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ABSTRACT

Pulsations of RV Tauri-type variable stars can be governed by chaotic dynamics.
However, observational evidence for this happening is usually hard to come by. Here
we use the continuous, 4-year-long observations of the Kepler space telescope to search
for the signs of chaos in the RVb-type pulsating supergiant, DF Cygni. We use the
Global Flow Reconstruction method to estimate the quantitative properties of the
dynamics driving the pulsations of the star. The secondary, long-term light variation,
i.e., the RVb phenomenon was removed in the analysis with the Empirical Mode
Decomposition method. Our analysis revealed that the pulsation of DF Cyg could be
described as a chaotic signal with a Lyapunov dimension of ∼2.8. DF Cyg is only the
third RV Tau star, and the first of the RVb subtype, where the nonlinear analysis
indicates that low-dimensional chaos may explain the peculiarities of the pulsation.
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1 INTRODUCTION

RV Tau stars are post-AGB supergiant stars representing
the most luminous group of radial pulsators. They constitute
the long period subclass of Type II Cepheids (P>20 days).

Two subtypes of RV Tau variables are distinguished:
RVb stars show long-period large-amplitude variability in
the mean brightness on top of the pulsation, while RVa
stars do not show this phenomenon. Apart from the long-
period variations, RVb light curves are similar to that of
RVa stars. The origin of the secondary light variation is
not fully understood yet. Fokin (1994) showed that intrin-
sic stellar processes such as pulsation or any thermal insta-
bilities can not be responsible for the secondary variation.
More recent studies explain RVb phenomenon with bina-
rity: the mean brightness changes due to periodic obscura-
tions by a circumbinary disc around the variable and its
companion star (Van Winckel et al. 1999; Maas et al. 2002;
Pollard et al. 2006). The possibility of interaction between
the components has also been raised (Pollard et al. 1996).

The obscuration scenario seems to work for DF Cyg
as well. DF Cyg (KIC 7466053) is the only known RV Tau

⋆ E-mail: eplachy@konkoly.hu

star continuously observed from space in the Kepler primary
mission (Bódi et al. 2016). Using Kepler data, Vega et al.
(2017) showed that, when measured in fluxes, both the pul-
sation amplitudes and the mean brightness decrease by ∼90
percent during the long-period minimum, strongly support-
ing the disc occultation scenario. Adopting the idea of esti-
mating the amplitude changes in flux units, recent investi-
gations highlighted that many RVb stars show similar corre-
lations between the pulsation amplitude variations and the
long-term variability (Kiss & Bódi 2017).

RV Tau stars show alternations of deep and shallow
minima in the light curve, that are thought to be the sign
of the nonlinear phenomenon called period doubling. How-
ever, the alternation is not always recognizable due to the
strong irregularity of the light variation that may signal
more complex behaviour. Incidentally, many RV Tau stars
also exhibit occasional interchanges in the order of low- and
high-amplitude cycles (Soszyński et al. 2008; Plachy et al.
2014a), these features are observable in DF Cyg too.

RV Tau stars are difficult to model, but theoretical cal-
culations of shorter-period subtypes of Type-II Cepheids
(W Vir- and BL Her-type stars) showed that both pe-
riod doubling and chaos can be expected in their pul-
sation (Kovács & Buchler 1988; Moskalik & Buchler 1990;
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Smolec & Moskalik 2014; Smolec 2016). Recent observations
confirmed that period doubling is indeed a common feature
in the period range of 16<P<20 days (Soszyński et al. 2017;
Plachy et al. 2017, Smolec et al., in prep.). In contrast, de-
tecting chaotic behavior and determining its fractal dimen-
sion in observational data is a real challenge due to the re-
quirements on data length and quality. Only two RV Tau
stars have been analyzed with a nonlinear approach: R Sct
(Buchler et al. 1996) and AC Her (Kolláth et al. 1998). Both
of them show low-dimensional chaos with Lyapunov dimen-
sions of ∼3.1 in the case of R Sct and 2.05-2.45 for AC Her.

In this paper we report on the dynamical analysis of
the most continuous and accurate photometric data of an
RV Tau star available to date: the Kepler light curve of
DF Cyg. DF Cyg is classified as an RVb star, its pulsation
period is ∼24.9 days while the length of the secondary, long-
period variation is ∼780 days. This star is a popular target
for amateur astronomers, and have been followed since the
1970s, but unfortunately the data collected at the AAVSO
(American Association of Variable Star Observers) is too
sparsely sampled to be useful in our analysis.

Below we present two methods that have been ap-
plied in this study: the Global Flow Reconstruction (GFR)
method to search and quantify the chaotic nature of the
pulsation, and the Empirical Mode Decomposition (EMD)
method to separate the long-period variation from the pul-
sation. Both methods are introduced in Section 2. Details
of the data preparation are given in Section 3. Analysis and
results are discussed in Section 4. We also provide summary
and conclusions in Section 5.

2 METHODS

Chaos may emerge in nonlinear dynamical systems. This
seemingly random behavior has nothing to do with stochas-
tic processes, but it is deterministic and has its own charac-
teristic pattern. An important property of chaotic systems is
the sensitivity to initial conditions: an infinitesimally small
change at the starting point results in an entirely different
future path. This property is measurable, and gives quan-
titative information about the system. The evolution of a
dynamical system can be visualized in a phase space, the
collection of possible system states, where evolving states
trace a path drawing a trajectory. The dimension of the
phase space is determined by the degrees of freedom of the
system. If the motion reaches an equilibrium, the trajectory
converges into a fixed point. A periodic motion represents
a closed trajectory, called limit cycle. In contrast, a chaotic
trajectory of a dissipative dynamical system is always an
aperiodic, bounded curve that tends to evolve towards a
strange attractor. Strange attractors are not normal geo-
metric objects, they have no integer, but fractal dimensions,
and they typically occupy a small region in the phase space.

According to Takens’ theorem (Takens 1981) a single
measured quantity is sufficient to reconstruct the attractor.
In our case the only variable arising from the system is the
brightness of the star. The dimension of the reconstructed
phase space is called the embedding dimension, which must
be larger than the fractal dimension of the system to avoid
crossing of the trajectories. The reconstruction preserves the
the essential mathematical properties of the original system

like topology and Lyapunov exponents. The latter quantities
describe the rates of exponential growth/contraction in the
system by characterizing the rate of separation of infinites-
imally close trajectories that can be different for different
orientations in the phase space. A positive maximal Lya-
punov exponent is considered as a definition of deterministic
chaos. Lyapunov exponents are also used for the calculation
of the fractal Lyapunov dimension. For general review of
chaos theory and its applications in astrophysics we refer to
Regev (2006). In the following sections we introduce the two
fundamental tools applied in our analysis.

2.1 The Global Flow Reconstruction method

A powerful technique have been developed by Serre et al.
(1996b) for the special purpose of phase space reconstruc-
tion of stellar pulsation, the Global Flow Reconstruction
(hereafter GFR) method. The term ”global flow” denotes
the dynamics of the hypothetical underlying system. The
same nonlinear analyzer tool was applied in the studies of
R Sct and AC Her, and has been proven to be useful in
searching for chaos in semiregular variables (Buchler et al.
2004), W Virginis models (Serre et al. 1996a), as well as
in RR Lyrae models and observations (Plachy et al. 2013,
2014b). Given the successful applications we adopted GFR
in the analysis of DF Cyg.

The first step in the method is the transformation of
the light curve into a data sequence with equal time spacing
s(tn) and the production of the ”delay vectors” X(tn) =
(s(tn), s(tn −∆), s(tn − 2∆), ..., s(tn − (de − 1)∆)). ∆ de-
notes the time delay, while de is the embedding dimension
of the reconstruction space. The method is optimized to
detect low-dimensional chaos, so de can be set to 4, 5 or
6. No higher embedding dimensions are implemented, be-
cause the number of variables becomes unmanageably high.
We consider the dynamical system as an iterated map, the
time evolution rules are given as algebraic equations, and
the values are expressed as a function of the value of the
previous step. So we assume that there exists a map F that
evolves the trajectory in time by connecting the consecutive
points: Xn+1 = F(Xn). We search F in polynomial form:
F(X) =

∑
k
CkPk(X), where Pk(X) represent the polinomi-

als of order up to p. The value of p was fixed to 4. After
we found F, arbitrary long data sets can be produced that
we call ”synthetic signals”. The length of the data plays an
important role in the determination of the fractal dimension
of the system. Our code computes the Lyapunov exponents
λi, that give the divergence rates of infinitesimally close tra-
jectories in each dimension (i = 1, 2, 3...) of the embedding
space: |δZ(t)| ≈ eλt|δZ0|, where Z0 is the initial separa-
tion. At least one Lyapunov exponent must be positive for a
chaotic signal. Hundreds of cycles are required to calculate
these values with sufficient accuracy, which are usually not
available from observational data. Therefore we adopt the
quantitative properties of the synthetic signals that show
strong resemblance to the light curve instead. The calcula-
tion of the Lyapunov dimensions dL = K + 1

|λK+1|

∑
K

i=1
λi

is also implemented in the method.
The success of GFR rests upon the possibility of ap-

plying slight variations to the phase space trajectories. This
can be achieved by adding a small amount of noise to the
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data which will be then subsequently smoothed. By varying
the noise and smoothing parameters we construct dynam-
ically very similar data sets for reconstruction. We usually
use a large parameter space of noise, smoothing, and time
delay values. Synthetic signals are created for each parame-
ter set from the corresponding maps. Added noise is defined
relative to the root mean square of the signal through the
noise intensity parameter (ξ), which we usually set to be in
the range of the observational noise of the data. The smooth-
ing parameter (σ) denotes the maximum standard deviation
from the fit in the cubic spline algorithm. These two param-
eters help to stabilize the map by broadening the attractor,
but have not as strong impact on the results as the time
delay (∆) parameter has.

Sometimes the iteration of the map generates periodic
or multiperiodic signals, converges into a fixed point or be-
comes unstable. A slight change in the parameter can switch
between these possible outcomes.

We consider the reconstruction successful if we gather
a significant number of chaotic synthetic signals that cover
a well-defined area in the parameter space, and the resem-
blance between the input data and synthetic signals is con-
vincing. Due to the chaotic nature of the data, no objective
criterion exists for the resemblance. We cannot expect cor-
respondence between any section of the same chaotic data
either, since the trajectory never repeats itself. On the other
hand, an overall similarity can be visually recognized in di-
verse visualization of the data.

In practice, to perform a reliable comparison between
the original and synthetic signals, the following realiza-
tions have been used: the time series itself, the Fourier
transform (FT), and the Broomhead-King (BK) projections
(Broomhead & King. 1987). The latter uses singular value
decomposition to visualize the phase space trajectories in
an orthogonal system. In addition, we investigate the time
dependence of the Fourier parameters by calculating the an-
alytical signals (Gábor 1946) of the main pulsation and the
subharmonic frequency. This provides us with a fourth, more
quantitative way for the comparison.

The GFR method has been carefully and successfully
tested with known chaotic and non-chaotic data. Recon-
struction of chaotic data can fail if the proper parameters are
not found. We prevent this by using an extended parameter
space. Multiperiodic data will not yield chaotic solutions.
However, very complex or stochastic components on top of
the data can mimic chaos for a short while, therefore it es-
sential to use long and accurate input data, that contains
the relevant variability only. If we successfully reconstruct a
data set and find it to be chaotic, it indicates that chaotic
dynamics can be a plausible explanation for the observed
behavior.

2.2 The Empirical Mode Decomposition method

The large-amplitude long-term variation represents a com-
plication in our analysis that may prevent a robust or suc-
cessful reconstruction by elevating the embedding dimen-
sion. Here we assume that the long-period RVb phenomenon
is an external variation that is not connected to the pul-
sation dynamics, therefore we removed it before applying
the GFR method. For this purpose we adopted the Em-
pirical Mode Decomposition (hereafter EMD) method, that
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Figure 1. Intrinsic mode functions of the Kepler light curve of
DF Cyg. The sum of the first three IMFs (IMF1+IMF2+IMF3)
has been selected for GFR. Brightess is in Kp magnitudes, time
is in days.

is the fundamental part of the Hilbert-Huang Transform
(Huang et al. 1998). This tool is not widely used in vari-
able star studies, but sometimes applied in other fields
of astrophysics, to study non-stationary signals (Hu et al.
2015; Kolotov et al. 2015). The EMD method was tested
and found to be suitable for similar detrending application
for GFR in a previous study aimed at coupled Rössler oscil-
lators (Plachy & Kolláth 2013).

The EMD algorithm decomposes a time series into a set
of intrinsic mode functions (IMFs) that show variability on
different time scales with variable amplitude and frequency
(see Fig. 1). It is based on producing spline smoothed en-
velopes defined by local maxima and minima and subsequent
subtractions of the mean of these envelopes from the initial
data. To get the first IMF, the process is repeated until the
following requirements are satisfied: the number of extrema
and zero-crossings should differ at most by unity and the
mean of the envelopes should be zero at any point. The next
IMF is obtained by subtracting the previously extracted
IMF from the original data and repeating the same steps.
The algorithm ends with the residual signal from which no
more IMF can be extracted. We used a Python implemen-
tation of the Hilbert-Huang transform, PyHHt1.

3 DATA PREPARATION

The large number of well-sampled cycles is a crucial crite-
rion for the input data in our nonlinear analysis. NASA’s
Kepler mission provides a high-quality, four-year-long light
curve for DF Cyg containing 59 pulsation cycles and two full
cycles of large-amplitude variation. As a consequence of the

1 https://github.com/jaidevd/pyhht
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Figure 2. Preparation of the light curve. A fraction of light curve
shows the modifications performed before analysis. The disconti-
nuity of the original data provided by KASOC (black) was fixed
by shifting the light curves of different observing seasons together
and by filling the instrumental gaps (red). Data was resampled
before long-period variation was removed (blue). The inset shows
a zoom around discontinuities for better visibility.

quarter-year rolls of the spacecraft, the light curve suffers
from systematic shifts. The preparatory work for the cor-
rection of instrumental issues on the photometric solution
provided by the Kepler Asteroseismic Science Operations
Center (KASOC) has already been performed by Bódi et al.
(2016). We use the same data set in our analysis with some
modifications described below and showed in Fig. 2.

GFR requires equally sampled data with an optimal
number of data points, somewhere between the empirical
range of 100 and 200 points per cycle. We used the K-
Inpainting software, developed to fill gaps in Kepler data
(Pires et al. 2015; Garćıa et al. 2014) to interpolate the
missing points, and to resample the 30-minute cadence light
curve into a data set with ∼5 hour sampling. Unfortunately
our analysis cannot gain from the high-cadence sampling of
Kepler measurements, our tests showed that higher resolu-
tion just complicates the GFR.

The next step was the subtraction of RVb phenomenon.
We used two different approaches to remove long-term vari-
ations: our first choice was the trigonometric polynomial fit
that was used by Bódi et al. (2016), and as an alternative
we applied the EMD method. We produced three different
versions from the resampled light curve:

(i) for DFC1 long-term variations were removed by a
trigonometric polynomial function.

(ii) for DFC2 we applied the EMD method. The decom-
position is displayed in Fig. 1. The combination of the first
three IMFs (i.e., IMF1+IMF2+IMF3) was selected. Here we
used magnitude units.

(iii) for DFC3 we applied the EMD method again, but
the decomposition was performed in flux units. The sum of
the first three IMFs was divided by the normalized signal
composed from the rest of the IMFs and the residual sig-
nal, ie., the long-term variations. The rate of the apparent
amplitude attenuation is equal to the difference between the
average brightness measured in the bright and faint states
in flux units, according to Kiss & Bódi (2017). In this case
we corrected the mean brightness and amplitude changes
simultaneously. We then transformed our data set to mag-
nitude units for the reconstruction. As Fig. 3 shows, this
curve turned out to be more smooth than DFC2 or DFC1.

The time series, Fourier spectra and BK projections of
the three versions of the light curves are shown in Fig. 3.
Some differences can be recognized: traces of the long-period
RVb variations appear in DFC1, while the low-frequency
region of DFC3, below 0.01 d−1, is almost completely empty.
Nevertheless, since we do not know the exact shape of light
variation caused by the RVb phenomenon, we cannot decide
which version of the light curve captures the pulsation signal
best.

4 ANALYSIS AND RESULTS

We performed GFR for all three light curve versions with
the same settings. The parameters were set as follows:
∆ = 4, 5, 6 . . . 30 (time delay), ξ = n 0.0001 (noise intensity)
σ=n 0.001 (smoothing parameter) where n = 1, 2, 3 . . . 10.
This large parameter space was used in our previous studies
and was found to be extended enough to find large numbers
of chaotic signals, whenever there were any. We performed
GFR in all embedding dimensions implemented: de=4, 5
and 6. We iterated synthetic signals up to 300 cycles. We
note here that the artificial noise and smoothing distort the
data much less than the detrending techniques aimed at the
elimination of RVb phenomenon, trajectories are modified
within the width of lines displayed in Fig. 3. We present our
findings concerning the three version of light curve below:

(i) We found 170 chaotic synthetic light curves as a re-
sult of the reconstruction of DFC1. None of the synthetic
light curves resembled DFC1 sufficiently when the recon-
struction was performed in 4- or 5-dimensional embedding
space. However, a few synthetic signals in de=6 resemble
the strongly alternating part of DFC1, which is typical in
the first 22 cycles of the observed light curve. These sig-
nals have Lyapunov dimensions between 2.199–2.265. The
best synthetic light curve from the reconstruction of DFC1
is presented in the upper panels of Fig. 4

(ii) The GFR of DFC2 yielded 627 chaotic synthetic sig-
nals. The higher number of chaotic signals indicates that
the reconstruction of DFC2 was more successful than that
of DFC1. Among these signals we found numerous that show
good resemblance to DFC2, especially at ∆=20, in each
embedding space. We present this reconstruction in more
detail: in Fig. 5 we show examples of ’bad’ and ’good’ syn-
thetic signals. SynA is a periodic solution, while SynB, SynC
and SynD are chaotic signals but different from DFC2. The
overall difference is more prominent in the Fourier Trans-
forms and BK projections in Fig. 6. The periodic signal ap-
pears in the FT as a single frequency peak with a set of
harmonics, and a limit cycle in the BK projections. SynE,
SynF, SynG, and SynH were all reconstructed with ∆=20,
we found that these signals nicely resemble DFC2, their tra-
jectories explore almost the same extent of the phase space.
However, SynE seems to have more violent cycle-to-cycle
changes, which can be also seen in the analytical functions
of Fig. 7 that displays the amplitude and period change of
the fundamental and the subharmonic oscillations. These
plots show that the amplitudes of the fundamental and sub-
harmonic frequency correlate, and the same is true for the
period changes. On the other hand, the amplitude seems
to correlate with the period for some time, then it seems
to anticorrelate. This behaviour is also seen at SynF, SynG

c© 2002 RAS, MNRAS 000, 1–9
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Figure 4. Different realizations of the best synthetic signal examples from the reconstructions of DFC1 and DFC3. (Reconstruction
parameters are: ∆=10, ξ=0.007, σ=0, de=6, DL=2.199 and ∆=26, ξ=0.001, σ=0.01, de=5, DL=2.421.)

and SynH. Furthermore, the magnitude and time-scale of
the amplitude and period variations are also similar that of
DFC2. DL values of the best synthetic signals of these recon-
struction (similar to SynF, SynG, and synH) were calculated
to be ∼2.8 (2.720–2.926).

(iii) In the case of DFC3 we obtained 425 chaotic signals,
but could not discover as strong resemblance among the syn-
thetic signals as in the case of DFC2. An example synthetic
signal is displayed in the lower panels of Fig. 4. The typical
DL of the these signals are ∼2.4 (2.358–2.421).

We conclude that the reconstruction of DFC2 was the
most successful as it reproduced many characteristics, thus
we can adopt DL=∼2.8 for the fractal dimension of the dy-
namics of the pulsation in DF Cyg. DL values calculated in
the other two reconstructions (∼2.2 and ∼2.4 in the cases
of DFC1 and DFC3) probably underestimate the true value
because they capture only some simpler features. We note
that the GFR method is able to calculate Lyapunov expo-
nents with high accuracy and DL with three digits, but the
scatter in the values for the best synthetic signals prevents
us from estimating DL with more than one decimal place
accuracy.

5 SUMMARY AND CONCLUSIONS

We attempted the global flow reconstruction of an RVb-type
variable star for the first time. Our method required to sepa-
rate the long-term variability from the pulsation. The elimi-
nation is not unambiguous, therefore we used different tech-
niques, and investigated three different versions of the light
curve. When RVb variations were subtracted with a trigono-
metrical polynomial, only the amplitude alternation could
be reconstructed. We suspect that the reconstruction failed
because the long-term variation was not removed properly.
When we used the EMD method to eliminate the long-term
variation from the magnitude data, we were able to suc-
cessfully reconstruct the light curve, and calculated DL to
be ∼2.8. This result suggests that the light variation of DF
Cyg can be explained with the presence of low-dimensional,
deterministic chaos in the pulsation. In the third case we ap-
plied the EMD method to the flux light curve. We assumed
that scaling the stellar flux with the long-period variation
would provide equivalent or better results than subtraction
in magnitudes. However, the complex behavior that typifies
DF Cyg was missed. It is likely that the fractal dimensions
calculated in these reconstructions (DL ≈ 2.4) are underes-
timations.

Chaotic behavior can be the result of energy exchange
between two oscillations. The fingerprint of this process can
be found by the linear stability analysis of the map at its

c© 2002 RAS, MNRAS 000, 1–9
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Figure 5. Examples of synthetic signals and their parameters from the reconstruction of DFC2.

fixed points. For R Sct, the linear stability analysis of the
fixed points revealed a 2:1 resonance between two extremely
nonadiabatic modes. On the other hand, the properties of
fixed points could not be determined for AC Her because
phase space trajectories did not explore the vicinity of the
fixed points, i.e., the amplitude of light curve never became
very small. Our linear stability analysis of DF Cyg led to the
same result as of AC Her: no resonance could be identified
as the origin of chaotic dynamics. In the high-luminosity,
strongly dissipative hydrodynamical model sequence pub-
lished by Moskalik & Buchler (1990), a half-integer reso-
nance (the 5:2 resonance between the fundamental and sec-
ond overtone mode) initiated a period doubling cascade to
chaos in the 9.5-16 d period range. The same resonance
caused bifurcations with different properties in the lower

luminosity sequence that eventually ended in a period-one
cycle at ∼ 21.1 days. These calculations also showed that
the strong dissipation and nonlinearity causes considerable
shifts in the resonances, therefore we cannot simply extrap-
olate to the longer period regime of DF Cyg based on those
models.

Irregularities become more prevalent towards longer pe-
riods in RV Tau stars. However, there are exceptions, some
long-period RV Tau stars seem to be less irregular than
shorter-period ones. The Lyapunov dimension is used to
quantify chaos, thus it is a good measure of the rate of ir-
regularity, if it comes from chaotic dynamics. Kolláth et al.
(1998) compared the reconstructions of W Virginis models,
AC Her, and R Sct and noticed that Lyapunov dimensions
seem to increase with the pulsation period. DF Cyg does
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Figure 6. FTs and BK projections of synthetic signals presented in Fig. 5.

c© 2002 RAS, MNRAS 000, 1–9



8 E. Plachy et al.

0.0

0.1

0.2

0.3

0.4

0.5

12
13
14
24
25
26

DFC2

A1

P1

A0.5

P0.5

A
m

pl
itu

de

P
er

io
d

0.0

0.1

0.2

0.3

0.4

0.5

12
13
14
24
25
26

DFC2

A1

P1

A0.5

P0.5

A
m

pl
itu

de

P
er

io
d

0.0

0.1

0.2

0.3

0.4

0.5

12
13
14
24
25
26

DFC2

A1

P1

A0.5

P0.5

A
m

pl
itu

de

P
er

io
d

0.0

0.1

0.2

0.3

0.4

0.5

12
13
14
24
25
26

DFC2

A1

P1

A0.5

P0.5

A
m

pl
itu

de

P
er

io
d

0.0

0.1

0.2

0.3

0.4

0.5

12
13
14
24
25
26

SynE

0.0

0.1

0.2

0.3

0.4

0.5

12
13
14
24
25
26

SynE

0.0

0.1

0.2

0.3

0.4

0.5

12
13
14
24
25
26

SynE

0.0

0.1

0.2

0.3

0.4

0.5

12
13
14
24
25
26

SynE

0.0

0.1

0.2

0.3

0.4

0.5

12
13
14
24
25
26

SynF

0.0

0.1

0.2

0.3

0.4

0.5

12
13
14
24
25
26

SynF

0.0

0.1

0.2

0.3

0.4

0.5

12
13
14
24
25
26

SynF

0.0

0.1

0.2

0.3

0.4

0.5

12
13
14
24
25
26

SynF

0.0

0.1

0.2

0.3

0.4

0.5

12
13
14
24
25
26

SynG

0.0

0.1

0.2

0.3

0.4

0.5

12
13
14
24
25
26

SynG

0.0

0.1

0.2

0.3

0.4

0.5

12
13
14
24
25
26

SynG

0.0

0.1

0.2

0.3

0.4

0.5

12
13
14
24
25
26

SynG

0.0

0.1

0.2

0.3

0.4

0.5

 200  400  600  800  1000  1200  1400  1600  1800  2000  2200

12
13
14
24
25
26

SynH

BJD−2454833

0.0

0.1

0.2

0.3

0.4

0.5

 200  400  600  800  1000  1200  1400  1600  1800  2000  2200

12
13
14
24
25
26

SynH

BJD−2454833

0.0

0.1

0.2

0.3

0.4

0.5

 200  400  600  800  1000  1200  1400  1600  1800  2000  2200

12
13
14
24
25
26

SynH

BJD−2454833

0.0

0.1

0.2

0.3

0.4

0.5

 200  400  600  800  1000  1200  1400  1600  1800  2000  2200

12
13
14
24
25
26

SynH

BJD−2454833

Figure 7. Analytical functions of DFC2 and the best synthetic
signals from its reconstruction: amplitude (filled symbols) and
period (empty symbols) changes of the main oscillation(circles)
and the subharmonic frequency (triangles).

not fit into the trend, its period being shorter than that of
AC Her (∼37.7 d), but our analysis revealed a higher Lya-
punov dimension. This could suggests that the relationship
between the pulsation period and the irregularity is not un-
ambiguous. Alternatively, the origin of the discrepancy could
be that DF Cyg is an RVb variable. If small-scale variations
are present in the obscuring disk, they could introduce addi-
tional variations to the light curve that we did not account
for, increasing the Lyapunov dimension. Finally, AC Her it-
self may be more regular than other RV Tau stars. We note
that the reconstruction of AC Her was less robust than that
of R Sct, and the estimated Lyapunov dimension had a large
uncertainty too.

In order to understand the putative relation between
periods and Lyapunov dimensions, more RV Tau stars need
to be analyzed with nonlinear methods. With the increase of
data quality and length of observations hopefully this could
be achieved in the near future.

Finally, we remark that while the observations of
DF Cyg (as well as of R Sct and AC Her) can be explained
with chaotic dynamics, the confirmation of the existence of

chaos in RV Tau stars with non-linear hydrodynamic models
is yet to come.
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Pires, S., Mathur, S., Garćıa, R.A., Ballot, J., Stello, D.,
and Sato, K., 2015, A&A, 574, A18

Pollard, K. R., Cottrell, P. L., Kilmartin, P. M., Gilmore,
A. C., 1996, MNRAS, 279, 949

c© 2002 RAS, MNRAS 000, 1–9



Chaotic dynamics in DF Cyg 9

Pollard, K. R., McSaveney, J. A., Cottrelll, P. L., 2006,
MmSAI, 77, 527 Regev O., 2006, Chaos and Complexity
in Astrophysics. Cambridge Univ. Press, Cambridge

Regev O., 2006, Chaos and Complexity in Astrophysics.
Cambridge Univ. Press, Cambridge
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