bidentate carbonates (ν3(OCO)a and ν3(OCO)s). A broad, 

weak peak at around 1770 cm-1 is detectable as C=O containing species (H2CO). Also a weak 

absorption band is detectable at 1918 cm-1 due to hydrogen perturbed CO, which is located on 

metallic Ni. From 573 K a sharp peak for gas phase CH4 was detected indicating that the 

reaction between CO2 and H2 is occurring (Fig. S10/A.). 

When 4.8 nm Pt nanoparticles were anchored onto NiO at different content, new spectral 

features were observed. The bicarbonate-formate-bidentate carbonate surface reaction 

sequence remained in the 300-623 K temperature range. In the case of the 1% Pt/NiO catalyst, 

peaks at 1576, 1378  cm-1 may represent the formate in νassym (OCO) and νs(OCO) modes, 

respectively65 (Fig. 6/B.). As new feature, linearly adsorbed CO at 2046-2061 cm-1 appeared 

already at room temperature. Small intensity bridge bonded CO showed up at 1915-1918 and 

1840 cm-1. The latter species is presumably CO perturbed by adsorbed hydrogen.  

It is clear that the Pt adatom catalyzes the transformation of bicarbonate to formate; peak at 

~1630 cm-1 (bicarbonate) is hardly detectable at 373 K in the case of 5% Pt/NiO sample 

(Fig. 6/C.). The corresponding ν(CH) vibration at 2837-40 cm-1 is detectable already at 323-

373 K (Fig. S/10.). The detection of a strong CO signal indicates that the Pt is an active center 

for the dissociation of CO2 in the presence of hydrogen. Without hydrogen the formation of 

adsorbed CO was not observed. The appearance of gas phase CH4 in FTIR spectra above 473 

K demonstrates that a catalytic reaction occurs between CO2 and hydrogen. The bands for 

adsorbed CO and CH and for gas phase methane (Fig. S10/B., S10/C.) appeared at higher 

temperature at low (1%) Pt content. Independently from the Pt content, an IR band was 

observed at 1840 cm-1, which was probably due to CO perturbed by hydrogen: so-called 

carbonyl hydrides21,54. BOC-MP calculations have also shown that the dissociation of HnCO, 

where n=1,2 or 3 is energetically more favorable than the direct dissociation of CO on Pd and 

Pt66. Although there is significant evidence to support the idea that C-O bond cleavage is 

hydrogen assisted, no direct evidence for the existence of HnCO surface species during the 

hydrogenation of CO or CO2 has been reported. Williams et al.67 have proposed a mechanism 
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for CO2 hydrogenation to methane over Rh based on the observations reported above in which 

H2CO(a) –like species is involved. Its decomposition leads to CH2(a) which either forms carbon 

or is hydrogenated to CH4. 

A significantly strong absorption feature at 1770 cm-1 is detected at 5% Pt content (Fig. 6/C.). 

This band corresponds to the C=O double bond, thus it can be assigned to formaldehyde 

(νCO). This peak was observed in gas phase formaldehyde68, after adsorption of 

formaldehyde on NiO55, on TiO2-supported Rh56 and Pt and Au catalysts57. It is evident that 

the formation of formyl/formaldehyde species is catalyzed by Pt particles in CO2:H2 reaction, 

because it was difficult to detect on clean NiO. As this intermediate is still present even at 

high temperature (673 K), we may suppose that its formation rate is higher than its 

decomposition rate. Very probably the formyl (H2CO) species could decompose to the final 

products. Mainly at 5% Pt content, we have two important IR peaks, that can both be assigned 

to hydrogen. It is perturbated CO: one is H2CO(a) – like species or carbonyl hydrides at 1840 

cm-1, the other is of formyl/formaldehyde, at 1770 cm-1 which contains C=O double bond. 

Both of them could be important in the CO2:H2 reaction. It is clear that the carbonyl hydrides 

are more reactive. νCH2 was detected even at 323-373 K indicating that in this case (compare 

to the Pt-free case) some hydrocarbon fragment, very probably formate is formed (Fig. 

S10/B., S10/C.). Gas phase methane appeared already from 523 K. The H2CO(a) is rather 

stable, its contribution to the gas phase products is less than the hydrogen perturbed CO. 

The question arises: what is the source of the formation of formyl/formaldehyde detected on 

Pt/NiO? Recently it was found that formaldehyde forms in the interaction of HCOOH with Pt 

supported TiO2
58. In this interaction it was supposed that both vacancies and Pt sites catalyze 

formaldehyde formation. It is important that the formate is produced on pure NiO, and the 

hydrogen is dissociating on Pt nanoparticles. We may assume that hydrogen atoms migrate to 

the metal-support interface and react with formate there to form formyl/formaldehyde. As 

adsorbed formyl was not detectable at low Pt content, we suppose that large amount of atomic 

hydrogen is necessary for this reaction. Though the dissociation of hydrogen takes place at 

300 K, formyl forms from 423 K at 5% Pt content, indicating that the hydrogen spillover from 

the metal to NiO or its reaction with formate is an activated process. This type of formyl 

could then decompose to CO at higher temperatures57.     

Taking into account the product distribution in the CO2:H2 reaction and the observed 

intermediates on NiO and Pt/NiO catalysts we may assume that the reversed water gas shift 

mechanism (RWGS) to form CO is also valid in a certain extent (steps 1-4). The methane 
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formation can be deduced through formation of surface HnCO (n= 1,2,3) which was offered 

on supported Pt21 and Rh18 catalysts:  

 CO(a) + nH(a)  → Hn(CO)(a) (5) 

 Hn(CO)(a)  →  CHn (a)  + O(a)  (6) 

 O(a) + 2H(a)  →  OH(a)  + H(a)  → H2O(g)  (7) 

 CHn (a)  + H(a)   →  CH4(g) (8) 

  

The reaction steps 5-8 could be dominant at 1% Pt content. The CHn species may recombine a 

small extent to form ethane.  

On Pt-free NiO, the formate pathways come to the front as formate is the main surface 

intermediate observed in DRIFTS:  

 CO2(a)
*   +  H(a)   →  HCOO(a)  (9) 

 HCOO(a)    →  CO(a) + OH(a) →  CO(g) + H2O(g) (10) 

The formate intermediate may produce methane, too19: 

 HCOO(a)    →  H2COH(a) →  H2C(a)  + OH(a) (11)  

 H2C(a)  +  2H(a)  →  CH4(g) (12) 

When the Pt content is high, the formate may convert to formaldehyde as was observed in our 

DRIFTS experiments and published on Pt/SiO2 and Pt/TiO2 
21,44: 

 HCOO(a)  + Pt  →  H2CO(a)   + Pt-O (13) 

The formaldehyde may decompose to CO44 at high temperature but may forms CH4
21, too69: 

 H2CO(a)   →  CO(g)  + H2(g) (14) 

 H2CO(a)  +  2 H(a)   →  CH3(a)  + OH(a) (15) 

 CH3(a)  + H(a)   →  CH4 (16) 

 

In summary, from the XPS measurements we may conclude that the CO2 hydrogenation at 

573 K and 673 K takes place on the surface and interface of a complex NiOx/Ni/PtOx/Pt 
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catalyst. Pt boosts oxygen migration to the surface as well as changes the reaction mechanism 

and activity, resulting in a high performance CH4 producing catalyst with 1% 4.8 nm Pt 

nanoparticles on the surface of the mesoporous nickel oxide support (Fig. 7A). 

In the case of pure nickel-oxide during CO2 hydrogenation over 673 K, small amounts of 

formaldehyde and hydrogen perturbated CO are present at the surface to form mostly methane 

observed by DRIFTS studies. In the case of the most active and methane selective 1% Pt/NiO 

sample, formaldehyde species are absent but a significant amount of hydrogen perturbated CO 

is present. The number of perturbing hydrogen atoms are even higher (2-3) compared to pure 

NiO catalyst (1-2). These results show, that the presence of Pt helps to produce the high 

numbered hydrogen perturbated CO complex, which in turn is producing methane in the CO2 

hydrogenation reaction. The formation of formaldehyde does not help methane formation 

process (Fig. 7/B.). 

 

  

Figure 7. (A) Schematic view of a presence of complex NiOx/Ni/PtOx/Pt catalyst, where Pt 

boosts oxygen migration to the surface; (B) Schematic view of the proposed mechanism of 

CO2 hydrogenation over hydrogen perturbated CO, where Pt flood the surface with hydrogen 

to enhance the CH4 formation. 

 

CONCLUSION 

Here in this project, size controlled Pt nanoparticles with 4.8 nm diameter were anchored onto 

the surface of 3D mesoporous nickel-oxide support. Pt/NiO, pristine NiO as well as Pt 

supported on SBA-15 catalysts were tested in CO2 hydrogenation reaction in the gas phase in 

a flow reactor at 473 – 673 K as well as investigated with Temperature Programmed 

Reduction (TPR). The catalysts were also monitored under reaction conditions with Near 
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Ambient Pressure X-ray Photoelectron Spectroscopy (NAP-XPS) as well as in-situ Diffuse 

Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). 

1 % Pt/NiO was ~20 times and ~1.5 times more active at 493 K compared to Pt/SBA-15 and 

NiO catalysts, respectively. However, the Pt-free NiO support has an activity of 120% 

compared to Pt/NiO catalysts at 673 K. In the case of 1% Pt/SBA-15 catalyst, selectivity 

towards methane was 13 %, while it was 90% and 98% for NiO and 1% Pt/NiO at 673 K, 

respectively. 

In the case of pure NiO, we found that the surface of the support was mainly covered by 

elemental Ni under reaction conditions, where the Ni/NiOx system is responsible for the high 

activity of Pt-free catalyst. In the case of Pt/NiO, Pt improves the reduction of NiOx towards 

metallic Ni. We found oxidized Pt at 673 K with XPS at 5% Pt content showing the presence 

of a Pt/PtOx/Ni/NiOx mixed phase, where the different interfaces may be responsible for the 

high activity and selectivity towards methane. 

In the case of pure NiO under reaction condition, formaldehyde as well as a small amount 

hydrogen perturbated CO was detected. However, in the case of 1 % Pt/NiO, significant 

amounts of HnCO species were presented on the surface showing that the reaction towards 

methane goes through the dissociation of HnCO on the surface. The formyl/formaldehyde 

form could be a rather inactive intermediate due to its high thermal stability.  
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