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    Chapter 31   
 Pituitary Adenylate Cyclase-Activating 
Polypeptide in the Auditory System                     

     Balazs   D.     Fulop    ,     Dora     Reglodi    ,     Adrienn     Nemeth    , and     Andrea     Tamas    

    Abstract     Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuro-
peptide with well-known neurotrophic, neuroprotective, antioxidant, and antiapop-
totic effects. It also exerts protective effects in sensory organs, such as visual and 
olfactory system. In this review we present data regarding the localization and 
effects of PACAP in the auditory system. PACAP and its specifi c receptor (PAC1-R) 
are present in the organ of Corti in hair cells, supporting cells, and different nerve 
fi bers. They are also present in the spiral ganglion showing co-localization with 
efferent fi bers of glutamatergic and adrenergic pathways, probably directly affect-
ing the efferent signal transduction in the inner ear. PACAP and its specifi c receptor 
also occur in the stria vascularis suggesting a role in endolymph production; fur-
thermore, they are present in central pathways of the auditory system such as the 
cochlear nuclei, superior olivary complex, inferior colliculus, and medial geniculate 
body. PAC1-receptor is also present in the inner ear in PACAP-defi cient mice, 
occurring at the same localization but with altered expression compared to wild- 
type mice. PACAP protects hair cells from H 2 O 2 -induced apoptosis in chicken inner 
ear cell cultures in vitro, and the lack of PACAP affects the Ca 2+ -binding protein 
expression in hair cells in PACAP-defi cient mice under control circumstances and 
after ototoxic drug treatment.  
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  Abbreviations 

   AC    Adenylate cyclase   
  ApoD    Apolipoprotein D   
  ApoJ    Apolipoprotein J   
  Bad    bcl-2-associated death promoter   
  Bax    bcl-2-like protein 4   
  Bcl    B-cell lymphoma   
  ChAT    Choline acetyltransferase   
  CREB    cAMP response element-binding protein   
  DBH    Dopamine β-hydroxylase   
  HZ    Heterozygous PACAP-defi cient mice   
  ERK    Extracellular-signal-regulated kinase   
  GluR2/3    Glutamate receptor 2/3   
  JC-1    5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethylbenzimi- dazolylcarbocyanine 

iodide   
  JNK    c-Jun N-terminal kinase   
  LW    Lateral wall   
  MNTB    Medial nucleus of trapezoid body   
  MTT assay    Colorimetric assay for assessing cell metabolic activity   
  nNOS    Neuronal nitric oxide synthase   
  OC    Organ of Corti   
  p38MAPK    p38 mitogen-activated protein kinases   
  P5    5th postnatal day   
  P7    7th postnatal day   
  PACAP    Pituitary adenylate cyclase-activating polypeptide   
  PACAP KO    Homozygous PACAP-defi cient mice   
  PACAP38    1-38 Amino-acid isoform of PACAP   
  PAC1-R    PAC1-receptor   
  PKA    Protein kinase A   
  PLC    Phospholipase C   
  ROS    Reactive oxygen species   
  RT-PCR    Reverse transcription-polymerase chain reaction   
  SG    Spiral ganglion   
  SOC    Superior olivary complex   
  VIP    Vasoactive intestinal polypeptide   
  WT    Wild type mice   

        Introduction 

 Pituitary adenylate cyclase-activating polypeptide (PACAP) is known as a general 
cytoprotective factor. It protects neuronal and non-neuronal cells against various 
injuries and also exerts protective effects in sensory organs (Chaps. 29 and 30). In 
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this review we summarize the experiments on the effects of PACAP in the auditory 
system. We describe the occurrence of PACAP, and its specifi c receptor, PAC1- 
receptor (PAC1-R), in the cochlea [ 1 – 3 ] and in the central pathways of the auditory 
system [ 4 – 6 ]. We also present the changes in PAC1-receptor expression in the inner 
ear of PACAP-defi cient mice [ 7 ]. Thereafter, we discuss the functional changes in 
the inner ear related to PACAP. We summarize the effects of PACAP on the endo-
lymph composition [ 8 ], on apoptosis in chicken inner ear cell cultures in vitro [ 9 ], 
and its effects on Ca 2+ -binding protein expression in hair cells [ 7 ,  10 ].  

    PACAP and PAC1-R in the Cochlea 

 Kawano et al. [ 3 ] studied the expression of PACAP mRNA in the cochlea of Wistar 
rats using RT-PCR and in situ hybridization techniques. The RT-PCR primers 
designed against PACAP mRNA yielded the expected 553 bp RNA sequence. In 
situ hybridization returned cytoplasmic labeling, in most cells of the spiral ganglion 
and in the marginal cells of stria vascularis in the lateral wall. 

 Abu-Hamdan et al. [ 1 ] investigated the expression of PACAP and different splice 
variants of PAC1-R in rat cochlea. They divided the cochlea into three subfractions, 
such as organ of Corti (OC), spiral ganglion (SG), and lateral wall (LW) (Fig.  31.1 ). 

  Fig. 31.1    Schematic drawing of the cochlea showing lateral wall (LW), organ of Corti (OC), and 
spiral ganglion (SG) subfractions       
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They were working with ACI Black Agouti (Harlan Sprague-Dawley) rats of both 
sexes. First they examined the expression of PACAP in the cochlea of 20-day-old 
rats using RT-PCR. Amplifi cation products of predicted size were present in all 
three cochlear subfractions. For PAC1-R all the three subfractions contained mRNA 
for the short splice variant (~842 bp) of the third intracellular loop. Additional 
amplifi cation products were found in the LW fraction, which represents other splice 
variants such as formerly known hop1, hop2, hip, and a new hop1 variant with a 
193 bp deletion in the carboxyl-terminal corresponding region. Western blot tech-
nique confi rmed the presence of PAC1-R short splice variant in 6-week-old rats 
with a ~53 kDa band in all three subfractions and a ~49 kDa in the LW fraction, 
which might represent the novel hop1 variant. Hip-hop1 or hip-hop2 variants were 
not present in the cochlear subfractions based on sequencing results. The primers 
designed against the amino terminus corresponding region showed the presence of 
one amplifi cation product at ~500 bp in all three subfractions in accordance with 
previously described sequences [ 11 ]. This was also confi rmed by Western blot, 
showing a band at ~70 kDa in all three subfractions. Additionally they found a new 
variant in the OC subfraction with a 7-amino acid deletion. There were no amplifi -
cation products indicating the presence of other, previously described splice vari-
ants [ 12 ,  13 ]. Further Western blot examinations suggested that PAC1-R splice 
variants are glycosylated in LW and OC subfractions.

   They also used immunohistology in the LW subfraction in 2-month-old rats 
where PACAP and PAC1-R were found mainly in the stria vascularis. The immuno-
reactivity increased from basal to apical turns. Immunoreactivity is shown in the 
basolateral extension of marginal cells as predicted from earlier in situ hybridization 
of the mRNA of PACAP preprotein by Kawano et al. [ 3 ]. No PACAP immunoreac-
tivity was detected in the apical membrane of the marginal cells, basal cells, capil-
laries, nor in fi broblasts of the spiral ligament. PAC1-R was associated with the 
basolateral extension of the marginal cells in the stria vascularis. PAC1-R immuno-
reactivity was also present in the capillary endothelium, and between the marginal 
cells close to the apical surface in the region of tight junctions. However, there was 
no PAC1-R immunoreactivity either in the basal cells or in the apical membrane of 
the marginal cells. The co-expression of PACAP and its receptor on the marginal 
cells suggests an autocrine/intracrine mechanism of PACAP which was described 
earlier in several other cell types [ 14 ]. PACAP either might be secreted from the 
marginal cells or could enter from blood plasma. The activation of PAC1-R in the 
lateral membranes of marginal cells may lead to the activation of protein kinase A 
(PKA), which mediates the phosphorylation of claudin-3, which is a protein respon-
sible for tight-junction integrity [ 15 – 17 ]. This can affect tight junction functions, 
which play a role in cell permeability, polarity, and possibly also establishing the 
endolymphatic potential. The proximity of K +  channels to PAC1-R suggests the role 
of PACAP in the regulation of the K +  transport by affecting the IsK K + -channels at 
the apical and Na + -K + -Cl - -cotransporter and/or Na + -K + -ATPase at the basolateral 
extensions of the marginal cells through the cAMP-PKA signaling pathway [ 15 ]. 

 Drescher et al. [ 2 ] examined the localization of PACAP, PAC1-R, and several 
afferent and efferent neuronal markers [choline acetyltransferase (ChAT), gluta-
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mate receptor 2/3 (GluR2/3), dopamine β-hydroxylase (DBH)] with immunohisto-
chemistry in the cochlea of 2-month-old ACI Black Agouti rats. Their aim was to 
show the localization of PACAP and PAC1-R in the organ of Corti (Figs.  31.2 ,  31.3 , 
and  31.4 ) and spiral ganglion, and elucidate the role of PACAP in the afferent and 
efferent signaling of the inner ear.

     PACAP was found at the base of outer hair cells in the basal and middle turns, in 
small-caliber nerve fi bers under and lateral of inner hair cells forming an efferent 

  Fig. 31.2    Localization of PACAP and PAC1-R in the organ of Corti in the apical turn of the 
cochlea. PACAP immunoreactivity: cup under the inner hair cell (#), between inner hair cell and 
inner pillar cell (+), reticular lamina at the outer hair cell region (¤), Hensen’s cell region (×). 
PAC1-R immunoreactivity: sites at the apical part of the outer hair cells (*), inverted V form at the 
apical site of the inner hair cell (^), base of the outer hair cells ( o ), reticular lamina in the outer and 
inner hair cell regions (¤), Hensen’s cell region (x), Claudius’ cell region (o).  green circle : colocal-
ization with GluR2/3;  purple circle : colocalization with ChAT;  brown circle : colocalization with 
DBH       

  Fig. 31.3    Localization of PACAP and PAC1-R in the organ of Corti in the middle turn of the 
cochlea. PACAP immunoreactivity: cup under the inner hair cell (#), between inner hair cell and 
inner pillar cell (+), base of the outer hair cells ( o ). PAC1-R immunoreactivity: sites at the apical 
part of the outer hair cells (*), base of the outer hair cells ( o ), inverted V form at the apical site of 
the inner hair cell (^).  purple circle : colocalization with ChAT;  brown circle : colocalization with 
DBH       
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cup in all three turns. ChAT showed colocalization with PACAP in these regions 
and in the middle turn they also showed colocalization with DBH. PACAP immu-
noreactivity was found in small-caliber nerve fi bers approaching and crossing the 
habenula perforata, and at the apical sites of the outer hair cells in the basal turns. 
The fi bers at the apical sites of the outer hair cells may represent PACAP containing 
efferent fi bers. PACAP was also present in the reticular lamina at the outer hair cell 
region and in the Hensen’s cell region in the apical turn (Figs.  31.2 ,  31.3 , and  31.4 ). 
Colocalization of PACAP and ChAT was also shown in the intraganglionic efferent 
fi bers of the spiral ganglion. PACAP also showed colocalization with DBH, in simi-
lar regions, refl ecting probably adrenergic neurons. Strong PACAP immunostaining 
was found in the cochlear nerve in the axons of afferents leaving the spiral ganglion 
(Fig.  31.1 ), corresponding to previous PACAP preprotein mRNA fi ndings of 
Kawano et al. [ 3 ]. Although type I axons had high immunoreactivity the cell bodies 
showed low density of immunoreactivity which suggests afferent axonal transport 
of PACAP in these cells, presumably to modulate excitatory amino acid release at 
the axon terminals of the afferent cells in the cochlear nucleus. The efferent intra-
ganglionic spiral bundle showed also PACAP immunoreactivity. These small- 
caliber nerve fi bers were overlapping type I/II afferent cell bodies and showing 
colocalization with ChAT. 

 PAC1-R immunoreactivity was found in small-caliber nerve fi bers approaching 
the habenula perforata in the basal turn. It was also found as an inverted V form at 
the apical site of the inner hair cells in all three turns, showing colocalization with 
GluR2/3 in the basal and with DBH in the apical turns. PAC1-R was also found at 
the base and at the apical part of the outer hair cells in all three turns, at the base 
colocalizing with Glu2/3 in the basal and apical turns. It was also found in nerve 

  Fig. 31.4    Localization of PACAP and PAC1-R in the organ of Corti in the basal turn of the 
cochlea. PACAP immunoreactivity: cup under the inner hair cell (#), lateral from inner hair cell 
(+), base of the outer hair cells ( o ), apical part of the outer hair cells (*), habenula perforata ( fi lled 
triangle ). PAC1-R immunoreactivity: sites at the apical part of the outer hair cells (*), inverted V 
form at the apical site of the inner hair cell (^), habenula perforata ( fi lled triangle ), base of the outer 
hair cells ( o ), apical site of Deiters’ cells (§), head of the inner and outer pillar cells (P), diagonal 
fi bers under the inner hair cell (S).  green circle : colocalization with GluR2/3;  purple circle : colo-
calization with ChAT       
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fi bers at the head of the inner and outer pillar cells in the basal turn also colocalizing 
with GluR2/3. It was also found in the reticular lamina in the outer hair cell regions 
in the apical turn, showing colocalization with DBH, and in diagonal fi bers under 
the inner hair cell in the basal turn. Regarding the supporting cells there was PAC-1R 
immunopositivity at the apical site of Deiters’ cells in the basal turn (GluR2/3 colo-
calization), and in the Hensen’s and Claudius’ cell region in the apical turns colocal-
izing with DBH (Figs.  31.2 ,  31.3  and  31.4 ). PAC1-R immunoreactivity was found 
in type I afferent cells in the spiral ganglion, in small-caliber nerve fi bers in the 
spiral limbus, and in the cochlear nerve. 

 PACAP showed colocalization with ChAT and DBH in the efferent cholinergic 
and adrenergic fi bers suggesting that PACAP acts as an efferent neuromodulator in 
the inner ear. It is known that type I afferents of the inner hair cells get cholinergic 
and partially dopaminergic afferentation from lateral olivocochlear fi bers [ 18 ,  19 ]. 
Dopamine acts as a protective neurotransmitter in case of excitotoxicity for type I 
afferents [ 20 ,  21 ] and PACAP is able to upregulate dopaminergic functions [ 22 ]. 
Drescher et al. [ 2 ] showed more evidence for the previous fi ndings of Spoendlin 
[ 23 ], that adrenergic efferent innervation is also present in different sites of the 
organ of Corti, such as supranuclear sites of inner and outer hair cells, and Deiters’ 
and Hensen’s cell regions. PACAP is associated with adrenergic nerve terminals 
[ 24 ] and takes part in the modifi cation of adrenergic functions [ 25 ]. 

 Glutamate is the primary neurotransmitter in the cochlea [ 18 ,  26 ] and the release 
of glutamate in acoustic trauma/ischemia may lead to cell death and destruction of 
the afferent nerve endings [ 27 ,  28 ]. Morio et al. [ 29 ] showed that in neuronal cells 
PACAP suppressed glutamate-induced cell death. Drescher et al. [ 2 ] demonstrated 
the presence of PAC1-R in cell bodies and dendrites of type I afferent cells in the 
spiral ganglion. It also showed colocalization with GluR2/3 under the outer hair 
cells in the organ of Corti suggesting that PACAP interacts directly with glutamate- 
mediated signal transduction in the auditory system. Based on these fi nding PACAP 
may prevent glutamate-induced cell death in the inner ear upon various insults. 

 Our research group examined the inner ear of wild type (WT), heterozygous 
(HZ) and homozygous PACAP-defi cient (KO) mice [ 7 ]. The gross anatomical mor-
phology of PACAP-defi cient mice is similar to the WT mice, but they maintain an 
increased vulnerability against various insults and have an altered behavior, 
decreased reproductive function and several biochemical alterations [ 30 ]. Partial 
lack of PACAP also leads to higher vulnerability of heterozygous PACAP-defi cient 
mice [ 31 – 35 ]. We used hematoxylin-eosin staining to show the microscopic struc-
ture of the inner ear, and immunofl uorescent staining against PAC1-R. The mor-
phology of the inner ear showed no differences between the homozygous 
PACAP-defi cient and WT mice. Our research group found PAC1-R immunopositiv-
ity in both inner and outer hair cells, outer phalangeal cells (Deiters’ cells), and 
pillar cells in accordance with the previous results of Kawano et al. [ 3 ], Abu- 
Hamdan et al. [ 1 ] and Drescher et al. [ 2 ]. The localization of PAC1-R immunoreac-
tivity did not show any differences between homozygous PACAP-defi cient and WT 
mice, but in PACAP-defi cient mice the hair cells and outer phalangeal cells showed 
lower intensity of PAC1-R immunoreactivity compared to WT mice.  
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    PACAP in the Brainstem and Thalamus 

 Hannibal [ 4 ] used mouse monoclonal antibody to show PACAP immunoreactivity 
in the adult rat brain (Fig.  31.5 ). The cell bodies and nerve fi bers of the cochlear 
nuclei (especially the ventral cochlear nuclei) showed moderate PACAP expression. 
Furthermore the root of the cochlear nerve showed also PACAP immunoreactivity. 
The deep layer of inferior colliculus contained also weak PACAP positive cell bod-
ies and nerve fi bers. Nerve fi bers showed weak PACAP immunoreactivity in the 
medial geniculate body (Fig.  31.5 ). Palkovits et al. [ 36 ] also found PACAP in the 
inferior colliculus and medial geniculate nucleus in human brain samples with 
radioimmunoassay examination.

   Kausz et al. [ 5 ] found PACAP immunoreactive cell bodies in the dorsal and ventral 
cochlear nucleus, superior olivary complex (SOC), and trapezoid nucleus (Fig.  31.5 ). 
Reuss et al. [ 6 ] described the localization of PACAP, vasoactive  intestinal polypeptide 

Medial geniculate body

Inferior colliculus

Dorsal cochlear nucleus

Ventral cochlear nucleus

Superior olivary
complex

Trapezoid body

Inferior olive

Pyramidal tract

  Fig. 31.5    Schematic picture of the auditory pathway showing the occurrence of PACAP in the 
brainstem and thalamus. PACAP immunoreactivity was present in cell bodies and nerve fi bers of 
dorsal and ventral cochlear nuclei. It was also found in several parts of the superior olivary com-
plex (SOC), such as the medial nucleus of the trapezoid body (MNTB), medial superior olive, 
ventral nucleus of the trapezoid body. PACAP immunopositive cell bodies were also found in the 
inferior colliculus, and PACAP immunoreactive nerve fi bers in the medial geniculate body       
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(VIP), neuronal nitric oxide synthase (nNOS) and other neurotransmitters in the SOC 
in adult male Djungarian hamsters (phodopus sungorus) using immunohistochemistry 
and retrograde tracing. PACAP immunoreactivity was found in approximately one third 
of all neurons, whereas VIP was not present in the neurons of the SOC. PACAP was 
present in many large neurons of the medial nucleus of the trapezoid body (MNTB) and 
in the medial superior olive. These cells are suggested to project to the lateral superior 
olive, periolivary regions, and inferior colliculus [ 37 ]. The large PACAP-immunopositive 
neurons of the medial superior olive were also nNOS positive. One fourth of all neurons 
contained PACAP in the lateral superior olive and in the periolivary regions. 40 % of the 
olivocochlear neurons, which were positive with fl uorochrome after the retrograde trac-
ing in MNTB and ventral nucleus of the trapezoid body, were also positive for PACAP, 
such as some periolivary neurons (Fig.  31.5 ). Therefore, these cells could serve as the 
origin of PACAP found in the cochlea by Kawano et al. [ 3 ]. PACAP was found in the 
medial olivocochlear efferents, which target the outer hair cells, but not in the lateral 
olivocochlear efferents, which target the inner hair cells. This further substantiates the 
theory of Drescher et al. [ 2 ] that PACAP plays a greater role in the efferent signaling of 
the cochlea, and through it an indirect effect on the afferent signaling.  

    Functional Studies 

    Effects of PACAP on the Endolymph Composition 

 Our research group examined the protein composition of chicken endolymph after 
PACAP38 treatment [ 8 ]. We treated 1-day-old chicken with intraperitoneal 
PACAP38 injection. Endolymph was collected 1, 6, and 24 h after PACAP38 injec-
tion. Then we removed the membranous labyrinth and the endolymph was squeezed 
to a sterile paper strip. Then we utilized microchip electrophoresis using protein 230 
Plus LabChip Kit evaluated with Agilent 2100 Bioanalyzer System [ 8 ]. 

 Endolymph, which fi lls the membranous labyrinth, is produced in the stria vas-
cularis, it is rich in potassium and poor in sodium. However, perilymph, which fi lls 
the scala tympani and vestibuli, is rich in sodium and poor in potassium. Although 
endolymph is derived from the plasma, its composition resembles more the compo-
sition of the intracellular fl uid. Endolymph affects several physiological and patho-
logical functions of the labyrinth [ 38 ,  39 ]. Several neuropeptides have an infl uence 
on endolymph secretion, e.g., substance P, vasopressin, and somatostatin [ 40 ,  41 ]. 
Abu-Hamdan et al. [ 1 ] described the presence of PACAP and PAC1-R in the stria 
vascularis. The expression of the peptide and its receptor increases from basal to 
apical turns. Basal-apical gradient of other components, such as the endolymphatic 
potential [ 42 ] and endolymphatic K +  and Cl −  concentrations [ 43 ] in the cochlea had 
already been described. The gradient present in both PACAP and PAC1-R might be 
partly the cause for these gradients, as they could contribute to the maintenance of 
endolymphatic potential through regulating the tight junction permeability in the 
stria vascularis. Based on these results we aimed at elucidating the role of PACAP 
in endolymph production. 
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 However, there are no data for the protein composition of chicken endolymph, it 
is well described in other species. It has been studied mostly in human and guinea 
pigs samples. It yields a complex protein composition containing albumin, 
α-chymotrypsin, α-antitrypsin, transferrin, apolipoprotein D (ApoD), apolipopro-
tein J (ApoJ), fetuin, and other proteins. The composition of these proteins is similar 
to the perilymph, but the level of proteins is approximately the 15–20 % of the peri-
lymph levels. That could be based on the mechanism of production, such as the 
proteins of the endolymph are fi ltered from the perilymph through the basal and 
marginal cells of the spiral ligament. Endolymph is rich in ApoD and ApoJ proteins 
which are at higher levels in the perilymph and liquor but low in the blood plasma. 
Their function is presumably to protect the integrity of the extracellular membranes 
bordering the endolymphatic space. 

 In our experiment we found several protein peaks between 14 and 80 kDa, the 
range where the majority of the above mentioned proteins are located. There was no 
signifi cant difference between control and PACAP-treated groups at any given time. 
Based on these results we can conclude that under the given circumstances there was 
no change on the composition of the endolymph proteins after PACAP treatment. 
However, these negative fi ndings can be a consequence of the chosen circumstances. 
We could not exclude that other species, route of PACAP administration or applied 
dose would cause signifi cant changes in the protein composition of the endolymph.  

    Effects of PACAP on Apoptosis in an Inner Ear Cell Culture 
In Vitro 

 Although physiological apoptosis is essential in the development of the inner ear, 
increased apoptosis, caused by toxins, acoustic overstimulation, oxidative stress, 
infections, etc., leads to permanent cell damage and loss of hearing [ 44 ,  45 ]. Oxidative 
stress is highly involved in these pathological conditions, hence antioxidative and 
antiapoptotic drugs, among others PACAP [ 46 – 48 ], could be used as inner ear pro-
tecting factors [ 49 ,  50 ]. Our research group studied the effects of PACAP on apopto-
sis in a chicken in vitro cell culture model [ 9 ] which contained both sensory hair cells 
and supporting cells. We used 6 series of 40 newly hatched chickens for this study. 
Chicken cochlea is simpler and easier to dissect, therefore, a favorite model for 
cochlear experiments, since the reactive oxygen species (ROS) generation and apop-
totic reaction to toxic agents (e.g., aminoglycoside) is similar to mammals [ 51 – 53 ]. 
We used H 2 O 2  as a ROS generating molecule for causing cell death via oxidative 
stress. Treatment lasted 2 hours, and evaluation followed immediately thereafter. 

 MTT assay showed that there were more than 90 % living cells in the control 
group and PACAP treatment alone did not result in signifi cant alterations. It also 
showed that H 2 O 2  treatment led to a signifi cant drop in cell viability and an increase 
in the number of apoptotic and necrotic cells. Cell viability signifi cantly increased 
when H O -treated cells were co-incubated with PACAP. JC-1 assay is for the detec-
tion of apoptosis, and this staining also showed higher cell viability in case of H 2 O 2  
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and PACAP co-administration compared to H 2 O 2  treatment. AnnexinV and propid-
ium iodide co-staining verifi ed these results: co-administration of PACAP with 
H 2 O 2  resulted in a signifi cant increase of living cells, and signifi cant decrease of 
apoptotic cells compared to the H 2 O 2 -treated group. There was also a decrease in the 
number of necrotic cells compared to the H 2 O 2 -treated group, but the difference was 
not signifi cant. The protected cells are suggested to be primarily sensory hair cells, 
as the used H 2 O 2  concentration causes damage to the hair cells with no injury to 
other neuroepithelial cells [ 54 ]. 

 These antiapoptotic effects of PACAP were verifi ed by the regression of the acti-
vation of the caspase-3 apoptotic protein in case of PACAP and H 2 O 2  co-treatment 
compared to the H 2 O 2 -treated cells. The protective effect of PACAP is based on 
several molecular signaling pathways. Most of these effects is mediated by PAC1-R 
[ 55 ,  56 ]. PAC1-R activates adenylate cyclase (AC) and phospholipase C (PLC). AC 
activation leads to the activation of the PKA signaling pathways resulting in the 
elevation of the antiapoptotic extracellular-signal-regulated kinase (ERK), phos-
phorylation of cAMP response element-binding protein (CREB), and inhibition of 
proapoptotic c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein 
kinases (p38MAPK). PACAP also affects the intrinsic mitochondrial pathway of 
apoptosis, through activation of the antiapoptotic members of the Bcl peptide family 
(Bcl-2, Bcl-xL) and inhibition of the proapoptotic Bad, Bax. These effects are mod-
erated partly through the 14-3-3 protein, which phosphorylates Bad, therefore, it is 
not able to bind and inactivate Bcl-2 and Bcl-xL. These effects result in decreased 
release of cytochrome  c  from the mitochondria, which also results in the inhibition 
of apoptosis. PLC activation leads to decreased caspase activation through inositol 
trisphosphate and diacylglycerol pathways. The antiapoptotic effects and the inhibi-
tion of caspase-3 activation could provide the molecular background, how PACAP 
can protect the inner ear cells against glutamatergic excitotoxicity, aminoglycoside, 
or other drug effects, during acoustic overstimulation or in other pathological 
conditions.  

    Effects of PACAP on Ca 2+ -Binding Protein Expression 
of Hair Cells 

 We investigated the effects of endogenous PACAP on hair cell Ca 2+ -binding protein 
composition under control circumstances and in kanamycin induced ototoxicity [ 7 , 
 10 ]. The Ca 2+ -concentration in the endolymph and the intracellular Ca 2+  concentra-
tion in the hair cells are strictly regulated and important for normal hearing processes 
[ 57 ]. Several pathological conditions lead to elevated Ca 2+  concentration in endo-
lymph and hair cells, such as acoustic overstimulation [ 58 ,  59 ], drug induced ototox-
icity [ 60 ], vestibular labyrinth destruction [ 57 ], and surgically induced endolymphatic 
hydrops [ 61 ]. The subsequent high intracellular Ca 2+  concentration is toxic to cells 
[ 62 ,  63 ]. Ca 2+ -buffering proteins (calretinin, parvalbumin, calbindin, etc.) presum-
ably play an essential role in regulating the Ca 2+  level of hair cells and may protect 
them against the toxic effects of high intracellular Ca 2+  concentration [ 64 – 68 ]. 
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 We used 5-day-old (P5) and 7-day-old (P7) WT, HZ, and PACAP KO mice in the 
experiments. We chose this age group because the development of the inner ear of 
mice still goes on during this period of time and all three Ca 2+ -binding proteins are 
present in the inner and outer hair cells on these postnatal days based on previous 
studies in various animal species [ 65 ]. To model toxic insults to the inner ear we 
chose kanamycin as an ototoxic agent. It is a member of the aminoglycoside antibi-
otics, which are widely used in the clinical practice together with the platinum based 
chemotherapeutics although possibly causing permanent cochlear damage [ 69 ]. 
Kanamycin causes hair cell damage mainly through ROS production; hence anti-
oxidant and antiapoptotic drugs (such as PACAP) can be possibly used as otoprotec-
tive agents [ 69 ,  70 ]. 

 We used immunofl uorescent staining against Ca 2+ -binding proteins on sections 
produced from the cochlea on P5 and P7. Mice sacrifi ced on P5 did not receive any 
treatment, mice sacrifi ced on P7 were treated with one dose of kanamycin (1 mg/g 
body weight) or physiological saline as a control on P5. The localization of parval-
bumin, calretinin, and calbindin was in accordance with previously described results 
and did not show any differences between the groups. However, we found signifi -
cant alterations in the Ca 2+ -binding protein density. All three Ca 2+ -binding proteins 
showed stronger immunopositivity in the hair cells of homozygous PACAP-defi cient 
mice, than in WT mice on P5. We found similar results for parvalbumin (Fig.  31.6a, e ) 
and calretinin (Fig.  31.7 :a, e) on P7 in the physiological saline treated groups (cal-
bindin was not examined on P7). Parvalbumin and calretinin immunopositivity was 
especially pronounced in the hair bundles of the hair cells. Heterozygous PACAP-
defi cient animals in the physiological saline group also showed higher expression of 
calretinin (Fig.  31.7a, c ) in inner and outer hair cells, and higher expression of par-
valbumin in the outer hair cells compared to WT mice (Fig.  31.6a, c ) on P7.

    Parvalbumin expression in the hair cells of both WT and heterozygous PACAP- 
defi cient mice was elevated after kanamycin treatment on P7, and the expression was 
signifi cantly higher in the heterozygous PACAP-defi cient mice, compared to WT 
mice (Fig.  31.6a–d ). The baseline stronger parvalbumin immunopositivity of homo-
zygous PACAP-defi cient mice did not increase further upon kanamycin treatment 
(Fig.  31.6e, f ). Calretinin immunolabeling yielded similar results in WT and homozy-
gous PACAP-defi cient mice (Fig.  31.7a, b, e, f ) on P7 as parvalbumin. Heterozygous 
PACAP-defi cient mice, similarly to homozygous PACAP-defi cient mice showed high 
immunoreactivity of calretinin under control circumstances; therefore, after kanamy-
cin treatment this higher baseline immunofl uorescence did not increase further 
(Fig.  31.7c, d ). 

 Apoptosis is caused by ROS generation in aminoglycoside induced ototoxicity, 
and leads to cell death through an extrinsic, death-receptor-mediated pathway and 
an intrinsic, mitochondria-mediated pathway [ 69 ,  71 ]. In case of aminoglycoside- 
induced ototoxicity the intrinsic pathway has a greater role by activating G proteins 
followed by stress-activated protein kinase activation (JNK). Subsequently cyto-
chrome  c  release, caspase-8 and 9 activation and elevation of intracellular Ca 2+  
concentration follows [ 62 ,  63 ]. The elevation of Ca 2+  concentration and the activa-
tion of proapoptotic pathways can be prevented by increased expression of Ca 2+ -
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binding proteins. When the buffer capacity of the Ca 2+ -binding proteins reaches its 
maximum the intracellular Ca 2+  concentration increases and leads to the activation 
of apoptotic pathways [ 72 ]. 

 Although the direct effect of PACAP is to elevate the intracellular Ca 2+  concen-
tration through PLC signaling [ 73 ] it was also shown in hippocampal neurons that 
PACAP can protect the cells against the glutamate-induced toxic Ca 2+  concentration 
elevation [ 74 ]. Our results show that in the lack of PACAP the Ca 2+ -binding protein 
expression increases in the inner and outer hair cells, which is a probable endoge-
nous compensatory mechanism against the elevated Ca 2+  level in the hair cells 
caused by the lack of PACAP. However, the elevated Ca 2+ -binding protein level can-
not be further upregulated upon ototoxic insults, as the Ca 2+ -binding protein expres-
sion reaches its maximum level.   

  Fig. 31.6    Parvalbumin expression in inner and outer hair cells in wild-type (WT), heterozygous 
(HZ), and homozygous PACAP-defi cient (KO) mice under control circumstances and after kana-
mycin treatment. + mild, ++ moderate, +++ strong immunoreactivity       
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    Discussion 

 PACAP and PAC1-R were described in several parts of the auditory system. They 
are present in the organ of Corti in hair cells, supporting cells, and different nerve 
fi bers. They were also showed in spiral ganglion and stria vascularis. Their presence 
in the stria vascularis suggests a role of PACAP affecting endolymph production 
which we tried to prove by studying the endolymph protein composition in chicken 
cochlea after PACAP treatment but we did not fi nd any differences in this experi-
mental setup. Colocalization of PACAP and PAC1-R with GluR2/3 and DBH in 
several structures in the cochlea, mostly efferent nerve fi bers, suggests that PACAP 

  Fig. 31.7    Calretinin expression in inner and outer hair cells in wild-type (WT), heterozygous 
(HZ), and homozygous PACAP-defi cient (KO) mice under control circumstances and after kana-
mycin treatment. + mild, ++ moderate, +++ strong immunoreactivity       
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could theoretically modulate glutamatergic, dopaminergic, cholinergic, and adren-
ergic efferents of hair cells, whereby they would also take place in the regulation of 
the afferent signaling. The presence of PACAP and its receptor PAC1-R was shown 
in several parts of the auditory pathway (cochlear nuclei, SOC, inferior colliculus, 
medial geniculate body). PACAP was found in the olivocochlear neurons in the 
SOC, which could serve as the origin of PACAP found in the cochlea. 

 PACAP protects the hair cells from H 2 O 2  toxicity in vitro, increasing the number 
of living cells mostly through decreasing apoptosis. In PACAP-defi cient mice there 
is a higher concentration of Ca 2+ -binding proteins in the hair cells, which is proba-
bly a protective mechanism against the hypothesized higher intracellular Ca 2+  con-
centration caused by the pathological conditions in the lack of PACAP. Kanamycin 
treatment causes also Ca 2+ -binding protein level elevation in WT and HZ PACAP- 
defi cient mice, but there is no further elevation in homozygous PACAP-defi cient 
mice, where the baseline Ca 2+ -binding protein level is already elevated. 

 In summary, PACAP and PAC1-R are present and cause functional changes in 
the cochlea. With further examination we hope to prove the protective effects of the 
exogenous PACAP in ototoxicity in vivo and examine its role throughout various 
clinical studies.     
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