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POINTWISE REGULARITY OF PARAMETERIZED AFFINE
ZIPPER FRACTAL CURVES

BALAZS BARANY, GERGELY KISS, AND ISTVAN KOLOSSVARY

ABSTRACT. We study the pointwise regularity of zipper fractal curves generated
by affine mappings. Under the assumption of dominated splitting of index-1, we
calculate the Hausdorff dimension of the level sets of the pointwise Holder expo-
nent for a subinterval of the spectrum. We give an equivalent characterization
for the existence of regular pointwise Holder exponent for Lebesgue almost every
point. In this case, we extend the multifractal analysis to the full spectrum. In
particular, we apply our results for de Rham’s curve.

1. INTRODUCTION AND STATEMENTS

Let us begin by recalling the general definition of fractal curves from Hutchin-
son [22] and Barnsley [3].

Definition 1.1. A system S = {fo,...,fn_1} of contracting mappings of R?
to itself is called a zipper with vertices Z = {zo,...,2nN} and signature € =
(€0y...,enN—1), €i € {0, 1}, if the cross-condition

fi(z0) = zite, and fi(2n) = zit1—,
holds for every i = 0,...,N — 1. We call the system a self-affine zipper if the
functions f; are affine contractive mappings of the form

fi(x) = Ajxz + t;, for everyi e {0,1,...,N — 1},

where A; € R¥4 jnyertible and t; € R?.

The fractal curve generated from S is the unique non-empty compact set I'; for
which

N-1
r=J £HD.
=0
If § is an affine zipper then we call I' a self-affine curve.

For an illustration see Figure 1. It shows the first (red), second (green) and third
(black) level cylinders of the image of [0, 1]2. The cross-condition ensures that I is
a continuous curve.

The dimension theory of self-affine curves is far from being well understood. The
Hausdorff dimension of such curves is known only in a very few cases. The usual
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FIGURE 1. An affine zipper with N = 3 maps and signature € = (0, 1,0).

techniques, like self-affine transversality, see Falconer [11], Jordan, Pollicott and
Simon [20], destroys the curve structure. Ledrappier [28] gave a sufficient condi-
tion to calculate the Hausdorff dimension of some fractal curves, and Solomyak [10]
applied it to calculate the dimension of the graph of the Takagi function for typ-
ical parameters. Feng and Kéenméki [18] characterized self-affine systems, which
have analytic curve attractor. Let us denote the s-dimensional Hausdorff meas-
ure and the Hausdorff dimension of a set A by H*(A) and dimpy A, respectively.
Moreover, let us denote the Packing and (upper) box-counting dimension of a
set A by dimp A and dimpA, respectively. For basic properties and definition of
Hausdorff-, Packing- and box-counting dimension, we refer to [15].

Bandt and Kravchenko [2] studied some smoothness properties of self-affine
curves, especially the tangent lines of planar self-affine curves. The main pur-
pose of this paper is to analyse the pointwise regularity of affine curves under some
parametrization. Let us recall the definition of pointwise Holder exponent of a real
valued function g, see for example [24, eq. (1.1)]. We say that g € C%(z) if there
exist a 0 > 0, C' > 0 and a polynomial P with degree at most || such that

lg(y) — P(y — 2)| < Clz — y|? for every y € Bs(z),

where Bs(x) denotes the ball with radius 6 centered at . Let o, (x) =sup{f:g €
CP(z)}. We call ap(x) the pointwise Holder exponent of g at the point .

We call F': R™ — R a self-similar function if there exists a bounded open set
U C R™, and contracting similarities g1, ..., gr of R™ such that g;(U) N g;(U) =0
and ¢;(U) C U for every i # j, and a smooth function g: R™ — R, and real
numbers |\;| < 1 for i =1,...,k such that

k
F(z) =Y AF(g; " (2) + g(x), (1.1)
i=1
see [25, Definition 2.1]. The multifractal formalism of the pointwise Holder expo-
nent of self-similar functions was studied in several aspects, see for example Aouidi
and Slimane [1], Slimane [6, 7, 5] and Saka [38].
Hutchinson [22] showed that the family of contracting functions g, ..., gx has a

unique, non-empty compact invariant set 2 (called the attractor of ® = {g1, ..., gx}),
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ie. Q= Ui-“:l 9i(2). We note that in the case of self-similar function, the graph of
F (denoted by Graph(F)) over the set € can be written as the unique, non-empty,
compact invariant set of the family of functions S, ..., S in R™*! where

Si(x,y) = (9i(z), \iy + g(gi(2))).

In this paper, we study the local regularity of a generalized version of self-
similar functions. Namely, let A = (Ag,...,An_1) be a probability vector. Let
us subdivide the interval [0, 1] according to the probability vector A and signature
e = (€0,...,6n-1), € € {0,1} of the zipper S. Let g; be the affine function mapping
the unit interval [0,1] to the ith subinterval of the division which is order-preserving
or order-reversing according to the signature ;. That is, the interval [0, 1] is the
attractor of the iterated function system

O ={gi:z— (—1)" Nz + 7}, (1.2)
where ~; = Z;;%) Aj +giXi. Let U = {Si}fi_ol be an IFS on R%*! such that
Si(x,y) = (9i(z), Aiy + ti).

It is easy to see that if A is the attractor of ¥ then for every x € [0,1] there
exists a unique y € R? such that (z,y) € A. Thus, we can define a function
v:[0,1] = I' € R? such that v(z) = y if (x,y) € A. The function v satisfies the
functional equation

v(z) = fi (v(g; ' (2)) if = € g;([0,1]). (1.3)
We note that g; '(z) = (7”317)735&, and g; '(z) € [0,1] if and only if z € g;([0, 1]).

Moreover, if { fl}fi 61 is a self-affine zipper then v is continuous.

We call v as the linear parametrization of I'. Such linear parameterizations occur
in the study of Wavelet functions in a natural way, see for example Protasov [30],
Protasov and Guglielmi [37], and Seuret [39]. A particular example for (1.3) is the
de Rham’s curve, see Section 5 for details including an example of a graph of v
generated by the de Rham’s curve.

The main difference between the self-similar function F' defined in (1.1) and v
defined in (1.3) is the contraction part. Namely, while F' is a real valued function
rescaled by only a real number, the function v is R? valued and a strict affine
transformation is acting on it. This makes the study of such functions more difficult.
As a slight abuse of the appellation of the pointwise Holder exponent, we use
another exponent a(z) of the function v at a point z € [0, 1]

a(zr) = liminf log |v(x) — v(y)|| (1.4)
y—a log |z — y|
We note that if o, (2) < 1 or a(z) < 1 then ap(x) = a(z). Otherwise, we have only
a(z) < ap(x).
When the liminf in (1.4) exists as a limit, then we say that v has a regular
pointwise Holder exponent a,.(z) at a point z € [0, 1], i.e.

on(z) = Tim "2 1@) = @)

1.5
y=e  loglz —yl 9
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Let us define the level sets of the (regular) pointwise Holder exponent by
EB)={z€[0,1]: a(x) = f} and
E.(8) ={z €[0,1] : ay(x) = B} .

Our goal is to perform multifractal analysis, i.e. to study the possible values,
which occur as (regular) pointwise Holder exponents, and determine the magnitude
of the sets, where it appears. This property was studied for several types of sin-
gular functions, for example for wavelets by Barral and Seuret [1], Seuret [39], for
Weierstrass-type functions Otani [33], for complex analogues of the Takagi function
by Jaerisch and Sumi [23] or for different functional equations by Coiffard, Melot
and Willer [10], by Okamura [32] and by Slimane [7] etc.

The main difficulty in our approach is to handle the distance ||v(z) — v(y)||. In
the previous examples, the function F' defined with the equation (1.1) was scaled
only by a constant. Roughly speaking

1E(Gineeviin () = F(Gireociins @) = |Xiy -+ Aiy [ () = F(y)]-
In the case of self-affine systems, this is not true anymore. That is,

[0(Giryin (€)= V(i osis W) = ([ Ay - - Ay (0() = 0(y)]]-
However, in general ||A;, ---A;, (v(z) —v(y))|| % |4 - A, |lllv(x) —v(y)|]. In
order to be able to compare the distance ||v(gi,,. i, (z)) — v(giy,....in (¥))|| With the
norm of the product of matrices, we need an extra assumption on the family of
matrices.

Let us denote by M the interior and by M the closure of a set M C PR
For a point v € R?, denote (v) equivalence class of v in the projective space PR
Every invertible matrix A defines a natural map on the projective space PR ™! by
(v) — (Av). As a slight abuse of notation, we denote this function by A too.

Definition 1.2. We say that a family of matrices A = {Ao, ..., An_1} have dom-
inated splitting of index-1 if there exists a non-empty open subset M C PR with
a finite number of connected components with pairwise disjoint closure such that
N—-1
U AZH C MO,
=0
and there is a d — 1 dimensional hyperplane that is transverse to all elements of
M. We call the set M a multicone.

We adapted the definition of dominated splitting of index-1 from the paper of
Bochi and Gourmelon [8]. They showed that the tuple of matrices A satisfies the
property in Definition 1.2 if and only if there exist constants C' >0 and 0 < 7 < 1
such that

a2(Ai1 e Azn)

al(Ail . Azn)
for every n > 1 and ig,...,i—1 € {0,..., N — 1}, where «;(A) denotes the ith
largest singular value of the matrix A. That is, the weakest contracting direction
and the stronger contracting directions are strongly separated away (splitted), ag
dominates as. This condition makes it easier to handle the growth rate of the norm
of matrix products, which will be essential in our later studies.

We note that for example a tuple A formed by matrices with strictly positive
elements, satisfies the dominated splitting of index-1 of M = ({x € R% : 2; > 0,i =

<ot
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1,...,d}). Throughout the paper we work with affine zippers, where we assume
that the matrices A; have dominated splitting of index-1. For more details, see
Section 2 and [8].

For a subset M of PR and a point = € R?, let

M(z)={yeR?: (y —x) € M}.

We call the set M (x) a cone centered at x.
We say that S satisfies the strong open set condition (SOSC), if there exists an
open bounded set U such that f;(U) C U,

LiU)N f;(U) =0 for every i # j and T NU # .

We call S a non-degenerate system, if it satisfies the SOSC and (zy — 29) ¢
Nreo M=k AZ1(M®), where for a finite length word 7 = 41 ..., A; denotes the
matrix product A;, A;, ... A;,. We note that the non-degenerate condition guaran-
tees that the curve v: [0,1] = R? is not self-intersecting and it is not contained in
a strict hyperplane of R%.

Denote by P(t) the pressure function which is defined as the unique root of the
equation

N-1
1 L
0=l s Z 0\\Ai1"'Ain\!t(>\i1"'Az‘n) . (1.6)
01yeenyin=

A considerable attention has been paid for pressures, which are defined by mat-
rix norms, see for example Kéenmaiki [27], Feng and Shmerkin [20], and Morris
[29, 30]. Feng [16] and later Feng and Lau [19] studied the properties of the pres-
sure P for positive and non-negative matrices. In Section 2, we extend these results
for the dominated splitting of index-1 case. Namely, we will show that the func-
tion P : R — R is continuous, concave, monotone increasing, and continuously
differentiable.

Unfortunately, even for positive matrices, the computation of the precise values
of P(t) is hopeless. For a fast approximation algorithm, see Pollicott and Vyt-
nova [34].

Let dy > 0 be the unique real number such that

— 1 1 _||do
0= nh_)rgoﬁlog Z || Az[| . (1.7)

[el=n

Observe that for every n > 1, {£(U) : |7| = n} defines a cover of I'. But since I is
a curve and thus dimy I' > 1, and since every f;(U) can be covered by a ball with
radius ||A7|||U], do > 1.

Let

P(t P(t ~
Omin = lim L, Qmax = lim ﬁ and & = P'(0). (1.8)
t—4oco ¢ t——oco t

The values apin and amax correspond to the logarithm of the joint- and the
lower-spectral radius defined by Protasov [30].

Now, we state our main theorems on the pointwise Holder exponents.

Theorem 1.3. Let v be a linear parametrization of I' defined by a non-degenerate
system S. Then there exists a constant &, defined in (1.8), such that for L-a.e.
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xz €10,1], a(x) = a > 1/dy. In addition, there exists an € > 0 such that for every
g€ la,a+e]
dimpg {z € [0,1] : a(z) = B} = 2nﬂ£{t5 — P(t)}. (1.9)
€
Moreover, (1.9) can be extended for every [ € [aumin, @ + €] if v satisfies
Ak
Xo = An_1 and lim Agl 1. (1.10)

koo ARl

Furthermore, the functions 8 +— dimpyg E(3) and § — dimy E,.(8) are continuous
and concave on their respective domains.

In the following, we give a sufficient condition to extend the previous result,
where (1.9) holds to the complete spectrum [oiin, max]- As a slight abuse of
notation for every 6 € PR, we say that 0 # v € 0 if (v) = 6.

Assumption A. For a non-degenerate affine zipper S = {f; : x — Ajx + ti}i]if)l
with vertices {zo, . .., zn} assume that there exists a convez, simply connected closed
cone C' C PR such that

(1) Ufil A;C C C° and for every 0 #v € 0 € C, (Av,v) >0,
(2) <ZN — Zo> e C°.

Observe that if S satisfies Assumption A then it satisfies the strong open set
condition with respect to the set U, which is the bounded component of C°(zp) N
C°(zn). We note that if all the matrices have strictly positive elements and the
zipper has signature (0,...,0) then Assumption A holds.

Theorem 1.4. Let S be an affine zipper satisfying Assumption A. Then for every
/B S [a7 amax]
dimy {z € [0,1] : a(x) = B} = gglg{tﬁ — P(t)}, (1.11)

and for every 8 € [Gumin, max|
dimg {z € [0,1] : ap(x) = B} = tig]g{tﬁ — P(t)}. (1.12)

Moreover, if S satisfies (1.10) then (1.11) can be extended for every B € [min, Omax]-
The functions f — dimyg E(B) and 5 — dimpyg E,(8) are continuous and concave
on their respective domains.

Assumption A has another important role. In Theorem 1.4, we calculated the
spectrum for the regular Holder exponent, providing that it exists. We show that
the existence of the regular Hélder exponent for Lebesgue typical points is equival-
ent to Assumption A.

Theorem 1.5. Let S be a non degenerate system. Then the reqular Holder expo-
nent exists for Lebesque almost every point if and only if S satisfies Assumption
A. In particular, a,(x) = P'(0) for Lebesque almost every x € [0,1].

Remark 1.6. In the sequel, to keep the notation tractable we assume the signature
e =(0,...,0). The results carry over for general signatures, and the proofs can be
easily modified for the general signature case, see Remark 5.5.
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The organization of the paper is as follows. In Section 2 we prove several proper-
ties of the pressure function P(t), extending the works of [16, 19] to the dominated
splitting of index-1 case using [8]. We prove Theorem 1.3 in Section 3. Section 4
contains the proofs of Theorems 1.4 and 1.5 when the zipper satisfies Assumption
A. Finally, as an application in Section 5, we show that our results can be applied
to de Rham’s curve, giving finer results than existing ones in the literature.

2. PRESSURE FOR MATRICES WITH DOMINATED SPLITTING OF INDEX-1

In this section, we generalize the result of Feng [16], and Feng and Lau [19].
In [19] the authors studied the pressure function and multifractal properties of
Lyapunov exponents for products of positive matrices. Here, we extend their results
for a more general class of matrices by using Bochi and Gourmelon [8] for later
usage.

Let ¥ be the set of one side infinite length words of symbols {0,..., N — 1}, i.e.
¥ ={0,...,N —1}N. Let o denote the left shift on ¥, its n-fold composition by
0™ = (in41,int2,.-.). We use the standard notation i|n for iq,...,4, and

[l|n] = {J 62]1 :Zl,,jn:’tn}

Let us denote the set of finite length words by ¥* = (J;2(,{0,..., N —1}", and
for an 7 € ¥*, let us denote the length of 7 by [7|. For a finite word 7 € ¥* and for
a j € X, denote 7j the concatenation of the finite word 7 with j.

Denote i A j the length of the longest common prefix of i,j € 3, i.e. iAj =
min{n—1: i, # jn}. Let A= (Xg,..., An_1) be a probability vector and let d(i, j)
be the distance on ¥ with respect to A. Namely,

inj
d(i,3) = [ Min = Ny (2.1)
n=1

If i A j = 0 then by definition i|;j = @ and Ay = 1. In the sequel, whenever we use
Hausdorff dimension in ¥ it is with respect to this metric d(i,j). For every r > 0,
we define a partition =, of X by

Zr = {lin, - vin s Xy iy S <Ny A (2:2)

For a matrix A and a subspace 6, denote || A|#]|| the norm of A restricted to 6, i.e.
| A|0|| = sup,eq ||Av]|/||v]]. In particular, if # has dimension one || A|8]| = ||Av]|/|v]
for any 0 # v € 6. Denote G(d, k) the Grassmanian manifold of & dimensional
subspaces of R?. We define the angle between a 1 dimensional subspace E and a
d — 1 dimensional subspace F' as usual, i.e.

<(E, F) = arccos <<U’prO‘]FU>) ,
[projolv]l

where 0 # v € E arbitrary and projp denotes the orthogonal projection onto F'.
The following theorem collects the most relevant properties of a family of matrices
with dominated splitting of index-1.

Theorem 2.1. [3, Theorem A, Theorem B, Claim on p. 228] Suppose that a finite
set of matrices {Ag,...,An_1} satisfies the dominated splitting of index-1 with
multicone M. Then there exist Holder continuous functions E : ¥ — PR and
F:3¥w— G(d,d—1) such that

(1) E(i) = A;,E(oi) for everyic X,
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(2) F(i) = Az._llF(ai) for everyie X,
(3) there exists B > 0 such that <(E(i), F(j)) > B for everyi,j € 3,
(4) there exist constants C' > 1 and 0 < 7 < 1 such that

az(4y),,)
14,
for everyi e ¥ andn > 1,
(5) there exists a constant C > 0 such that || A;
ied,
(6) there exists a constant C' > 0 such that || A;
every i,j € 3.

<Cr"

[E(e™)]| = C| Ay, || for every

In

|F(in ... i1j)|| < Caa(Ay,) for

ln

There are a few simple consequences of Theorem 2.1. First, if M is the multicone
from Definition 1.2, then by Theorem 2.1(1)

BG) = () Ai, -+ A (M),
n=1

and for every V € M, A;, --- A;,V — E(i) uniformly (independently of V'). Hence,
by property (5), there exists a constant C’ > 0 such that for every V € M and
every 1 € X%,

| Az V]| > C7[| Azll. (2.3)
So, this gives us a strong control over the growth rate of matrix products on
subspaces in M.

Remark 2.2. We note if the multicone M in Definition 1.2 has only one connec-
ted component then it can be chosen to be simply connected and convex. Indeed,
since M is separated away from the strong stable subspaces F then cv(M) must be
separated away from every d — 1 dimensional strong stable subspace, as well, where
cv(M) denotes the convex hull of M. Thus A;(cv(M)) C cv(M)° for every i.

Second, property (1) of Theorem 2.1 also implies that

n
143, |E(@" 1)l = [ ] 145 | E(a™D)]. (2.4)
k=1
Indeed, since E(i) is a one dimensional subspace, for every v € E(o"1i)

HAin”H - ||Az ..,inUH - .
— : =TT I14i, | B D).
k=1

143, [E(e"1)]| = =
‘ ol o5 il

|n

Moreover, since E(i) is Holder-continuous, the function (i) := log || A, |E(oi)]| is
also Holder-continuous. That is, there exist C' > 0 and 0 < 7 < 1 such that

(i) — ()| < Or'. (2.5)
It is easy to see that (2.5) holds if and only if 9 is Holder-continuous with respect
to the metric d defined in (2.1).

Finally, (2.5) implies that for every ¢, the potential function ¢; : ¥ +— R defined
by

eu(i) = log (|1 4is | E(oi) I'A, ") = tw(i) - P(t) log (2.6)

is Holder-continuous w.r.t the metric d, where P(t) was defined in (1.6). Thus,
by [9, Theorem 1.4], for every ¢t € R there exists a unique o-invariant, ergodic
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probability measure p; on ¥ such that there exists a constant C'(¢) > 1 such that
for every i € ¥ and every n > 1

oyt < b)) _ pa[iln]) <o, 2.7
O S e gy e a0 = OO @D

where the equality follows from substituting (2.6) and (2.4).
Moreover, for the Hausdorff dimension w.r.t. the metric d defined in (2.1)

h
dimH Ht = ﬂa (2'8)
pt
where
b =l S () log ) = - [, (29)
fi=n
Xuw = nhl%oﬁ > ma([i]) log As = —/logkildut(i)- (2.10)

[o]=n
We call x,, the Lyapunov exponent of y; and h,, the entropy of p;.

Lemma 2.3. The map t — P(t) is continuous, concave, monotone increasing on

R.

Proof. Since p; is a probability measure on ¥ and =, is a partition we get
_ log ZEEET e ([7])
logr
and by (2.7), Theorem 2.1(5) and (1.6)

for every r > 0

1 = 145t
Pl — T 8T, 1Al

2.11
r—0-+ log r (2.11)

Using this form it can be easily seen that ¢ — P(t¢) is continuous, concave and
monotone increasing. O

By Lemma 2.3, the potential ¢; depends continuously on ¢. Moreover, by (2.5),
loe(1) — we(j)| < CtrN. Thus, the Perron-Frobenius operator

N-1
= Z et g (i)
i=0

depends continuously on ¢. Hence, both the unique eigenfunction h; of T; and
the eigenmeasure v; of the dual operator T} depend continuously on ¢. Since
duy = hidvy, see [9, Theorem 1.16], we got that ¢ — pu; is continuous in weak*-
topology. Hence, by (2.9) and (2.10), t — h,, and t — x,, are continuous on
R.

Proposition 2.4. The map t — P(t) is continuously differentiable on R. Moreover,
for every t € R
dimpy py = tP'(t) — P(t),

and h N
1 A
nh_}IrOlo Olg(’;! )\Z — ')\;"H = P'(t) for ps-almost every i € 3.

n
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Proof. We recall [21, Theorem 3.1]. That is, since y; is a Gibbs measure
. log ZEEET Nt([i])q
T (0) = rgr(?+ logr

is differentiable at ¢ = 1 and 7/, (1) = dimp p;. On the other hand, by (2.7) and
(2.11)

Tu(q) = P(tq) — P(t)q.
Hence, by taking the derivative at ¢ = 1 we get that P(t) is differentiable for every
t e R\ {0} and
dimg py = tP'(t) — P(t).
Let us observe that by (2.6), (2.8) and (2.9)
— [ log || Ai, | E(0) || dp (i)
— [log i, dps(i)

dimpg py = ¢ — P(t).

Thus,

_ — Jlog ||Ai, |E(cd)||dpae (i)
a — [log Aiy dpu(i)
Since t — p; is continuous in weak*-topology we get that ¢ — P’(t) is continuous
on R\ {0}. On the other hand, the left and right hand side limits of P'(¢) at ¢t =0

exist and are equal. Thus, ¢t — P(t) is continuously differentiable on R.
By Theorem 2.1 (5), equation (2.4) and ergodicity of u; we get the last assertion

P'(t) for every t # 0.

of the proposition. O

Let us observe that by the definition of pressure function (1.6), P(0) = —1 and
thus, po corresponds to the Bernoulli measure on ¥ with probabilities (Mg, ..., Any—1).
That is,

po(fit, - yinl) = Ay -+ Ay
Lemma 2.5. For every finite set of matrices A with dominated splitting of index-1,
P'(0) > 1/dy, P'(dy) < 1/dy. Moreover, P'(0) > 1/dy if and only if P'(dy) < 1/dy
if and only if pa, # po-

Proof. By the definition of P(t), (1.6), P(dy) = 0, where dy is defined in (1.7).
Together with P(0) = —1 and the concavity and differentiability of P(t) (by Lemma
2.3 and Proposition 2.4), we get P'(0) > 1/dy, P'(dy) < 1/dy. Moreover, P'(0) >
1/dy if and only if P'(dy) < 1/dp.
On the other hand, by Proposition 2.4
[

log || A;
dimg pg, = doP’'(dp) = lim 8|4 = M for Lhdy-a.€. 1,
0 n—oo log )\iln X“do 0

In

where in the last equation we used the definition of j4,, the entropy and the Lya-
punov exponent. Since dimg pug = 1, if P'(dy) < 1/dp then py # pqg,. Otherwise,
by [9, Theorem 1.22], for every o-invariant, ergodic measure v on X,

h h
3 <1land v — 1if and only if v = .
~TToghgdr() = T loghgdv(@) RGO Y = o
h
Therefore, if P'(dy) = 1/dg then X"ﬂ =1 and 50 g, = 0. -

P‘do
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Lemma 2.6. For every o € [oumin, Qmax)

dimp {i e limint A a} < inf {ta — P(t)} (2.12)
m—oo log Ay, >0
and
mmeezﬂmmmbmmmﬂ>a}<mum—P@} (2.13)
m—oo  lOg Ai\m - <0

Proof. For simplicity, we use the notations

. .. logll4y, | — . . log [| 4., |
G,=qie¥ :liminf ———— <ap and Gy, =<qi€ ¥:limsup——"— > .
m—oo  log A\ m—oo  log A

|’m. |m

Let € > 0 be arbitrary but fixed and let us define the following sets of cylinders:

. log)| 4

=407 €=,: <
D, (e) {[Z]E ,:0<p<ran og A

Sa+5}

and

log || Az
DT(E):{[i]eEp:O<p§randM>a—€}.

log Ay —

By definition, D,.(¢) is a cover of G, and respectively, D, (¢) is a cover of G,. Now
let C, () and C,(g) be a disjoint set of cylinders such that

A= | wWad | B= U
[[eD,.(¢) [[JeC,(e) [7]€Dx(e) [@eCr(e)

Then by (2.7) and the definition of C,(¢), for any ¢t > 0

/H?tfP(t)+(1+t)s(Qa) < Z )\éatfP(t)+(1+t)s)

[[leC,(¢)
<aphrt Y At
[leC,.(e)
<O Y () < CAGLre
[[leC,(¢)

Hence, Hot~PO+0+De(G ) = 0 for any t > 0 and any ¢ > 0, so (2.12) follows. The
proof of (2.13) is similar by using the cover C,(¢) of G,. O

We note that by the concavity of P

inf {ta — P(1)} = inf {ta = P(1)},

for every and « € [P'(0), amax],

inf {ta — P(t)} = inf {ta = P(1)},

for every a € [aumin, P'(0)].
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3. POINTWISE HOLDER EXPONENT FOR NON-DEGENERATE CURVES

First, let us define the natural projections 7 and II from the symbolic space X
to the unit interval [0, 1] and the curve I'. We recall that we assumed that all the
signatures of the affine zipper Definition 1.1 is 0, and all the matrices are invertible.
Therefore,

oo
©(i) = lim g o---0g; (0) = z_:lx\unl%n (3.1)
NG = lim fi1o~--ofin<0>=zlAinltin- (3.2)

Observe that by the definition of the linear parametrization v of I', v(w(i)) = II(i).
In the analysis of the pointwise Holder exponent «, defined in (1.4), the points
play important role which are far away symbolically but close on the self-affine
curve. To be able to handle such points we introduce the following notation
min{cNTi A N=1,0NT A0}, if dinje1 + 1 = Jinj+1,
ivji=< min{oNtiA0,0NH A N1}, if finjr1 + 1 = dinji1s
0, otherwise,

where 0 denotes the (0,0,...) and N—1 denotes the (N — 1, N —1,...) sequence.
It is easy to see that there exists a constant K > 0 such that

K1\ + A ) < |7(i) — 7(§)| < K(X + Njlinsivs)- (3.3)

Jlinjrivi
Hence, the distance on [0, 1] is not comparable with the distance on the symbolic
space. More precisely, let T be the set of points on the symbolic space, which has
tail 0 or N — 1, i.e. i € T if and only if there exists a k& > 0 such that o*i = 0
or ofi = N—1. So if w(c*i) is too close to the set m(T) infinitely often then we
lose the symbolic control over the distance |7 (i) — 7 (i,)|, where i, is such that
(i) — 7(i) as n — oo.

On the other hand, the symbolic control of the set ||II(i) —II(i,)|| is also far non-
trivial. In general, ||TI(i) — TI(j)|| = [| 4y, (TI(c*Ni) — TI(0*j))]| is not comparable
to || A, Il - ITI(cNi) — TI(o™Nj) ||, unless (IT(c"Ni) — II(0*Nj)) € M, where M is
the multicone satisfying the Definition 1.2. Thus, in order to handle

lim inf log HH(I) - H(ln)H
n—oo log|m(i) — w(i,)|

ilinj+ivj ilinjtivj

we need that i is sufficiently far from the tail set 7" and also that the points II(iy,)
on T' can be chosen such that (II(oNi) — II(¢Mini,,)) € M. So we introduce a kind
of exceptional set B, where both of these requirements fail. We define B C ¥ such
that

B={ieY:Vn>1,VI>1,Vm>1,3IK >0Vk>K
(M) \ By (T(@*1) ) VT (i, UT ki, i1y -1y U Tk i) = 0}
(3.4)

where I'; = f3(T") for any finite length word 7 € ¥* and M (II(i)) is the cone centered
at I1(i). We note that if i, = 0 (or i, = N —1) then we define U'oxy), | (;,—1y(v—1)m =0
(or Tyip, (ii4+1)0m = 0 respectively).
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M(TI(F))

0™

B:(T(#))

FIGURE 2. Local neighbourhood of points in By, j .

In particular, B contains those points i, for which locally the curve I' will leave
the cone M very rapidly. In other words, let

Bn,l,m = {1 IS
(M(II(1)) \ By, (I1(3))) N T\ (Ty), UT5, = 1y(v—1ym U T3, ar1yom) = 0} -

and
o0 o0 oo oo

(o)
Bn,m,l,K = m Uian,l,m and B = ﬂ ﬂ m U Bn,l,m,K‘
k=K n=11=0 m=0 K=0
For a visualisation of the local neighbourhood of a point in By, ;,,, see Figure 2.
In particular, we are able to handle the pointwise Holder exponents at (i) outside
of the set B and we show that B is small in some sense.

Lemma 3.1. Let us assume that S is non-degenerate. Then there exist n > 1,
[ >1,m>1 and ] finite length word with |7| =1, such that

Bn,l,m N [j] = @

Proof. Our first claim is that there exists a finite sequence 7 such that (Az(zy —
20)) € M. Suppose that this is not the case. That is, for every finite length word
(As(2n — 20)) € M°. Equivalently, for every finite length word 7, (zx — 20) €
A1 (M®). Thus, (zy — 20) € N2 Nigj=k A-1(M°®), which contradicts to our non-
degeneracy assumption.

Let us fix an 7 such that (A;(zy — 20)) € M. Then fi(zn) € M(fi(z0)). By
continuity, one can choose k > 1 large enough such that for every i € [10¥],

fizn) € M(I1(3))
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and
. Ttk . 1
1£2(z0) = TE@) | = [| Azor (20 — TH(0 1)) || < (| Al|[| AF | diam(T) < 2 1A=y = z0)ll;
where we used the fact that fy(z9) = z9. Then
. . 1
L) = falen)l 2 [|As(zn — 20)| = [.fe20) = TA)I| > 5[ Az(zn — 20)]l-
We get that for every i € [10¥]
filan) € (M( )\ B, (2 -z T )))ﬂr\(rwk UT0k-110YT7, g —1)v) # 0-

By fixing 7:=70%, [ := |7, m := 1 and n := {ﬁ—‘, we see that By, ;,,, N[J] =

7(ZN —20

0. O

Proposition 3.2. Let us assume that S is non-degenerate. Then dimp w(B) < 1.
Moreover, for any v fully supported ergodic measure on 3, v(B) = 0.

Proof. By definition, Bn,l,m 2 Bn-l—l,l,ma Bn,l,m 2 Bn,l—l—Lm and Bn,l,m 2 Bn,l,m+1'
Moreover, By, | m Kk = O'_KBn,Lm’(). In particular, U_an,hm,O = Bpim,a1 2 Bnimpo-
Thus, for every n > 1
n,l,m 0 c U n,l,m 0 (35)
[2l=q

where g;(i) = 7i. Let ng > 1, lp > 1, mp > 1 be natural numbers and j be the finite
length word with |j| = [y as in Lemma 3.1, then

oo
Bhglg,mo,0 N D] = ﬂ (U_ano,mo,lo N [ﬂ) C Bngmo,lo N ] = 0.
k=0

Thus,
Bhg lg,mo,0 € U Bhg 10,mo.,0 0)- (3.6)

lZ1=lo

#]
Hence, o?i ¢ [J] for every i € By, 1m0 and for every p > 1. Indeed, if there exists
i € By, .iymo0 and p > 1 such that oPi € [J] then there exist a finite length word 7
with [z7| = p such that B N [77] # 0. But by equations (3.5) and (3.6),

Bno,lo,mmog U Qfl(Bno,lo,mo,O) g U U ﬁl(ﬁg(Bno,lo,mo,O)) g U U [1152]

[21]=p [21|=p I721=lo [21]=p I72]=lo
1277 12#]

which is a contradiction. But for any fully supported ergodic measure v, v([j]) > 0
and therefore v(Byp, 1y.mo,0) = 0. The second statement of the lemma follows by

o oo
v(B) < Hllf v U B im, K) Z V(Bno,loﬂno,K) = Z V(Bnoylo,mo,()) = 0.
ot K=0 K=0

To prove the first assertion of the proposition, observe that by equation (3.6)

7r(BTLO,l(),TrLO,()> < U 95(7(<Bn0710,m070)>'
@;%0
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Therefore, 7(Bpg,15,mo,0) i contained in the attractor A of the IFS {g;}4,,, for
=

#J
which dimp A < 1. Hence,

dimp 7T(B) < inf mBﬂ'(BnJ,m,o) < HBW(BnO,IO,mO,O) <dimgA < 1.

n,L,m

O

Lemma 3.3. Let us assume that S is non-degenerate. Then for everyi€ X\ B

a(m(i)) < limsup M.
n—o+oo loOg )‘i\n

Proof. Let i € ¥\ B. Then there exist n > 1,1 > 1, m > 1 and a sequence {kp};il
such that k&, — oo as p — oo and

(MI(a*0)\ By (1)) ) 0
I'\ (Fokl’ih U Pakl’ih,l(ikpﬂfl)(Nfl)m U Pa’fpi|l,1(ikp+l+1)0m) #0 (3.7)
Hence, there exists a sequence j, such that &, <iAj, <k, +1,1Vj, <m,
M(o",) € M(II(o*4)) and [[1(o*75,) ~ TI(H3)] > T (3.8)
Thus,

S o) TG o 1) ~ 11G,)|
a(mi) = Bl Sog @) —70)] = P Tog [n(1) — 7(y)
tog [ 4y, (TT(o*1) — TI(o*2j,)]

7 (oNp VIl — (o iAj’”LiVij'p))‘ 7

= lim inf
p—+oo log |\

and by (2.3), (3.8),

linjp+ivip (

log ||y, (TT(o*r) — TI(c*7jp)) |

lim inf e e
pboe 108 [Ny, o (r(0TNrH3) — (o Vi, )] =
. log(C™/n) +log |4y, I log || 4,
lim inf < limsup ———*
p——+00 log)\i‘kp—l—logd’ p——+00 10g>\i|p
where d’ = (max; \;)" . O

Lemma 3.4. Let us assume that S is non-degenerate. Then for every ergodic, o-
invariant, fully supported measure i on S such that > oo o (u[0¥] + u([N*]) is finite,

then
log || Ay,
n—+oo log Ay,

a(r(i)) =

for p-a.e. i€ 3.

Proof. By Proposition 3.2, we have that u(B) = 0. Thus, by Lemma 3.3, for p-a.e.
i

. - log |4y, |
< _
alm(i) < ngl—}—loo log A\

|7

On the other hand, for every i € ¥,
log |[TL(i) — TI(j)|| log || Ay, ;|

a(r(i)) = liminf > lim inf

w(j)—m(i) log |7T(i) — TI‘(J)‘ j—i log A

+ logmin; \;

ilinjtivj
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Hence, to verify the statement of the lemma, it is enough to show that

log Ayj. -
im S _ 1 for p-a.e. i.
j—ilog N\

ilinj+iv

iVj

X = 0 follows the previous equation. Let

It is easy to see that from lim;_; <%

iv] 1
Rn:{ djg s. t. jp >iask —ooand lim - ‘]k>}
k—oo 1A jg n

In other words,

Lk/n] Lk/n)

ﬂ U U i1, 05,0, 0 Uity yies N, N

K=0k=Ki1,...,i=0

Therefore, for any p ergodic o-invariant measure and for every K > 0

[e.9]

< 3 (U] + (V).
k=K

Since by assumption the sum on the right hand side is summable, we get u(R,) = 0
for every n > 1. O

Lemma 3.5. Let us assume that S is non-degenerate and satisfies (1.10). Then
for everyie X

(@) > tming 12814
n—>+oo log)\l| )

Proof. Let us observe that by the zipper property f;(II(0)) = f;—1(IN—1) for every
1 <4 < N — 1. Moreover, for any i,j with #5541 = Jinj+1 + 1,

iVj=min{c"t A N-1,6N 15 A0},
Thus, if 4iaj41 = Jinj+1 + 1

ITI(E) = TG) [ = ITL(E) — (iinjiinj+10) + T (Glinging+1 N—1) = ()|
(o™ F15) —T1(0)) + Ay, (IH(N=1) — I(0NH)) |
|+ 1| 4; diam(T"). (3.9)

= ” i|1/\J+ivj(

(HAl\mwa linj+ivj Iy

The case iipj+1 = Jinj+1 — 1 is similar, and if |iipj41 — Jinj+1| # 1 then iV j = 0,
so (3.9) holds trivially. Moreover by (3.3), there exist constants K1, Ko > 0 such
that for every i,j € X

log [|T1(3) — II(G)[|  —1og Ky +10g(ll Ay, 01l + [Aj1ing 1051

(3.10)
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Therefore,

L Tog ) - 1G]
om(i) = T ind S e ) — 7))

o tiing — 08 E1 1081 A5l F [ As1nsy031)
o isi log()\imjﬁvj + >\j|w+ivj) +log K>
log 1+W>
10g [ Asf;rs ;] _110.g71<1+1+ ||.i‘mj+mu
IAj+iV] 08 [[Aif; 54505 10g [[Ai); i 105

J—i log 2K>
log )‘i|i/\j+ivj <1 + log \;

)\“i/\jJrivj

= liminf >

So, to verify the statement of the lemma, it is enough to show that there exists a
constant C' > 0 such that for every, i,j € X

C—l < HA.i|iAj+i\/jH < C

[ [P VTN
By Theorem 2.1(5) and (2.4), there exist C' > 0 such that
1A g i 1| 2 A B = 1A | B0 ilivsi ) | Agtnsyy, ;| B
> Ol Aijy s 1 Aginsgy, |
and
||Aj|i/\j+i\/j|| < HAJ'IiAj”HAUWJ\ivj”

clearly. The other bounds are similar. But if iipj41 = jiaj+1 +1 then [[Agin),, | =
1467 and | Aginsyy,, || = [l A2, |- Thus, by (1.10),

1 A;
> liminf w.

lo Ai- i1y
(i) > lim ing 28 i > i L

=i log )\

linj+ivj

0

Proof of Theorem 1.3. First, we show that for L-a.e. x, the local Holder exponent
is a constant. Since po = {A1,. .. ,)\N}N, it is easy to see that m.uo = Lljo- Thus,
it is enough to show that for pg-a.e. i € X, a(n(i)) is a constant.

But by Proposition 2.4, there exists @ such that for pg-a.e. i

log || Aj,,

a=
n—+oo log Ay,

By definition of Bernoulli measure, Y 5o, £10([0%]) +po([N*]) = lel + ﬁ Thus,
by Lemma 3.4, a(7(i)) = & for pp-a.e. i, and by Lemma 2.5, we have a > 1/dp.

We show now the lower bound for (1.9). By Lemma 2.3 and Proposition 2.4,
the map ¢ — P’(t) is continuous and non-increasing on R. Hence, for every 8 €
(Qmin, max) there exists a ty € R such that P'(t9) = 5. By Proposition 2.4, there
exists a iz, Gibbs measure on ¥ such that

log || Aj,, |

D Tog s = [ for py,-a.e. i€ X,

I
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It is easy to see that for any i and n > 1, py,([i|»]) > 0. Thus, by Lemma 3.4,
a(m(i)) = B for wy,-a.e. i€ X.

Observe that 7 : 3 — [0, 1] is a finite to one Lipschitz-map. Thus, by [17, Theorem
2.8, Corollary 4.16], dimy p; = dimpgy py o 7! for every t € R. Therefore, by
Proposition 2.4

dimg {z € [0,1] : a(z) = B} > dimp g, 0 7+ = toP'(to) — Plty) =

{08 Plto) > inf {15~ P(1)}.
On the other hand, by Lemma 3.3
dimpy {z € [0,1] : a(z) = B}
< max {dimy 7(B),dimg {i € ¥\ B: a(n(i)) = 8}}

: : C log || 4,
< max { dimy 7(B),dimyg (i € ¥ : limsup ———— >
n—+o00 10g )\1|n

< max {dimH 7(B), tn%g {t6 — P(t)}} ;

where in the last inequality we used Lemma 2.6.

By Proposition 2.4, the function t — tP’(t) — P(t) is continuous and P(0) = —1.
By Proposition 3.2, dimy 7(B) < 1, thus, there exists an open neighbourhood
of t = 0 such that for every t € (—p,p), tP'(t) — P(t) > dimpw(B). In other
words, there exists an € > 0 such that P'(t) € (@ —e,a + ¢) for every t € (—p, p).
Hence, for every € [a@,a + €] there exists a tg < 0 such that P'(ty) = 8 and
infi<o {tB8 — P(t)} = toP'(to) — P(to) > dimpg 7(B) which completes the proof of
(1.9).

Finally, if (1.10) holds then by Lemma 3.5 and Lemma 2.6

dimg {z € [0,1] : a(x) = 8} <

1 Ay, .
M SB} S;gg{tﬁ—P(t)},

which completes the proof. O

dimg {i S %I_I}lilg log Ay,

4. ZIPPERS WITH ASSUMPTION A

Now, we turn to the case when our affine zipper satisfies the Assumption A.
We will show that in fact in this case the exceptional set B, introduced in (3.4) is
empty. That is, there are no points, in which local neighbourhood, the curve leaves
the cone rapidly. First, let us introduce a natural ordering on ¥*. For any 7,7 € ¥*
with 2 A7=m and [7]| > m,[7] > m, let

1 <7 mt1 < Jmtl-
Moreover, let Z; := {zp,...,zn} the endpoints of the curves f;(T') and let Z,, :=
{fizr), il =n,k=0,...,N —1}.

For simplicity, let us denote f;(z9) by 2z;. Observe that by the Zipper property
fi(ZN) = A g-1(iz—1)"

Proposition 4.1. Let us assume that S is non-degenerate and satisfies the As-
sumption A. Then B =), where the set B is defined in (3.4).
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Proof. It is enough to show that for every i € X
C(IIH))NT =T, (4.1)

which is equivalent to show that for every i,j € X, (II(i) — I1(j)) € C.

Since (29 — zn) € C and C' is invariant w.r.t all of the matrices then for every
TEN, (-2, ) = (ilz0) — filzn)) = (Ailz0 — 2n)) € C.

Observe by convexity of C, for any three vectors z,y,w € R, if (x —y) € C and
(y —w) € C then (x —w) € C. Thus, by Assumption A and the convexity of the
cone, for every n > 1, and for every @ < j € ¥ with 7| = 7| = n, (27 — 23) € C.

Thus, for every i # j € ¥ and for every n > 1, (fj|, (20) — fj| (20)) = (23}, — %j),.) €
C'. Since C'is closed, by taking n tends to infinity, we get that (II(i)—II(j)) € C. O

Lemma 4.2. Let us assume that S is non-degenerate and satisfies the Assumption
A. Then for any u fully supported, ergodic, o-invariant measure on %

i) — I1(j log || A;
oy LI TG o8 14,
m(§)—m(i) log |7T(1) - 7T(.])| n—+oo log )‘l\n

for p-a.e. i.

Proof. Observe that

lim sup log HH(T) —H(:I)H _
=(G)—n() log|m(i) — 7 ()]

linj+ivj (

log || 4; (ot NHYIE) — T1(0)) + 4, (TI(N—1) — TI(a"N+1Vij)) |
lim sup o :
)= Migny (s (r(H+5) = 0) 4+ Ay, (1= m(oW3+55)) ) |

By (4.1), (II(¢"N*1Vii) — 11(0)), (I(N—1) — H(¢"NH1Vij)) € C, therefore by (2.3)

Ai\/jH

) ) log || Ajj; ;50,11 + log <1—|— I 0 >
1 I —1I iAJHiV] ALV

lim sup og [|11(3) Wl < lim sup 14Nl .

(i) =) loglm(i) —m(j)] o log Ay,

It is easy to see that for any fully supported, ergodic, o-invariant measure u,
lim sup;_,; % = 0 for p-a.e. i. Hence, by the previous inequality, the statement
follows similarly as in Lemma 3.4 . ]

Proof of Theorem 1./. By Lemma 3.4 and Lemma 4.2, for every t € R

o) =t 2B

W Toe for pp-a.e. i€ 3.

iln
Thus, similarly to the proof of Theorem 1.3

dim g {37 € [0, 1] : ar(a:) = ,8} > dimg Uty © = toP/(to) — P(t()) =

_ > i _
tofl — P(to) = inf {¢5 — P(t)},
where t( is defined such that P’(ty) = 8. On the other hand,
dimg {z € [0,1] : ap(x) = 5} < dimpy {z € [0,1] : a(x) = S} .
By Proposition 4.1, B = (), and similarly to the proof of Theorem 1.3,
dimg {z € [0,1] : a(x) = 8} < %25 {tB—P(t)},
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F1GURE 3. Well ordered property of Z,, on I € G(d,d — 1).

for every f € [&, amax|. If T satisfies (1.10) then by Lemma 3.5 and Lemma 2.6
dimpg {z € [0,1] : a(z) = B} < %gg {t6 —P(t)},
which completes the proof. O

Now, we turn to the equivalence of the existence of pointwise regular Holder
exponents and the Assumption A. Before that, we introduce another property and
we show that in fact all of them are equivalent. Denote cv(a,b) open line segment
in R¢ connecting two points a, b. Moreover, let us denote the orthogonal projection
to a subspace by proj, and for a subspace 6 let 0+ be the orthogonal complement
of #. For a point  and a subspace 0, let 0(z) = {y € R : 2 —y € }.

Definition 4.3. We say that Z, is well ordered on | € G(d,d — 1) if for any
1 <19 <3

pI"Ole_ (272) € CV(pI‘Ole_ (Zil)a pI"Ole_ (273))' (4'2)
We say that Z, is well ordered if there exists a § > 0 such that Z, is well ordered
for alll € Bs(F(Y)).

Let us recall that F' : ¥ +— G(d, d—1) is the Holder-continuous function defined in
Theorem 2.1. So Bs(F (X)) is the 6 > 0 neighbourhood of all the possible subspaces
on which the growth rate of the matrices is at most the second singular value. For
a visualisation of the well ordered property, see Figure 3. Roughly speaking, the
well ordered property on [ € G(d,d— 1) means that the curve is parallel to I+. The
next lemma indeed verifies that the curve cannot turn back along [+
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Lemma 4.4. Z, is well ordered if and only if 35 > 0,Yr € RVl € Bs(F (X))
either cv(zi,, 2,) N1(x) =0 or cv(z,, 22,) N 1(x) = 0, for every 11 <72 < 73.

Proof. Fix 711 <72 <13 € {0,...,N —1}". Suppose that Z, is well ordered but for
all § > 0 there exists | € Bs(F(X)) and = € R? such that cv(z;, 2,) Nl(z) # 0 and
ev(zgy, 215) N 1(z) # (. Thus,

prole ($) ccv (prole (252 )7 pI‘Ole (251 )) Mcv (prOle (Z?Q )7 pl"Ole (213 ))

Since the right hand side is open, and non-empty line segment, therefore

projui (#,) ¢ cv(projuu (z,), projis (2,)),

which is a contradiction.

On the other hand, suppose that Z, satisfy the assumption of the lemma but
not well ordered. Then for every 6 > 0 there exists an | € Bs(F(X)) such that
proj;. (2z,) & cv(proj;i (23, ), proji(zz,)). Since Bs(F(X)) is open, there exists an
I' € Bs(F (X)) for which

dist(projy . (27,), cv (projlu (27,), ProjyL (273)) ) > 0.

Thus, there exists € R? that cv(z;,,25,) NI'(z) # 0 and cv(z,, 21,) N '(x) # 0,
which is again a contradiction. U

The next lemma gives us a method to check the well ordered property.
Lemma 4.5. 7y is well ordered if and only if for every n > 0 Z, is well ordered.

Proof. The if part is trivial.

By definition, Z, = Up_g fr(Zn_1). By Lemma 4.4, if Z,_; is well ordered
then there exists 6 > 0 such that for every I € Bs(F(X)) and for every z € R?
either cv(zz,, 2z,) Nl(x) = 0 or ¢v(z,, 2,) NI(x) = (. Thus, in particular for every
l € Bs(F([k])). By Theorem 2.1(2), there exists ¢’ > 0 such that A;Bs(F([k])) 2
By (F(X)). Thus, for every | € By (F(X)) and for every z € RY,

either cv(fi(z1,), fi(25,)) N1(z) = 0 or ev(fr(2z,), fi(z5)) NI(z) =0 (4.3)

for every z;,, 215, 225 € Zp—1 With 73 <72 < 73.

Let us suppose that Z, is not well ordered for some n. Hence, there exists a
minimal n such that Z,_1 is well ordered but Z, is not. By Lemma 4.4, for every
§' > 8 > 0 there exist 7; <7, <73 € {0,..., N —1}"*1 I € B5(F(X)) and z € R?

ev(z3,,25,) N1'(x) # 0 and cv(z3,, 2;,) N 1'(x) # 0.

Since (4.3) holds for every k = 0,...,N — 1, there are k < m such that z; €
Jk(Zn-1) and 25, € fi(Z,—1). On the other hand by (4.3), one of the endpoints
of fr(Zn-1) (and fi(Z,—1)) must be on the same side of I'(x), where z; (and
23, respectively) is. Denote these endpoints by z, and zy. Observe that zy #
zy. Indeed, if zy = 2y then k = m — 1, and thus either z;, € fi(Z,—1) or
25, € fm(Zn—1). Hence, but z;, is separated from 2; , 23, 2o, 2y by the plane I'(z),
which cannot happen by (4.3).

Moreover,by (4.3), one of the endpoints of f3,),(Zn-1) is on the same side of
I'(x) with z;,, denote it by z+. But the endpoints of f,(Z,_1) are the elements
of Zy, moreover, a’ < ¢ < b, which contradicts to the well ordered property of
Z. O
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Theorem 4.6. Let S be a non-degenerate system. Then the following three state-
ments are equivalent

(1) S satisfies Assumption A,

(2) for L-a.e. z, c(x) exists,

(3) Zy satisfies the well-ordered property.

Proof of Theorem 4.6(1)= Theorem 4.6(2). Similarly, to the begining of the proof
of Theorem 1.3, w0 = Llg 1), where po = {1, . ., )\N}N, which is fully supported,

o-invariant, ergodic measure. Moreover, "3 uo([0%]) + po([N*]) = 1JA1
Thus, by Lemma 3.4

O . 1 Ai
i inf logHH(}) H(_J)H _ lim og || A, |
n()—r(@)) log|m(i) —7(§)|  notoo logly,

for po-a.e. i € 3.

But since S satisfies Assumption A, by using Lemma 4.2,
1 i) —II(j log || A;
lim sup (S IO 0@ -, - loe [ 4q, |
w(G)—n(@) l0g|m(i) —7(§)] T notoo log g,
which completes the proof. O

for pp-a.e. i € 3,

Proof of Theorem 4.6(2)= Theorem 4.6(3). Let us argue by contradiction. Assume
that «,(x) exists for L-a.e. x but there exists Z,, n > 0, which does not satisfy
the well-ordered property. By Lemma 4.5, Zy does not satisfy the well ordered
property. By Lemma 4.4, let [ € F(X), z € R% and 2;_1, 2, zi11 € Zy be such that
cv(zi—1,2i) Nl(x) # 0 and cv(z;, zi1) NI(z) # 0. By continuity of the curve T,
there exist i,j € ¥ such that iy =i—1 # i = j1, jo # 0 and II(i) — I1(j) € I(2) with
some 2/ € R%. Hence, (II(i) — I1(j)) C I. By definition, there exists a k € ¥ such
that F'(k) = [. By using the continuity of F': ¥ — G(d,d — 1), T" and IT: ¥ — T,
one can choose n, m sufficiently large, such that for every i’ € [i|,] and kK’ € [k|,],

F(K)II{)) N Ty, # 0. (4.4)

By ergodicity, for pp-a.e. i, oPi € [km,...,k1,i1,...,0,] for infinitely many

p > 0, where k|,,, = k1,...,km. Let us denote this subsequence by py. Let ki be
the sequence such that ki, € [k1,...,km,ip, .-, 01)-

By (4.4), there exists a sequence {ji} such that jx Ai = pg+m, oP*T"j € [j172],
and II(oPet™j,) — II(oP*T™i) € F(kg). By construction, oPxt™j, A gPEt™Mi = ()
and oPx ™.V oPET™Mi = 0, and hence there exists a constant ¢ > 0 such that
|[TI(oPrt™js) — TI(oPEt™i)|| > c. Therefore for pp-a.e. i

o (i) = .hm' 1OgHH(f):H(.J')H iy 08 ITI() — () |
m()—r(i) log|m(i) —7()|  kotoo log|m(i) — 7(ji)|
B log [|4;, ., (IL(aP*F) — I(aPx ™))
koo loglhy, L (m(0P ) — m(oPetmy))]
- log || As, .. |F'(kg)| - log a2 (4;),, ,,.)
T k—too log)\lh%er T k—+too log)\l‘pﬁm

1 log || Ay, ... 1
0gT 4 lim I ilp, + I _ logT a(r (i),
—Xpo k—too log )"\Pwm —Xpo

(2.10) where Theorem 2.1(4), Theorem 2.1(6) and Lemma 3.4. But —log 7/x,, > 0,
which is a contradiction. 0

>
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Let us recall that for any 0 # 2 € R?, (v) denotes the unique 1-dimensional
subspace in PR?™! such that v € (v). Also, any V € G(d,d — 1) can be identified
with a d — 2 dimensional, closed submanifold V of PR such that V = { €
PR : 0 c V}. Also, for a subset B C G(d,d— 1) we can identify it with a subset
B of PR such that B={# ¢ PR*':0 c V € B}.

Proof of Theorem 4.6(3)= Theorem 4.6(1). Suppose that Zj satisfies the well ordered
property. By Lemma 4.5, Z,, satisfies the well-ordered property for every n > 0

and thus, we may assume that (z; — 23) ¢ F(X) for every z;,2; € Z,. Indeed, if

(27 — 23) € F(i) for some i € ¥ then one could find 2, 237, 2, € Zn41 such that
7 <7 <7, 2y =z, 4y = 27 and
Projp) L (2,) & cv(projp(yL (27), Projp(. (2z))-

So, for every 7,7 € X" there exists open, connected component C;5 of PR \
F(X) such that (z; — 2z7) € C33.

Then for any 11 < 12 < 13, 051’52 = 051753 = 052753. Indeed, if 051’52 7é 051’53
then there exists F(i), which separates (27, — 27,) and (27, — 2;,). But then, for
F(i)*, projpa: (45,) ¢ ev(projpgy: (21,), brojp. (4,)), which cannot happen by
definition of well ordered property.

Therefore, there exists a unique open,connected component C' such that (z; —

—_~

z;) € C for every 7,7 € ¥*. But, for any i € X, since (z2y — 20) ¢ F(X)
lim (4y, (2 — 20)) = E(Q),

n—-+o0o

hence, E(3) C C. Thus, for any multicone M, for which the dominated splitting
condition of index-1 holds, the cone M N C is invariant, i.e. A;(M NC)C M°NC.

On the other hand, by (zny —20) € C, one can extend M NC such that (zy —zp) €
M N C and M N C remains invariant. n

5. AN EXAMPLE, DE RHAM’S CURVE

In this last section of the paper, we show an application for our main theorems.
The well-known de Rham’s curve in R? is the attractor of the affine zipper, formed
by the functions

folz) = B , _O%J v — [Q‘L] and fi(z) = [1 2 Z] z+ {25"] . (5.0)
where w € (0,1/2) is a parameter.

Originally, the curve was introduced and studied by de Rham [11, 12, 13] with
a geometric construction. Starting from a square, it can be obtained by trisecting
each side with ratios w : (1 — 2w) : w and ”cutting the corners” by connecting each
adjacent partitioning point to get an octagon. Again, each side is divided into three
parts with the same ratio and adjacent partitioning points are connected, and so
on. The de Rham curve is the limit curve of this procedure. More precisely, the
curve defined by the zipper in (5.1) gives the segment between two midpoints of
the original square.

Let us define the following linear parametrisation of the curve. Let v: [0,1] — R?
the function of the form

o(z) = fi(v(2z — 7)), for z € [% ! J; !

), i=0,1. (5.2)



24 BALAZS BARANY, GERGELY KISS, AND ISTVAN KOLOSSVARY

For a visualisation of a linearly parametrized de Rham curve, see Figure 4.

td © a0

FIGURE 4. Linearly parametrized de Rham curve with parameter
w = 1/10. Left: The image of the unit cube w.r.t the IFS generating
the graph of the de Rham curve. Middle: The second iteration.
Right: The curve itself.

Protasov [35, 36] proved in a more general context that the set of points x € [0, 1]
for which a(x) = f has full measure only if 8 = @, otherwise it has zero measure.
Just recently, Okamura [32] bounds a(z) for Lebesgue typical points allowing in

the definition (5.2) more than two functions and also non-linear functions under
some conditions.

We show that with a suitable coordinate transform the matrices Ag and A
satisfy Assumption A and hence, our results are applicable.

Lemma 5.1. For everyw € (0,1/3)U(1/3,1/2) there exists a coordinate transform
D(w) such that D(w)~YA;D(w) has strictly positive entries for i = 1,2.

Proof. For ¢ > 0 and 0 < § < 1 define the coordinate transform matrices
~ 1 € =~ 1 =0
DE—L 1} and D(;—{_(S 1].

Elementary calculations show that the matrices g@ = 55_ leﬁg and El = 55_ 1A, 158
have strictly positive entries whenever

<w < ——.
3—¢ 2 —¢—¢?

The largest possible interval (1/3,1/2) is attained when € is arbltrarlly small. Very

similar calculations show that the entries of Ag = D AOD(; and A1 = D A1D5
are strictly positive whenever

1
< < —Q,
1435 Y355

which gives the open interval (0,1/3). Also trivial calculations show that ngHl =
[AillL = [lAil1, i =0, L. O

Let us recall that in this case P(t) has the form

P(t) = lim log |l Adl",

n—+oo 1 log 2 o
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and
P
Qmin = lim (*) and omax = lim @
t—+oo ¢ t—s—oco ¢
Proposition 5.2. For every w € (0,1/4) U (1/4,1/3) U (1/3,1/2) the de Rham
function v : [0,1] — R2, defined in (5.2), the following are true
(1) v is differentiable for Lebesque-almost every x € [0, 1] with derivative vector
equal to zero,
(2) Let N be the set of [0,1] such that v is not differentiable. Then dimpy N =

7 — P(1) > 0, where 7 € R is chosen such that P'(1) =1,

1 1N

(3) dimpg Il,po < 1, where po = 15,5 equidistributed measure on ¥ =

{0, 1} and 11 is the natural projection from % to v([0,1]).
(4) fOT’ every B € [aminaamax]
dimyg {z € [0,1] : a(z) = B} = dimy {z € [0,1] : a;(x) = S}

= inf{t5 — P(t)}.

For w = 1/4 the de Rham curve is a smooth curve, namely a parabola arc. For
w = 1/3, the matrices does not satisfy the dominated splitting condition. For this
case, we refer to the work of Nikitin [31].

Proof. By Lemma 5.1, we are able to apply Theorem 1.4 and Theorem 1.5 for
w # 1/3. Tt is easy to see that (5.1) satisfies (1.10). Thus, by Theorem 1.4, the
statement (4) of the proposition follows.

On the other hand, let A/ be the set, where v is not differentiable. Then

{x€[0,1]: a(z) <1} SN C{z €[0,1] : a(z) < 1}.

Thus, dimyg N = infer{t — P(t)}.

Now, we prove that there exists 7 € R such that P/(7) = 1. Observe that
M = Ag + A is a stochastic matrix with left and right eigenvectors p = (p1,p2)”
and e = (1,1)7, respectively, corresponding to eigenvalue 1 and p; > 0, p; +p2 = 1.
There exists a constant ¢ > 0 such that for every 7 € ¥*

¢ pT Aze < | Az|| < ep” Aze,

and therefore
> T Ase =pT(Ag + Ar)"e.
[z]=n

Thus P(1) =0, and
pi([iln]) = pTAi|ne =plA;, ... A e and

. 1 .
po([iln]) = o for every i € X.

Simple calculations show that,

11 1-2ww (1—2w)?

which is not equal to 1/4 if w # 1/4 or w # 1/2. Thus, for w # 1/4 and w # 1/2,
po # p1, and by Lemma 2.5, P'(1) < 1 < P’(0). Since t — P'(t) is continuous,
there exists 7 such that P'(7) = 1 and therefore dimy N = 7 — P(7) > 0, which

completes (2).

)AgAp(1,1)T = w? + (
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On the other hand, by Theorem 1.5, a,(x) = P’(0) > 1 for Lebesgue almost
every x € [0,1] and therefore v is differentiable with derivative vector 0. This
implies (1).

Finally, we show statement (3) of the proposition. By using the classical result
of Young

log IL. 1o ( By
dimp I, o = lim inf og I 10(5, (2)) for mpp-a.e. x € T' = v([0,1]).
r—0+ logr
For an i € ¥ and r € R let n > 1 be such that [[4; || < r < ||4;,_,[. Hence,
T1((ila]) € B, (T1(3)) and
i g BTt BT _ g P([])
=0+ logr n—oo log [| Ay, |
Since puo([ijn]) = 1/2", by Proposition 2.4
. Jog P([i[n]) 1
lim inf = < 1.
n—oo log |4y, [ P'(0)
O

Remark 5.3. Finally, we remark that in case of general signature vector, one may
modify the definition of iV j to

min{o’?/\?—Hi A N__17_Ui/\j+1j A 0}7 Z'i/\j+1 +1= ji/\j+1 & Ciinjr1 — 0& Cling+1 =
min{o’f/\ﬁ_li A0, UT/\T—HJ A 0}7 ii/\i-H +1= ji/\j+1 & Ciinjr1 — 1& Efinjt1
min{Ul/\'H_li N0, 0'1/\‘]+1j AN N—].}, ii/\j+1 +1= ji/\j—H & Cignjp1 = 1& Efinja1
min{UiAj+1i AN N—1, Ui/\j+1j A N—l}, iiAj+1 +1= ji/\j—H & Cignjp1 = 0& Ehinji1 =

ivj = min{UiAj+1j A N-—1, gINFL] A 0}, ji/\j—H +1= iiAj+1 & Ejinjr1 = 0& Eisnja1 =
min{U?AJ:+1j A0, Uf/\J:—Hi A0}, Jinj+1 + 1 =rinjr1 & €5, =1 & &0y
min{af/\J.'*‘lj A0, UIAH_:.[i'/\ N—1}, Jinj+1 + 1 =rinjr1 & €55, =1 & &0y
min{cNA N=1, 6 NFTHAN=1}, Gipj1 +1=dipj & Ejinir = 0 & iy =
0, otherwise.
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