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SUMMARY Astroviruses are thought to be enteric pathogens. Since 2010, a cer-
tain group of astroviruses has increasingly been recognized, using up-to-date
random amplification and high-throughput next-generation sequencing (NGS)
methods, as potential neurovirulent (Ni) pathogens of severe central nervous sys-
tem (CNS) infections, causing encephalitis, meningoencephalitis, and meningoen-
cephalomyelitis. To date, neurovirulent astrovirus cases or epidemics have been
reported for humans and domesticated mammals, including mink, bovines,
ovines, and swine. This comprehensive review summarizes the virology, epidemi-
ology, pathology, diagnosis, therapy, and future perspective related to neuroviru-
lent astroviruses in humans and mammals, based on a total of 30 relevant arti-
cles available in PubMed (searched by use of the terms “astrovirus/encephalitis” and
“astrovirus/meningitis” on 2 March 2018). A paradigm shift should be considered based
on the increasing knowledge of the causality-effect association between neurotropic as-
troviruses and CNS infection, and attention should be drawn to the role of astroviruses
in unknown CNS diseases.
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INTRODUCTION

Encephalitis is an inflammation of the brain tissue associated with clinical evidence
of nervous system dysfunction. Encephalitis and central nervous system (CNS)

infections are caused by a wide spectrum of known and unknown infectious agents,
including bacteria, viruses, fungi, and parasites, in humans and animals (1, 2). Approx-
imately 25% of the notifiable infectious diseases listed by the World Organization for
Animal Health (OIE) are caused by neurotropic microbes (3). The microbial diagnosis of
acute encephalitis and CNS diseases is challenging, especially for immunocompromised
individuals, because of the atypical clinical signs and the potential presence of novel or
uncommon infectious agents (4). Despite the application of various classical and
modern diagnostic methods (e.g., culture, immunohistochemical, serologic, or molec-
ular methods), a causative agent is not identified for a substantial proportion of
encephalitis cases (5, 6). Failure to identify the etiology of neuroinfections impairs or
delays appropriate therapeutics and influences the morbidity and mortality of these
diseases (7).

Nonsuppurative (aseptic) encephalitis is an inflammation of the brain observed in
postmortem histopathological examinations and is indicative of an infectious viral
etiology. Perivascular cuffs with mononuclear cells, gliosis, and neuronal necrosis are
common characteristic features of the disease (8). New unbiased molecular technolo-
gies, such as random amplification and high-throughput next-generation sequencing
(NGS) methods, are valuable tools for differential diagnosis of unexplained diseases. An
excellent example is that this technique raised the possibility that astroviruses may be
associated with encephalitis in humans (9–11). Growing evidence of neurotropic/
neurovirulent astrovirus (Ni-AstV) strains has arisen for cases of encephalitis, meningitis,
and meningoencephalomyelitis in humans and animals, including mink (12), bovines
(13), ovines (14), and swine (15). If astrovirus infection reaches the CNS, the virus may
infect multiple types of neurons (e.g., Purkinje cells, interneurons, and CA pyramidal
neurons) and glial cells (e.g., astrocytes) in different parts of the CNS, including the
brainstem, cerebellar/cerebral cortex, hippocampus, and spinal cord. Astrovirus infec-
tion may also cause neuronal degeneration, necrosis, neuronophagia, and gliosis
(15–18). This means that the term “neuroinvasive astrovirus” may also be appropriate.

These unexpected initial results of astrovirus neuroinfection are starting to change
our view about the astrovirus disease spectrum and pathogenesis, although there are
several unanswered questions. At the same time, the evidence of astrovirus CNS
infections opens an important and interesting new research field in the pathology of
astroviruses.

NEUROVIRULENT ASTROVIRUS INFECTIONS IN HUMANS

Astroviruses are nonenveloped, single-stranded, positive-sense RNA viruses that are
typically transmitted by the fecal-oral route and may cause gastrointestinal disease (19).
One of the two astrovirus genera, Mamastrovirus, comprises viruses infecting mammals,
including 4 species with human astroviruses. The first species, Mamastrovirus 1
(MAstV1), corresponds to “classical” (fecal origin) human astrovirus types 1 to 8 (HAstVs
1 to 8). Since 2008, a further three species (MAstV 6, 8, and 9) of human astrovirus have
been identified. MAstV6 includes human astrovirus clades MLB1 (“MLB” stands for
Melbourne, the place of the first detection), MLB2, and MLB3 (20–22). The MAstV8
species includes astrovirus clades VA2 (“VA” stands for Virginia; also known as HMO-A
[human-mink-ovine-like astroviruses]) (21) and VA4 (22). Finally, the MAstV9 species
includes astrovirus clades VA1 (or HMO-C) (23) and VA3 (or HMO-B) (19, 21, 24). One
further human astrovirus, VA5 (25), is presently unassigned (19). Although these novel
astroviruses were initially detected in children with gastroenteritis, no definitive asso-
ciation has yet been established (19, 26, 27).

Both classical and, especially, novel astroviruses have been identified in unexpected
CNS infections, indicating that some of these viruses are able to enter the host through
the mucosal surfaces and infect extraintestinal cells and organs.

In 2010, astrovirus-associated encephalitis was reported for the first time, in a
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15-year-old immunocompromised boy with X-linked agammaglobulinemia in the
United States (9). The patient had suicidal and homicidal ideation, headache, memory
loss, and ataxia. He also had progressive cognitive decline and movement and com-
munication problems, became comatose, and died 71 days after admission (9). The
possible connection to a mink farm and the phylogenetic relationship of HAstV-PS to
mink astroviruses led the authors to assume that the mink was a potential source of
exposure (9). However, we cannot exclude the possibility of human-to-human trans-
mission of the infection in this case. To date, a further eight human cases of astrovirus
encephalitis have been reported, related to genotype VA1/HMO-C (n � 5) (9, 28–31),
the MLB group (MLB1 and MLB2) (32, 33), and the “classical” HAstV4 species (34),
although in the latter case, due to the undetermined complete capsid coding region
(ORF2), the exact classification of the virus is not possible. The nine cases of neurotropic
human astrovirus infections are summarized in Table 1. Except for an adult immuno-
competent woman with MLB2 self-limited CNS infection, all other infections occurred
in immunocompromised patients with severe underlying diseases. Six of the infections
were fatal (19).

These results led to the conclusion that astroviruses may be a cause of previously
unrecognized and severe neuroinfections, at least in immunocompromised humans,
with a potential tropism for the CNS as a novel human disease (19, 35).

NEUROVIRULENT ASTROVIRUS INFECTIONS IN ANIMALS

Astrovirus-associated encephalitis is not restricted to humans. Based on pioneer
studies, neurovirulent astroviruses have been reported from four domesticated mam-
mals: mink (Mustela vison) (12), bovines (Bos taurus) (13), ovines (Ovis aries) (14), and
swine (Sus scrofa domestica) (15).

Mink

The first report of neurovirulent astrovirus infections (“shaking mink syndrome”)
from animals was reported retrospectively in 2010 for farmed minks in Denmark by the
NGS method (12). Shaking, staggering gait, ataxia, and paraplegia were the character-
istic clinical signs (Table 2). The symptoms were reproduced by the inoculation of brain
homogenate from mink displaying “shaking mink syndrome” into experimentally in-
fected healthy mink kits (12). A similar neurological disease was observed in farmed
minks in Denmark in 2000 and 2002 and in Sweden and Finland in 2001 (12, 16), which
suggests the epidemic spread of this disease.

Bovines

Many more data and cases are available about neurotropic astroviruses in bovines.
While there are some historical reports since more than 60 years ago about “European
sporadic bovine encephalitis/encephalomyelitis” with unknown origin in bovines (36–
42), the first confirmed cases of bovine neurovirulent astrovirus infections were re-
ported only in 2013, from the United States (13). The neurovirulent astrovirus (bovine
astrovirus [BoAstV] strain NeuroS1; accession number KF233944) was identified by NGS
as the solely detectable virus in the CNS, and its presence was subsequently confirmed
retrospectively for 3 of 32 other bovines that had bovine encephalitides (meningoen-
cephalomyelitis and ganglioneuritis) of unknown etiology by reverse transcription-PCR
(RT-PCR) and in situ RNA hybridization (ISH) (13). Viral RNA was detected in the spinal
cord, brainstem, and cerebellum (13) (Table 2). The initial animal had lateral recum-
bency with opisthotonus and limb rigidity (13).

Independently, shortly thereafter, similar series of cases identified by the NGS
method were reported from Switzerland (17). In 2014, 5 (22.7%) of 22 cattle with
nonsuppurative encephalitis of unknown etiology were associated with neurotropic
astrovirus infections (17). The presence of astroviral RNA (BoAstV-CH13; accession
number KM035759) at the site of the affected neurons was also confirmed by ISH in all
5 cases (17) (Table 2). This astrovirus has been present in the Swiss bovine population
since at least 1995, particularly within the age group of 1.5 to 2.5 years (17). Two years
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later, the same research group reported additional astrovirus-positive encephalitis
cases from cattle, as determined by NGS and RT-PCR (43). This included a 4-year-old
Swiss cow that had hyperreactivity and incoordination and was diagnosed with me-
ningoencephalitis. The neurovirulent astrovirus (BoAstV-CH15; accession number
KT956903) was genetically different from cattle BoAstV-CH13 strains within the cluster
(VA1/HMO). By retrospective analysis, coinfection with BoAstV-CH13 and BoAstV-CH15
was detected in a case from the original 22 brain specimens from cattle with nonsup-
purative encephalitis. Another specific study from Switzerland showed that 2 (12.5%) of
16 brain samples from cattle with unknown encephalitides, collected between 1995
and 2015, were astrovirus positive by NGS (44) (Table 2). The neurovirulent astroviruses
from the 2- and 6-year-old diseased animals belonged to the BoAstV-CH13/BoAstV
NeuroS1 astroviruses within the VA1/HMO cluster. None of 50 healthy control cattle
were astrovirus positive by molecular methods (44). Taken together, the data show that
around one quarter of the Swiss bovine population with nonsuppurative encephalitis
of unresolved etiology had BoAstV-CH13 infection (45). Based on these results,
formalin-fixed, paraffin-embedded (FFPE) brain tissues from histologically confirmed
cases of European sporadic bovine encephalitis/encephalomyelitis between 1958 and
1976 were retested by ISH specific for BoAstV-CH13/BoAstV NeuroS1 in Switzerland
(18). Astrovirus positivity was detected in 12 (86%) of the 14 cases (18). Using a
combination of newly developed specific nucleic acid and viral protein detection
methods (ISH and immunohistochemistry [IHC]), 33 (34%) of the 97 sporadic bovine
encephalitis cases in Switzerland between 1985 and 2015 were BoAstV-CH13/BoAstV
NeuroS1 positive, but none of the control group samples were positive (8). The mean
age of the affected animals was 3.8 years in this study, and interestingly, all animals but
one were female (8). Seasonality from the beginning of winter until the end of spring
was observed, with peaks in November-December and March-April (8). Cattle with
neurovirulent astrovirus had behavioral changes (e.g., aggression or anxiety), gastro-
enteric symptoms (e.g., diarrhea or excessive salivation), and nystagmus (8). The most
important conclusion from the Swiss studies is that using systematic investigation and
specific methods to focus on the selected cases of bovine encephalitis increased the
sensitivity; this underlines the importance and correlation of the causal relationship
between neurological disease and astrovirus in the “post-Koch-postulate era” (8, 46).

Neurovirulent astrovirus infections in bovines were reported recently from Germany
and Canada as well. In Germany, a 15-month-old cow died of encephalitis within 6 days
after the onset of clinical signs (47). A neurovirulent astrovirus (BoAstV-BH89/14;
accession number LN879482) was identified by NGS (47) (Table 2). Recent ISH and
RT-PCR studies from Canada report that neurovirulent BoAstV-CH13/BoAstV NeuroS1
astroviruses are a common cause of encephalitis of unknown etiology (4 of 9 animals
tested) in Canadian feedlot cattle (48, 49).

The most frequently observed clinical signs in Swiss bovines (n � 8) with astrovirus-
associated encephalitis were decreased awareness of surroundings (87%), cranial nerve
dysfunction (62%), such as dysphagia, decreased lingual and jaw tone, and reduced
menace response and palpebral reflex, recumbency (62%), weakness, and tremor (50)
(Table 2). Cell counts and protein concentration were increased in 44% and 60% of
cerebrospinal fluid (CSF) samples, respectively. Astrovirus RNA was identified in only 1 of
the 4 CSF samples. Other laboratory abnormalities (increased total and CSF protein con-
centrations, nonsuppurative pleocytosis, and increased creatinine kinase level) were non-
specific (50). None of the affected bovines had a known immunocompromised status.

Ovines

A recent study reported cases of encephalitis and ganglionitis associated with
astrovirus in domestic sheep from Scotland (14). In that study, a 4-year-old Welsh
mountain ewe (from 2013) and a 10-day-old lamb (from 2014) from the same farm had
progressive neurological signs (e.g., depressed sensorium, tremor, and unusual behav-
ior) (Table 2). Nonsuppurative encephalomyelitis, particularly involving the cerebellar
cortex and spinal cord, and dorsal root ganglionitis were detected by neurohistopatho-
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logical methods. Nearly identical ovine astrovirus sequences (accession numbers
LT706530 and LT706531) within cluster VA1/HMO were detected from different tissue
samples—including from the CNS—although the cases presented 9 months apart (14).
In addition, an ovine astrovirus sequence (accession number KY859988) was also
reported for a 7-year-old Swiss white alpine ewe with nonsuppurative encephalitis in
Switzerland (51) (Table 2).

Swine

Astrovirus as a possible cause of congenital tremor type AII in piglets (with brain and
spinal cord demyelination) was first suggested in 2014 in a report from Sweden (52).
Two lineages of partially characterized (only 296-bp-long RNA-dependent RNA poly-
merase [RdRp] gene) porcine astroviruses (accession numbers KC790414 to KC790418),
related to porcine astroviruses 2 and 5, were detected by nested RT-PCR in the
cerebrum, brainstem, and cerebellum of affected and also healthy control piglets. The
affected animals (n � 3) were 4 and 6 days old, while the control animals (n � 3) were
only 1 day old (52). Furthermore, coinfection with porcine circovirus type 2 was found
in healthy and diseased piglets (52). These preliminary results did not provide strong
evidence for astrovirus as a cause of the disease.

Very recently (between 2011 and 2017), outbreaks of meningoencephalomyelitis
associated with neurovirulent porcine astrovirus type 3 (PoAstV-3; accession numbers
KY073229 to KY073232), within the VA/HMO clade, were detected among 25- to
35-day-old domestic pigs in large, highly prolific swine farms in Hungary (15) (Table 2).
Episodes of CNS disease of unknown etiology have persisted for 2 years at the index
farm, and despite extensive decontamination efforts, sporadic cases are still present in
2018 (A. Boros and M. Albert, unpublished results). The disease has affected approxi-
mately 30 to 40 weaned pigs monthly (1.5% to 2% of the total), up to around 80 pigs
(4%) in the autumn and winter seasons (15). Clinical symptoms typically appeared
among weaned pigs 1 week after the weaning procedure (15). In stage 1, posterior leg
weakness or paraplegia and pitching were visible. In stage 2, paralysis of both legs and
skin pain were present. Later, in stage 3, paresis and serious spastic paralysis of muscles
appeared, with loss of consciousness (15). Gastroenteric symptoms were not observed.
Finally, in stage 3, the affected pigs were unable to eat or drink, and they died within
a week due to exsiccosis (dehydration) (15). The neurovirulent astrovirus was detected
in the cerebrum, brainstem, and spinal cord by RT-PCR, real-time PCR, and ISH analyses
of samples from the affected group but not the healthy control animals (15).

Similar results were reported from the United States, where Ni-PoAstV-3 (accession
number KY940545) was identified by NGS analysis of tissues from the CNS of piglets
and sows with encephalomyelitis (53) (Table 2).

NEUROHISTOPATHOLOGY OF NEUROTROPIC ASTROVIRUS INFECTIONS

In general, the neurohistopathologic findings are consistent with nonsuppurative
viral encephalitis. The most characteristic signs are severe neuronal degeneration,
hypertrophic astrocytes, and infiltration of T lymphocytes and macrophages into the
brain. Specifically, perivascular cuffs, composed of mononuclear cells, gliosis, and
neuronal necrosis, are a common feature of all neurovirulent astrovirus infections (8, 13,
15). The infection is present in different parts of the CNS (e.g., cerebrum, brainstem, and
cerebellum), with variable severity, in all investigated host species (8, 13, 15). No
inclusion bodies are observed.

Human Cases

The available neurohistopathological data are limited for human cases and are
specific only to the brain. The human spinal cord was never investigated by histo-
pathological methods in cases of neurovirulent astrovirus infection. Histopathology
results are available for five VA1/HMO-C cases and the “classical” HAstV4 cases (9,
28–31). Biopsy of the frontal cortex found microgliosis and diffuse astrogliosis of white
and gray matter, parenchymal and perivascular CD3� T-cell infiltrates, axonal swelling,
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and neuronal loss in a boy with X-linked agammaglobulinemia (9). In another case,
neuronal apoptosis, microglial reaction, and astrocytosis were observed in the brain
biopsy specimen, without significant lymphocytic inflammation (28). Frontal lobe bi-
opsy found gliosis, infiltration of CD3�/CD8� lymphocytes, and astrovirus-infected
neurons in the third case (29). In the fourth case, right frontal lobe biopsy found acute
pan-encephalitis, microglial nodules, and perivascular infiltrates of CD3�/CD8� lym-
phocytes (30). Scattered glial cells, perivascular and meningeal chronic inflammatory
cell infiltrates, and large reactive astrocytes were identified in the fifth case caused by
a VA1/HMO-C virus (31). In the case of HAstV4 infection, ventricular/leptomeningeal
inflammatory infiltrates with macrophages and granulocytes and necrosis were de-
tected in the brainstem, cerebellum, basal ganglia, and hippocampus (34).

Animal Cases
Mink. The lesions were most severe in the cerebellum and brainstem (Table 2) and

consisted of neuronal necrosis (including neuronophagia), gliosis, perivascular cuffs
with lymphocytes, plasma cells, and macrophages, and segmental loss of Purkinje cells
(16).

Bovines. In bovines, encephalomyelitis cases were also characterized by neuronal
degeneration and necrosis, gliosis, moderate to marked lymphohistiocytic perivascular
cuffs, and meningitis with lymphocytes (13, 54). Nuclei of affected neurons were
variably pyknotic, karyorrhectic, or karyomegalic, with absent or dispersed chromatin
(13). Such lesions were most severe in the brainstem but were also present in the
cerebellar cortex, the cerebrum, and the hippocampus (17, 18) (Table 2). The menin-
goencephalomyelitis was largely confined to gray matter in the CNS, with the most
severe lesions in the cerebellar folia, brainstem, and spinal cord (13). Other parts of the
brain were minimally (midbrain, thalamus, and basal nuclei) or not (cerebral cortex and
underlying corona radiata) involved in inflammatory cell infiltrates (13).

Differences were also reported in certain studies. In one study, the histopathology
revealed trigeminal ganglionitis with massive neuronal necroses in both the brain and
the ganglia (47). In another study, all layers of the hippocampus were seriously affected
against the brainstem (18). In addition, viral RNA was also present in the medulla
oblongata, cerebellar cortex, midbrain, and cerebral cortex (43) (Table 2). In general, the
cerebellar folia had significant lesions with Purkinje cell necrosis and Bergmann glial
and microglial proliferation (13). However, another study did not reveal astrovirus-
positive Purkinje cells by ISH (8). Variations of the neuroanatomical distribution of the
affected regions among individual animals might be associated with the possibility of
nonrestricted neurovirulent astrovirus infection of gray matter of the CNS, with no
preferred target region (8). It was also observed that the intensity of the lesions varied
between individuals at different stages of the disease (8). This means that the stage of
CNS infection may also have an effect on the results (8). This study also supports the
probability of causality, as a close correlation of astrovirus and CNS lesions was found
in most of the brain regions in cattle (8).

Swine. Histologically, moderate to marked perivascular lymphohistiocytic cell cuff-
ing with marked vasculitis and neuronal degeneration, necrosis, and neurophagia with
multifocal microgliosis and satellitosis were found in CNS lesions in pigs (15, 53).
Neuronal necrosis was prominent in the gray matter of the cervical spinal cord but was
also detected in neurons of the Purkinje layer (cerebellum), the medulla oblongata,
cerebellar peduncles, and the midbrain (15). Necrotic neurons were variously swollen
and hypereosinophilic or shrunken with tinctorial changes, including faded, ampho-
philic, or eosinophilic cytoplasm (15). Nuclei of affected neurons were pyknotic, kary-
orrhectic, or losing border definition within the cytoplasm (15, 53). The intensity of the
CNS lesions—as in cattle—was variable between individuals at different stages of the
disease (Fig. 1).

For type AII congenital tremor, mild to moderate vacuolar changes of the white
matter in the cerebrum, brain stem, and especially cerebellum were reported for pigs
(52) (Table 2).
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QUANTITATIVE AND MOLECULAR GENETIC ANALYSIS OF NEUROVIRULENT
ASTROVIRUSES
Quantitative PCR Analysis

Viral loads in human brain biopsy specimens from a boy with X-linked agammaglob-
ulinemia were as high as 1.53 � 107 RNA copies and were higher than those in
postmortem samples (brain stem, 1.92 � 104 RNA molecules per reaction; cerebellum,
5.39 � 102 RNA molecules per reaction; and frontal lobe, 1.14 � 102 RNA molecules per
reaction). No other postmortem samples were astrovirus positive (9). The brain tissue
and the cerebrospinal fluid (CSF) usually contain viral RNA, but significantly lower viral
loads were found in stool and serum, the latter of which confirmed viremia (28). The
viral loads in brain biopsy specimens can be 103- and 106-fold higher than those in CSF
or fecal samples, respectively (28). These and other results (30, 31) highlight that
analysis of CSF or stools cannot be sufficient alone and that analysis of profound
specimens (antemortem or postmortem brain biopsy specimens) may be required in
order to make an appropriate laboratory diagnosis of neurovirulent astrovirus infection.

In ovines, the highest viral loads were detected in regions of the CNS (cerebrum,
2.16 � 107/�l template; and cerebellum, 1.23 � 105/�l template), including the obex
(1.34 � 105 to 1.06 � 106/�l template) and spinal cord (1.59 � 105/�l template) (14).
Other organs, such as the spleen, ileum, and pooled intestine (3.72 � 102/�l template),
showed remarkably low viral loads in comparison to those in organs of the CNS (14).
Furthermore, low to moderate RNA loads were detected in lymphoid tissue of tonsils
of sheep (14).

Similar results were reported for domestic pigs. The highest CNS viral loads were
detected in the brain stem (1.85 � 106 to 7.43 � 107/�g total RNA) and the cervical,
thoracic, and lumbar spinal cord (1.47 � 106 to 3.39 � 107/�g total RNA). However,
moderate to high viral RNA loads were also find in the respiratory tract, such as the
nasal mucosa (2.33 � 105 to 3.22 � 105/�g total RNA), tonsil (9.08 � 102 to 4.65 �

104/�g total RNA), and lung (1.34 � 102 to 5.01 � 102/�g total RNA) (15). On the other
hand, no or low copy numbers were detected in fecal samples by nested RT-PCR (15).

Genomic Analysis of Neurovirulent Astroviruses

Due to their relatively recent discovery (in 2010) and the absence of model animals
and cell cultures, little is known about the pathogenicity, replication cycle, or genomic
features of Ni-AstVs, although the recently described Caco-2 cell-adapted Ni-HAstV

FIG 1 Representative sections from the anterior horn of the lumbar spinal cord for Ni-PoAstV-3-infected freshly weaned pigs with
encephalomyelitis in stage 1 (posterior weakness) (A) and stage 3 (complete paralysis) (B) of the disease. The Ni-PoAstV-3-positive cells,
which are presumed (based on the anatomical positions of the cells) to be motoneurons (arrows) and interneurons (arrowheads), were
visualized using a digoxigenin-11-UTP (DIG)-labeled RNA probe and an in situ RNA hybridization technique. The 189-nt-long
DIG-labeled antisense PoAstV-3 RNA probe targets the RdRp region of Ni-PoAstV-3 (accession numbers KY073229 to KY073232). The
sections were visualized using an anti-DIG Fab fragment conjugated to alkaline phosphatase (Roche) and NBT/BCIP solution (Roche)
supplemented with 1 mM levamisole. The section in panel A was counterstained with FastRed. Note that Ni-PoAStV-3 ISH-positive
apoptotic (shrinking) neurons (double arrows in inserts) are observable in all stages of the disease.
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strain VA1 may facilitate the cytopathogenic research on Ni-HAstVs (55). The majority
of the current knowledge about the genome organization, viral peptide composition,
and virion architecture of AstVs originated from experimental analysis of the cultivable
turkey (Tu) and “classical” human astroviruses, mainly TuAstV-2, HAstV-1, HAstV-2, and
HAstV-8, which have more than 40 years of scientific research background (56, 57).
However, in silico genome analyses of Ni-AstVs and genome comparisons with the
well-studied “classical” AstVs may reveal conserved sites and possible functional ge-
nome regions which may be important for the genome replication and even neuro-
virulence of Ni-AstVs. In this section, the results of in silico comparative genomic
analyses of all Ni-AstV genomes are summarized. There are total of 26 Ni-AstV strains
detected in CNS samples with known complete genome sequences or complete coding
sequences (CDS) available in the GenBank database (as of 5 March 2018). The se-
quences originated from human (HAstV; n � 6), mink (MiAstV; n � 1), ovine (OvAstV;
n � 3), bovine (BoAstV; n � 12), and porcine (PoAstV; n � 4) hosts located in Europe,
the United States, and Japan (Table 3).

Phylogenetically, the majority (24/26 strains) of the Ni-AstVs belong to the VA/HMO
phylogenetic clade (MAstV genogroup II), with the exception of Ni-HAstV-MLB strains
(Fig. 2). Although other, non-HMO AstVs are also detectable from CNS samples, the
dominance of Ni-AstVs in the VA/HMO clade suggests an increased neurotropic po-
tential of this group of astroviruses compared to that of other AstVs. In the VA/HMO
clade, the Ni-AstVs of the same host form distinct phylogenetic groups, with the
exception of Ni-AstVs of bovine and ovine origins, which are present in a mixed group
(Fig. 2) and suggest the capability of cross-species transmission of at least the Ni-
BoAstVs (51, 58). Members of the same phylogenetic group may belong to the same
AstV serotype/genotype, although the official classifications of the majority of Ni-AstVs
are still absent.

Besides the phylogenetic distance, the genome organizations of all Ni-AstVs are
essentially the same and follow the general astrovirus genome architecture, with three
open reading frames (ORFs) flanked by 5= and 3= untranslated regions (UTRs) (Fig. 3) (57,
59). The 5=UTRs of AstVs, including the Ni-AstVs, predominantly start with the con-
served pentamer CCAAA (60), although there are some Ni-AstVs [such as MiAstV strain
SMS-AstV, HAstV strain HMO-C-UK1(a)-London1, and HAstV-MLB2 strain MLB2/human/
Geneva/2014] in which this motif is missing, probably due to the incompletely deter-
mined 5=UTR (Fig. 3; Table 3). The full-length 5=UTRs of Ni-AstVs are relatively short,
ranging from 14 nucleotides (nt) (HAstV-MLB1 strain NAGANO-1545; accession number
LC064152) to 51 nt (BoAstV strain NeuroS1; accession number KF233994), and may
contain a variable number of stem-loops (data not shown) (45).

An identity graph of the nt alignment (Fig. 3) of all (n � 26) Ni-AstVs revealed the
presence of conserved regions, including the ribosomal frameshift signal (RFS; adenine
hexamer, cysteine, and stem-loop), located in the junction of the ORFs, and the
presumed subgenomic RNA (sgRNA) promoter sequence, located in the 3= end of
ORF1b (57, 59, 61) (Fig. 3). Due to the presence of RFS, ORF1a and the adjacent ORF1b
could be transcribed continuously (ORF1ab), resulting in production of nonstructural
polyprotein 1ab (NSP-1ab), while ORF2 and the sgRNA copies could encode the capsid
proteins (62). Besides the primary sequence conservation, the promoter sequence of
sgRNA could be found in a conserved stem-loop structure (Fig. 3). Most of the
conserved nt are located in ORF1b and the 5= end of ORF2 (Fig. 3).

The 3=UTRs of NI-AstVs are relatively short, ranging from 32 nt (HAstV-MLB2 strain
MLB2/human/Geneva/2014; accession number KT224358.1) to 101 nt (HAstV-PA strain
Paris; accession number KM401565.1) without the poly(A) tail, and they may contain a
variable number of stem-loops (45; data not shown). The highly conserved stem-loop
II-like motif (s2m), identified in four different families of positive-sense single-stranded
RNA (ssRNA) viruses—Astroviridae, Caliciviridae, Picornaviridae, and Coronaviridae (63,
64)—is predominantly present in the 3= end of the genome for all Ni-AstVs, with the
exception of Ni-HAstV-MLB strains NAGANO1545 and MLB2/human/Geneva/2014, sim-
ilar to other MLB AstVs (22). s2m is highly conserved at both the structural and
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FIG 2 Phylogenetic analysis of full-length capsid proteins (ORF2) of representative members of the family Astroviridae. The amino acid sequences were
aligned with the MUSCLE algorithm (86), and evolutionary analysis was conducted in MEGA 6 (87), using an ML method based on the LG model with
frequencies, a discrete gamma distribution (�G), and evolutionarily invariable sites (�I). Bootstrap values were determined for 1,000 replicates. The
Ni-AstV strains with known full-length capsid proteins are indicated with red squares. The astrovirus clades representing the known Ni-AstVs are
highlighted in orange. The Avastroviruses (accession numbers AB033998, FR727149, HQ889774, FR727146, KJ020899, JF414802, Y15936, AF206663,
EU143851, FJ434664, and FJ919228) were chosen as a tree outgroup. Abbreviations: BaAstV, bat astrovirus; BdAstV, bottlenose dolphin astrovirus; BoAstV,
bovine astrovirus; CAstV, California sea lion astrovirus; CaAstV, canine astrovirus; ErAstV, European roller astrovirus; FeAstV, feline astrovirus; FoAstV, fox
astrovirus; HAstV, human astrovirus; MiAstV, mink astrovirus; MuAstV, murine astrovirus; OvAstV, ovine astrovirus; PoAstV, porcine astrovirus; RaAstV,
rabbit astrovirus; RAstV, rat astrovirus; WBAStV, wild boar astrovirus.
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sequence levels, is mostly present at the junction of ORF2 and the 3=UTR, and may
contain the stop codon of ORF2 (CGMGGCCACGCCGAGUAGGAHCGAGGGUACAGS [the
stop codon is underlined]), with the exception of Ni-MiAstV strain SMS-AstV (accession
number GU985458) and Ni-BoAstV strain NeuroS1 (accession number KF233994). In
Ni-MiAstV strain SMS-AstV, the stop codon is 11 nt upstream from s2m, and in
Ni-BoAstV strain NeuroS1, the first nucleotide of s2m is uniquely U instead of C, which
causes termination of ORF2 before s2m (data not shown). The first 15 nt of s2m
(CGMGGCCACGCCGAG) encode the RGHAE amino acid (aa) motif, which is the highly
conserved C-terminal 5 aa of the capsid protein in the majority of Ni-AstVs. Interest-
ingly, identical or slightly modified (RTHAE) motifs are also present 15 aa upstream of
the RGHAE motif of s2m in all Ni-BoAstVs (data not shown), which suggests the
acquisition of two s2m by the ancestors of Ni-BoAstVs, similar to those found in certain
corona- and picornaviruses (63). The exact role of s2m in the replication process of
Ni-AstVs and other s2m-containing viruses is still unknown, although the conserved
nature and wide distribution of the motif may suggest an important role in the
replication process. The 3=UTRs of Ni-AstVs may contain deletions and sequence
repeats, such as the G6382/6393AUUUCUUUNA sequence of Ni-PoAstV-3 of USA/IA/7023/
2017, which is missing in the Hungarian Ni-PoAstV-3 strains (15).

Amino acid sequence comparisons of NSP-1ab and the capsid proteins transcribed
from ORF1ab and ORF2 of all Ni-AstVs revealed the presence of highly conserved
genomic regions located mainly in the presumed helicase (Hel), protease (Pro), and
RNA-dependent RNA polymerase (RdRp) regions of NSP-1ab and the conserved, pre-
sumably assembly domain of the capsid (Fig. 4).

FIG 3 Representative genome map and identity graph (above the map) for Ni-AstVs. Vertical lines in the identity graph represent identical
nucleotides (nt) in the alignment. Thicker lines represent multiple, consecutive identical nt. The identity graph was generated from the
MUSCLE alignment of the complete genome/complete coding sequences of all known Ni-AstVs by use of UGENE ver 1.26 and CorelDraw
ver. 12. The ruler above the identity graph represents nt positions in the alignment. The promoter sequence (gray background) of sgRNA
is part of a conserved stem-loop (*). The secondary RNA structure of the sgRNA promoter was generated from the alignment of the
corresponding genome region of all Ni-AstVs by use of the RNAalifold Web server (88) and VARNA visualization software, version 3.9. Note
that s2m of the 3= end is missing in the Ni-HAstV strains of MLB-1 (accession number LC064152) and MLB-2 (accession number KT224358).
ORF, open reading frame; RFS, ribosomal frameshift signal; NSP-1a, nonstructural polyprotein translated from ORF1a; NSP-1ab, nonstruc-
tural polyprotein continuously translated from ORF1a and ORF1b; sgRNA, subgenomic RNA.
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In NSP-1ab, the conserved aa motifs of Pro (65–68) as well as the two coiled coils
(CC) and the multiple transmembrane (TM) helices upstream of Pro described for the
“classical” HAstVs are present in all Ni-AstVs (57) (Fig. 4). Interestingly, NSP-1ab of
Ni-AstVs may contain seven TM domains (Fig. 4 and 5) upstream of Pro, as predicted by
the MEMSAT software of the PSIPRED Protein Sequence Analysis Workbench (69, 70),

FIG 4 Schematic maps and identity graphs (above the maps) for nonstructural protein 1ab (NSP-1ab) and capsid for all known Ni-AstVs. Vertical lines in the
identity graphs represent identical amino acids in the alignment. Thicker lines indicate multiple, consecutive identical aa. The identity graphs were generated
from the MUSCLE alignments of NSP-1ab and capsid proteins of all known Ni-AstVs with complete genome sequences or complete CDS by use of UGENE ver
1.26 and CorelDraw ver. 12. The rulers above the identity graphs represent aa positions in the alignments. Hel, helicase; cc 1 to 3, coiled coils; TM 1 to 7,
transmembrane domains; VPg, genome-associated viral protein; NLS, nuclear localization sequence; HVR, hypervariable region; RdRp, RNA-dependent RNA
polymerase; RBD, RNA-binding domain. The red arrow shows a possible trypsin cleavage site, and yellow arrows show possible caspase cleavage sites.

FIG 5 Schematic representation of seven predicted transmembrane domains (yellow columns; TM1 to -7) identifiable in the N-terminal region of
NSP-1ab of all known Ni-AstVs. Numbers in parentheses and italics indicate the first (numbers in the upper part) and last (numbers in the lower
part) aa positions of the given TM domain. The predictions are based on the sequences listed on the left side of the figure and were determined
using the MEMSAT software of the PSIPRED Protein Sequence Analysis Workbench (69, 70). All Ni-AstVs contain essentially the same number and
topology of TM domains (data not shown).
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compared to the five or six TM helices of “classical” HAstVs (57), although no insertions
were found in the corresponding genome regions of Ni-AstVs compared to those of
“classical” AstVs. One of the well-conserved genome regions of Ni-AstVs is located
downstream of the second CC and contains the conserved RExx(I/V)LRxE motif (x �

variable aa) of unknown function (Fig. 4). Furthermore, besides the well-known two CCs
located in the presumed Hel region and between the Pro and VPg regions of all AstVs,
a third CC is predictable in the hypervariable region (HVR) of Ni-AstVs (Fig. 4 and 6) by
using the coiled-coil prediction software of ExPASy (71, 72). The HVR of “classical”
HAstVs may contain several insertions/deletions and is known to be associated with the
adaptation of certain cell lines, different RNA replication and growth rates, and different
viral RNA levels in feces (73, 74). The exact role of the HVR in the replication cycle or
neuropathogenic potential of Ni-AstVs is currently unknown, although the presence of
a CC structure—CC proteins are usually involved in important biological functions, such
as transcriptional control (75)—and some highly conserved aa [Gxx(P/L)FxQR] (Fig. 4)
may indicate a pivotal role of this region.

The identity graph for all capsids of the 26 Ni-AstVs shows the presence of two major
parts, an N-terminal conserved part and a C-terminal variable part, which may corre-
spond to the “conserved” and “hypervariable” capsid regions of “classical” HAstVs (57,
76, 77) (Fig. 4). The N-terminal parts of the capsids of Ni-AstVs have a variable primary
sequence (Fig. 7), although this region of all Ni-AstVs is equally rich in the basic aa lysine
(K), arginine (R), and histidine (H), and therefore this region may act as an RNA-binding
domain (RBD) required in the encapsidation process (57, 76, 77) (Fig. 4 and 7A).
Interestingly, short glutamine-rich (Q-rich) motifs with unknown functions were iden-
tifiable in this region in the majority of Ni-AstVs of the VA/HMO clade (Fig. 7A). The
conserved N-terminal part of the capsid may act as an assembly or core domain mainly
responsible for the formation of the structural core of the virion, while the highly
immunogenic hypervariable region is located on the surface of the viral particle and
may be responsible for receptor interaction and the strain-specific tropism of the virus
(76–78). The maturation process of AstV virions includes the trypsin-mediated cleavage
of the capsid polyprotein between the conserved and hypervariable regions of “clas-
sical” HAstVs (79, 80). Trypsin is expressed predominantly in the gastroenteric tract.
Currently, there is no experimental evidence about the role of trypsin in the maturation
of Ni-AstV virions, although the aa alignment of the capsids of “classical” AstVs and
Ni-AstVs revealed the potential presence of conserved arginine (R) and lysine (K)
residues, in line with experimentally identified trypsin cleavage sites of “classical”
HAstVs, in all Ni-AstVs (Fig. 7B). However, the first recent experimental investigation
showed no significant effect of exogenous trypsin treatment on in vitro cultures of
Ni-HAstV strain VA1 originated from human stool (55). The in vivo proteolytic process-
ing of Ni-AstVs is unclear. If this group of astroviruses does not absolutely require
trypsin-dependent proteolytic activation, then Ni-AstVs may not depend on and be
restricted to the gastrointestinal tract.

The potentially surface-exposed hypervariable region of the capsid of Ni-AstVs
contains only nine, scattered identical aa identifiable in the MUSCLE alignment of
capsid sequences (Fig. 4), which may be responsible for neuronal infectivity, although
further sequences of Ni-AstVs and experimental evidence are needed to confirm this
hypothesis.

The C-terminal parts of the capsid sequences of Ni-AstVs are rich in acidic aa, such as
aspartic acid (D) and glutamic acid (E), similar to those in “classical” HAstVs. The acidic
regions of the C-terminal end contain several presumed caspase cleavage sites (e.g., DXXD
and XEXD), similar to those found in the “classical” HAstVs (81, 82). Interestingly, the
conserved motif Q(I/L)QxR(F/Y), adjacent to the D/E-rich acidic section of unknown func-
tion, was identifiable in the majority of Ni-AstVs of the HMO clade (Fig. 7C).

In summary, the topology of the Ni-AstVs in the phylogenetic tree (Fig. 2) suggests
a common lineage of neurovirulent astroviruses; however, the determination of the
specific nt and aa motifs that are involved in neuroinvasion warrants further experi-
mental investigation.
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FIG 6 Representative probability (y axis) diagrams for predicted coiled-coil structures and their localizations in the aa sequences of
NSP-1ab (x axis). The diagrams were generated using Ni-AstV reference sequences (indicated above the diagrams) and screening
windows of 14, 21, and 28 aa (blue, green, and red lines) by use of the coiled-coil prediction software of ExPASy (71, 72). All other Ni-AstV
sequences showed essentially the same localization of coiled coils (data not shown).
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FIG 7 (A) Amino acid alignment of the N-terminal ends (RNA-binding domain [RBD]) of representative capsid sequences of neurovirulent
(Ni) AstVs. Conservative and basic amino acids (R, K, and H) are shown with black and green backgrounds. Glutamine (Q) residues in Q-rich
regions are marked with a deep yellow background and red boxes. Amino acid positions are shown according to the scale above the
sequences. (B) Amino acid alignment and presumed trypsin cleavage sites (arrows) of the junctions of the conserved and hypervariable
regions of representative neurovirulent (Ni) and “classical” AstV capsids. Red squares indicate N-terminal aa sequences of VP26 (HAstV2)
and VP27/VP28 (HAstV8), experimentally identified by N-terminal sequencing (80, 89). Identical and highly conserved aa are marked with
a black background in the alignment. Colored arrows indicate the conserved arginine (R) and lysine (K) residues which may act as potential
trypsin cleavage sites (90), among which the conserved R/K residues marked with a green background and a red arrow are the most likely
to be active. Numbers in parentheses indicate the first and last aa positions in the capsid polyprotein. (C) Representative amino acid
alignment of the surroundings of the conserved acidic section (blue boxes), located in the C-terminal hypervariable regions, for all known
neurovirulent (Ni; VA/HMO clade) and “classical” AstV capsids. Conservative and acidic amino acids (inside blue boxes) are shown with
black and yellow backgrounds, respectively. Putative caspase cleavage sites of HAstV8 are marked in bold and underlined (81, 82). The
conserved genome region that contains the Q(I/L)QxR(F/Y) motif, which is predominantly present among Ni-AstVs, is marked with a red
box. Numbers in parentheses indicate the first and last aa positions in the capsid polyprotein.
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POSSIBLE TRANSMISSION AND PATHOGENESIS OF NEUROVIRULENT
ASTROVIRUSES

It is a general “dogma” that astroviruses are transmitted by the fecal-oral route, as
they are associated with enteric infections and shedding in the feces. For humans, it has
therefore also been postulated that invasion of the CNS occurs via the enteric tract as
a consequence of immunodeficiency. This concept is supported by the finding that the
VA1/HMO-C astroviruses have also been identified in the feces of a diseased patient as
well as in healthy individuals (43). For humans, close contact with animals (mink) and
young children and medical treatments (intravenous immunoglobulin and stem cell
grafts) have all been suggested as possible— but not confirmed—sources of infection
(9). While systematic investigations related to all potential sources and transmission
modes of neurovirulent astrovirus are not available, there are some interesting novel
findings which suggest the potential for extraintestinal virus shedding in different
hosts. (i) The neurotropic astrovirus strains have not yet been identified in cattle feces
(43). (ii) The human astrovirus VA1 was identified by NGS in a nasopharyngeal specimen
from a child with respiratory disease of unknown origin (83). (iii) Furthermore, Ni-HAstV
was also detectable in throat swab and urine samples from an immunocompromised
patient with HAstV-MLB1-associated acute encephalopathy (32). (iv) Neurovirulent
PoAstV-3 (VA/HMO clade) was detected in high viral loads in nasal mucosa and tonsil
samples from domestic pigs with encephalomyelitis, but no or consistently lower copy
numbers were found in fecal samples from the affected animals by nested RT-PCR (15).
(v) Overall, 33 (32%) nasal swabs and none of the 24 analyzed anal swabs, collected as
sample pairs from 18- to 21-day-old healthy pigs on four different swine farms with no
history of encephalitis in Hungary, were positive for PoAstV-3 by nested RT-PCR (Boros
et al., unpublished data). These results indicate that certain astroviruses may be capable
of being shed extraintestinally, and therefore investigations should be extended to the
respiratory tract for determination of the possible respiratory source and/or route of
infections.

The pathogenesis of and influential risk factors (host, virus, and environmental) for
the neurovirulent astroviruses are unknown. Immunosuppression and an immunocom-
promised condition are common underlying diseases in neurovirulent astrovirus cases
in humans and weaned pigs (15, 19). Animals in highly prolific and intensive production
management environments are often exposed to stressors which may also cause
immunosuppression in cattle and pigs (15, 43).

LABORATORY DIAGNOSIS OF NEUROVIRULENT ASTROVIRUS INFECTIONS

There are several classical and modern laboratory methods for detection of classical
(human) astroviruses, especially from feces (84). However, these methods are limited for
the detection of the newly discovered group of neurovirulent astroviruses. Neither the
genetic diversity of the circulating astroviruses nor the specificity of the available tests
is known for neurovirulent astroviruses. In addition, it seems that the optimal speci-
men(s) for detection of neurovirulent astrovirus infection is probably something (e.g.,
CNS biopsy specimen or respiratory tract samples) other than feces (see Possible
Transmission and Pathogenesis of Neurovirulent Astroviruses).

There is limited knowledge related to the in vitro tissue culture propagation of
neurovirulent astroviruses. A recent study reported, for the first time, that the human
astrovirus VA1 of stool origin can grow in cell cultures (without cytopathic effect),
including cultures of human enteric Caco-2, human embryonic kidney HEK293T, and
human respiratory A549 cells but not those of BHK-21 (baby hamster kidney) cells (55).
Interestingly, VA1 could be cultured equally well with and without the addition of
exogenous trypsin (55). There is no report of the propagation of VA1/HMO-C strains
directly from the affected CNS tissues.

At present, electron microscopy (EM), ISH, RT-PCR, real-time PCR (with strain-specific
primer pairs), and viral metagenomics/NGS research-based methods are available for
detection of neurovirulent astroviruses; however, there are no commercially available
assays.
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A hyperimmune antibody against the conserved N terminus of the viral capsid
protein was recently developed for detection of BoAstV-CH13/BoAstV NeuroS1 infec-
tions in cattle brain tissue samples (51). This immunohistochemistry (IHC) assay is
sensitive and specific (51) for BoAstV-CH13/BoAstV NeuroS1; however, it is not available
for commercial use.

Development and use of a sensitive routine laboratory test (e.g., using an enzyme-
linked immunosorbent assay [ELISA], immunochromatography, or molecular method)
for detection of neurovirulent astroviruses is necessary, especially for veterinary med-
icine.

THERAPY

Combinations of intravenous immunoglobulin (IVIG), methylprednisolone, ribavirin,
and pegylated interferon (PEG-IFN) alpha-2b were applied as nonspecific antiviral
treatments in a human case of neurovirulent astrovirus infection (30). In that study,
progression of motor function and mild memory improvement were found at month 12
of follow-up (30). On the other hand, there was no response to ribavirin and IVIG
therapy (after the patient previously received steroids and IVIG) in another fatal human
case of neurovirulent astrovirus encephalitis (29). At present, there is no specific
antiviral therapy for neurovirulent astrovirus infection of either humans or animals.

FUTURE PERSPECTIVE

Astrovirus was discovered in a fecal sample in 1975 (85). Until now, astrovirus has
been thought to be an infectious agent only of the gastroenteric tract in humans and
animals. The most recent and advanced high-throughput molecular techniques have
changed our knowledge of astrovirus infection (84). The possibility of an extraintestinal
infection or complication of astrovirus infection was first suggested in 2010 (9). Be-
tween 2010 and 2017, significant numbers of studies reported an association between
astrovirus and CNS infection. To date, this association has been reported for humans
and four mammalian species. These results demonstrate a previously unrecognized
neurotropism of neurovirulent astrovirus, a causative agent of neuroinfections, such as
encephalitis, meningitis, myelitis, and ganglionitis. The first studies not only support the
association but also suggest that certain astroviruses may be relatively common
infectious agents of the CNS in cases of undifferentiated viral encephalitis. Retrospec-
tive and prospective systematic investigations of astrovirus should be performed,
focusing on cases and outbreaks of unknown encephalitis—whose economic cost is
profound for cases in both humans and domestic animals. It would also be interesting
to determine if all astroviruses have an affinity for the CNS or if this affinity is restricted
to certain neurovirulent astrovirus lineages.

Astrovirus should be considered in the differential diagnosis of CNS diseases,
including encephalitis, especially for nonimmunocompetent patients. In addition, we
cannot exclude the possibility that a certain proportion of unknown encephalitis cases
in domesticated mammals are also related to astrovirus. But timely diagnosis is hin-
dered by the lack of available laboratory assays to rapidly survey the potential agents
responsible for encephalitis. Development of a specific routine laboratory test is
necessary for detection of astroviruses in encephalitis and other CNS infections. In
particular, an astrovirus detection assay should be included in the diagnostic armory
and routinely used in laboratories of veterinary medicine.

The optimal specimen type for laboratory diagnosis of neurovirulent astrovirus
infection is also problematic. Based on the present data, no or very low levels of
astrovirus RNA are present in the feces, serum, and CSF, which leads to misdiagnosis of
neurological infections. Invasive brain biopsy for correct diagnosis of astrovirus en-
cephalitis clearly has related medical and ethical issues. A new report suggests that
nasal and respiratory specimens are better and noninvasive samples for laboratory
detection of neurovirulent astrovirus (15). According to the present research, a broad
range of specimens should be collected for detection of astrovirus in CNS diseases.

The first reports indicated that the neurotropic astroviruses are geographically
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widespread in human, mink, bovine, and porcine species and that epidemic spread is
also possible (12, 15). In addition, while neurovirulent astrovirus infections have been
reported for humans and four mammalian species, it is possible that this type of
infection occurs in other domestic and wild animal species as well. Extended investi-
gations of known hosts and other related mammals (e.g., wild boar, roe deer, goat, etc.)
with unknown meningoencephalitis causes should also be done.

The first reports have drawn our attention to neurovirulent astrovirus infections.
More comprehensive epidemiological studies on the clinical presentation, prevalence,
distribution, extraintestinal transmission, immunology, virology, and diversity of neu-
rovirulent astrovirus infections, with determination of complete genome sequences of
further neurovirulent astroviruses, should be performed. The detailed pathogenesis of
neurovirulent astrovirus infections is also lacking, and exogenous and endogenous
factors determining the tropism and neuroinvasion of these viruses are still unknown.
In vitro cell culture and in vivo animal models (e.g., pig and mink models) would
facilitate studies of the neurotropism, replication sites, neuropathogenesis, and im-
mune control of astroviruses.

In the future, more attention should be paid to the specific prevention of CNS
infections, especially among domesticated animals, and to the pathogenesis and
epidemiological investigation of neurovirulent astroviruses. Development and use of a
specific vaccine against neurovirulent astroviruses would be an important, logical, and
probably cost-effective step, especially for domesticated animals (e.g., pigs).

Astroviruses show typical features suitable for a “one health” approach, in which
human and animal health can be discussed together. Future research into astrovirus
infections should include collaborative, multidisciplinary efforts in both veterinary and
human medicine. Human and veterinary physicians should be aware of astrovirus
infection as a potential differential diagnosis with corresponding signs of neurologic
disease.
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