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A B S T R A C T

Flexibility is increasingly important in production management, and adaptive control charts (i.e., control charts
with variable sample size and/or variable sampling interval) have significant importance in the field of statistical
process control. The value of the variable chart parameters depends on the detected process parameters. The
process parameters need to be estimated based on observed values; however, these values are distorted by
measurement uncertainty. Therefore, the performance of the method is strongly influenced by the precision of
the measurement. This paper proposes a risk-based concept for the design of an X-bar chart with variable sample
size and sampling interval. The optimal set of the parameters (control line, sample size and sampling interval) is
determined using genetic algorithms and the Nelder-Mead direct search algorithm to minimize the risks arising
from measurement uncertainty.

1. Introduction

For traditional control charts, a fixed sample size n, fixed sampling
interval h and width coefficient of control limits k are determined. The
evolution of production processes resulted in the development of more
flexible control charts, where the chart parameters change based on the
characteristic of the monitored process. In this case, additional levels of
the chart parameters are considered. If the process is said to be “in-
control”, a smaller sample size, longer sampling interval and wider
accepting interval are used. Conversely, in the case of an “out-of-con-
trol” process, a stricter control policy is applied (larger sample size,
shorter sampling interval, and narrower accepting interval) (Lim, Khoo,
Teoh, & Xie, 2015).

Reynolds, Amin, Arnold and Nachlas were the first scholars to de-
velop an X-bar chart with variable sampling interval (VSI) (Reynolds,
Amin, Arnold, & Nachlas, 1988), and this research inspired a number of
researchers to design and improve VSI control charts (Bai & Lee, 1998;
Chen, 2004; Chew, Khoo, Teh, & Castagliola, 2015; Naderkhani &
Makis, 2016; Runger & Pignatiello, 1991).

Subsequently Prabhu, Runger and Keats developed an X-bar chart
with adaptive sample size (VSS) (Prabhu, Runger, & Keats, 1993) and
opened the way for research on VSS control charts (Chen, 2004; Costa,
1994; Tagaras, 1998).

As a further improvement, in VSSI control charts (variable sample
size and sampling interval), the sample size and sampling interval are
modified simultaneously (Chen, Hsieh, & Chang, 2007; Costa, 1997,
1998, 1999; De Magalhães, Costa, & Moura Neto, 2009). Numerous

studies apply economic designs to determine the optimal parameter set
for these adaptive control charts to minimize the average cost during
the control process (Chen, 2004; Chen et al., 2007; Lee, Torng, & Liao,
2012; Lin, Chou, & Lai, 2009).

Adaptive control charts have had increasing interest in the recent
years. Some of the more recent approaches are Safe et al. which de-
veloped VSI EWMA control chart using Multi Objective Optimization
(Safe, Kazemzadeh, & Gholipour Kanani, 2018), and Yue and Liu (2017)
which introduced a nonparametric EWMA chart using variable sam-
pling interval. In another variant of the VSI control chart family, Yeong
et al. designed EWMA-γ2 chart in order to monitor the coefficient of
variation (Yeong, Khoo, Tham, Teoh, & Rahim, 2017). There have been
new VSS control charts developed also in the recent years (see: Aslam,
Arif, & Jun, 2016; Costa & Machado, 2016; Teoh, Chong, Khoo,
Castagliola, & Yeong, 2017). As final reference, we note that Salmasina
et al. proposed a Hotelling’s T2 chart with variable parameters with the
integration of production planning and maintenance policy as well
(Salmasnia, Kaveie, & Namdar, 2018).

1.1. Control charts and risk-based aspect

Producers’ and suppliers’ risks are frequently discussed topics in the
field of conformity or process control (see e.g.: Lira, 1999). Risks can
arise from different sources, such as uncertainty in the real process
parameters or imprecision of the measuring device. The effect of
parameter estimation on the performance of Shewhart control charts
was analyzed in several studies (see: Jensen, Jones-Farmer, Champ, &
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Woodall, 2006). In addition, Zhou showed that parameter estimation
has a significant effect on the in-control average time to signal (ATS)
when using an adaptive VSSI X-bar chart. The study also developed an
optimal design for the sample size (Zhou, 2017).

Not only uncertainty in the process parameters but also measure-
ment uncertainty as risk factors can lead to serious consequences. If the
measuring device or process is not sufficiently accurate, incorrect de-
cisions (such as unnecessary or missed maintenance) can be made
during the control of the production process (Pendrill, 2008). Thus, the
rate of the producer’s and customer’s risk is strongly dependent on the
uncertainty in the measurement and can cause loss of prestige for a
manufacturer company. In many cases, the effect of measurement un-
certainty is decreased by providing more accurate measuring devices or
taking multiple samples Linna and Woodall (2001). Nevertheless, it is
common for the improvement of a measurement device or process to
run into technological limitations and it is often impossible for multiple
samples to be taken due to high sampling cost (e.g., destructive sam-
pling). To address these problems, several adjustments must be made to
the control process with consideration of measurement error.

Several studied aimed to analyze the effect of measurement error on
statistical control charts. Mittag and Stemann showed that gauge im-
precision can strongly affect the effective application of X-S control
charts and the ability to detect process shifts (Mittag & Stemann, 1998).
Linna and Woodall proposed a measurement error model with covari-
ates with the following form:

= + + ∊Y A BX (1)

where Y is the observed value, X is the real (true) value of the mon-
itored product characteristic, A and B are constants ( >B 1) and ∊ is
random error, which is independent of X, assuming a normal distribu-
tion with mean 0 and variance σm

2 ( ̃∊N σ(0, )m
2 ) (Linna & Woodall, 2001).

They investigated how measurement error (based on the referred
model) influences the performance of X and S2 charts. Several studies
adopted this model and investigated the performance of different types
of control charts under the presence of measurement error while as-
suming linearly increasing variance (Haq, Brown, Moltchanova, & Al-
Omari, 2015; Hu, Castagliola, Sun, & Khoo, 2015, 2016a; Maleki,
Amiri, & Ghashghaei, 2016; Maravelakis, 2012; Maravelakis, Panaretos,
& Psarakis, 2004).

The impact of measurement error was considered in terms of not
only the statistical but also the economical design of control charts.
Rahim investigated the effect of non-normality and measurement error
on the economic design of the Shewhart X chart (Rahlm, 1985). Yang
extended the analysis to the asymmetric X and S charts. Yang (2002),
and further studies proposed an economical design method for memory-
based control charts, such as the exponentially weighted moving
average (EWMA) chart based on measurement error (Abbasi, 2016;
Saghaei, Fatemi Ghomi, & Jaberi, 2014). Emphasizing the importance
of the effect of measurement error, several papers discussed its impact
on process capability studies and proposed adjustments to improve the
accuracy and reliability of the process performance indices (Baral &
Anisa, 2015; Grau, 2011; Pearn, Shu, & Hsu, 2005; Wu, 2011).

Kosztyán and Katona highlighted the importance of considering the
measurement uncertainty related to the multivariate T2 chart and
proposed a method to reduce the risks during the control process
(Kosztyán & Katona, 2016). Their method assigns cost values to the
decision outcomes and applies a risk-based approach instead of the
traditional approach in statistical process control (no consideration of
measurement uncertainty during the control phase). When considering
measurement uncertainty, there was an ̃4% decision cost reduction
achieved by reducing type II errors. Although the risk-based multi-
variate control chart (RBT2) reduces the cost of decision outcomes, it
applies only fixed parameters (i.e., sample size, sampling interval).

This study identifies four types of decision outcomes:

• correct acceptance

• correct rejection

• incorrect acceptance (type II error)

• incorrect rejection (type I error)

The control line of a risk-based control chart is optimized to mini-
mize the total cost arising from the four types of decision outcomes.
This method achieves better performance than that when using a re-
commended coverage factor for the control limits.

The aim of this research is to improve the RB (risk-based) chart with
variable parameters (sample size and sampling interval). The perfor-
mance of the VSSI RB chart (risk-based control chart with variable
sample size and sampling interval) is compared with that of the tradi-
tional control chart based on the following conditions:

1. Performance of the control chart when decision risks are not con-
sidered (k and w are chosen and n h n, , ,1 1 2 and h2 are optimized).

2. Performance of the control chart when the warning and control
limits and the variable setup are optimized based on decision costs
(using genetic algorithms).

3. Performance of the control chart with adjusted warning and control
limits using a hybrid function to obtain more accurate results (with
the Nelder-Mead direct search algorithm).

Although some studies have focused on the development of adaptive
VSS (Hu, Castagliola, Sun, & Khoo, 2016b) and VSI control charts (Hu,
Castagliola, Sun, & Khoo, 2016a) in the presence of measurement error,
this paper aims to extend Kosztyán and Katona’s model with the joint
consideration of variable sample size and sampling interval (VSSI).

1.2. Traditional VSSI control charts

Consider a process with observed values following a normal dis-
tribution with expected value μ and variance σ2. When a Shewhart
control chart with fixed parameters is used, a random sample (n0) is
taken every hour (denoted by h0). The observed statistic is plotted on
the control chart, and the chart indicates when the ith sample point falls
outside the control limits determined as ±μ kσ n0 0 , where μ0 is the
center line, σ is the standard deviation of the process, and k is the
control limit coefficient:

= −LCL μ kσ
n0

0 (2)

= +UCL μ kσ
n0

0 (3)

In the case of a VSSI control chart, the sample size and sampling
interval vary between two levels. The first level represents a parameter
set with loose control (n h,1 1) with a smaller sample size and longer
sampling interval, and the second level is a strict control policy (n h,2 2)
with a larger sample size and shorter sampling interval. The parameters
n and h must satisfy the following relations: < <n n n1 0 2 and

< <h h h2 0 1, where n0 is the sample size and h0 is the sampling interval
of the FP control chart (control chart with fixed parameters). The switch
rule between the parameter levels is based on a warning limit coeffi-
cient w. Therefore, a central region and warning region can be specified
(Chen et al., 2007):

= ⎡

⎣
⎢

− + ⎤

⎦
⎥I i

μ wσ
n i

μ wσ
n i

( )
( )

,
( )

1
0 0

(4)

and

= ⎡

⎣
⎢

− − ⎤

⎦
⎥ ∪ ⎡

⎣
⎢

+ + ⎤

⎦
⎥I i

μ kσ
n i

μ wσ
n i

μ wσ
n i

μ kσ
n i

( )
( )

,
( ) ( )

,
( )

2
0 0 0 0

(5)

= ∪I i I I( )3 1 2 (6)
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where = …i 1,2 is the sample number, I1 denotes the central region, and
I2 the warning region. Let us assume that an X-bar chart is applied and
that xi denotes the mean of the ith sample. During the control process,
the following decisions can be made (Lim et al., 2015):

1. If ∈x Ii 1, the manufacturing process is in an “in-control” state and
sample size n1 and sampling interval h1 are used to compute +xi 1.

2. If ∈x Ii 2, the monitored process is “in-control” but xi falls in the
warning region; thus, n2 and h2 are used for the +i( 1)th sample.

3. If ∉x Ii 1 and ∉x Ii 2, the process is out of control, and corrective
actions must be taken. After the corrective action, +xi 1 falls into the
central region, but there is no previous sample to determine +n i( 1)
and +h i( 1). Therefore, as Prabhu, Montgomery, and Runger
(1994) and Costa (1994) proposed, the next sample size and interval
are selected randomly with probability p0. p0 denotes the prob-
ability that the sample mean falls within the central region. Simi-
larly, −p1 0 is the probability that the sample point falls within the
warning region.

VSSI control charts are a powerful tool to control manufacturing
processes. However, VSSI control charts do not consider measurement
uncertainty (and the risk of the decisions) as part of the control limit
calculation. Due to the distortion of the measurement error, the “in-
control” and “out-of-control” statements and even the switching deci-
sion between n h( , )1 1 and n h( , )2 2 can be incorrect.

2. The decision costs

Measurement uncertainty can lead to incorrect decisions during the
control of a manufacturing process. Based on the model of Kosztyán and
Katona (2016), the decision outcomes can be extended for a VSSI chart
as follows (see Fig. 1):

Table 1 shows the possible decision outcomes when a VSSI control
chart is applied. Due to the distortion effect of the measurement un-
certainty, the real product characteristic can differ from the observed
product characteristic, resulting in incorrect decisions. In Table 1, “in
(CL)” and “out(CL)” denote the in-control and out-of-control statements
based on the control line(s), and “in(WL)” and “out(WL)” represent the
sample location relative to the warning limits. In addition, xis the real
product characteristic, and y is the detected one. I1, I2 and I3 denote the
regions according to Eqs. (2)–(4). If the detected characteristic falls
within the out-of-control region based on the control line, it excludes
the potential of being “in-control” based on the warning limit.

Similarly, if the real product characteristic is out-of-control (based on
the control lines), the sample point cannot fall within the central re-
gion. These cases are represented by a black cross in the table. Each
case can be described as follows (the number of each case is represented
by number in the right left corner of each cell in the table):

• Case 1: Both the detected and the real product characteristic fall
within the central region. The decision is a correct acceptance.

• Case 2: The detected characteristic is in the warning region but the
real characteristic is in the central region. In this case, the sample
size is increased and the sampling interval is reduced. However,
these changes are unnecessary, and the decision is incorrect.

• Case 3: The process is out-of-control based on the detected product
characteristic, but the real characteristic falls within the central
region. The expected value of the process is in-control, but a shift is
detected incorrectly. Therefore, an unnecessary corrective action is
taken (type I error).

• Case 4: The real characteristic is within warning region (out-of-
control based on the warning limit) but an in-control statement is
detected. In this case, the sample size should be increased and the
sampling interval should be reduced; however, this action is not
taken. This failure reduces the performance of the VSSI chart be-
cause it increases the time for detection and correction.

in (WL) out (WL) in (WL) out (WL)

x I 1 x I 1 x I 1

and and and
y I 1     (1) y I 2     (2) y I 3     (3)

x I 2 x I 2 x I 2

and and and
y I 1     (4) y I 2     (5) y I 3     (6)

x I 3 x I 3 x I 3

and and and
y I 1     (7) y I 2     (8) y I 3     (9)

Detected product characteristic
in (CL) out (CL)

in (WL)

out (WL)

in (WL)

out (WL)

in (CL)

out (CL)

Real

Fig. 1. The structure of decision outcomes.

Table 1
Elements of the cost of decision outcomes.

Sign Name

n Sample size
Nh Produced quantity in the considered interval (h)
cp Production cost

cmf Fixed cost of measuring
cmp Proportional cost of measuring
cc Cost of qualification
cs Cost of switching
d1 Weight parameter for switching
ci Cost of intervention
d2 Weight parameter for intervention
cr Cost of root cause search
cid Cost of delayed detection
cf Cost of false alarm identification

cmi Cost of missed intervention
cr Cost of restart

cma Maintenance cost
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• Case 5: Both the detected and real characteristics fall within the
warning region. The sample size is increased, the sampling interval
is reduced, and the decision is correct.

• Case 6: Out-of-control is detected; however, the real characteristic
falls within the warning region. Corrective action is taken, but the
switch between the chart parameters n h( , ) would be sufficient.
Therefore, the decision is incorrect.

• Case 7: In-control state is detected and y is located in the central
region, but the process is out-of-control. The decision is incorrect,
and corrective action is not taken, which is a type II error.

• Case 8: Similar to Case 7, but y is in the warning region. Therefore,
this case is more positive than Case 7 because a strict control policy
is applied. Thus, a shorter time is needed to identify the process
shift.

• Case 9: The real and detected product characteristics are out-of-
control; therefore, the decision is correct.

For clarification, Fig. 2 shows an example of the nine decision
outcomes described above.

2.1. Specification of decision costs

During process control, several decisions can be made. In this sub-
section, we introduce the cost structure of each decision outcome. First,
the elements of the decision outcomes must be specified.

Table 1 shows the specified cost components in the cost structure.
The following costs are involved in each decision:

• expected total production cost

• cost of measuring

• cost of qualification

cp denotes the proportional production cost, and Nh is the expected
number of manufactured products in interval h (where h is the time
interval between two samples). Therefore, the expected total produc-
tion cost can be estimated as N ch p. The cost of measurement can be
divided into two parts, a fixed cost (cmf ) and a proportional cost (cmp)
depending on sample size (n). The fixed measurement cost (e.g., labor,
lighting, operational cost of the measurement device) arises in every
measurement irrespective of n. cmp is the expected measurement cost for
a sample that strongly depends on sample size (especially significant for
destructive measurement processes). Thus, the expected total mea-
surement cost can be estimated as +nc cmp mf . In addition, the cost of
qualification cq must be considered (charting, plotting, labor). Since

+ + +N c nc c ch p mp mf q is a part of each cost component, we apply a
constant + + + =N c nc c c ch p mp mf q 0 for simplicity.

Some cost components arise in only special cases. The cost of
switching cs is the cost of the modification of the VSSI chart parameters

(n h, ). ci denotes the cost of intervention, including the cost of the ma-
chine stop and root cause search. If the root cause cannot be identified,
it is likely that a false alarm occurred. In this case, the cost of main-
tenance (cma) cannot be specified. On the other hand, this cost com-
ponent must be considered when a root cause is found and the machine
must be maintained (e.g., cost of the parts, labor cost).

The weighting parameters must also be specified. Some cases (e.g.,
Case 2 and Case 5) are similar but have different estimated costs. This
difference can be derived from the necessity of the decision. For ex-
ample, in Cases 2 and 5, the detected characteristic is located in the
warning region but the decision is necessary in Case 2 and unnecessary
in Case 5. In similar cases, the unnecessary decision must be multiplied
by the weighting parameter to consider the surplus modifications
during control. Therefore, d1 is the weighting parameter for the cost of
unnecessary switching, and d2 is the weighting parameter for un-
necessary intervention. Table 2 includes the forms of the decision costs
assigned to the decision outcomes.

During the control process, sufficient cost must be assigned to each
sampling point. The assigned costs must be further aggregated to de-
termine the total decision cost from the first sample to the actual one.
The goal is to set the optimal value of the coverage factor k (and the
optimal values of the control linesUCL LCL, ) and the optimal parameter
set for the switching (n h, ) to minimize the total decision cost. A detailed
introduction for this optimization method is provided in Section 3.

3. The RB VSSI X-bar chart

3.1. Overview of the proposed chart construction method

In this subsection, the authors introduce the construction process of
the RB VSSI X-bar chart, which can be summarized as follows:

1. Calculation of the traditional control chart parameters (as initial
values for the optimization).

Fig. 2. Demonstration of the nine decision outcomes on a control chart.

Table 2
Elements of the costs of the decision outcomes.

Case Structure Simplified form

#1 = + + +C N c nc c ch p mp mf q1 =C c1 0

#2 = + + + +C N c nc c c d ch p mp mf q s2 1 = +C c d cs2 0 1

#3 = + + + +C N c nc c c d ch p mp mf q i3 2 = +C c d ci3 0 2

#4 = + + + +C N c nc c c ch p mp mf q id4 = +C c cid4 0

#5 = + + + +C N c nc c c ch p mp mf q s5 = +C c cs5 0

#6 = + + + +C N c nc c c d ch p mp mf q i6 2 = +C c d ci6 0 2

#7 = + + + +C N c nc c c ch p mp mf q mi7 = +C c cmi7 0

#8 = + + + +C N c nc c c d ch p mp mf q mi8 3 = +C c cmi8 0

#9 = + + + + +C N c nc c c c ch p mp mf q ma r9 = +C c cr9 0
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2. Estimation of the cost components described in Section 2.
3. Calculation of the overall decision cost considering the initial (tra-

ditional) control chart parameters.
4. Optimization of the control chart parameters via simulation.

(a) Control chart parameter optimization via genetic algorithm.
(b) Improvement of the optimization result using the Nelder-Mead

direct search method.

In the following, we describe the above steps in detail.
Step 1:
The control lines of the traditional X-bar chart can be computed

with (2) and (3). The VSSI RB X-bar chart uses these control lines as
initial values. During optimization, the optimal values of UCL and LCL
that minimize the total decision cost are determined by simulation.

Step 2:
The cost values for each case ( …C C C1, 2, 9) must be estimated. This

can be supported by an ERP system, where the estimated costs can be
queried from a control module. Otherwise, each cost component should
be estimated by experts. Each cost must be assigned to the suitable case
(according to Table 1) to calculate the total decision cost during the
simulation (or during the control process).

Step 3:
The number of occurrences each case must be quantified and mul-

tiplied by the assigned cost value. In the cost structure,
+ + +N c nc c ch p mp mf q is the cost component that arises in every case;

therefore, to simplify the formula, it is replaced with Cc.

∑ = + + + + + + + +

+ + + + + +

+ + +

C q C q C d c q C d c q C c q C c

q C d c q C c q C d c

q C c c

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

c c s c i c id c s

c i c mi c mi

c ma r

1 2 1 3 2 4 5

6 2 7 8 3

9 (7)

where …q q q,1 2 9 are the numbers of time each case occurs during the
simulation and ∑ C is the total decision cost. The equation can be
simplified using the cost values of each decision outcome:

∑ = + + + + + + + +C q C q C q C q C q C q C q C q C q C1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

(8)

Step 4:
The coverage factor k and the variable parameters n n h h w( , , , , )1 2 1 2 are

optimized to minimize the value of ∑ C. Two approaches are used to
optimize the chart parameters. The integer parameters, n n h h( , , , )1 2 1 2 are
optimized using genetic algorithms as the first step. In the second step,
the Nelder-Mead algorithm is used as a hybrid function. This approach
optimizes the continuous parameters k w( , ) to obtain more precise re-
sults for the modified warning and control limits.

3.2. Simulation of the control procedure and optimization

As the first step, an ×n m matrix (denoted by X) of the “real” values
is generated with expected value μx and standard deviation σx .
Similarly, an ×n m matrix E, representing the measurement error, is
also generated. We use Matlab’s “pearsrnd” function to generate the
measurement error matrix. This function returns an ×n m matrix of
random numbers according to the distribution in a Pearson system.
With this approach, the four parameters (expected value, standard de-
viation, skewness and kurtosis) of the measurement error distribution
can be easily modified.

After these two matrices are generated, the matrix of “observed”
values can be estimated in the following manner:

= + +A BY X E (9)

where Y is an ×n m matrix containing the estimated observed values.
In both X and Y, each row represents a possible sampling event and

each element in a row represents all the possible products that can be
selected for sampling. To construct the VSSI X-bar chart, the VSSI rules
must be applied to X and Y. The algorithm loops through the matrices

from the first row to the nth row.
Let ̂x be the vector of sample means from X, and let ̂y be the vector

of sample means selected from Y . If the ith sample mean (with sample
size n1) falls within the warning region, n2 and h2 must be used in the
next sampling:

a. If ̂ ∈x Ij 2, then the +i h th
2 row from X is selected for sampling and

element n2 is selected randomly from the +i h th
2 row. Otherwise, the

+i h th
1 row is selected with sample size n1.

b. If ̂ ∈y Ij 2, then the +i h th
2 row from Y is selected for sampling and

element n2 is selected randomly from the +i h th
2 row. Otherwise, the

+i h th
1 row is selected with sample size n1.

In the next step, each element in ̂x and ̂y is compared and assigned
to a decision outcome described in Section 2. In the final step of the
simulation, the total decision cost is calculated as the summation of the
cost of each decision.

We use genetic algorithms to find the optimal set of integer design
parameters (n n h h, , ,1 2 1 2) that minimizes the total cost function given by
Eq. (8). This approach imitates the principles of natural selection and
can be applied to estimate the optimal design parameters for statistical
control charts. In the first step, this method generates an initial set of
feasible solutions and evaluates them based on a fitness function. In the
next step, the algorithm:

(1) selects parents from the population;
(2) creates crossover from the parents;
(3) performs mutation on the population given by the crossover; op-

erator
(4) evaluates the fitness value of the population.

This steps are repeated until the algorithm finds the best fitting
solution (Chen et al., 2007). Then, the Nelder-Mead method is applied
as a hybrid function to search for the optimal values of the continuous
variables (w k, ).

This is a two-dimensional case, where the algorithm generates a
sequence of triangles converging to the optimal solution. The objective
function is C n n h h w k( , , , , , )1 2 1 2 , where w is the warning limit coefficient
and k is the control limit coefficient. Note that the other design para-
meters (n n h h, , ,1 2 1 2) are already optimized by genetic algorithms; there-
fore, in this step, we use the objective function C w k( , ), where < <w k0
and �∈w k, .

In the two-dimensional case, three vertices must be determined, and
the cost function is evaluated for each vertex. In the first step, ordering
is performed on the vertices:

Ordering:
The vertices must be ordered based on the evaluated values of the

cost function:

< <C w k C w k C w k( , ) ( , ) ( , )B G W1 1 2 2 3 3 (10)

where CB is the best vertex with the lowest total cost, CG (good) is the
second-best solution and CW is the worst solution (with the highest cost
value). Furthermore, let = =v vw k w k( , ), ( , )1 1 1 2 2 2 and =v w k( , )3 3 3 denote
the vectors of each point.

The approach applies four operations: reflection, expansion, con-
traction and shrinking.

Reflection:
The reflection point is calculated as:

=
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⎝
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T
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1 2 1 2

3

1 2 1 2
3 (11)

where vR is a vector denoting the reflection point, w k,R R are the
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coordinates of the reflection point and >α 1 is the reflection parameter.
C w k( , )R R R must be evaluated, and v3 needs to be replaced with vR if

⩽ <C w k C w k C w k( , ) ( , ) ( , )B R R R G1 1 2 2 .
Expansion:
After reflection, expansion is performed if <C w k C w k( , ) ( , )R R R B B B :

=
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(12)

where vE denotes the reflection point with coordinates wE and kE and β
is the expansion parameter. C w k( , )E E E is evaluated and v3 is replaced
with vE if ⩽C w k C w k( , ) ( , )E E E R R R .

Contraction:
Outside contraction is performed if CG

⩽ <w k C w k C w k( , ) ( , ) ( , )R R R W2 2 3 3 :
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(13)

Here, vOC is the point that can be derived by outside contraction with
coordinates wOC and kOC; furthermore, < <γ0 1 is the contraction
parameter. Then, evaluate C w k( , )OC OC OC . If ⩽C w k C w k( , ) ( , )OC OC OC R R R ,
replace v3 with vOC ; otherwise, the shrinking operation must be per-
formed.

The inside contraction point denoted by vIC is computed if
⩾C w k C w k( , ) ( , )R R R W 3 3 :
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(14)

In this case, C w k( , )IC IC IC is evaluated, and the point with the highest
total decision cost v3 is replaced with vIC ; otherwise, the shrinking
operation is used.

Shrinking:
Shrinking must be performed for the nth and +n 1th points. Since we

consider the two-dimensional case of the design parameters w and k,
this operation is performed for v2 and v3:

= = + − + − = + −w k w δ w w k δ k k δv v v v[ , ] [ ( ), ( )] ( )T T
2 2 2 1 2 1 1 2 1 1 2 1S S S

(15)

= = + − + − = + −w k w δ w w k δ k k δv v v v[ , ] [ ( ), ( )] ( )T T
3 3 3 1 3 1 1 3 1 1 3 1S S S

(16)

where v2S and v3S are the shrunk points derived from v2 and v3, re-
spectively (Fan, Liang, & Zahara, 2006).

4. Practical example

In this section, we demonstrate the applicability of the proposed
method with a practical example. Table 3 shows the cost of the nine
decision outcomes as input parameters.

Furthermore, the production process follows a normal distribution
with expected value =μ 100x and standard deviation =σ 0.2x . The
measurement error has a normal distribution with expected value

=μ 0m and standard deviation =σ 0.02m . In the first step, =k 3 and
=w 2 are used to calculate the control and warning limits (k is the

control limit coefficient an w is the warning limit coefficient). The other
design parameters (n n h h, , ,1 2 1 2) are optimized to minimize the total cost

of the decisions, as described by Eq. (8). Next, the design parameters k
and w are optimized using the Nelder-Mead direct search method. In
this study, ∗k and ∗w denote the optimal values of k an w. Fig. 3 shows
the value of the objective function in each iteration of the optimization.

In Fig. 3, the circles represent the actual values of the objective
function when the genetic algorithm is running. Similarly, the triangles
show the objective function values during the Nelder-Mead approach.
The Nelder-Mead method achieves an additional 0.5% cost reduction,
but more importantly, the results derived from the hybrid function are
more stable.

Table 4 shows the results of the proposed method.
The total cost of decisions is reduced by 13.5% when applying the

proposed method. The integer parameters n n h h( , , , )1 2 1 2 are optimized in
the initial state to minimize the total cost of decisions.

Kosztyán et al. proposed a risk-based approach for conformity
control (Kosztyán, Hegedűs, & Katona, 2017), and another study de-
veloped a risk-based multivariate T2 chart (Kosztyán & Katona, 2016).
Both approaches achieved an approximately 2–4% reduction in the
total decision cost. However, as the previous example shows, the VSSI
X-bar chart outperforms the traditional X-bar chart, and the proposed
method reduced the total decision cost by 13.5%. To explain the out-
standing reduction rate, in Fig. 4, we highlight an interval from the time
series of the controlled product characteristic to compare the behavior
and patterns of the risk-based and traditional VSSI X-bar charts.

The traditional control chart is shown in the upper-left corner of
Fig. 4, where the control and warning lines were set to their initial
values (measurement uncertainty was not considered), X denotes the
sample mean of the real (simulated) product characteristic, and Y de-
notes the sample mean of the observed product characteristic (simu-
lated measurement error is added to X). The bar chart in the lower-left
corner shows the cost value assigned to each decision (to each plot of
the time series). Similarly, the right side of the chart shows the pattern
if the risk-based VSSI X-bar chart is used and the control and warning
limits are optimized while taking the measurement uncertainty into
account.

In the case of the adaptive control chart, the pattern of the control
chart depends not only on the values of the control limits but also on
the width of the warning interval. The sample size and sampling in-
terval are determined by the position of the observed sample mean and
warning limits. Therefore, the distorting effect of the measurement
error can create very different scenarios based on the control chart
patterns. If the observed sample mean falls within the warning region
and the real sample mean is located within the acceptance interval, the
sample number will be increased and the sampling interval will be re-
duced incorrectly, leading to increased sampling costs. In the opposite
case, sampling will be skipped, which will delay the detection of the
process mean shift.

As shown in Fig. 4, when the traditional VSSI chart is applied, the
two process patterns (observed and real) become separated from each
other by the 7th sampling. A different sampling policy will then be used
due to the effect of the measurement uncertainty, causing separation of

Table 3
Elements of the cost of the decision outcomes.

Case Structure Value

#1 = + + +C N c nc c ch p mp mf q1 1
#2 = + + + +C N c nc c c d ch p mp mf q s2 1 5

#3 = + + + +C N c nc c c d ch p mp mf q i3 2 50

#4 = + + + +C N c nc c c ch p mp mf q id4 7
#5 = + + + +C N c nc c c ch p mp mf q s5 3
#6 = + + + +C N c nc c c d ch p mp mf q i6 2 50

#7 = + + + +C N c nc c c ch p mp mf q mi7 600
#8 = + + + +C N c nc c c d ch p mp mf q mi8 3 550

#9 = + + + + +C N c nc c c c ch p mp mf q ma r9 20
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the two control chart patterns. The sifted pattern continues until the
point, where the two control policy is the same again. On the other
hand, the risk-based VSSI X-bar chart takes measurement uncertainty
into account and modifies the warning interval, enabling better fitting
of the two control chart patterns. The shifted interval is denoted by the
dark columns on the bar charts. The charts show that the RB VSSI chart
reduces the length of the interval. Therefore, it reduces not only the
decision costs due to the out-of control state but also decreases the
number of incorrect decisions in the in-control state and compensates
for the separation of the chart patterns. Therefore, a greater decision-
cost reduction can be achieved with the VSSI chart compared to the

Fig. 3. Convergence to the optimal solution with Genetic Algorithm and Nelder-Mead direct search.

Table 4
Performance of the proposed control chart.

n1 n2 h1 h2 ∗k ∗w ∑ C CΔ (%)

Initial state 2 4 2 1 3.00 2.00 +1.236E 06 −
Optimization: GA 2 4 2 1 2.298 2.287 +1.075E 06 −13.0
Optimization: GA+NM 2 4 2 1 2.298 2.175 +1.070E 06 −13.5

Fig. 4. Comparison traditional and RB VSSI control chart patterns.
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results of the referenced studies.
As a significant contribution, this paper also raises awareness of the

importance of considering measurement uncertainty in the field of
adaptive control charts.

In the practical example, the authors applied the = + +Y A BX ε
model of measurement error under the assumption of constant variance
( =A 0 and =B 1). To investigate how the proposed model performs
under linearly increasing variance, an additional simulation was con-
ducted. Fig. 5 shows the results of the simulation.

We used the same cost components as described in Table 3, but
parameters A and B in the measurement error equation were changed in
each iteration. The z-axis shows the achievable cost reduction rate ex-
pressed as a percentage ( CΔ %) for each combination of A and B. The
blue dots show the raw results of the simulation, and a smoothed pane
was fitted to the data points to better illustrate the pattern. The results
show that the proposed method still reduces the overall decision cost
under linearly increasing measurement error variance; however, the
model is sensitive to changes in parameter A (changes in parameter B
do not significantly alter the cost reduction). If A > 0, the distance
between X and Y increases significantly, indicating shorter sampling
intervals and larger sample sizes. Although the proposed method
achieves lower overall decision cost through modification of the
warning and control limits, the increased cost from sampling increases
the overall decision cost, limiting the cost reduction for the method.
Nevertheless, an approximately 4% cost reduction was achieved under
linearly increasing variance due to the optimization of the control and
warning limits.

5. Sensitivity analysis

Section 4 demonstrated the applicability of the method for the given
example. The purpose of this section is to investigate the more general
behavior (pattern) of the control chart parameters. Therefore, we
analyze how changes in the cost components, standard deviation of the
measurement error and skewness of the measurement error impact the
value of ∗k and ∗w . These factors are selected to assess the limitations of
the proposed method. The kurtosis of the measurement error could also

be examined, but its impact was previously analyzed by Kosztyán et al.
The cost of type II errors is analyzed first.

5.1. Sensitivity analysis with respect to the cost of type II error

The 9 decision outcomes defined in this study must be assigned to
different groups for a better understanding of the effects during the
sensitivity analysis.

Therefore, we distinguish three groups of decision outcomes:

• Group 1: Type I error decision outcomes, where the decision is in-
correct due to an unnecessary action. Outcomes: #2, #3, #6.

• Group 2: Type II error decision outcomes, where the decision is
incorrect due to a missed action. Outcomes: #4, #7, #8.

• Group X: The remaining decision outcomes, including the correct
decisions. Outcomes: #1, #5, #9.

During the sensitivity analysis, each cost in Group 2 is multiplied by
a changing coefficient (a). Thus, the ith cost is calculated as:

=C a C·i4 4i initial (17)

=C a C·i7 7i initial (18)

=C a C·i8 8i initial (19)

where C C and C,4 , 7 8initial initial initial are the initial values of the decision costs
related to cases #4, #7, and #8. ai is the value of the coefficient in the
ith run within the simulation, and �= … ∈i n i1,2,3 , where n is the total
number of runs. Fig. 6 shows the optimal values of k and w (denoted by

∗k and ∗w ) as a function of the cost-changing coefficient a.
In Fig. 6, the circles represent the values of ∗k and the crosses in-

dicate the values of ∗w . While C C,4 7 and C8 increase, the optimal values
of both k and w decrease. If the cost of type II error decisions increases,
the control policy will be stricter. Therefore, the control and warning
limits must be moved closer to the central line of the control chart to
avoid type II errors. An increase in type II-related costs does not have a
significant impact on the interval between ∗k and ∗w . As a increases, the

Fig. 5. The cost reduction rate as a function of A and B.

Z.T. Kosztyán, A.I. Katona Computers & Industrial Engineering 120 (2018) 308–319

315



control and warning limits move in the same direction simultaneously.
The impact of the type II error-related cost components on the overall
decision cost was also investigated. As the results on the right side of
Fig. 6 show, the overall decision cost increases linearly with parameter
a. Note that the analysis shows the overall decision cost after optimi-
zation. Although this method reduces the risk, the overall decision cost
is higher if the consequences of type II errors are more serious.

To further analyze the behavior of the warning interval, we con-
ducted a sensitivity analysis based on the sampling cost because it di-
rectly influences the warning limit coefficient. Fig. 7 shows the results
of the analysis.

Fig. 7 shows the distance between ∗k and ∗w ( −∗ ∗k w ) as a function of
the sampling cost (cs). The higher the cost of sampling is, the greater the
distance between the two limits. A higher sampling cost increases the
warning limit coefficient because the control is too expensive due to the
frequently increased sample size and sampling interval. A lower sam-
pling cost allows a stricter control policy for the warning limit.

5.2. Sensitivity analysis based on the standard deviation of the
measurement error

The behavior of the control limits was also examined while chan-
ging the standard deviation in the simulation. All the distribution
parameters were held constant during the simulation except the stan-
dard deviation of the measurement error (σm).

As Fig. 8 shows, the control limit coefficients ( ∗w and ∗k ) decrease as
the standard deviation of the measurement error increases. A higher
standard deviation (according to the measurement error) represents a
stricter control policy; thus, ∗w and ∗k decrease. In this case, the effect
of measurement uncertainty is increasingly significant; therefore, the
approach reduces the length of the control interval to avoid type II
errors. The distance between the two limits is nearly constant because
the sampling cost does not change during the simulation. Nevertheless,
the sampling cost has a significant impact on the distance between ∗w
an ∗k , as shown in the previous subsection. The results show that σm
significantly affects the overall decision cost. A higher standard devia-
tion of the measurement error results in a higher frequency of control
measures, causing higher costs.

5.3. Sensitivity analysis base on the skewness of the measurement error

Since Kosztyán et al. proved that the kurtosis of the measurement
error distribution does not impact the control line value, we focus on
the skewness of the measurement error distribution only.

In the simulation, the model parameters were the same, but the
skewness of the measurement error distribution (denoted by γ) was
modified in each iteration (starting with −1 and ending with 1).

Fig. 9 shows the results of the sensitivity analysis.
In the simulation, ∗k and ∗w are not affected by changes in γ because

sampling adjusts the skewed distribution to normal. Based on the cen-
tral limit theorem, the average of the aggregated sample groups tend to
normal (and the skewness will be more closer to 0). An illustrative
example from the simulation is shown in the appendix in Fig. 10.

This phenomenon is also reflected by the results related to the
overall decision cost. Due to the central limit theorem, neither the limit
coefficients ∗k and ∗w nor the overall decision cost react to changes in
the skewness of the measurement error distribution.

In this section, the model sensitivity was analyzed from different

Fig. 6. Sensitivity analysis regarding type II error-related cost components.

Fig. 7. The width of warning interval as a function of sampling cost.
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aspects; however, we note that uncertainty related to the process
parameter estimation can also affect the control chart parameters
(Zhou, 2017). This paper focuses on the effect of measurement un-
certainty and proposes a method to develop a risk-based adaptive
control charts. Nevertheless, the method can be extended to consider
the process parameter estimation.

6. Summary and conclusion

This paper extends the consideration of measurement uncertainty to
the field of adaptive control charts. The proposed method not only
optimizes the chart parameters (n n h h k w, , , , ,1 2 1 2 ) but also adjusts the
control and warning limit coefficients ( ∗k , and ∗w ) to minimize the
aggregated cost derived from the decision outcomes. Genetic algorithm
and the Nelder-Mead method (as a hybrid function) are used during the
chart-parameter optimization. A practical example is provided to de-
monstrate the features of the proposed method. With the assumed in-
puts, the proposed method reduces the total decision cost by 13.5%
compared to the “traditional” VSSI X-bar chart (due to the reduction of
incorrect decisions). Several sensitivity analyses are also provided to

assess the behavior of the optimized parameters ∗ ∗k w, and the overall
decision cost (providing more general conclusions compared to those
from the practical example).

The contribution of the proposed method can be defined from two
aspects. As an academic contribution, this study extends the dimension
of the decision matrix defining decision outcomes regarding the
warning limits as well. In addition the results showed that measurement
uncertainty can be described by the first two moments of its distribution
function (expected value and standard deviation) when the RB VSSI
chart is applied because the result of the optimization is not sensitive
to the skewness of the distribution. From decision maker’s point of
view, the results show that consideration of measurement uncertainty
is important not only from control lines’ perspective but decision
costs can be significantly reduced in the in-control state by
adjusting the warning limits. Therefore, this article shows that the
risk-based approach can be used effectively in the field of adaptive
control charts.

Previous studies (Kosztyán et al., 2017; Kosztyán & Katona, 2016)
showed that the risk-based approach can be used in different fields of
quality control (conformity control, multivariate control chart). This

Fig. 8. Sensitivity analysis regarding standard deviation of measurement error.

Fig. 9. Sensitivity analysis regarding the skewness of measurement error distribution.
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paper confirms that this method can be extended to the field of adaptive
control charts but focuses on the VSSI X-bar chart only. Nevertheless,
further extension of the approach is required to construct a risk-based
family of control charts, including adaptive and multivariate control
charts.
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Appendix A

To illustrate how the skewness of the measurement error distribution changes, we present a histogram of the measurement error distribution in
Fig. 10.

The histogram on the left side of Fig. 10 shows the case when all the measurement error values are considered without creating subgroups. The
histogram on the right side was derived from the same lot after creating subgroups with sample size =n 4. When calculating the average of each
subgroup, the observed measurement error distribution tends to the normal distribution and the skewness changes from −0.8 to −0.4.

Appendix B

In this Appendix, we also provide the following table including the statements/results we highlighted in this paper. The table was created in order
to help the reader to understand which statements are case-specific and which ones can be considered as general (see Table 5).
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