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Abstract 

The homeobox transcription factor PROX1 is induced by high Wnt/ß-catenin activity in intestinal 

adenomas and colorectal cancer (CRC), where it promotes tumor progression. Here we report that in 

LGR5+ CRC cells, PROX1 suppresses the Notch pathway, which is essential for cell fate in intestinal 

stem cells. Pharmacological inhibition of Notch in ex vivo 3D organoid cultures from transgenic mouse 

intestinal adenoma models increased Prox1 expression and the number of PROX1-positive cells. Notch 

inhibition led to increased proliferation of the PROX1-positive CRC cells but did not affect their ability 

to give rise to PROX1-negative secretory cells. Conversely, PROX1 deletion increased Notch target gene 

expression and NOTCH1 promoter activity, indicating reciprocal regulation between PROX1 and the 

Notch pathway in CRC. PROX1 interacted with the nucleosome remodeling and deacetylase (NuRD) 

complex to suppress the Notch pathway. Thus, our data suggests that PROX1 and Notch suppress each 

other and that PROX1-mediated suppression of Notch mediates its stem cell function in CRC.  

 

Introduction 

Activation of the Wnt pathway is the initiating event and one of the key determinants of further 

pathogenesis in the majority of human CRCs (1). Cellular levels of free ß-catenin are normally strictly 

controlled through a multiprotein complex that comprises the APC protein. Activation of the Wnt 

pathway prevents the proteasomal degradation of ß-catenin, which translocates to the nucleus and binds 

to and activates the Tcf/Lef1 transcription factors, leading to activation of target genes stimulating cell 

cycle progression and tumorigenesis (2). The homeobox transcription factor PROX1 is directly regulated 

by abnormally high levels of Wnt/ß-catenin signaling activity in CRC (3). Altered levels of PROX1 have 

been demonstrated in several cancers and PROX1 has been implicated in regulating cell fate in stem and 

progenitor cells (reviewed in 4). In the normal intestine, PROX1 is expressed in only few secretory cells 

Research. 
on August 30, 2018. © 2018 American Association for Cancercancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on August 28, 2018; DOI: 10.1158/0008-5472.CAN-18-0451 

http://cancerres.aacrjournals.org/


 3 

(3, 5). PROX1 expression is induced in intestinal tumor progression, where it is associated with high 

grade dysplasia and an invasive phenotype (3, 6).  Importantly, a subpopulation of the PROX1 expressing 

adenoma and CRC cells displays stem cell features and deletion or silencing of Prox1 reduces tumor size 

and the number of LGR5+ stem cells (3, 5). 

Crosstalk between the Notch and Wnt signaling pathways has an important function in adult intestinal 

homeostasis (7, 8). Genetic or chemical inhibition of the Notch pathway results in reduced number of 

LGR5+ intestinal stem cells and accumulation of differentiated secretory cells (9, 10). In intestinal 

adenomas, Notch activity is regulated downstream of Wnt signaling through ß-catenin mediated 

transcriptional activation of the Notch ligand Jagged1, which contributes to intestinal tumorigenesis in 

Apcmin/+ mice (11). Consistently with these results, ectopic overexpression of the active NOTCH1 

intracellular domain (NICD1) leads to an elevated number of adenomas in Apc-mutant mice (7, 12).  

However, despite increased numbers of tumors in Apcmin/+ ;NICD1;Villin-CreERT2 mice, these tumors 

were predominantly low-grade adenomas, whereas control tumors from Apcmin mice displayed features 

of high-grade adenomas, suggesting that active NOTCH1 is needed for tumor formation rather than 

tumor progression. Interestingly, aberrant NOTCH1 recruits the histone methyltransferase SET1 domain 

bifurcated 1 (SETDB1) to suppress Wnt target genes, including PROX1 (12). Although the supportive 

role of Notch activity in stem cells is a widely-accepted concept, these results raised the possibility that 

Notch activity is not required in PROX1 expressing CRC stem-like cells.  Here, we set out to study the 

relationship between PROX1 and the Notch pathway in CRC. 

 

Materials and Methods 

In vivo experiments 

The National Animal Experiment Board at the Provincial State Office of Southern Finland approved all 

experiments performed with mice (ESAVI/6306/04.10.07/2016 and ESAVI/7945/04.10.07/2017). All 
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mice were maintained in the C57Bl/6J background.  

 

The Apcflox/flox (13), Prox1flox/flox (14) and Lgr5-EGFP-IRES-CreERT2 (15) mice were crossed to generate 

intestinal stem cell specific deletion of the Apc and/or Prox1 gene. To delete Apc and induce 

tumorigenesis, 2 mg tamoxifen (Sigma #T5648) dissolved in 100 μl corn oil (Sigma #8001-30-7) was 

given by oral gavage at the age of 8-10 weeks. To chemically inhibit the Notch pathway, mice were given 

intraperitoneal injections of the J-secretase inhibitor Dibenzazepine (DBZ) (Tocris #4489) (20 

µmol/kg/day) diluted in 100 μl 0.5% (Hydroxylpropyl)methylcellulose (Sigma #H7509)-0.1% Tween20 

(Acros organics #BP337-500) or vehicle on five consecutive days, starting at day 5 or day 21 after 

tamoxifen administration. The in vivo experiment was repeated twice. For each experiment, 6-10 mice 

were used. 

To analyze the effect of Notch inhibition on Prox1 lineage tracing in intestinal adenomas, DBZ (20 

µmol/kg/day) was administered intraperitoneally on four consecutive days to 16-week-old Apcmin/+; 

Rosa26-LSL-TdTomato (Jackson Laboratories, Stock 007914); Prox1-CreERT2 (16) mice. Prox1 lineage 

tracing was activated by a single dose of 2 mg tamoxifen after the last dose of DBZ and the mice were 

terminated after 24 h or 72 h. The in vivo experiment was repeated three times. For each experiment, 10-

12 mice were used.  

To assess cell proliferation, mice were given one intraperitoneal injection of 1 mg/ml 5-ethynyl-2’-

deoxyuridine (EdU) (Thermo Fisher Scientific #A10044) dissolved in 100 μl 0.9% NaCl and terminated 

four hours later. For analysis of EdU incorporation, EdU+ cells of 50-60 tumors from both groups were 

quantified and normalized to the total number of tumor cells.  
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Intestinal organoid cultures 

The Ethical Committee of Helsinki University Central Hospital approved all the experiments involving 

patient samples. We obtained written informed consent from the patients and the studies were conducted 

in accordance with the Declaration of Helsinki. Tissue-biopsies from patients were processed accordingly 

to previously published method (17). Patient I harbored a KRASG12D mutation, but neither of the patients 

had clinically relevant BRAF or PI3KCA mutations (6). Intestinal crypts from Apcflox/flox; villin-CreERT2 

(18), Apcflox/flox; Lgr5-EGFP-IRES-CreERT2, Apcmin/+; Rosa26LSL-TdTomato; Prox1-CreERT2 and Apcmin/+; 

Prox1flox/flox; villin-CreERT2 mice were isolated and cultured as previously described (5, 19). To activate 

gene deletion, cultures were treated with 300 nM 4-hydroxytamoxifen (4-OH-Tam) for 24 hours. 

Organoids with endogenously active β-catenin/TCF pathway were then selected and cultured in growth 

factor deficient medium. When indicated, organoids were cultured in the presence of 10 µM of DAPT 

(Tocris #2634) or DBZ (Tocris #4489) for five days, starting on day 3 for an early time period or day 12 

for a later time period after Apc deletion. For determination of the replating efficiency, the organoids 

were extensively trypsinized to obtain clusters of 4-5 cells, which were counted and embedded into 

Matrigel (Corning #35623) in equal numbers. The number of organoids/well was counted under 

microscope 3-4 days after replating. To analyze changes in gene expression after Apc deletion, organoids 

were lysed at different time points after addition of 4-OH-Tam. Changes in gene expression were 

compared to normal organoids (d0). 

 

Cell culture 

The SW1222, SW620 and LS174T CRC cell lines were cultured in DMEM (Lonza #BE12-707F) + 10 

% fetal bovine serum (FBS) (Biowest, S181B-500), 2 mM L-glutamine (Corning #25-005-Cl), 100 U/ml 

penicillin and streptomycin (Lonza #DE-17-602E).  HEK293FT cells (Thermo Fisher #R70007) were 

cultured in high glucose DMEM (Gibco #11960-044) + 10% FBS, 2mM L-glutamine and 100U/ml 

penicillin and streptomycin. Cells were maintained at 37oC in a humidified incubator with 5% CO2 and 
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passaged every 2-4 days. The SW620 cell line was obtained from ATCC (CCL-227). The SW1222 and 

LS174T cell lines were a kind gift from Dr. Meenhard Herlyn, Wistar Institute (2010) and Dr. Olli 

Kallioniemi, Institute for Molecular Medicine Finland (2015), respectively. The SW620 and LS174T 

cells were originally authenticated by ATCC. All the cells were routinely authenticated by morphological 

inspection and expression of specific markers, and tested for mycoplasma by DAPI staining. The 

HEK293FT cells were used within approximately 20 passages after thawing original stocks. For 

experimental procedures, CRC cell lines were used between 5-15 passages after thawing. When 

indicated, cells were cultured in the presence of 1 µM of Entinostat (LC Laboratories #E-3866) or 

Vorinostat (LC Laboratories #V-8477). For analysis of “megacolony” formation (20), 1,000 SW1222 

cells were embedded in Matrigel and analyzed at d10. Spheroids were imaged with EVOS FL inverted 

epifluorescence microscope (Thermo Fisher) using 10x or 20x LD Ph Air objectives. 

 

Flow cytometry 

Organoids were centrifuged at 1,500 rpm for 5 min and the Matrigel was removed. To obtain a single 

cell suspension, organoids were incubated in HBSS (Gibco #14175-053) containing 1 mg/ml collagenase 

type 1 (Worthington #LS004196), 1 mg/ml collagenase H (Roche #11074032001), 4 mg/ml dispase II 

(Sigma #04942078001) and 1000 U/ml benzonase (ChemCruz #sc-202391) for 30 min at 37°C with 

gentle shaking, followed by 10 min incubation with trypsin. After fixation with 2% PFA, the cells were 

blocked with mouse Fc block (1 µg/106 cells, BD biosciences #553141) and permeabilized with 1% 

BSA+ 0.1% Triton X-100 in HBSS. Cells were then incubated with goat anti-hPROX1 (R&D Systems 

#AF2727) for 20 min followed by 20 min incubation with Alexa647 donkey anti-goat secondary 

antibody. HBSS washes were performed in between each step. The samples were measured with a Guava 

EasyCyte instrument (Millipore). The flow cytometric analysis was repeated twice, using biological 

replicates. 
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Single cell RNA sequencing and data analysis 

Apcflox/flox; villin-CreERT2 organoids were treated with vehicle or DBZ for 5 days, starting on day 3 after 

Apc deletion.  Organoids were then dissociated to obtain a single cell suspension. Cells in 0.04% BSA-

PBS were analyzed using the Chromium Single-Cell 3′RNA-sequencing system (10x Genomics, 

Pleasanton, CA) with the Reagent Kit v2 according to the manufacturer’s instructions. Briefly, the cells 

were loaded into Chromium Single Cell Chip v2 (10x Genomics, Pleasanton, CA) and gel beads in 

emulsion (GEM) generation was performed aiming at 3000 cell captures per sample. Subsequent cDNA 

purification, amplification (12 cycles) and library construction (sample index PCR 14 cycles) was 

performed as instructed. Sample libraries were sequenced on the Illumina NovaSeq 6000 system using 

S1 flow cell (Illumina) with following read lengths: 26bp (Read 1), 8bp (i7 Index), 0 bp (i5 Index) and 

91bp (Read 2) resulting in 115 754 and 113 705 mean reads per cell for the sample vehicle and DBZ 

respectively. The Cell Ranger v 2.1.1 mkfastq and count pipelines (10x Genomics, Pleasanton, CA) were 

used to demultiplex and convert Chromium single-cell 3’ RNA-sequencing barcodes and read data to 

FASTQ files and to generate aligned reads and gene-cell matrices. Reads were aligned to mouse reference 

genome mm10. We used the Seurat R package for QC, filtering and analysis of the data (21). Cells were 

filtered based on UMI counts and percentage of mitochondrial genes. Cells with more than 5% of 

mitochondrial genes were filtered out. The expression matrix was further filtered by removing genes with 

expression in less than 10 cells and cells with less than 800 expressed genes. The minimum expression 

threshold was set at 1. The final dataset consisted of 968 cells in the Vehicle sample and 1240 cells in 

the DBZ sample. To be able to compare the two samples, we performed canonical correlation analysis 

(CCA) to identify shared correlation structures and aligned the dimensions using dynamic time warping. 

After this we performed clustering using tSNE and set the resolution at 0.5. The single cell RNA 

sequencing data can be accessed from the Gene Expression Omnibus under accession number 

GSE118055 
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Plasmids 

The shHDAC1 constructs (TRCN0000004817, TRCN0000004818), shHDAC2 (TRCN0000196590, 

TRCN0000197086), shMTA1 (TRCN0000013361, TRCN0000013362) and shScramble (SH002) were 

acquired from the TRC library. The NOTCH1 promoter-based luciferase reporter was described 

previously (22). BirA-hPROX1 fusion protein was cloned into a FUW lentiviral vector. Myc-BirA (23) 

was amplified using primers GAAGCTTGGGCTGCAGGTCGACTCTAGAGCCACCATGGAACAAAAAC 

TCATCTCAG and AGGGCTGTGCTGTCATGGTCAGGCATAGATCCTGAGCCCTTCTCT. hPROX1 was 

amplified using primers ATGCCTGACCATGACAGCACAG and TTATCGATAAGCTTGATATCGAATT 

CGGCGCGCCCTACTCATGAAGCAGCTCTTG. Gel-purified fragments were then assembled to FUW-

Xbal-Ascl-CIP. Transfection and transduction were performed as described previously (5).   

 

BirA-mediated proximity labeling 

SW1222 cells were transduced with FUW-BirA-PROX1 or FUW-BirA-NLS-Cherry lentivirus, plated at 

1x107 cells per sample and incubated with 50 μM biotin (Sigma Aldrich #B4501). After 24 h, the cells 

were washed three times with PBS, stored at −80°C and later lysed on ice for 10 min in PLCLB buffer 

(50 mM HEPES, 150 mM NaCl, 10% glycerol, 1% Triton X-100, 1.5 mM MgCl2, 1 mM EGTA, 10 mM 

Na4P2O7, 100 mM NaF), supplemented with 1.0 mM PMSF and 10 µl/ml protease inhibitor cocktail 

(Sigma-Aldrich #P8340), 0.1% SDS, and 80 U/ml Benzonase (ChemCruz #sc-202391), followed by 

three cycles of sonication and centrifugation twice at 16,000 g at 4°C to remove insoluble material. 

Cleared lysates were loaded into Bio-Spin chromatography columns (Bio-Rad Laboratories #732-6008) 

loaded with Strep-Tactin sepharose (400 µl 50% slurry; IBA Lifesciences #2-1201-010) and washed with 

ice-cold PLCLB lysis buffer and ice-cold PLCLB buffer without Triton X-100 and protease inhibitors. 

Bound proteins were eluted twice with 300 µl of freshly prepared 0.5 mM biotin in PLCLB buffer without 

Triton X-100 and protease inhibitors. Liquid chromatography–tandem mass spectrometry analysis was  
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performed as described previously (24). Two biological replicates were used. 

 

Luciferase assay 

SW1222 cells transduced with lentivirus were trypsinized and 100,000 cells were plated into wells of a 

24 well plate. Cells were transfected with 1 µg of NOTCH1 promoter-based luciferase reporter (N1PR-

luc) using Fugene6 transfection agent according to manufacturer’s instructions (Promega #E2692) and 

lysed 48 h later. Luciferase measurement was done using the dual firefly luciferase assay kit and 

preformed according to manufacturer’s instruction (Promega #E1910). All experiments were done in 

quadruplicate and repeated 2-3 times. Luciferase value was normalized to protein concentration.  

 

Gene editing with the CRISPR/Cas9 system 

Four different guide RNAs (gRNAs) targeting PROX1 start codon region were designed using 

http://crispr.mit.edu/ (gPROX1.1: GCTCAAGAATCCCGGGACCCTGG, gPROX1.2: 

ATCTTCAAAAGCTCGTCAGCTGG, gPROX1.3: CCTGAGAGCAAAGCGCGCCCGGG, 

gPROX1.4: CGGGTTGAGAATATAATTCGGGG). gRNA-PCR transcriptional units were assembled 

as previously described (25) and tested by transfection to HEK293 cells together with WT SpCas9 

expressing plasmid CAG-Cas9-T2A-EGFP-ires-puro (Addgene plasmid #78311). Deletion generation 

was assessed by PCR of the targeted region (PROX1_Fw: GTGCCATAAATCCCAGAGCCTATG, 

PROX1_Rv: ACTTTCTCGGGGACTCACAGAC). gRNAs pairs (1+3 and 1+4) generating deletions 

most efficiently were cloned into a modified version of LentiCRISPR v2 backbone (Addgene plasmid 

#52961). SW1222 cells were transduced with lentivirus containing the sgPROX1-1 (gRNA pair 1+3), 

sgPROX1-2 (gRNA pair 1+4) or sgCTRL constructs and selected using 5 µg/ml puromycin (Merck 

#540222-100). The cells were then used for further experiments. PROX1 deletion was confirmed by 

western blot.  
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Microarray experiments and Gene Set Enrichment Analysis 

The quality of RNA was determined with Bioanalyzer (Agilent Technologies) and further analyzed on 

genome-wide Illumina Mouse WG-6 v2 Expression BeadChips (Illumina). Illumina’s GenomeStudio 

software was used for initial data analysis and quality control and the detailed data analysis was 

performed with the Chipster software (www.chipster.csc.fi). The data were normalized with quantile 

normalization. When comparing the expression profiles of TdTomato+ and TdTomato- organoids, the 

datasets derived from hybridizations at different time points were normalized separately with quantile 

and gene average normalizations and the data were then unified. For pathway enrichment analysis, the 

Enrichr software (http://amp.pharm.mssm.edu/Enrichr/) was used. The gene expression dataset was 

transferred to the Gene Set Enrichment Analysis software (http://www.broadinstitute.org/gsea) (26, 27) 

and the analysis was carried out with default parameters except that the „exclude smaller sets” was set to 

25 and gene permutation was applied. We used a modified list of the kegg.v3.1.symbols gene set 

(http://www.broadinstitute.org/gsea/msigdb) with the addition intestinal stem cell-specific genes (28), 

genes activated during Apcmin/+ tumorigenesis and suppressed by Notch1 activation, and genes 

upregulated in Notch1-activated tumors (12). FDR q-value<0.1 was regarded significant. The microarray 

data can be accessed from the Gene Expression Omnibus under the accession number GSE117981. 

 

Statistical Analysis 

Data are presented as mean+SEM unless otherwise indicated. Statistical comparison of two groups was 

done by two-tailed unpaired t-test using the GraphPad Prism 6.0 software. P<0.05 was considered 

statistically significant and the significance is marked by *P<0.05, **P<0.01 and ***P<0.005. 

Other methods are detailed in the Supplementary Materials and Methods.  
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Results  

Notch activity is essential for intestinal tumor development during a transient phase after Apc 

deletion. NOTCH1 was previously reported to suppress PROX1 expression in intestinal adenoma cells 

(12). In order to study this process in adenoma stem cells, we established organoids derived from 

Apcflox/flox; Lgr5-EGFP-IRES-CreERT2 (LApc) or Apcflox/flox; Villin-CreERT2 (VApc) mice. For induction of 

tumorigenesis, 4-OH-Tam was added to the organoid cultures, leading to Apc deletion only in the LGR5+ 

intestinal stem cells (LApc∆/∆) or in all intestinal epithelial cells (VApc∆/∆). To model the effect of Notch 

inhibition after Apc deletion, we inhibited Notch by adding the J-secretase inhibitor (GSI) DBZ or DAPT 

to the cultures three days later (Fig. 1A). Notch inhibition decreased the number of viable organoids and 

RNAs encoding the Notch target genes hairy/enhancer of split (Hes1), Notch regulated ankyrin repeat 

protein (Nrarp) and Olfactomedin 4 (Olfm4), and the intestinal stem cell markers Leucine-rich repeat-

containing G-protein coupled receptor 5 (Lgr5) and Achaete-Scute family BHLH transcription factor 2 

(Ascl2) in both Apc-deleted and control organoids (Supplementary Fig. S1A and 1B). Lgr5-EGFP+ 

intestinal stem cell number was also decreased, indicating that Notch is critical for LGR5+ stem cell 

activity early after Apc deletion (Fig. 1B). Furthermore, Notch inhibition increased the expression of 

Prox1 RNA and the number of PROX1+ cells (Fig. 1B and Supplementary Fig. S1A and 1B). Although 

the overall number of Lgr5-EGFP+ stem cells decreased, only a minor decrease of the Lgr5-EGFP+ 

PROX1+ cell population was observed (Fig. 1B). Furthermore, single cell RNA analysis of DBZ or 

vehicle treated Apcflox/flox; villin-CreERT2 organoids showed that the Prox1 expressing cluster was enriched 

for intestinal stem cell markers Lgr5 and Tnfrsf19 (15, 29) after Notch inhibition (Fig. 1C). These data 

suggested that the PROX1+ stem-like cells had a selective growth advantage when Notch was inhibited. 

 

Kinetic analysis of 4-OH-Tam treated Apcflox/flox; villin-CreERT2 organoids revealed that increased 

expression of Prox1 and the Wnt target genes Axin2, Sox9, c-Myc correlated with decreased expression 

of Notch targets Olfm4 and Hes1 (Fig. 2A-D). However, Notch inhibition on day 12 after Apc deletion 
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no longer affected the proportion of viable organoids, their colony formation efficiency, or the viability 

of patient-derived CRC organoids (Fig. 2E and 2F), suggesting that active Notch signaling was no longer 

required to maintain Apc mutant intestinal epithelium. In agreement with this, the Lgr5-EGFP+ cells in 

the control intestine of Apcflox/flox; Lgr5-EGFP-IRES-CreERT2 mice were uniformly positive for NICD1 

(Fig. 2G), whereas only 36% of the Lgr5-EGFP+ cells were positive for NICD1 21 days after Apc 

deletion (Fig. 2H).  A majority of the Lgr5-EGFP + stem cells were PROX1+, and PROX1+ cells were 

negative for NICD1 (Fig. 2I and 2J), supporting the notion that PROX1+ cells have a selective growth 

advantage after Apc deletion. Collectively, these results suggest that the Notch pathway is important for 

intestinal stem cell activity during a transient phase after Apc deletion, but is inactivated in later appearing 

PROX1-expressing stem-like cells.   

 

Chemical Notch inhibition provides the PROX1+ adenoma cells a growth advantage. To assess if 

the PROX1+ adenoma cells retain their stem cell activity even when Notch activity is inhibited, we 

induced tumorigenesis by tamoxifen treatment of Apcflox/flox; Lgr5-EGFP-IRES-CreERT2 mice and applied 

the J-secretase-inhibitor DBZ 5 days later for 5 days. As reported previously, DBZ treatment converted 

intestinal epithelial cells into Mucin2+ (MUC2) goblet cells and reduced the number of Lgr5-EGFP+ 

stem cells in the normal intestine (7), leading to death of the mice within 8 days after the start of the DBZ 

treatment. Although the number of Lgr5-EGFP+ adenoma stem cells was decreased at day 10 after Apc 

deletion when the Notch pathway was inhibited, the majority of them were PROX1+ (Fig. 3A and 3B). 

In contrast, Notch inhibition starting 21 days after Apc deletion, when the majority of the Lgr5-EGFP+ 

cells were PROX1+, did not significantly decrease the number of Lgr5-EGFP+ stem cells (Fig 3C). 

Furthermore, the MUC2+ goblet cells occurred selectively in the PROX1- tumor cell population (Fig. 

3D-F and Supplementary Fig. S2A). DBZ treatment also promoted increased proliferation of PROX1+ 

tumor cells and decreased proliferation of PROX1- cells on days 10 and 26 after Apc deletion (Fig. 3G-
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I and Supplementary Fig. S2B), suggesting that Notch inhibition provides the PROX1+ cells an 

additional growth advantage.  

 

To further analyze the PROX1+ stem-like cells, we induced lineage tracing in Apcmin/+; Rosa26-LSL-

TdTomato; Prox1-CreERT2 mice and treated the mice with DBZ or vehicle for 4 days. TdTomato fluorescence 

3 days after the last dose of DBZ indicated that some PROX1+ cells had differentiated to PROX1-

/TdTomato+ Paneth cells (lysozyme+) and goblet cells (MUC2+) (Supplementary Fig. S2C and S2D). 

Furthermore, Notch inhibition increased the number of proliferating PROX1+ tumor cells and the 

number of proliferating TdTomato labelled PROX1- progeny in more advanced tumors of the Apcmin/+ 

mice (Fig. 3J-L), suggesting that continued growth of the tumors originates from the PROX1+ tumor 

cells. 

 

Induction of NOTCH1 reduces tumor stem cell activity. As PROX1+ adenoma cells retained their 

stem cell activity after Notch inhibition, we asked if NOTCH1 overexpression affects the stem cell 

properties of PROX1+ cells in mouse tumor organoid cultures and human CRC cells.  We transduced 

Apc-mutant organoids derived from Apcmin/+; Rosa26-LSL-TdTomato; Prox1-CreERT2 mice with NICD1-

EGFP or control lentivirus and then subjected them to short-term genetic labeling by applying 4-OH-

Tam. Sixteen hours after the addition of 4-OH-Tam, only cells positive for PROX1 displayed red 

TdTomato fluorescence (Fig. 4A and 4B), confirming the specificity of the labeling. The NICD1 

overexpressing cells formed less colonies, which had fewer TdTomato+ cells than control lentivirus-

transfected cells (Fig. 4C and 4D), reflecting Prox1 suppression in these cells. NICD1 overexpression in 

the PROX1+ SW620 and SW1222 human CRC cell lines that are enriched for stem-like cells (30, 20) 

indicated that the NICD1 overexpressing cells suppressed PROX1 RNA and protein (Fig. 4E-G), 

supporting previous findings (12). Furthermore, when the control and NICD1 transduced SW1222 cells 

were grown as three-dimensional cultures in Matrigel, the NICD1 overexpressing cells were unable to 
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form “megacolonies” (Fig. 4H), indicating that they lack stem cell properties (31). These results suggest 

that NOTCH1 activation suppresses PROX1 and thus stem cell properties of PROX1+ CRC cells. 

 

PROX1 regulates the Notch pathway in colorectal cancer. As increased Prox1 expression correlated 

with decreased Olfm4 and Hes1 expression, we next assessed if PROX1 regulates the Notch pathway. 

We first analyzed the gene expression signature of FACS isolated TdTomato+/PROX1+ cells by 

microarray analysis. As expected (5), we found that Prox1 expressing cells displayed an enrichment of 

the intestinal stem cell gene signature (28) (Supplementary Fig. S3A), which had similarity to gene sets 

upregulated by Apc mutation and suppressed by NICD1 overexpression in intestinal adenomas (12) 

(Supplementary Fig. S3B). Accordingly, the Prox1 cell transcriptome showed a negative enrichment of 

genes induced by NICD1 overexpression (Supplementary Fig. S3C), indicating that Notch signaling is 

suppressed in the Prox1 expressing cells. 

 

We next induced Prox1 and Apc deletion by tamoxifen treatment of Apcflox/flox; Prox1flox/flox; Lgr5-EGFP-

IRES-CreERT2 (LApcP'�') mice to analyze PROX1 regulation of the Notch pathway in intestinal adenoma 

stem cells. Interestingly, Prox1 deletion increased the ratio of OLFM4+ cells in the Lgr5-EGFP+ cell 

population, suggesting Notch activation in these cells (Fig. 5A and 5B). Also, Prox1 deletion in organoids 

derived from Apcmin/+; Prox1flox/flox; villin-CreERT2 mice resulted in increased expression of the Notch 

targets Olfm4 and Hey2 (Fig. 5C). Furthermore, Prox1 deletion decreased the expression of Pleiotrophin 

(Ptn), Pyruvate dehydrogenase kinase 4 (Pdk4) and Distal-less homebox 3 (Dlx3), genes that are 

suppressed by NICD1 overexpression, and increased the expression of Tripartite motif-containing 

protein 31 (Trim31) and Carbonic anhydrase 13 (Car13), transcripts that are induced by NICD1 in 

intestinal adenomas (12) (Supplementary Fig. S3D).  
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In order to explore PROX1 regulation of NOTCH in human CRC, we employed CRISPR/Cas9 to delete 

PROX1 exon 2 (Supplementary Fig. S3E and S3F). SW1222 cells were lentivirally transduced with Cas9 

plus two different PROX1 gRNAs and selected with puromycin. PROX1 deletion was first confirmed by 

western blotting (Supplementary Fig. S3G), and the cells were then transfected with a NOTCH1-

promoter driven luciferase reporter. When analyzed 48 h later, the PROX1 deleted cells showed a two-

fold higher luciferase signal than the control cells (Fig. 5D).  Furthermore, PROX1 deletion increased 

expression of the Notch targets OLFM4 and HEY2 (Fig. 5E). PROX1 overexpression in the NOTCH1 

active LS174T cells (8) also decreased the expression of OLFM4 and HEY2 (Fig. 5F). These data indicate 

that PROX1 suppresses the Notch pathway in mouse adenomas and human CRC cells.  

 

PROX1 recruits the NuRD complex to suppress the Notch pathway. To investigate the mechanism 

of how PROX1 suppresses the Notch pathway, we performed BirA-mediated proximity labeling to 

identify PROX1 interacting proteins in SW1222 cells (Supplementary Fig. S4A and S4B). Remarkably, 

we found that PROX1 interacts with several proteins that have chromatin remodeling function. In 

particular, several components of the NuRD corepressor complex were among the top 10 hits 

(Supplementary Table S1). By co-immunoprecipitation, we determined that at least HDAC1 and MTA1, 

key components of the complex, co-precipitated with PROX1 from lysates of SW1222 and SW620 cells 

(Fig. 6A). The prior report that the NuRD complex suppresses Notch pathway in Schwann cells (32), 

raised the possibility that PROX1 suppresses the Notch pathway in CRC cells via the NuRD complex. 

To assess this, we treated SW1222 cells with two HDAC inhibitors for 72 hours to inhibit HDAC1 and 

HDAC2. This increased the expression of the Notch target genes OLFM4 and HEY2 (Supplementary 

Fig. S4C). Lentiviral silencing of HDAC1, HDAC2 or MTA1 increased the NOTCH1 promoter-

luciferase reporter expression and the expression of OLFM4 (Fig. 6B-E and Supplementary Fig. S4D-

F), indicating that the NuRD complex suppresses Notch signaling in CRC. Furthermore, HDAC1, 

HDAC2 or MTA1 silencing in PROX1 overexpressing LS174T cells blocked the PROX1-mediated 
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suppression of OLFM4 (Fig 6F), suggesting that PROX1 acts via the NuRD complex to regulate the 

Notch signaling pathway in CRC. Chromatin immunoprecipitation (ChIP) using antibodies against 

PROX1, HDAC1 and MTA1 followed by qPCR of three regions of the NOTCH1 promoter revealed two 

potential PROX1 binding sites at -1.5kb and -0.8kb, whereas MTA1 bound weakly to the NOTCH1 

promoter at -3.5kb (Fig. 6G-I and Supplementary Fig. S4G). These data indicate that PROX1 suppresses 

the Notch pathway by recruiting the NuRD complex to the NOTCH1 promoter (Fig. 6J). 

 

Discussion 

 

In this study, we provide evidence that the PROX1 transcription factor regulates CRC stem-like cells via 

a bidirectional interaction with the Notch pathway. We show that Notch inhibition in Apc wild type or 

mutant organoids decreases expression of intestinal stem cell markers while increasing PROX1+ cells. 

Chemical Notch inhibition provided PROX1+ cells a further growth advantage in the emerging tumors. 

Interestingly, Prox1 deletion increased expression of Notch target genes and NOTCH1 promoter activity. 

Mechanistic analysis of this finding indicated that PROX1 recruits the NuRD complex to the NOTCH1 

promoter to suppress the Notch pathway in CRC. 

 

Intestinal crypt cells are plastic and compensatory mechanisms have been reported to produce fast-

cycling crypt base columnar stem cells following injury have been reported (33-35). Similarly, colorectal 

tumors are composed of a flexible hierarchy of stem-like cells, progenitors and more differentiated cells 

(reviewed in 36). In the normal intestine, PROX1 is expressed in enteroendocrine cells and some Paneth 

cells (3, 5). Furthermore, the PROX1+ enteroendocrine cells can function as injury-inducible stem cells 

(35). In CRC, PROX1 is directly regulated by the E-catenin/TCF4 pathway. Notch inhibition at an early 

phase after Apc deletion resulted in increased production of PROX1+ adenoma cells, but Notch inhibition 
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had only a minor effect later during tumor development due to Notch downregulation in PROX1+ cells. 

Analysis of single cell RNA sequencing of control and Notch inhibited organoids showed that Prox1+ 

cell clusters express some intestinal stem cell markers, suggesting that the PROX1+ cells form a 

subpopulation of intestinal stem-like cells. Furthermore, the LGR5+PROX1- cells were decreased by 

Notch inhibition indicating that a subpopulation of the stem-like cells is Notch dependent. In line with 

this, Schmidt and colleagues demonstrated that high NOTCH activity marks a distinct colon cancer 

subpopulation with low levels of WNT and MAPK activity (37).  Furthermore, NOTCH1 was shown to 

be co-expressed with the intestinal stem cell marker BMI1, whereas the LGR5+ stem-like cells expressed 

Wnt markers (38). Considering that PROX1 is a Wnt target, these studies suggest that PROX1 marks a 

high Wnt and Notch negative stem-like cell population. 

 

NOTCH1 is known to suppress PROX1 expression in lymphatic endothelial cells (39), thyroid cancer 

cells (40), myoblasts (41), in the developing Drosophila intestine (42) and in mouse intestinal adenomas 

(12). Although the function of the Notch pathway in the WT intestinal stem cells is well established (8), 

how it affects CRC progression is unclear. NOTCH1 has been shown to be essential in the initiation of 

CRC (7, 11, 12). However, deletion of the Notch effector Rbpj did not affect tumorigenesis in Apc mutant 

intestine (43). Furthermore, aberrant NOTCH1 expression decreases during tumor progression and 

metastasis, suggesting that the Notch pathway functions mainly in the early phase of CRC progression 

(44). On the other hand, PROX1 was shown to be important in CRC progression and metastatic 

outgrowth of Wnt high colon cancer cells (3, 45), rather than for adenoma initiation. In our models, 

PROX1 and the Notch pathway suppressed each other, indicating that high PROX1 expression and active 

Notch signaling are mutually exclusive. PROX1 has previously been shown to suppress the Notch 

pathway to allow differentiation of myoblasts (41) and neurons (46). We show evidence that PROX1 

suppresses Notch pathway in CRC via recruiting the NuRD complex to the NOTCH1 promoter. The 
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NuRD complex consists of seven subunits that function together in chromatin remodeling and histone 

deacetylation (reviewed in ref. 47). Previous studies have shown that the NuRD complex maintains the 

silencing of tumor suppressor genes in CRC (48). Furthermore, deficiency of Mbd2, a component of the 

complex, reduces tumor burden in Apcmin/+ mice and attenuates Wnt signaling (49, 50). These studies 

indicate that the NuRD complex performs an important function in CRC. Importantly, aberrant NOTCH1 

expression suppressed the stem cell activity of the PROX1 positive stem-like cells. These observations 

raise the possibility that PROX1 suppresses the Notch pathway to promote malignant growth. 

 

In conclusion, we demonstrate that PROX1 interacts with the NuRD complex to suppress Notch signaling 

in CRC stem-like cells. Furthermore, we show that ectopic expression of active NOTCH1 suppresses 

PROX1 and the stem cell activity of PROX1 positive cells, suggesting a reciprocal interaction of PROX1 

and Notch pathways in regulation of CRC stem-like cells. Based on our results, we propose a model 

where the LGR5+ stem cells require active Notch signaling early after Apc deletion. However, some of 

these cells start to express PROX1, which then suppresses the Notch pathway. These PROX1+ LGR5+ 

cells proliferate and support tumor growth independently of the Notch pathway. Our studies thus give 

new insight into the complex regulation of stem-like cells and identify PROX1 as a marker of a Notch 

independent stem cell population.  
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Figure legends 

 

Figure 1.  Notch activity is essential for the maintenance of intestinal stem cells during a transient 

phase after Apc deletion. A) Schematic illustration of the experimental design. B) Quantification of 

Lgr5-EGFP+ and PROX1+ cells based on flow cytometry of Lgr5-EGFP fluorescence and PROX1 

immunostaining in LApc∆/∆ d8 organoids. C) RNA expression analysis of Prox1, Lgr5 and Tnfrsf19 

expressing single cells in Apcflox/flox; Villin-CreERT2 d8 organoids. Feature heatmap and t-SNE plot was 

used to visualize clustering of RNA sequenced single cells. Organoids were treated for 5 days with the 
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J-secretase inhibitor DBZ, starting on day three after the addition of 4-OH-Tam. Student’s unpaired t-

test, n=3+3, *P<0.05.  

 

Figure 2. Prox1 induction correlates with decreased Notch target gene expression after Apc 

deletion. A-D) Kinetic analysis of RNA encoding Prox1 (A), the Wnt target genes Axin2, Sox9 and c-

Myc (B), and Notch-targets Olfm4 (C) and Hes1 (D) after Apc deletion in the Apcflox/flox; villin-CreERT2 

organoids. E) The ratio of viable organoids, and number of new colonies after re-plating of DAPT treated 

Apcflox/flox; Lgr5-EGFP-IRES-CreERT2 (LApc∆/∆) organoids. The treatment was started 12 days after Apc 

deletion for five days. F) The percentage of viable organoids in DBZ treated patient-derived CRC 

organoids. G-H) Immunofluorescence staining of Lgr5-EGFP and NICD1 in Apcflox/flox; Lgr5-EGFP-

IRES-CreERT2 intestine before (G) and 21 days (H) after Apc deletion. Note that whereas all EGFP+ cells 

are NICD1+ in the control crypt, only some Lgr5-EGFP+ cells are NICD1+ in the adenomas. I-J) Lgr5-

EGFP, NICD1 and PROX1 immunofluorescence in Apcflox/flox; Lgr5-EGFP-IRES-CreERT2 intestines 21 

days after tamoxifen administration. Note that PROX1+ Lgr5-EGFP+ cells are negative for NICD1. 

Arrowheads mark NICD1+ cells. Student’s unpaired t-test, n=3+3. Scale bars= 20 µm. 

 

Figure 3. Chemical Notch inhibition provides the PROX1+ adenoma cells a growth advantage.  A-

C) Lgr5-EGFP and PROX1 immunostaining (A) and quantification of PROX1+ and PROX1- Lgr5-

EGFP+ cells (B-C) in Apc deleted Apcflox/flox; Lgr5-EGFP-IRES-CreERT2 intestines treated with the γ-

secretase inhibitor DBZ. Arrowheads mark the Lgr5-EGFP+ cells. D-F) Goblet cell (MUC2) and PROX1 

immunostaining (D) and quantification of PROX1+ and PROX1- MUC2+ tumor cells (E-F) in the same 

intestine. Arrowheads mark MUC2+ cells. G-I) EdU and PROX1 immunostaining (G) and quantification 

of PROX1+ and PROX1- EdU+ tumor cells (H-I) in the same intestine. Arrowheads mark 

PROX1+EdU+ cells. DBZ treatment was started on d5 (A,B,D,E,G,H) or d21 (C, F, I) after the addition 

of tamoxifen. J-L) EdU, TdTomato and PROX1 immunostaining (J) and quantification (K) of PROX1 
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negative EdU+ and EdU- cells derived from the PROX1 positive cells (TdTomato+) and total percentage 

of EdU+ cells (L) in tumors of Apcmin/+; Rosa26LSL-tdTomato; Prox1-CreERT2 mice treated with DBZ. 

Analysis was performed three days after the last injection of DBZ. Arrowheads mark 

TdTomato+/EdU+/PROX1- cells. Mice were given four (J-L) or five (A-I) i.p injections of DBZ (20 

μmol/kg/day). EdU (1 mg/kg) was administered four hours prior to termination. Student’s unpaired t-

test, n=10-14, *P<0.05, **P<0.01. Scale bars= 20 µm. 

 

Figure 4.  Induction of NOTCH1 reduces tumor stem cell activity. A-B) Immunofluorescence image 

of an organoid (A) and flow cytometry (B) of PROX1 staining and TdTomato signals in single cells 

derived from Apcmin/+; Rosa26LSL-tdTomato; Prox1-CreERT2 organoids 16 h after addition of 4-OH-Tam. C) 

Comparison of the relative numbers of single cell-derived GFP control vs. NICD1-GFP colonies among 

Apcmin/+; Rosa26LSL-tdTomato; Prox1-CreERT2 organoids. D) Comparison of the relative number of GFP 

control and NICD1-GFP colonies among the tdTomato+ colonies. E-G) NICD1-GFP and PROX1 

immunofluorescence staining (E), PROX1 RNA (F) and the ratio of GFP+/PROX1- cells (G) in SW1222 

and SW620 cells four days after lentiviral transduction of GFP control or NICD1-GFP. Note that the 

NICD1+ cells are PROX1- (arrowheads). H) Images of colonies formed by SW1222 cells transduced 

with NICD1-GFP and GFP control lentiviruses. Note that NICD1-transduced cells fail to form colonies 

with multiple lumens. Student’s unpaired t-test was used, *P<0.05, **P<0.01, ***P<0.005.  Scale bars= 

20 µm (E) or 100 µm (H).  

 

Figure 5. Prox1 suppresses the Notch1 signaling pathway. A-B) Representative image of Lgr5-GFP 

fluorescence and OLFM4 and PROX1 immunostaining (A) and quantification of the ratio of 

PROX1+OLFM4-, PROX1-OLFM4+, PROX1+OLFM4+ and PROX1-OLFM4- Lgr5-EGFP+ cells (B) 

in adenomas derived from Apcflox/flox; Lgr5-EGFP-IRES-CreERT2 (LApc∆/∆) and Apcflox/flox; Prox1flox/flox; 

Lgr5-EGFP-IRES-CreERT2 (LApcP∆/∆) mice 21 days after addition of Tam. C) RNA expression of Notch 
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target genes in Apcmin/+ (Ctrl) and Apcmin/+; Prox1flox/flox; villin-CreERT2 (Prox1Δ/Δ) organoids three days 

after addition of 4-OH-Tam. D-E) NOTCH1 promoter-driven luciferase assay (D) and RNA expression 

of Notch target genes (E) in SW1222 cells transduced with sgCTRL or sgPROX1 lentiviruses. F) RNA 

expression of PROX1 and NOTCH1 target genes in LS174T cells transduced with CTRL or PROX1 

overexpressing lentivirus. Data is presented as fold change, mean+SD (C-F), n=4+4, Student’s unpaired 

t-test, *P<0.05, **P<0.01, ***P<0.005. Scale bars= 20 µm.  

 

Figure 6. Implication of the PROX1-NuRD corepressor complex in suppression of the NOTCH 

pathway. A) Co-immunoprecipitation of HDAC1 and MTA1 with PROX1 from lysates of SW1222 and 

SW620 cells. B-E) NOTCH1 promoter-luciferase assay (B) and expression of OLFM4 RNA in SW1222 

cells transduced with shSCR, shHDAC1 (C), shHDAC2 (D) or shMTA1 (E) lentivirus.  F) Expression 

of OLFM4 RNA in LS174T cells expressing CTRL or PROX1 lentivirus and transfected with shSCR, 

shHDAC1, shHDAC2 or shMTA1.  G-I) Chromatin immunoprecipitation of PROX1, HDAC1 and 

MTA1 in SW620 cells, followed by RT-qPCR of three regions of the NOTCH1 promoter. J) Schematic 

presentation of the PROX1-NuRD complex mediated suppression of the NOTCH1. Data is presented as 

fold change, mean+SD (B-F) or percentage of Input (G-I), n=4+4 (B-F), 2+2 (G-I), Student’s unpaired 

t-test, *P<0.05, **P<0.01, ***P<0.005. 
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