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Abstract

Complex Ornstein-Uhlenbeck (OU) processes have various applications in statistical

modelling. They play role e.g. in the description of the motion of a charged test

particle in a constant magnetic field or in the study of rotating waves in time-dependent

reaction diffusion systems, whereas Kolmogorov used such a process to model the

so-called Chandler wobble, small deviation in the Earth’s axis of rotation. In these

applications parameter estimation and model fitting is based on discrete observations

of the underlying stochastic process, however, the accuracy of the results strongly

depend on the observation points.

This paper studies the properties of D-optimal designs for estimating the parameters

of a complex OU process with a trend. We show that in contrast with the case of the

classical real OU process, a D-optimal design exists not only for the trend parameter,

but also for joint estimation of the covariance parameters, moreover, these optimal

designs are equidistant.

Key words: Chandler wobble, complex Ornstein-Uhlenbeck process, D-optimality, op-

timal design, parameter estimation.

1 Introduction

Random processes have various applications in statistical modelling in different areas of

science such as physics, chemistry, biology or finance, where one usually cannot observe
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continuous trajectories. In these situations parameter estimation and model fitting is based

on discrete observations of the underlying stochastic process, however, the accuracy of the

results strongly depend on the observation points. The theory of optimal experimental

designs, dating back to the late 50s of the twentieth century (see e.g. Hoel, 1958; Kiefer,

1959), deals with finding design sets ξ = {t1, t2, . . . , tn} of distinct time points (or locations

in space) where the process under study is observed, which are optimal according to some

previously specified criterion (Müller, 2007). In parameter estimation problems the most

popular criteria are based on the Fisher information matrix (FIM) of the observations. D-,

E- and T-optimal designs maximize the determinant, the smallest eigenvalue and the trace

of the FIM, respectively, an A-optimal design minimizes the trace of the inverse of the FIM

(for an overview see Pukelsheim, 1993), whereas K-optimality refers to the minimization

of the condition number of the FIM (see e.g. Ye and Zhou, 2013; Baran, 2017). In the

last decades information based criteria have intensively been studied and despite the well

developed theory for uncorrelated setup (see e.g. Silvey, 1980) only recently the more difficult

correlated situation has been addressed (Dette et al., 2015, 2016).

In the present paper we derive D-optimal designs for parameter estimation of complex

(or vector) Ornstein-Uhlenbeck (OU) processes with trend (see e.g. Arató, 1982), defined

in detail in Section 2. A complex OU process describes e.g. the motion of a charged test

particle in a constant magnetic field (Balescu, 1997), it is used in the description of the

rotation of a planar polymer (Vakeroudis et al., 2011) or in the study of rotating waves

in time-dependent reaction diffusion systems (Beyn and Lorenz, 2008; Otten, 2015), and

it also has several applications in financial mathematics (see e.g. Barndorff-Nielsen and

Shephard, 2001). Further, Kolmogorov proposed to model the so-called Chandler wobble,

small deviation in the Earth’s axis of rotation (Lambeck, 1980), by the model

Z(t) = Z1(t) + iZ2(t) = mei2πt + Y (t), t > 0, (1.1)

where Z1(t) and Z2(t) are the coordinates of the deviation of the instantaneous pole from

the North Pole and Y (t) is a complex OU process (Arató et al., 1962).

We remark that the properties of D-optimal designs for classical one-dimensional OU

processes have already investigated by Kisělák and Stehĺık (2008) and later by Zagoraiou

and Baldi Antognini (2009), where the authors proved that there is no D-optimal design

for estimating the covariance parameter, whereas the D-optimal design for trend estimation

is equidistant and larger distances resulting in more information. Later these results were

generalized for OU sheets under various sampling schemes (Baran and Stehĺık, 2015; Baran

et al., 2013, 2015).
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2 Complex Ornstein-Uhlenbeck process with a trend

Consider the complex stochastic process Z(t) = Z1(t) + iZ2(t), defined as

Z(t) = mf(t) + Y (t), t ≥ 0, (2.1)

with design points taken from the non-negative half-line R+, where m = m1+im2, m1,m2 ∈
R, f(t) = f1(t) + if2(t) with f1(t), f2(t) : R+ 7→ R and Y (t) = Y1(t) + iY2(t), t ≥ 0, is a

complex valued stationary OU process. The process Y (t) can be defined by the stochastic

differential equation (SDE)

dY (t) = −γY (t)dt+ σdW(t), Y (0) = ξ, (2.2)

where γ = λ− iω with λ > 0, ω ∈ R, σ > 0, W(t) =W1(t)+ iW2(t), t ≥ 0, is a standard

complex Brownian motion, that is W1(t) and W2(t) are independent standard Brownian

motions, and ξ = ξ1 + iξ2, where ξ1 and ξ2 are centered normal random variables that

are chosen according to stationarity (Arató, 1982).

Instead of the complex process Y (t) defined by (2.2) one can consider the two-dimensio-

nal real valued stationary OU process
(
Y1(t), Y2(t)

)>
defined by the SDE[

dY1(t)

dY2(t)

]
= A

[
Y1(t)

Y2(t)

]
dt+ σ

[
dW1(t)

dW1(t)

]
, where A :=

[
−λ −ω
ω −λ

]
(2.3)

We remark that in physics (2.3) is called A-Langevin equation, see e.g. (Balescu, 1997). If(
Y1(t), Y2(t)

)>
satisfies (2.3) then Y1(t) + iY2(t) is a complex OU process which solves

(2.2), and conversely, the real and imaginary parts of a complex OU process form a two-

dimensional real OU process satisfying (2.3). Obviously, EY1(t) = EY2(t) = 0, whereas the

covariance matrix function of the process
(
Y1(t), Y2(t)

)>
is given by

R(τ) := E

[
Y1(t+ τ)

Y2(t+ τ)

][
Y1(t)

Y2(t)

]>
=
σ2

2λ
eAτ =

σ2

2λ
e−λτ

[
cos(ωτ) − sin(ωτ)

sin(ωτ) cos(ωτ)

]
, τ ≥ 0. (2.4)

This results in a complex covariance function of the complex OU process Y (t) defined by

(2.2) of the form

C(τ) := EY (t+ τ)Y (t) =
σ2

λ
e−λτ

(
cos(ωτ) + i sin(ωτ)

)
, τ ≥ 0,

behaving like a damped oscillation with frequency ω.

In the present study the damping parameter λ, frequency ω and standard deviation

σ are assumed to be known. However, a valuable direction for future research will be the

investigation of models where these parameters should also be estimated. Note that the

estimation of σ can easily be done on the basis of a single realization of the complex

process, see e.g. Arató (1982, Chapter 4). Now, without loss of generality, one can set the

variances of Y1(t) and Y2(t) to be equal to one, that is σ2/(2λ) = 1, which reduces R(τ)

to a correlation matrix function. Further results on the maximum-likelihood estimation of

the covariance parameters can be found e.g. in Arató et al. (1999).
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3 D-optimal designs

Suppose the complex process Z(t) is observed in design points 0 ≤ t1 < t2 < . . . < tn
resulting in the 2n-dimensional real vector

(
Z1(t1), Z2(t1), Z1(t2), Z2(t2), . . . , Z1(tn), Z2(tn)

)>
,

where

Z1(t) = m1f1(t)−m2f2(t) + Y1(t), Z2(t) = m2f1(t) +m1f2(t) + Y2(t). (3.1)

As it has mentioned in the Introduction, a D-optimal design maximizes the determinant

of the FIM on the unknown parameters corresponding to the observations. Here we consider

optimal designs for estimating the trend parameter m and the damping parameter λ and

frequency ω, as well.

3.1 Estimation of the trend parameter

According to the results of e.g. Xia et al. (2006) or Pázman (2007) the FIM on parameter

vector (m1,m2)
> based on observations

{(
Z1(tj), Z2(tj)

)
, j = 1, 2, . . . , n

}
equals

Im1,m2(n) = H(n)C(n)−1H(n)>,

where

H(n) :=

[
f1(t1) f2(t1) f1(t2) f2(t2) · · · f1(tn) f2(tn)

−f2(t1) f1(t1) −f2(t2) f1(t2) · · · −f2(tn) f1(tn)

]
,

and C(n) is the 2n× 2n covariance matrix of the observations.

Lemma 3.1 The FIM on trend parameters (m1,m2)
> of the two-dimensional analogue

of the complex model (2.1) based on the real observation vector
{(
Z1(tj), Z2(tj)

)
, j =

1, 2, . . . , n
}

equals Im1,m2(n) = Q(n) I2, where Ik, k ∈ N, denotes the k-dimensional

unit matrix and

Q(n) := f 2
1 (tn)+f 2

2 (tn)+
n−1∑
j=1

1

1− e−2λdj

(
f 2
1 (tj) + f 2

2 (tj) + e−2λdj
(
f 2
1 (tj+1) + f 2

2 (tj+1)
)

(3.2)

+2e−λdj
((
f1(tj)f2(tj+1)−f2(tj)f1(tj+1)

)
sin(ωdj)−

(
f1(tj)f1(tj+1)+f2(tj)f2(tj+1)

)
cos(ωdj)

))
,

with dj := tj+1 − tj, j = 1, 2, . . . , n− 1.

Consider now the special case of a constant trend, that is the model

Z(t) = m+ Y (t). (3.3)

In this situation f1(t) ≡ 1 and f2(t) ≡ 0, so

Z1(t) = m1 + Y1(t), Z2(t) = m2 + Y2(t),
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Figure 1: Bivariate objective function Dm1,m2 for a three-point design for (a) λ = 1, ω =

1 and (c) λ = 1, ω = 4, together with the corresponding contour plots (b) and (d),

respectively.

and the expression in (3.2) reduces to

Q(n)=1+
n−1∑
`=1

g(d`), where g(x) :=
1−2e−λx cos(ωx)+e−2λx

1−e−2λx
, x>0, and g(0) :=0. (3.4)

Hence, in order to obtain the D-optimal design, one has to find the maximum in d =

(d1, d2, . . . , dn−1) of

Dm1,m2(d) := det
(
Im1,m2(n)

)
=

(
1 +

n−1∑
`=1

g(d`)

)2

. (3.5)

Theorem 3.2 Consider the complex model (3.3) with ω 6= 0 observed in design points

0 ≤ t1 < t2 < . . . < tn. The D-optimal design for estimating the trend parameter is
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Figure 2: Location d∗ of the global maximum of g(x) as a function of the frequency ω

for λ = 1.

equidistant with d1 = d2 = . . . = dn−1 = d∗, where d∗ is the (existing) global maximum

point of g(x).

Observe that for ω = 0 we have

Q(n) = 1 +
n−1∑
`=1

1− e−λd`

1 + e−λd`
,

which is exactly the Fisher information on the constant trend parameter of a shifted real

valued stationary OU process with covariance parameter λ (Kisělák and Stehĺık, 2008;

Zagoraiou and Baldi Antognini, 2009). In this case the D-optimal design on trend is also

equidistant, however, with the increase of this equal distance the information is also increas-

ing. According to the statement of Theorem 3.2 this is not the case for the complex OU

process as there exists an optimal distance which provides the highest information.

Example 3.3 As an illustration consider a three-point design. Figures 1a and 1c show the

bivariate objective function Dm1,m2 for λ = 1, ω = 1 and λ = 1, ω = 4 together with

the corresponding contour plots (Figures 1b and 1d, respectively).

To get a better insight on the behavior of the optimal design, consider the function g(x)

defined by (3.4). Figure 2 shows the location d∗ of the global maximum of g(x) as a

function of the frequency ω for λ = 1. The general case can obviously be obtained by

rescaling both axes by the value of the damping parameter λ.
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3.2 Estimation of the covariance parameters

Consider now the problem of estimating the damping parameter λ and frequency ω. Re-

calling again the results of Xia et al. (2006) and Pázman (2007), the FIM on these parameters

based on observations
{(
Z1(tj), Z2(tj)

)
, j = 1, 2, . . . , n

}
has the form

Iλ,ω(n) =

[
Iλ(n) Iλ,ω(n)

Iλ,ω(n) Iω(n)

]
, (3.6)

where

Iλ(n) :=
1

2
tr

{
C−1(n)

∂C(n)

∂λ
C−1(n)

∂C(n)

∂λ

}
,

Iω(n) :=
1

2
tr

{
C−1(n)

∂C(n)

∂ω
C−1(n)

∂C(n)

∂ω

}
, (3.7)

Iλ,ω(n) :=
1

2
tr

{
C−1(n)

∂C(n)

∂λ
C−1(n)

∂C(n)

∂ω

}
.

Note, that here Iλ(n) and Iω(n) are Fisher information on parameters λ and ω,

respectively, taking the other parameter as a nuisance.

Theorem 3.4 Consider the two-dimensional analogue of the complex model (3.3) with ω 6=
0 observed in design points 0 ≤ t1 < t2 < . . . < tn. Then

Iλ(n) =
n−1∑
`=1

ϕ(d`), Iω(n) =
n−1∑
`=1

ψ(d`) and Iλ,ω(n) = 0, (3.8)

where dj = tj+1 − tj, j = 1, 2, . . . , n− 1,

ϕ(x) :=
x2e−λx cosh(λx)

sinh2(λx)
, ψ(x) :=

x2e−λx

sinh(λx)
, x > 0, and ϕ(0) :=

1

λ2
, ψ(0) :=0. (3.9)

Observe that none of the entries of the FIM Iλ,ω(n) depends on the frequency parameter.

Further, Iλ(n)/2 coincides with the Fisher information on the covariance parameter of a

real valued OU process given by Zagoraiou and Baldi Antognini (2009). Note that here

we consider two-dimensional OU processes, which justifies the halving of the information,

however, due to this connection the first statement of the following theorem is a direct

consequence of Zagoraiou and Baldi Antognini (2009, Theorem 4.2).

Theorem 3.5 Consider the two-dimensional analogue of the complex model (3.3) with ω 6=
0 observed in design points 0 ≤ t1 < t2 < . . . < tn.

a) The D-optimal design for the damping parameter λ maximizing the Fisher information

Iλ(n) does not exist within the class of admissible designs.
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Figure 3: Objective function Dm1,m2,λ,ω for a two-point design for (a) λ = 1, ω = 1 and

(b) λ = 1, ω = 4.

b) The D-optimal design for the frequency ω maximizing the Fisher information Iω(n)

is equidistant with

d1 = d2 = . . . = dn−1 = dλ :=
1

λ

(
W
(
− 2e−2

)
/2 + 1

)
≈ 0.7968

λ
,

where W (x) denotes the Lambert W -function (Corless et al., 1996).

c) The D-optimal design for both covariance parameters of the complex OU process max-

imizing det
(
Iλ,ω(n)

)
is equidistant with

d1 = d2 = . . . = dn−1 = d◦/λ,

where d◦ ≈ 0.4930 is the unique positive solution of

1− d− 2de−2d − e−4d = 0. (3.10)

We remark that in the case of one-dimensional OU processes an admissible design for the

covariance parameter λ can be obtained by introducing the nugget effect, see e.g. Stehĺık

et al. (2017).

3.3 Estimation of all parameters

In the most general case one has to estimate both the components m1,m2 of the mean and

the covariance parameters λ and ω. The FIM on these parameters equals

Im1,m2,λ,ω(n) =

[
Im1,m2(n) 02,2

02,2 Iλ,ω(n)

]
, (3.11)

where Im1,m2(n) and Iλ,ω(n) are the information matrices defined in Lemma 3.1 and

by (3.6), respectively, and 0k,` denotes the k × ` matrix of zeros. Hence, according to
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Figure 4: Bivariate objective function Dm1,m2,λ,ω for a three-point design for (a) λ =

1, ω = 1 and (c) λ = 1, ω = 4, together with the corresponding contour plots (b) and

(d), respectively.

the results of Lemma 3.1 and Theorem 3.4, the D-optimal design for all four parameters

maximizes in d = (d1, d2, . . . , dn−1)

Dm1,m2,λ,ω(d) := det
(
Im1,m2,λ,ω(n)

)
=

(
1 +

n−1∑
`=1

g(d`)

)2(n−1∑
`=1

ϕ(d`)

)(
n−1∑
`=1

ψ(d`)

)
, (3.12)

where the functions g, ϕ and ψ are defined by (3.4) and (3.9).

Example 3.6 Consider first the simplest case, that is a two-point design, when the objective

function (3.12) is univariate. Figures 3a and 3b, showing the graph of Dm1,m2,λ,ω(d) for

λ = 1, ω = 1 and λ = 1, ω = 4, respectively, clearly illustrate the existence of a finite

optimal design.
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Figure 5: Optimal distance d∗ of the equidistant n-point D-optimal design for estimation

of all parameters as a function of the frequency ω for λ = 1.

Example 3.7 Similar to Example 3.3, consider again a three-point design. In Figures 4a and

4c the bivariate objective function Dm1,m2,λ,ω is plotted for λ = 1, ω = 1 and λ = 1, ω = 4,

together with the corresponding contour plots (Figures 4b and 4d, respectively).

Although the objective function Dm1,m2,λ,ω(d) is too complicated for treating it analyt-

ically, numerical results in higher dimensions show that there exists a D-optimal design and

it is equidistant. In Figure 5 the optimal distance d∗ of the equidistant n-point D-optimal

design is plotted as a function of the frequency ω for λ = 1. Again, the general case

can easily be obtained by rescaling both axes by the damping λ. Note that the larger the

frequency, the smaller the effect of the number of design points on the optimal design.

4 Application

The application of the obtained designs, especially the ones given in Theorem 3.5 can be

applied in the assessment of the quality of parameter estimation for damping parameter

λ and frequency parameter ω in Kolmogorov’s model (1.1) of the Chandler wobble. The

maximum likelihood estimator and sufficient statistics for λ are given in Arató (1968, 1982).

However, as noted after Theorem 3.5, for the drift parameter there exist no admissible design,

unless we apply nugget effect.

For the model of Arató et al. (1962) two different estimates of the damping parameter

are given by Pančenko (1960) (λ̂ = 0.3) and Walker and Young (1955) (λ̂ = 0.01). By the

second statement of Theorem 3.5 the D-optimal design for frequency ω is equidistant with

an optimal lag of dλ ≈ 0.7968
λ

. However, the various estimates for λ give a broad range of

optimal equidistant times for measurements.
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Figure 6: Surface R(d, λ, 1;n) (a) and the corresponding contour plot (b) for a ten-point

equidistant design.

Further, due to the difference in the estimated values of the damping parameter λ, one

might be interested in the sensitivity of the standardized setup (λ = ω = 1) with respect to

the D-optimality criterion for estimation of the trend parameter. For the n-point equidistant

design this means the evaluation of R(d, λ, 1;n), where

R(d, λ, ω;n) :=

(
1+(n−1)g(d, 1, 1)

)2(
1+(n−1)g(d, λ, ω)

)2 , with g(x, λ, ω) :=
1−2e−λx cos(ωx)+e−2λx

1−e−2λx
, (4.1)

see also (3.4). Here we analyze the situation for arbitrary d, since experimenter usually

does not have a free choice of the lag, although for λ = ω = 1 the optimal value equals

d∗ ≈ 2.1835 (see Theorem 3.2). Thus, this analysis incorporates all possible design spaces

of form [0, Tmax] where Tmax denotes the upper bound of the design space.

The 3rd order Taylor expansion of R(d, λ, 1;n) around the origin λ = 0 results in

R(d, λ, 1;n) =
d2
(

1 + (n− 1) (1−2e
−d cos(d)+e−2d)
1−e−2d

)2
(n− 1)

(
cos(d)− 1

)2 λ2 +O(λ3),

which shows a very high sensitivity of the efficiency for the standard design with respect

to small values of the damping parameter λ. The same phenomenon can be observed on

Figure 6 showing the surface R(d, λ, 1;n) and the corresponding contour plot for a ten-point

equidistant design.

If one can use the optimal lag d∗ ≈ 2.1835 for the standard design (i.e. has the possibility

of choosing an arbitrary lag), then the 3rd order Taylor expansion of R(d, λ, 1;n) around

the origin λ = 0 reduces to

R(d∗, λ, 1;n) =
1.9218 ·

(
1 + 1.1569 · (n− 1)

)2
(n− 1)2

λ2 +O(λ3),
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Figure 7: Surface R(d, 1, ω;n) (a) and the corresponding contour plot (b) for a ten-point

equidistant design.

that is for λ ≈ 0 we have

lim
n→∞

R(d∗, λ, 1;n) ≈ 2.5723λ2.

This also confirms the sensitivity of the efficiency for the standard design at small damping

values λ.

Consider now the sensitivity of efficiency for the standard design with respect to frequency

ω. For the n-point equidistant design one has to evaluate R(d, 1, ω;n) defined again by

(4.1), which for ω ≈ 0 indicates even higher sensitivity. This can be derived from the form

R(d, 1, ω;n) =

(
(n− 2)e−2d − 2(n− 1)e−d cos(d) + n

)2(
(n− 2)e−2d − 2(n− 1)e−d + n

)2
−

2(n− 1)d2e−d
(
(n− 2)e−2d − 2(n− 1)e−d cos(d) + n

)2(
(n− 2)e−2d − 2(n− 1)e−d + n

)3 ω2 +O(ω4).

of the 4th order Taylor expansion around ω = 0, and one can also observe it on Figure 7,

where R(d, 1, ω;n) and the corresponding contour plot are shown for a ten-point equidistant

design.

Again, for the optimal lag d∗ ≈ 2.1835 the 4th order Taylor expansion of R(d, 1, ω;n)

around the origin ω = 0 reduces to

R(d∗, 1, ω;n) =
2.0455(9.0024n− 1.2211)2

(
6.2058n+ 1.5755− 8.4655(n− 1)ω2

)
(7.8777n+ 2)3

+O(ω4).

Hence, for ω ≈ 0 we have

lim
n→∞

R(d∗, 1, ω;n) ≈ 1.9476− 2.3318ω2,
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which also confirms the sensitivity of the efficiency at small frequencies ω.

Recently Malkin and Miller (2010) discovered that besides the well-known Chandler

wobble phase jump in the 1920s, two other large phase jumps have been identified in the

1850s and 2000s. As in the 1920s, these phase jumps occurred contemporary with a sharp

decrease in the Chandler wobble amplitude. However, sharp decrease of amplitude can

drastically change the optimal design, as confirmed by Theorem 3.5 for the case of a complex

OU process. This underpins the importance of further research on stochastic approach to

Chandler wobble. Moreover, substantial relation of large seismic events to Chandler wobble

excitation (O’Connell and Dziewonski, 1976) justify further studies of optimal designs for

both damping and frequency parameters.
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A Appendix

A.1 Proof of Lemma 3.1

Similar to the real valued case (Zagoraiou and Baldi Antognini, 2009), the correlation matrix

of observations
{(
Z1(tj), Z2(tj)

)
, j = 1, 2, . . . , n

}
of the two-dimensional process (3.1) equals

C(n) =



I2 eAd1 eA(d1+d2) eA(d1+d2+d3) . . . . . . eA(
∑n−1

j=1 dj)

eA
>d1 I2 eAd2 eA(d2+d3) . . . . . . eA(

∑n−1
j=2 dj)

eA
>(d1+d2) eA

>d2 I2 eAd3 . . . . . . eA(
∑n−1

j=3 dj)

eA
>(d1+d2+d3) eA

>(d2+d3) eA
>d3 I2 . . . . . .

...
...

...
...

...
. . .

...
...

...
...

...
. . . eAdn−1

eA
>(

∑n−1
j=1 dj) eA

>(
∑n−1

j=2 dj) eA
>(

∑n−1
j=3 dj) . . . . . . eA

>dn−1 I2


.
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Short calculation shows that the inverse of C(n) is given by

C−1(n) =



U1 −eAd1U1 0 0 . . . . . . 0

−eA
>d1U1 V2 −eAd2U2 0 . . . . . . 0

0 −eA
>d2U2 V3 −eAd3U3 . . . . . . 0

0 0 −eA
>d3U3 V4 . . . . . .

...
...

...
...

...
. . .

...
...

...
...

... Vn−1 −eAdn−1Un−1

0 0 0 . . . . . . −eA
>dn−1Un−1 Un−1


,

where Uk :=
[
I2 − e(A+A

>)dk
]−1

, k = 1, 2, . . . , n− 1, and Vk := Uk + e(A+A
>)dk−1Uk−1, k =

2, 3, . . . , n − 1, which is a direct generalization of the result of Kisělák and Stehĺık (2008)

for the classical OU process.

Now, using (2.4) one can easily obtain

Uk =
1

1− e−2λdk
I2, eAdkUk =

e−λdk

1− e−2λdk

[
cos(ωdk) − sin(ωdk)

sin(ωdk) cos(ωdk)

]
, k = 1, 2, . . . , n− 1,

Vk =

(
1

1− e−2λdk
+

e−2λdk−1

1− e−2λdk−1

)
I2, k = 2, 3, . . . , n− 1,

which together with (2.4) specify both C(n) and C−1(n). Finally, tedious but straightfor-

ward calculations lead us to (3.2). �

A.2 Proof of Theorem 3.2

Consider first the function g(x) defined by (3.4). As

g′(x) =
r(x)

sinh2(λx)
with r(x) := λ cosh(λx) cos(ωx)+ω sinh(λx) sin(ωx)−λ, x>0, (A.1)

the critical points of g(x) are the roots of r(x). Short calculation shows that r(x) < 0 if

and only if

λ

[
tanh

(λx
2

)
cot
(ωx

2

)]2
+ 2ω

[
tanh

(λx
2

)
cot
(ωx

2

)]
− λ < 0, (A.2)

and the quadratic polynomial in (A.2) has two distinct roots

%− :=
−ω −

√
ω2 + λ2

λ
< 0 and %+ :=

−ω +
√
ω2 + λ2

λ
> 0.

Now, if ω 6= 0, by the properties of the cotangent and hyperbolic tangent functions there

exist points
{
x−n , n ∈ N

}
such that 0 < x−n < x−n+1 and

%− < tanh
(λx−n

2

)
cot
(ωx−n

2

)
< %+, that is r

(
x−n
)
< 0, n ∈ N.
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Similar arguments prove the existence of points
{
x+n , n ∈ N

}
satisfying 0 < x+n < x+n+1

and r
(
x+n
)
> 0, n ∈ N. Thus, r(x) (and g′(x)) has an infinite number of sign changes,

moreover, since limx→0 g
′(x) = ω2

2λ
+ λ

2
> 0, the first change is from positive to negative.

Denote by
{
x◦n, n ∈ N

}
the roots of r(x), that is the critical points of g(x), where again,

0 < x◦n < x◦n+1, n ∈ N, and x◦1 is a local maximum of g(x). Further, we have

g′′
(
x◦n
)

=
(
λ2 + ω2)

cos
(
ωx◦n

)
sinh

(
λx◦n

) .
Assume that g′′

(
x◦n
)

= 0, that is ωx◦n = π
2

+ πkn for some kn ∈ Z. In this case

0 = r
(
x◦n
)

= ±ω sinh

(
λ

ω

(π
2

+ πkn

))
− λ, (A.3)

where the positive sign will apply if kn is odd, and the negative sign if it is even. However,

the Taylor series expansion of the hyperbolic sine implies

±ω sinh

(
λ

ω

(π
2

+ πkn

))
− λ = ±λ

(π
2
∓ 1 + πkn

)
±
∞∑
`=1

λ2`+1

(2`+ 1)!ω2`

(π
2

+ πkn

)2`+1

6= 0,

which contradicts to (A.3). Hence, for the critical points
{
x◦n, n ∈ N

}
of g(x) either

g′′
(
x◦n
)
< 0 or g′′

(
x◦n
)
> 0, so they are either local maxima or local minima, respectively.

This ensures the existence of a global maximum of g as well at some point d∗ ∈
{
x◦n, n ∈ N

}
,

where g′(d∗) = 0, and g′′(d∗) < 0.

Obviously, instead of Dm1,m2 defined by (3.5) it suffices to maximize

F (d1, d2, . . . , dn−1) := Q(n) = 1 +
n−1∑
`=1

g
(
d`
)

Now, consider the (n− 1)-dimensional vector d∗ := (d∗, d∗, . . . , d∗)>. As

∂F

∂dk
(d∗, d∗, . . . , d∗) = g′(d∗) = 0, k = 1, 2, . . . , n− 1,

d∗ is a critical point of F . Further, as

∂2F

∂d`∂dk
(d∗, d∗, . . . , d∗) = 0 if k 6= `, k, ` = 1, 2, . . . , n− 1,

and
∂2F

∂d2k
(d∗, d∗, . . . , d∗) = g′′(d∗) < 0, k = 1, 2, . . . , n− 1,

the Hessian of F at d∗ is negative definite. Hence, d∗ is a maximum point of F and

since the components g(d∗) are the largest possible, this maximum is global. �
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A.3 Proof of Theorem 3.4

Using the expressions of the covariance matrix C(n) of observations and its inverse C−1(n)

given in the proof of Lemma 3.1 and (3.6), the formulae of (3.8) can be verified by induction,

similar to the proof of Theorem 2 of Baran and Stehĺık (2015). As an example consider the

Fisher information on damping parameter λ, where one has to show

Iλ(n) :=
1

2
tr

{
C−1(n)

∂C(n)

∂λ
C−1(n)

∂C(n)

∂λ

}
=

n−1∑
`=1

2d2`q
2
` (1 + q2` )

(1− q2` )2
, (A.4)

with qk := e−λdk , k = 1, 2, . . . , n− 1.

For n = 2 equation (A.4) holds trivially. Assume also that (A.4) is true for some n,

and we are going to show it for n+ 1. Let

∆(n) :=
(
−(d1+d2+. . .+dn)q1q2 . . . qnB1,...,n,−(d2+d3 . . .+dn)q2q3 . . . qnB2,...,n, . . . ,−dnqnBn

)>
,

where

Bk,...,n :=

[
cos
(
ω(dk + . . .+ dn)

)
− sin

(
w(dk + . . .+ dn)

)
sin
(
ω(dk + . . .+ dn)

)
cos
(
ω(dk + . . .+ dn)

) ] , k = 1, 2, . . . , n.

Using the representations of C(n) and C−1(n) given in Section A.1, one can easily see

∂C(n+1)

∂λ
=

 ∂C(n)

∂λ
∆(n)

∆>(n) 02,2

 and C−1(n+1)=

[
C−1(n) Λ1,2(n)

Λ>1,2(n) (1− q2n)−1I2

]
+

[
Λ1,1(n) 02n,2

02,2n 02,2

]
,

where 0k,` denotes the k × ` matrix of zeros and

Λ1,1(n) :=

02n−2,2n−2 02n−2,2

02,2n−2
q2n

1− q2n
I2

 and Λ1,2(n) :=

 02n−2,2

− qn
1− q2n

Bn

 .
In this way

C−1(n+ 1)
∂C(n+ 1)

∂λ
=


C−1(n)

∂C(n)

∂λ
+K1,1(n) C−1(n)∆(n)

K1,2(n)
dnq

2
n

1− q2n
I2

+

[
K2,1(n) K2,2(n)

02,2n 02,2

]
,

with

K1,1(n) :=

 02n−2,2n

− qn
1−q2n

Bn∆>(n)

 , K1,2(n) :=
1

1−q2n
∆>(n)− qn

1−q2n
B>n

[
∆>(n− 1) 02,2

]
,

K2,1(n) :=

 02n−2,2n−2 02n−2,2

q2n
1−q2n

∆>(n− 1) 02,2

 , K2,2(n) :=

 02n−2,2

− dnq
3
n

1−q2n
Bn

 .
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Hence,

Iλ(n+1) = Iλ(n) + tr

{
C−1(n)

∂C(n)

∂λ
K1,1(n)

}
+ tr

{
C−1(n)∆(n)K1,2(n)

}
+

1

2
tr
{
K2

1,1(n)
}

+
d2nq

4
n

(1−q2n)2
+ tr

{
C−1(n)

∂C(n)

∂α
K2,1(n)

}
+ tr

{
K1,2(n)K2,2(n)

}
. (A.5)

After long but straightforward calculations one can get

tr

{
C−1(n)

∂C(n)

∂λ
K1,1(n)

}
= −

n−1∑
`=1

2d2`q
2
` q

2
`+1 · . . . · q2n

(1− q2` )(1− q2n)
= − tr

{
C−1(n)

∂C(n)

∂λ
K2,1(n)

}
,

tr
{
C−1(n)∆(n)K1,2(n)

}
=

2d2nq
2
n

(1− q2n)2
− 2d2nq

4
n

(1− q2n)2
,

1

2
tr
{
K2

1,1(n)
}

=
d2nq

4
n

(1− q2n)2
, tr {K1,2(n)K2,2(n)} =

2d2nq
4
n

(1− q2n)2
,

so (A.5) implies

Iλ(n+ 1) = Iλ(n) +
2d2nq

2
n(1 + q2n)

(1− q2n)2
,

which completes the proof of (A.4). The other two statements of Theorem 3.4 can be verified

in a similar way. �

A.4 Proof of Theorem 3.5

As it has been mentioned, statement a) directly follows from Theorem 4.2 of Zagoraiou and

Baldi Antognini (2009).

Now, consider the function ψ(x) defined by (3.8). As

ψ′(x) =
4xe−2λx

(
1− λx− e−2λx

)(
1− e−2λx

)2 ,

ψ(x) has a single critical point at d∗ := 1
λ

(
W (−2e−2)/2+1

)
, moreover, ψ′′(d∗) < 0, so d∗

is a global maximum point. Hence, statement b) can be verified using the same arguments

as in the proof of Theorem 3.2.

According to (3.8), the D-optimal design on λ and ω maximizes

G(d1, d2, . . . , dn−1) :=

(
n−1∑
`=1

ϕ(d`)

)(
n−1∑
`=1

ψ(d`)

)

=

(
n−1∑
`=1

2d 2
` e−2λd`

(
1 + e−2λd`

)(
1− e−2λd`

)2
)(

n−1∑
`=1

2d 2
` e−2λd`(

1− e−2λd`
)) ,
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and obviously, it suffices to consider the case λ = 1. The critical points of G are solutions

of the system

∂G

∂dk
(d1, d2, . . . , dn−1) = ϕ′(dk)

(
n−1∑
`=1

ψ(d`)

)
+ ψ′(dk)

(
n−1∑
`=1

ϕ(d`)

)
= 0, (A.6)

k = 1, 2, . . . , n− 1, where

ϕ′(x) =
4xe−2λx

(
1− λx− 3λxe−2λx − e−4λx

)(
1− e−2λx

)3 < 0, x > 0.

Hence, for λ = 1 the system of equations (A.6) is equivalent to

κ(dk) =

(
n−1∑
`=1

ψ(d`)

)/(
n−1∑
`=1

ϕ(d`)

)
, k = 1, 2, . . . , n− 1, (A.7)

where

κ(x) :=
1− x+ (x− 2)e−2x + e−4x

x− 1 + 3xe−2x + e−4x
, x > 0.

Since κ(x) is strictly monotone decreasing and continuous with limx→0 κ(x) = 1 and

limx→∞ κ(x) = −1, the solution of (A.7) should satisfy d1 = d2 = . . . = dn−1 =: d. Hence,

the critical points of G have equal coordinates and at a critical point (A.7) reduces to

κ(d) =
(
1 − e−2d

)
/
(
1 + e−2d

)
, which is equivalent to (3.10). The latter equation has a

unique positive solution d◦, so d1 = d2 = . . . = dn−1 = d◦ is the only critical point of G.

Short calculation shows that at this point the Hessian of G equals

H = (n− 1)
[
ϕ′′(d◦)ψ(d◦) + ψ′′(d◦)ϕ(d◦)

]
In−1 + 2

[
ϕ′(d◦)ψ′(d◦)

]
1n−11

>
n−1

≈ −0.5083 · (n− 1)In−1 − 0.2754 · 1n−11>n−1,

where 1k, k ∈ N, denotes the k-dimensional vector of ones. This means that for all

0 6= v = (v1, v2, . . . , vn−1)
> ∈ Rn−1 we have

v>Hv = (n− 1)
[
ϕ′′(d◦)ψ(d◦) + ψ′′(d◦)ϕ(d◦)

]
v>v + 2

[
ϕ′(d◦)ψ′(d◦)

](n−1∑
`=1

v`

)2

< 0,

so the Hessian is negative definite. Hence, the unique critical point of G is a global

maximum, which completes the proof. �
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