Multivariable (φ, Γ)-modules and products of Galois groups

Gergely Zábrádi *
14th March 2016

Abstract

We show that the category of continuous representations of the d th direct power of the absolute Galois group of \mathbb{Q}_{p} on finite dimensional \mathbb{F}_{p}-vector spaces (resp. finitely generated \mathbb{Z}_{p}-modules, resp. finite dimensional \mathbb{Q}_{p}-vector spaces) is equivalent to the category of étale (φ, Γ)-modules over a d-variable Laurent-series ring over \mathbb{F}_{p} (resp. over \mathbb{Z}_{p}, resp. over $\left.\mathbb{Q}_{p}\right)$.

1 Introduction

This note serves as a complement to the work [11] where we relate multivariable (φ, Γ) modules to smooth modulo p^{n} representations of a split reductive group G over \mathbb{Q}_{p}. The goal here is to show that the category of d-variable (φ, Γ)-modules is equivalent to the category of representations of the d th direct power of the absolute Galois group of \mathbb{Q}_{p}.

Let K be a finite extension of \mathbb{Q}_{p} with ring of integers \mathcal{O}_{K}, prime element ϖ, and residue field κ. For a finite set Δ let $G_{\mathbb{Q}_{p}, \Delta}:=\prod_{\alpha \in \Delta} \operatorname{Gal}\left(\overline{\mathbb{Q}_{p}} / \mathbb{Q}_{p}\right)$ denote the direct power of the absolute Galois group of \mathbb{Q}_{p} indexed by Δ. We denote by $\operatorname{Rep}_{\kappa}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$ (resp. by $\operatorname{Rep}_{\mathcal{O}_{K}}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$, resp. by $\left.\operatorname{Rep}_{K}\left(G_{\mathbb{Q}_{p}, \Delta}\right)\right)$ the category of continuous representations of the profinite group $G_{\mathbb{Q}_{p}, \Delta}$ on finite dimensional κ-vector spaces (resp. finitely generated \mathcal{O}_{K}-modules, resp. finite dimensional K-vector spaces). On the other hand, for independent commuting variables $X_{\alpha}(\alpha \in \Delta)$ we put

$$
\begin{aligned}
E_{\Delta, \kappa} & :=\kappa\left[\left[X_{\alpha} \mid \alpha \in \Delta\right]\right]\left[X_{\alpha}^{-1} \mid \alpha \in \Delta\right], \\
\mathcal{O}_{\mathcal{E}_{\Delta, K}} & :=\underset{h}{\lim }\left(\mathcal{O}_{K} / \varpi^{h}\left[\left[X_{\alpha} \mid \alpha \in \Delta\right]\right]\left[X_{\alpha}^{-1} \mid \alpha \in \Delta\right]\right), \\
\mathcal{E}_{\Delta, K} & :=\mathcal{O}_{\mathcal{E}_{\Delta, K}}\left[p^{-1}\right] .
\end{aligned}
$$

Moreover, for each element $\alpha \in \Delta$ we have the partial Frobenius φ_{α}, and group $\Gamma_{\alpha} \cong$ $\operatorname{Gal}\left(\mathbb{Q}_{p}\left(\mu_{p^{\infty}}\right) / \mathbb{Q}_{p}\right)$ acting on the variable X_{α} in the usual way and commuting with the other

[^0]variables $X_{\beta}(\beta \in \Delta \backslash\{\alpha\})$ in the above rings. $\mathrm{A}\left(\varphi_{\Delta}, \Gamma_{\Delta}\right)$-module over $E_{\Delta, \kappa}$ (resp. over $\mathcal{O}_{\mathcal{E}_{\Delta, K}}$, resp. over $\mathcal{E}_{\Delta, K}$) is a finitely generated $E_{\Delta, \kappa}$-module (resp. $\mathcal{O}_{\mathcal{E}_{\Delta, K}}$-module, resp. $\mathcal{E}_{\Delta, K}$-module) D together with commuting semilinear actions of the operators φ_{α} and groups $\Gamma_{\alpha}(\alpha \in \Delta)$. In case the coefficient ring is $E_{\Delta, \kappa}$ or $\mathcal{O}_{\mathcal{E}_{\Delta, K}}$, we say that D is étale if the map id $\otimes \varphi_{\alpha}: \varphi_{\alpha}^{*} D \rightarrow D$ is an isomorphism for all $\alpha \in \Delta$. For the coefficient ring $\mathcal{E}_{\Delta, K}$ we require the stronger assumption for the étale property that D comes from an étale $\left(\varphi_{\Delta}, \Gamma_{\Delta}\right)$-module over $\mathcal{O}_{\mathcal{E}_{\Delta, K}}$ by inverting p. The main result of the paper is that $\operatorname{Rep}_{\kappa}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$ (resp. $\operatorname{Rep}_{\mathcal{O}_{K}}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$, resp. $\operatorname{Rep}_{K}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$) is equivalent to the category of étale $\left(\varphi_{\Delta}, \Gamma_{\Delta}\right)$-modules over $E_{\Delta, \kappa}$ (resp. over $\mathcal{O}_{\mathcal{E}_{\Delta, K}}$, resp. over $\left.\mathcal{E}_{\Delta, K}\right)$.

Passing from the Galois side to $\left(\varphi_{\Delta}, \Gamma_{\Delta}\right)$-modules is rather straightforward. One constructs a big ring $E_{\Delta}^{s e p}$ as an inductive limit of completed tensor products of finite separable extensions E_{α}^{\prime} of $E_{\alpha}=\mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right)(\alpha \in \Delta)$ over which the action of $H_{\mathbb{Q}_{p}, \Delta}=\operatorname{Ker}\left(G_{\mathbb{Q}_{p}, \Delta} \rightarrow \prod_{\alpha \in \Delta} \Gamma_{\Delta}\right)$ trivializes. The other direction is more involved. In order to trivialize the action of the partial Frobenii $\varphi_{\alpha}(\alpha \in \Delta)$ using induction, the main step is to find a lattice $D_{\bar{\alpha}}^{+*}$ integral in the variable X_{α} for some fixed $\alpha \in \Delta$ which is an étale $\left(\varphi_{\Delta \backslash\{\alpha\}}, \Gamma_{\Delta \backslash\{\alpha\}}\right)$-module over the ring $\mathbb{F}_{p}\left[\left[X_{\beta} \mid \beta \in \Delta\right]\right]\left[X_{\beta}^{-1} \mid \beta \in \Delta \backslash\{\alpha\}\right]$. This uses the ideas of Colmez [3] constructing lattices D^{+}and D^{++}in usual (φ, Γ)-modules.

We remark here that Scholze [7] recently realized $G_{\mathbb{Q}_{p}, \Delta}$ (using Drinfeld's Lemma for diamonds) as a geometric fundamental group $\pi_{1}\left(\left(\operatorname{Spd} \mathbb{Q}_{p}\right)^{|\Delta|} / \mathrm{p}\right.$.Fr.) of the diamond $\left(\operatorname{Spd} \mathbb{Q}_{p}\right)^{|\Delta|}$ modulo the partial Frobenii $\varphi_{\beta}(\beta \in \Delta \backslash\{\alpha\})$ for some fixed $\alpha \in \Delta$: one can endow $E_{\Delta}^{+}=\mathbb{F}_{p}\left[\left[X_{\alpha} \mid \alpha \in \Delta\right]\right]$ with its natural compact topology, and look at the subset of its adic spectrum Spa E_{Δ}^{+}where all $X_{\alpha}(\alpha \in \Delta)$ are invertible. This defines an analytic adic space over \mathbb{F}_{p}, whose perfection modulo the action of all Γ_{α} 's is a model for $\left(\operatorname{Spd} \mathbb{Q}_{p}\right)^{d}$. Thus, after taking the action modulo partial Frobenii $\varphi_{\beta}(\beta \in \Delta \backslash\{\alpha\}$ for some fixed $\alpha \in \Delta)$, the fundamental group will be $G_{\mathbb{Q}_{p}, \Delta}$. Now, quite generally étale local systems on diamonds are equivalent to φ-modules. This introduces the last missing Frobenius, and one ends up with an equivalence between representations of $G_{\mathbb{Q}_{p}, \Delta}$, and some sheaf of modules with Γ_{Δ}-action and commuting actions of φ_{α} for all $\alpha \in \Delta$. However, this will not produce an actual module over a ring, but a sheaf of modules over a sheaf of rings. One can perhaps deduce the result of this paper along these lines, but that would require some further nontrivial input (replacing the above method of finding a lattice $D_{\bar{\alpha}}^{+*}$).

1.1 Acknowledgements

I would like to thank Christophe Breuil, Elmar Große-Klönne, Kiran Kedlaya, and Vytas Paškūnas for useful discussions on the topic. I would like to thank Peter Scholze for clarifying the relation of this work to his theory of realizing $G_{\mathbb{Q}_{p}, \Delta}$ as the étale fundamental group of a diamond.

2 Algebraic properties of multivariable ($\varphi, \Gamma)$-modules

2.1 Definition and projectivity

For a finite set Δ (which is the set of simple roots of G in [11]) consider the Laurent series $\operatorname{ring} E_{\Delta}:=E_{\Delta}^{+}\left[X_{\Delta}^{-1}\right]$ where $E_{\Delta}^{+}:=\mathbb{F}_{p}\left[\left[X_{\alpha} \mid \alpha \in \Delta\right]\right]$ and $X_{\Delta}:=\prod_{\alpha \in \Delta} X_{\alpha} \in E_{\Delta}^{+} . E_{\Delta}^{+}$is a
regular noehterian local ring of global dimension $|\Delta|$, therefore E_{Δ} is a regular noetherian ring of global dimension $|\Delta|-1$. For each index α we define the action of the partial Frobenius φ_{α} and of the group Γ_{α} with $\chi_{\alpha}: \Gamma_{\alpha} \xrightarrow{\sim} \mathbb{Z}_{p}^{\times}$on E_{Δ} as

$$
\begin{align*}
\varphi_{\alpha}\left(X_{\beta}\right) & := \begin{cases}X_{\beta} & \text { if } \beta \in \Delta \backslash\{\alpha\} \\
\left(X_{\alpha}+1\right)^{p}-1=X_{\alpha}^{p} & \text { if } \beta=\alpha\end{cases} \\
\gamma_{\alpha}\left(X_{\beta}\right) & := \begin{cases}X_{\beta} & \text { if } \beta \in \Delta \backslash\{\alpha\} \\
\left(X_{\alpha}+1\right)^{\chi_{\alpha}\left(\gamma_{\alpha}\right)}-1 & \text { if } \beta=\alpha\end{cases} \tag{1}
\end{align*}
$$

for all $\gamma_{\alpha} \in \Gamma_{\alpha}$ extending the above formulas to continuous ring endomorphisms of E_{Δ} in the obvious way. By an étale $\left(\varphi_{\Delta}, \Gamma_{\Delta}\right)$-module over E_{Δ} we mean a (unless otherwise mentioned) finitely generated module D over E_{Δ} together with a semilinear action of the (commutative) monoid $T_{+, \Delta}:=\prod_{\alpha \in \Delta} \varphi_{\alpha}^{\mathbb{N}} \Gamma_{\alpha}$ (also denote by φ_{t} the action of $\varphi_{t} \in T_{+, \Delta}$) such that the maps

$$
\mathrm{id} \otimes \varphi_{t}: \varphi_{t}^{*} D:=E_{\Delta} \otimes_{E_{\Delta}, \varphi_{t}} D \rightarrow D
$$

are isomorphisms for all elements $\varphi_{t} \in T_{+, \Delta}$. Here we put $\Gamma_{\Delta}:=\prod_{\alpha \in \Delta} \Gamma_{\alpha}$. We denote by $\mathcal{D}^{\text {et }}\left(\varphi_{\Delta}, \Gamma_{\Delta}, E_{\Delta}\right)$ the category of étale $\left(\varphi_{\Delta}, \Gamma_{\Delta}\right)$-modules over E_{Δ}.

The category $\mathcal{D}^{e t}\left(\varphi_{\Delta}, \Gamma_{\Delta}, E_{\Delta}\right)$ has the structure of a neutral Tannakian category: For two objects D_{1} and D_{2} the tensor product $D_{1} \otimes_{E_{\Delta}} D_{2}$ is an étale $T_{+, \Delta}$-module with the action $\varphi_{t}\left(d_{1} \otimes d_{2}\right):=\varphi_{t}\left(d_{1}\right) \otimes \varphi_{t}\left(d_{2}\right)$ for $\varphi_{t} \in T_{+, \Delta,}, d_{i} \in D_{i}(i=1,2)$. Moreover, since E_{Δ} is a free module over itself via φ_{t}, putting $(\cdot)^{*}:=\operatorname{Hom}_{E_{\Delta}}\left(\cdot, E_{\Delta}\right)$ we have an identification $\left(\varphi_{t}^{*} D\right)^{*} \cong$ $\varphi_{t}^{*}\left(D^{*}\right)$. So the isomorphism id $\otimes \varphi_{t}: \varphi_{t}^{*} D \rightarrow D$ dualizes to an isomorphism $D^{*} \rightarrow \varphi_{t}^{*}\left(D^{*}\right)$. The inverse of this isomorphism (for all $\varphi_{t} \in T_{+, \Delta}$) equips D^{*} with the structure of an étale $T_{+, \Delta}$-module.

Lemma 2.1. There exists a Γ_{Δ}-equivariant injective resolution of E_{Δ}^{+}as a module over itself.
Proof. Consider the Cousin complex (see IV. 2 in [6])

$$
0 \rightarrow E_{\Delta} \rightarrow E_{\Delta,(0)} \rightarrow \cdots \rightarrow \bigoplus_{\mathfrak{p} \in \operatorname{Spec}\left(E_{\Delta}\right), \operatorname{codim} \mathfrak{p}=r} J(\mathfrak{p}) \rightarrow \cdots
$$

where $J(\mathfrak{p})$ is the injective envelope of the residue field $\kappa(\mathfrak{p})$ as a module over the local ring $E_{\Delta, \mathfrak{p}}$. This is a Γ_{Δ}-equivariant injective resolution since the action of Γ_{Δ} on $\operatorname{Spec}\left(E_{\Delta}\right)$ respects the codimension.

Proposition 2.2. Any object D in $\mathcal{D}^{e t}\left(\varphi_{\Delta}, \Gamma_{\Delta}, E_{\Delta}\right)$ is a projective module over E_{Δ}.
Proof. Since E_{Δ} has finite global dimension, let n be the projective dimension of D. Then by Lemma 4.1.6 in [9] we have $\operatorname{Ext}^{i}(D, M)=0$ for all $i>n$ and E_{Δ}-module M and there exists an R-module M_{0} with $\operatorname{Ext}^{n}\left(D, M_{0}\right) \neq 0$. By the long exact sequence of Ext and choosing an onto module homomorphism $F \rightarrow M_{0}$ from a free module F we find that $\operatorname{Ext}^{n}(D, F) \neq 0$ whence $\operatorname{Ext}^{n}\left(D, E_{\Delta}\right) \neq 0$. However, $\operatorname{Ext}^{n}\left(D, E_{\Delta}\right)$ is a finitely generated torsion E_{Δ}-module for $n>0$ admitting a semilinear action of Γ_{Δ}. Therefore the global annihilator of $\operatorname{Ext}^{n}\left(D, E_{\Delta}\right)$ in E_{Δ} is a nonzero Γ_{Δ}-invariant ideal in E_{Δ} hence equals E_{Δ} by Lemma 2.1 in [11]. So $n=0$ and D is projective.

Lemma 2.3. We have $K_{0}\left(E_{\Delta}\right) \cong \mathbb{Z}$, ie. any finitely generated projective module over E_{Δ} is stably free.

Proof. $E_{\Delta}^{+} \cong \mathbb{F}_{p}\left[\left[X_{\alpha} \mid \alpha \in \Delta\right]\right]$ is a regular local ring, so it has finite global dimension and $K_{0}\left(E_{\Delta}^{+}\right) \cong G_{0}\left(E_{\Delta}^{+}\right) \cong \mathbb{Z}$ (Thm. II.7.8 in [10]). Therefore the localization $E_{\Delta}=E_{\Delta}^{+}\left[X_{\Delta}^{-1}\right]$ also has finite global dimension whence we have $K_{0}\left(E_{\Delta}\right) \cong G_{0}\left(E_{\Delta}\right)$. The statement follows noting that the map $G_{0}\left(E_{\Delta}^{+}\right) \rightarrow G_{0}\left(E_{\Delta}\right)$ is onto by the localization exact sequence of algebraic K-theory (Thm. II.6.4 in [10]).

Remark. I am not aware of the analogue of the Theorem of Quillen and Suslin on the freeness of projective modules over E_{Δ}. However, using the equivalence of categories of $\mathcal{D}^{e t}\left(\varphi_{\Delta}, \Gamma_{\Delta}, E_{\Delta}\right)$ with $\operatorname{Rep}_{\mathbb{F}_{p}}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$ we shall see later on (Cor. 3.16) that any object D in $\mathcal{D}^{e t}\left(\varphi_{\Delta}, \Gamma_{\Delta}, E_{\Delta}\right)$ is in fact free over E_{Δ}.

We equip E_{Δ}^{+}with the X_{Δ}-adic topology. Then $\left(E_{\Delta}, E_{\Delta}^{+}\right)$is a Huber pair (in the sense of [7]) if we equip E_{Δ} with the inductive limit topology $E_{\Delta}=\bigcup_{n} X_{\Delta}^{-n} E_{\Delta}^{+}$. In fact, E_{Δ} is a complete noetherian Tate ring (op. cit.). Note that this is not the natural compact topology on E_{Δ}^{+}as in the compact topology E_{Δ}^{+}would not be open in E_{Δ} since the index of E_{Δ}^{+}in $X_{\Delta}^{-n} E_{\Delta}^{+}$is not finite. On the other hand, the inclusion $\mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right) \hookrightarrow E_{\Delta}$ is not continuous in the X_{Δ}-adic topology therefore we cannot apply Drinfeld's Lemma (Thm. 17.2.4 in [7]) directly in this situation.

Let D be an object in $\mathcal{D}^{e t}\left(\varphi_{\Delta}, \Gamma_{\Delta}, E_{\Delta}\right)$. By Banach's Theorem for Tate rings (Prop. 6.18 in [8]), there is a unique E_{Δ}-module topology on D that we call the X_{Δ}-adic topology. Moreover, any E_{Δ}-module homomorphism is continuous in the X_{Δ}-adic topology.

2.2 Integrality properties

Put $\varphi_{s}:=\prod_{\alpha \in \Delta} \varphi_{\alpha} \in T_{+, \Delta}$ and define $D^{++}:=\left\{x \in D \mid \lim _{k \rightarrow \infty} \varphi_{s}^{k}(x)=0\right\}$ where the limit is considered in the X_{Δ}-adic topology (cf. II.2.1 in [3] in case $|\Delta|=1$). Note that φ_{s} is the absolute Frobenius on E_{Δ}, it takes any element to its p th power.

Lemma 2.4. Let M be a finitely generated E_{Δ}^{+}submodule in D. Then $E_{\Delta}^{+} \varphi_{s}(M)$ is also finitely generated.

Proof. If M is generated by m_{1}, \ldots, m_{n} then $\varphi_{s}\left(m_{1}\right), \ldots, \varphi_{s}\left(m_{n}\right)$ generate $E_{\Delta}^{+} \varphi_{s}(M)$.
Proposition 2.5. D^{++}is a finitely generated E_{Δ}^{+}-submodule in D that is stable under the action of $T_{+, \Delta}$ and we have $D=D^{++}\left[X_{\Delta}^{-1}\right]$.

Proof. Choose an arbitrary finitely generated E_{Δ}^{+}-submodule M of D with $M\left[X_{\Delta}^{-1}\right]=D$ (e.g. take $M=E_{\Delta}^{+} e_{1}+\cdots+E_{\Delta}^{+} e_{n}$ for some E_{Δ}-generating system e_{1}, \ldots, e_{n} of D). By Lemma 2.4 we have an integer $r \geq 0$ such that $\varphi(M) \subseteq X_{\Delta}^{-r} M$, since E_{Δ}^{+}is noetherian and we have $D=\bigcup_{r} X_{\Delta}^{-r} M$. Then we have

$$
\varphi_{s}\left(X_{\Delta}^{k} M\right)=X_{\Delta}^{p k} \varphi_{s}(M) \subseteq X_{\Delta}^{p k-r} M \subseteq X_{\Delta}^{k+1} M
$$

for any integer $k \geq \frac{r+1}{p-1}$. Therefore we have $X_{\Delta}^{\left[\frac{r+1}{p-1}\right]+1} M \subseteq D^{++}$whence $D^{++}\left[X_{\Delta}^{-1}\right]=$ $M\left[X_{\Delta}^{-1}\right]=D$.

Since $T_{+\Delta}$ is commutative and the action of each $\varphi_{t}\left(t \in T_{+, \Delta}\right)$ is continuous, D^{++}is stable under the action of $T_{+, \Delta}$. There is a system of neighbourhoods of 0 in D consisting of E_{Δ}^{+}-submodules therefore D^{++}is an E_{Δ}^{+}-submodule.

To prove that D^{++}is finitely generated over E_{Δ}^{+}suppose first that D is a free module over E_{Δ} generated by e_{1}, \ldots, e_{n} and put $M:=E_{\Delta}^{+} e_{1}+\cdots+E_{\Delta}^{+} e_{n}$. We may assume $M \subseteq D^{++}$by replacing M with $X_{\Delta}^{\left[\frac{r+1}{p-1}\right]+1} M$. Moreover, further multiplying $M=E_{\Delta}^{+} e_{1}+\cdots+E_{\Delta}^{+} e_{n}$ by a power of X_{Δ}, we may assume that the matrix $A:=\left[\varphi_{s}\right]_{e_{1}, \ldots, e_{n}}$ of φ_{s} in the basis e_{1}, \ldots, e_{n} lies in $E_{\Delta}^{+n \times n}$ as we have $\left[\varphi_{s}\right]_{X_{\Delta}^{r} e_{1}, \ldots, X_{\Delta}^{r} e_{n}}=X_{\Delta}^{(p-1) r}\left[\varphi_{s}\right]_{e_{1}, \ldots, e_{n}}$. Now we choose the integer $r>0$ so that it is bigger than $\operatorname{val}_{X_{\alpha}}(\operatorname{det} A)$ for all $\alpha \in \Delta$ and claim that $D^{++} \subseteq X_{\Delta}^{-r} M$ whence D^{++}is finitely generated over E_{Δ}^{+}as E_{Δ}^{+}is noetherian. Assume for contradiction that $d=\sum_{i=1}^{n} d_{i} e_{i}$ lies in D^{++}for some $d_{i} \in E_{\Delta}(i=1, \ldots, n)$ such that at least one d_{i}, say d_{1}, does not lie in $X_{\Delta}^{-r} E_{\Delta}^{+}$. In particular, there exists an α in Δ such that $\operatorname{val}_{X_{\alpha}}\left(d_{1}\right)<-r$. Since M is open in D and $d \in D^{++}$, there exists an integer $k>0$ such that $\varphi_{s}^{k}(d)$ is in M which is equivalent to saying that the column vector

$$
A \varphi_{s}(A) \ldots \varphi_{s}^{k-1}(A)\left(\begin{array}{c}
\varphi_{s}^{k}\left(d_{1}\right) \\
\vdots \\
\varphi_{s}^{k}\left(d_{n}\right)
\end{array}\right)
$$

lies in E_{Δ}^{+n}. Multiplying this by the matrix built from the $(n-1) \times(n-1)$ minors of $A \varphi_{s}(A) \ldots \varphi_{s}^{k-1}(A)$ we deduce that $\operatorname{det}\left(A \varphi_{s}(A) \ldots \varphi_{s}^{k-1}(A)\right) \varphi_{s}^{k}\left(d_{1}\right)=\operatorname{det}(A)^{\frac{p^{k}-1}{p-1}} d_{1}^{p^{k}}$ lies in E_{Δ}^{+}. We compute

$$
\begin{array}{r}
0 \leq \operatorname{val}_{X_{\alpha}}\left(\operatorname{det}(A)^{\frac{p^{k}-1}{p-1}} d_{1}^{p^{k}}\right)=\frac{p^{k}-1}{p-1} \operatorname{val}_{X_{\alpha}}(\operatorname{det}(A))+p^{k} \operatorname{val}_{X_{\alpha}}\left(d_{1}\right)< \\
<\frac{p^{k}-1}{p-1} \operatorname{val}_{X_{\alpha}}(\operatorname{det}(A))-p^{k} r<0
\end{array}
$$

by our assumption that $r>\operatorname{val}_{X_{\alpha}}(\operatorname{det}(A))$, yielding a contradiction.
In the general case note that D is always stably free by Prop. 2.2 and Lemma 2.3. So $D_{1}:=D \oplus E_{\Delta}^{k}$ is a free module over E_{Δ} for k large enough. We make D_{1} into an étale $T_{+, \Delta}$-module by the trivial action of $T_{+, \Delta}$ on E_{Δ}^{k} to deduce that D_{1}^{++}is finitely generated over E_{Δ}^{+}. The result follows noting that $D^{++} \subseteq D_{1}^{++}$and E_{Δ}^{+}is noetherian.

For an object D in $\mathcal{D}^{\text {et }}\left(\varphi_{\Delta}, \Gamma_{\Delta}, E_{\Delta}\right)$ we define

$$
D^{+}:=\left\{x \in D \mid\left\{\varphi_{s}^{k}(x): k \geq 0\right\} \subset D \text { is bounded }\right\}
$$

Since $\varphi_{s}^{k}\left(X_{\Delta}\right)$ tends to 0 in the X_{Δ}-adic topology, we have $X_{\Delta} D^{+} \subseteq D^{++}$, ie. $D^{+} \subseteq X_{\Delta}^{-1} D^{++}$. In particular, D^{+}is finitely generated over E_{Δ}^{+}. On the other hand, we also have $D^{++} \subseteq D^{+}$ by construction whence we deduce $D=D^{+}\left[X_{\Delta}^{-1}\right]$.

Lemma 2.6. We have $\varphi_{t}\left(D^{+}\right) \subset D^{+}\left(\right.$resp. $\left.\varphi_{t}\left(D^{++}\right) \subset D^{++}\right)$for all $\varphi_{t} \in T_{+, \Delta}$.
Proof. For any generating system e_{1}, \ldots, e_{n} of D and any $\varphi_{t} \in T_{+, \Delta}$ there exists an integer $k=k\left(\varphi_{t}, M\right)>0$ such that we have $\varphi_{t}\left(X_{\Delta}^{k} M\right) \subseteq X_{\Delta}^{k} E_{\Delta}^{+} \varphi_{t}(M) \subseteq M$ where we put $M:=$
$E_{\Delta}^{+} e_{1}+\cdots+E_{\Delta}^{+} e_{n}$ by Lemma 2.4 . Indeed, X_{Δ} divides $\varphi_{t}\left(X_{\Delta}\right)$ in E_{Δ}^{+}, and we have $D=$ $M\left[1 / X_{\Delta}\right]$ by construction. The statement on D^{++}follows from the commutativity of the monoid $T_{+, \Delta}$ noting that there exists a basis of neighbouhoods of 0 in D consisting of $E_{\Delta^{-}}^{+}$ submodules of the form M. To see that $\varphi_{t}\left(D^{+}\right) \subseteq D^{+}$note that $\varphi_{t}\left(D^{+}\right)$is bounded and we have $\varphi_{s}^{k}\left(\varphi_{t}\left(D^{+}\right)\right)=\varphi_{t}\left(\varphi_{s}^{k}\left(D^{+}\right)\right) \subset \varphi_{t}\left(D^{+}\right)$.

Now fix an $\alpha \in \Delta$ and define $D_{\bar{\alpha}}^{+}:=D^{+}\left[X_{\Delta \backslash\{\alpha\}}^{-1}\right]$ where for any subset $S \subseteq \Delta$ we put $X_{S}:=\prod_{\beta \in S} X_{\beta}$. Then $D_{\bar{\alpha}}^{+}$is a finitely generated module over $E_{\bar{\alpha}}^{+}:=E_{\Delta}^{+}\left[X_{\Delta \backslash\{\alpha\}}^{-1}\right]$. We denote by $T_{+, \bar{\alpha}} \subset T_{+, \Delta}$ the monoid generated by $\varphi_{\beta}(\beta \in \Delta \backslash\{\alpha\})$ and Γ_{Δ}.

Lemma 2.7. $D_{\bar{\alpha}}^{+} / D^{+}$is X_{α}-torsion free: If both $X_{\alpha}^{n_{1}} d$ and $X_{\Delta \backslash\{\alpha\}}^{n_{2}}$ d lie in D^{+}for some element $d \in D^{+}, \alpha \in \Delta$, and integers $n_{1}, n_{2} \geq 0$ then we have $d \in D^{+}$. The same statement holds if we replace D^{+}by D^{++}.

Proof. At first assume that D is free as a module over E_{Δ} with basis e_{1}, \ldots, e_{n}. Then the denominators of $\varphi_{s}^{k}\left(X_{\alpha}^{n_{1}} d\right)=X_{\alpha}^{n_{1} p^{k}} \varphi_{s}^{k}(d)$ in the basis e_{1}, \ldots, e_{n} are bounded for $k \geq 0$ by assumption. Therefore the X_{β}-valuations of the denominators of $\varphi_{s}^{k}(d)$ are bounded for all $\beta \in \Delta \backslash\{\alpha\}$ since E_{Δ}^{+}is a unique factorization domain. On the other hand, the X_{α}-valuations of these denominators are also bounded since the denominators of $\varphi_{s}^{k}\left(X_{\Delta \backslash\{\alpha\}}^{n_{2}} d\right)=X_{\Delta \backslash\{\alpha\}\}}^{n_{2} p^{k}} \varphi_{s}^{k}(d)$ are bounded. To prove the statement we have the same argument but 'being bounded' replaced by 'tends to 0 '.

Finally, by Prop. 2.2 and Lemma $2.3 D \oplus E_{\Delta}^{k}$ is free over E_{Δ} and we equip it with the structure of an étale (φ, Γ)-module (trivially on E_{Δ}^{k}). The statement follows from the additivity of the constructions $D \mapsto D^{+}$and $D \mapsto D_{\bar{\alpha}}^{+}$in direct sums.

Lemma 2.8. Assume that D is generated by a single element $e_{1} \in D$ over E_{Δ}. Then for any φ_{t} in $T_{+, \bar{\alpha}}$ we have $\varphi_{t}\left(e_{1}\right)=a_{t} e_{1}$ for some unit a_{t} in $\left(E_{\bar{\alpha}}^{+}\right)^{\times}$.

Proof. Define $a_{t} \in E_{\Delta}$ and $a_{\alpha} \in E_{\Delta}$ so that $\varphi_{t}\left(e_{1}\right)=a_{t} e_{1}$ and $\varphi_{\alpha}\left(e_{1}\right)=a_{\alpha} e_{1}$. By the étale property both a_{t} and a_{α} are units in E_{Δ}, so it remains to show that $\operatorname{val}_{X_{\alpha}}\left(a_{t}\right)=0$. We compute

$$
\begin{array}{r}
\varphi_{\alpha}\left(a_{t}\right) a_{\alpha} e_{1}=\varphi_{\alpha}\left(a_{t}\right) \varphi_{\alpha}\left(e_{1}\right)=\varphi_{\alpha}\left(a_{t} e_{1}\right)=\varphi_{\alpha}\left(\varphi_{t}\left(e_{1}\right)\right)= \\
=\varphi_{t}\left(\varphi_{\alpha}\left(e_{1}\right)\right)=\varphi_{t}\left(a_{\alpha} e_{1}\right)=\varphi_{t}\left(a_{\alpha}\right) \varphi_{t}\left(e_{1}\right)=\varphi_{t}\left(a_{\alpha}\right) a_{t} e_{1}
\end{array}
$$

whence we deduce

$$
p \operatorname{val}_{X_{\alpha}}\left(a_{t}\right)+\operatorname{val}_{X_{\alpha}}\left(a_{\alpha}\right)=\operatorname{val}_{X_{\alpha}}\left(\varphi_{\alpha}\left(a_{t}\right) a_{\alpha}\right)=\operatorname{val}_{X_{\alpha}}\left(\varphi_{t}\left(a_{\alpha}\right) a_{t}\right)=\operatorname{val}_{X_{\alpha}}\left(a_{\alpha}\right)+\operatorname{val}_{X_{\alpha}}\left(a_{t}\right)
$$

This yields $\operatorname{val}_{X_{\alpha}}\left(a_{t}\right)=0$ as required.
Lemma 2.9. There exists an integer $k=k(D)>0$ such that for any $\varphi_{t} \in T_{+, \bar{\alpha}}$ we have $X_{\alpha}^{k} D_{\bar{\alpha}}^{+} \subseteq E_{\Delta}^{+} \varphi_{t}\left(D_{\bar{\alpha}}^{+}\right)$.

Proof. At first assume that D is free, choose a basis e_{1}, \ldots, e_{n} contained in D^{+}, and put $M:=E_{\Delta}^{+} e_{1}+\ldots E_{\Delta}^{+} e_{n}, M_{\alpha}:=E_{\bar{\alpha}}^{+} e_{1}+\cdots+E_{\bar{\alpha}}^{+} e_{n}$. There exists an integer $k_{0}>0$ such that $D^{+} \subseteq X_{\Delta}^{-k_{0}} M$. In particular, we have $D_{\bar{\alpha}}^{+} \subseteq X_{\alpha}^{-k_{0}} M_{\bar{\alpha}}$. Now for a fixed $\varphi_{t} \in T_{+, \bar{\alpha}}$ let $A_{t} \in E_{\Delta}^{n \times n}$ be the matrix of φ_{t} in the basis e_{1}, \ldots, e_{n}. Since $\varphi_{t}\left(e_{i}\right)$ lies in $D^{+} \subseteq X_{\alpha}^{-k_{0}} M_{\bar{\alpha}}$,
all the entries of the matrix A_{t} are in $X_{\alpha}^{-k_{0}} E_{\bar{\alpha}}^{+}$. Applying Lemma 2.8 to the single generator $e_{1} \wedge \cdots \wedge e_{n}$ of $\bigwedge^{n} D$ we obtain $\operatorname{val}_{X_{\alpha}}\left(\operatorname{det} A_{t}\right)=0$. In particular, all the entries of A_{t}^{-1} lie in $X_{\alpha}^{-(n-1) k_{0}} E_{\bar{\alpha}}^{+}$by the formula for the inverse matrix using the $(n-1) \times(n-1)$ minors in A_{t}. Now note that the elements e_{1}, \ldots, e_{n} can be written as a linear combination of $\varphi_{t}\left(e_{1}\right), \ldots, \varphi_{t}\left(e_{n}\right)$ with coefficients from A_{t}^{-1}. Using Lemma 2.6 this shows

$$
X_{\alpha}^{k_{0}} D_{\bar{\alpha}}^{+} \subseteq M_{\bar{\alpha}} \subseteq X_{\alpha}^{-(n-1) k_{0}} \varphi_{t}\left(M_{\bar{\alpha}}\right) \subseteq X_{\alpha}^{-(n-1) k_{0}} D_{\bar{\alpha}}^{+}
$$

So we may choose $k:=n k_{0}$ independent of φ_{t}.
The general case follows from Prop. 2.2 and Lemma 2.3 noting that the functor $D \mapsto D_{\bar{\alpha}}^{+}$ commutes with direct sums.

In view of the above Lemma we define

$$
D_{\bar{\alpha}}^{+*}:=\bigcap_{\varphi t \in T_{+, \bar{\alpha}}} E_{\bar{\alpha}}^{+} \varphi_{t}\left(D_{\bar{\alpha}}^{+}\right) .
$$

$D_{\bar{\alpha}}^{+*}$ is finitely generated over $E_{\bar{\alpha}}^{+}$as it is contained in $D_{\bar{\alpha}}^{+}$and $E_{\bar{\alpha}}^{+}$is noetherian. On the other hand, by Lemma 2.9 we have $X_{\alpha}^{k} D_{\bar{\alpha}}^{+} \subseteq D_{\bar{\alpha}}^{+*}$ for some integer $k=k(D)>0$ whence, in particular, $D=D_{\bar{\alpha}}^{+*}\left[X_{\alpha}^{-1}\right]$.

Proposition 2.10. $D_{\bar{\alpha}}^{+*}$ is an étale $T_{+, \bar{\alpha}}$-module over $E_{\bar{\alpha}}^{+}$, ie. the maps

$$
\begin{equation*}
\mathrm{id} \otimes \varphi_{t}: \varphi_{t}^{*} D_{\bar{\alpha}}^{+*}=E_{\bar{\alpha}}^{+} \otimes_{E_{\bar{\alpha}}^{+}, \varphi_{t}} D_{\bar{\alpha}}^{+*} \rightarrow D_{\bar{\alpha}}^{+*} \tag{2}
\end{equation*}
$$

are bijective for all $\varphi_{t} \in T_{+, \alpha}$.
Proof. At first note that we have $\varphi_{t}\left(D_{\bar{\alpha}}^{+*}\right) \subseteq D_{\bar{\alpha}}^{+*}$ for all $\varphi_{t} \in T_{+, \bar{\alpha}}$ by Lemma 2.6 and the commutativity of $T_{+, \bar{\alpha}}$, so the map (2) exists. Now let $\varphi_{t_{0}} \in T_{+, \bar{\alpha}}$ be arbitrary. Since $E_{\bar{\alpha}}^{+}$(resp. $\left.E_{\Delta}\right)$ is a finite free module over $\varphi_{t_{0}}\left(E_{\bar{\alpha}}^{+}\right)$(resp. over $\varphi_{t_{0}}\left(E_{\Delta}\right)$) with generators contained in E_{Δ}^{+}, we have a natural identification $\varphi_{t_{0}}^{*} D_{\bar{\alpha}}^{+*} \cong E_{\Delta}^{+} \otimes_{E_{\Delta}^{+}, \varphi_{t_{0}}} D_{\Delta}^{+*}\left(\right.$ resp. $\left.\varphi_{t_{0}}^{*} D \cong E_{\Delta}^{+} \otimes_{E_{\Delta}, \varphi_{t_{0}}} D\right)$. Since E_{Δ}^{+}is finite free (hence flat) over $\varphi_{t_{0}}\left(E_{\Delta}^{+}\right)$, the inclusion $D_{\bar{\alpha}}^{+} \subset D$ induces an inclusion $\varphi_{t_{0}}^{*} D_{\bar{\alpha}}^{+} \subset \varphi_{t_{0}}^{*} D$. It follows that (2) is injective since D is étale. Similarly, for each $\varphi_{t} \in T_{+, \bar{\alpha}}$, the map

$$
\operatorname{id} \otimes \varphi_{t_{0}}: \varphi_{t_{0}}^{*}\left(E_{\bar{\alpha}}^{+} \varphi_{t}\left(D_{\bar{\alpha}}^{+}\right)\right) \rightarrow E_{\bar{\alpha}}^{+} \varphi_{t}\left(D_{\bar{\alpha}}^{+}\right)
$$

is injective with image $E_{\bar{\alpha}}^{+} \varphi_{t_{0}} \varphi_{t}\left(D_{\bar{\alpha}}^{+}\right)$. On the other hand, since E_{Δ}^{+}is finite free over $\varphi_{t_{0}}\left(E_{\Delta}^{+}\right)$, we have $\varphi_{t_{0}}^{*} D_{\bar{\alpha}}^{+*}=\bigcap_{t \in T_{+, \bar{\alpha}}} \varphi_{t_{0}}^{*}\left(E_{\bar{\alpha}}^{+} \varphi_{t}\left(D_{\bar{\alpha}}^{+}\right)\right)$where the intersection is taken inside $\varphi_{t_{0}}^{*} D$. Therefore (2) is bijective as we have $D_{\bar{\alpha}}^{+*}=\bigcap_{\varphi_{t} \in T_{+, \bar{\alpha}}} E_{\bar{\alpha}}^{+} \varphi_{t_{0}} \varphi_{t}\left(D_{\bar{\alpha}}^{+}\right)$.

Lemma 2.11. There exists a finitely generated E_{Δ}^{+}submodule $D_{0} \subset D_{\bar{\alpha}}^{+*}$ such that $D_{0} \subseteq$ $E_{\Delta}^{+} \varphi_{\bar{\alpha}}\left(D_{0}\right)$ and $D_{\bar{\alpha}}^{+*}=D_{0}\left[X_{\Delta \backslash\{\alpha\}}^{-1}\right]$ where $\varphi_{\bar{\alpha}}:=\prod_{\beta \in \Delta \backslash\{\alpha\}} \varphi_{\beta}$. Moreover, we have $D_{\bar{\alpha}}^{+*}=$ $\bigcup_{r \geq 0} E_{\Delta}^{+} \varphi_{\bar{\alpha}}^{r}\left(X_{\Delta \backslash\{\alpha\}}^{-1} D_{0}\right)$.

Proof. Put $D_{1}:=D^{+} \cap D_{\bar{\alpha}}^{+*}$. By Prop. 2.10 and the fact that $D_{\bar{\alpha}}^{+*}=D_{1}\left[X_{\Delta \backslash\{\alpha\}}^{-1}\right]$ we find an integer $k_{0}>0$ such that $X_{\Delta \backslash\{\alpha\}}^{k_{0}} D_{1} \subseteq E_{\Delta}^{+} \varphi_{\bar{\alpha}}\left(D_{1}\right)$. So for $k>\frac{k_{0}}{p-1}$ we have

$$
X_{\Delta \backslash\{\alpha\}}^{-k} D_{1} \subseteq X_{\Delta \backslash\{\alpha\}}^{-k-k_{0}} E_{\Delta}^{+} \varphi_{\bar{\alpha}}\left(D_{1}\right) \subseteq X_{\Delta \backslash\{\alpha\}}^{-p k} E_{\Delta}^{+} \varphi_{\bar{\alpha}}\left(D_{1}\right)=E_{\Delta}^{+} \varphi_{\bar{\alpha}}\left(X_{\Delta \backslash\{\alpha\}}^{-k} D_{1}\right)
$$

So we put $D_{0}:=X_{\Delta \backslash\{\alpha\}}^{-k} D_{1}$ so that the first part of the statement is satisfied. Iterating the inclusion $D_{0} \subseteq E_{\Delta}^{+} \varphi_{\bar{\alpha}}\left(D_{0}\right)$ we obtain $D_{0} \subseteq E_{\Delta}^{+} \varphi_{\bar{\alpha}}^{r}\left(D_{0}\right)$ for all $r \geq 1$. Finally, we compute

$$
X_{\Delta \backslash\{\alpha\}}^{-p^{r}} D_{0} \subseteq X_{\Delta \backslash\{\alpha\}}^{-p^{r}} E_{\Delta}^{+} \varphi_{\bar{\alpha}}^{r}\left(D_{0}\right)=E_{\Delta}^{+} \varphi_{\bar{\alpha}}^{r}\left(X_{\Delta \backslash\{\alpha\}}^{-1} D_{0}\right)
$$

The statement follows noting that we have $D_{\bar{\alpha}}^{+*}=D_{0}\left[X_{\Delta \backslash\{\alpha\}}^{-1}\right]=\bigcup_{r} X_{\Delta \backslash\{\alpha\}}^{-p^{r}} D_{0}$.

3 The equivalence of categories for \mathbb{F}_{p}-representations

3.1 The functor \mathbb{D}

Take a copy $G_{\mathbb{Q}_{p}, \alpha} \cong \operatorname{Gal}\left(\overline{\mathbb{Q}_{p}} / \mathbb{Q}_{p}\right)$ of the absolute Galois group of \mathbb{Q}_{p} for each element $\alpha \in \Delta$ and let $G_{\mathbb{Q}_{p}, \Delta}:=\prod_{\alpha \in \Delta} G_{\mathbb{Q}_{p}, \alpha}$. Let $\operatorname{Rep}_{\mathbb{F}_{p}}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$ be the category of continuous representations of the group $G_{\mathbb{Q}_{p}, \Delta}$ on finite dimensional \mathbb{F}_{p} vectorspaces. We identify Γ_{α} with the Galois group $\operatorname{Gal}\left(\mathbb{Q}_{p}\left(\mu_{p^{\infty}}\right) / \mathbb{Q}_{p}\right)$ as a quotient of $G_{\mathbb{Q}_{p}, \alpha}$ via the cyclotomic character $\chi_{\alpha}: \operatorname{Gal}\left(\mathbb{Q}_{p}\left(\mu_{p^{\infty}}\right) / \mathbb{Q}_{p}\right) \rightarrow \mathbb{Z}_{p}^{\times}$. Further, we denote by $H_{\mathbb{Q}_{p}, \alpha}$ the kernel of the natural quotient $\operatorname{map} G_{\mathbb{Q}_{p}, \alpha} \rightarrow \Gamma_{\alpha}$ and put $H_{\mathbb{Q}_{p}, \Delta}:=\prod_{\alpha \in \Delta} H_{\mathbb{Q}_{p}, \alpha} \triangleleft G_{\mathbb{Q}_{p}, \Delta}$. Putting $E_{\alpha}:=\mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right)$ we have the following fundamental result of Fontaine and Wintenberger (Thm. 4.16 [5]).

Theorem 3.1. The absolute Galois group $\operatorname{Gal}\left(E_{\alpha}^{\text {sep }} / E_{\alpha}\right)$ is isomorphic to $H_{\mathbb{Q}_{p}, \alpha}$. Moreover, $G_{\mathbb{Q}_{p}, \alpha}$ acts on the separable closure $E_{\alpha}^{\text {sep }}$ via automorphisms such that the action of $\Gamma_{\alpha} \cong$ $G_{\mathbb{Q}_{p}, \alpha} / H_{\mathbb{Q}_{p}, \alpha}$ on $E_{\alpha}=\left(E_{\alpha}^{s e p}\right)^{H_{\mathbb{Q}_{p}, \alpha}}$ coincides with the one given in (1).

For each $\alpha \in \Delta$ consider a finite separable extension E_{α}^{\prime} of E_{α} together with the Frobenius $\varphi_{\alpha}: E_{\alpha}^{\prime} \rightarrow E_{\alpha}^{\prime}$ acting by raising to the power p. We denote by $E_{\alpha}^{\prime+}$ the integral closure of $E_{\alpha}^{+}=\mathbb{F}_{p}\left[\left[X_{\alpha}\right]\right]$ in E_{α}^{\prime}. Note that E_{α}^{\prime} is isomorphic to $\mathbb{F}_{q_{\alpha}}\left(\left(X_{\alpha}^{\prime}\right)\right)$ for some power q_{α} of p and uniformizer X_{α}^{\prime} such that we have $E_{\alpha}^{\prime+} \cong \mathbb{F}_{q_{\alpha}}\left[\left[X_{\alpha}^{\prime}\right]\right]$. We normalize the X_{α}-adic (multiplicative) valuation on E_{α} so that we have $\left|X_{\alpha}\right|_{X_{\alpha}}=p^{-1}$. This extends uniquely to the finite extension E_{α}^{\prime}. Moreover, we equip the tensor product $E_{\Delta, \circ}^{\prime}:=\bigotimes_{\alpha \in \Delta, \mathbb{F}_{p}} E_{\alpha}^{\prime}$ with a norm $|\cdot|_{\text {prod }}$ by the formula

$$
\begin{equation*}
|c|_{\text {prod }}:=\inf \left(\max _{i}\left(\prod_{\alpha \in \Delta}\left|c_{\alpha, i}\right|_{\alpha}\right) \mid c=\sum_{i=1}^{n} \bigotimes_{\alpha \in \Delta} c_{\alpha, i}\right) \tag{3}
\end{equation*}
$$

Note that the restriction of $|\cdot|_{\text {prod }}$ to the subring $E_{\Delta, \circ}^{\prime+}:=\bigotimes_{\alpha \in \Delta, \mathbb{F}_{p}} E_{\alpha}^{\prime+}$ induces the valuation with respect to the augmentation ideal $\operatorname{Ker}\left(E_{\Delta, \circ}^{\prime+} \rightarrow \bigotimes_{\alpha \in \Delta, \mathbb{F}_{p}} \mathbb{F}_{q_{\alpha}}\right)$. The norm $|\cdot|_{\text {prod }}$ is not multiplicative in general, as the ring $\left.\bigotimes_{\alpha \in \Delta, \mathbb{F}_{p}} \mathbb{F}_{q_{\alpha}}\right)$ is not a domain. However, it is submultiplicative. We define $E_{\Delta}^{\prime+}$ as the completion of $E_{\Delta, \circ}^{\prime+}$ with respect to $|\cdot|_{\text {prod }}$ and put $E_{\Delta}^{\prime}:=E_{\Delta}^{\prime+}\left[1 / X_{\Delta}\right]$. Note that E_{Δ}^{\prime} is not complete with respect to $|\cdot|_{\text {prod }}$ (unless $|\Delta|=1$) even though $E_{\Delta, \circ}^{\prime}=E_{\Delta, \circ}^{\prime+}\left[1 / X_{\Delta}\right]$ is a dense subring in E_{Δ}^{\prime}. Since we have a containment

$$
\left(\bigotimes_{\alpha \in \Delta, \mathbb{F}_{p}} \mathbb{F}_{q_{\alpha}}\right)\left[X_{\alpha}^{\prime}, \alpha \in \Delta\right]=\bigotimes_{\alpha \in \Delta, \mathbb{F}_{p}} \mathbb{F}_{q_{\alpha}}\left[X_{\alpha}\right] \leq_{\text {dense }} E_{\Delta, \circ}^{\prime+}
$$

we may identify $E_{\Delta}^{\prime+}$ with the power series ring $\left(\bigotimes_{\alpha \in \Delta, \mathbb{F}_{p}} \mathbb{F}_{q_{\alpha}}\right)\left[\left[X_{\alpha}^{\prime}, \alpha \in \Delta\right]\right]$ which is the completion of the polynomial ring above. In particular, the special case $E_{\alpha}^{\prime}=E_{\alpha}$ for all $\alpha \in \Delta$ yields a ring E_{Δ}^{\prime} isomorphic to E_{Δ}. Therefore E_{Δ} is a subring of E_{Δ}^{\prime} for all collection
of finite separable extensions E_{α}^{\prime} of $E_{\alpha}(\alpha \in \Delta)$. Further, φ_{α} acts on $E_{\Delta, \mathrm{o}}^{\prime+}$ (and on $E_{\Delta, \mathrm{o}}^{\prime}$) by the Frobenius on the component in E_{α}^{\prime} and by the identity on all the other components in E_{β}^{\prime}, $\beta \in \Delta \backslash\{\alpha\}$. This action is continuous in the norm $|\cdot|_{\text {prod }}$ therefore extends to the completion $E_{\Delta}^{\prime+}$ and the localization E_{Δ}^{\prime}. We have the following alternative characterization of the ring E_{Δ}^{\prime}.

Lemma 3.2. Put $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. We have

$$
E_{\Delta}^{\prime} \cong E_{\alpha_{1}}^{\prime} \otimes_{E_{\alpha_{1}}}\left(E_{\alpha_{2}}^{\prime} \otimes_{E_{\alpha_{2}}}\left(\cdots\left(E_{\alpha_{n}}^{\prime} \otimes_{E_{\alpha_{n}}} E_{\Delta}\right)\right)\right)
$$

Proof. By rearranging the order of tensor products we have an identification

$$
E_{\Delta, \circ}^{\prime+}=\bigotimes_{\alpha \in \Delta, \mathbb{F}_{p}}\left(E_{\alpha}^{\prime+} \otimes_{E_{\alpha}^{+}} E_{\alpha}^{+}\right) \cong E_{\alpha_{1}}^{\prime+} \otimes_{E_{\alpha_{1}}^{+}}\left(E_{\alpha_{2}}^{\prime+} \otimes_{E_{\alpha_{2}}^{+}}\left(\ldots\left(E_{\alpha_{n}}^{\prime+} \otimes_{E_{\alpha_{n}}^{+}} E_{\Delta, \circ}^{+}\right)\right)\right)
$$

The statement follows by completing this with respect to the maximal ideal of E_{Δ}^{+}and inverting X_{Δ}.

We define the multivariable analogue of $E^{\text {sep }}$ as

For any subset $S \subseteq \Delta$ we define the similar notions $E_{S}^{\prime+}, E_{S}^{\prime}$, and $E_{S}^{s e p}$ with Δ replaced by S. We equip $E_{\Delta}^{s e p}$ with the relative Frobenii φ_{α} for each $\alpha \in \Delta$ defined above on each E_{Δ}^{\prime}. Further, $E_{\Delta}^{s e p}$ admits an action of $G_{\mathbb{Q}_{p}, \Delta}$ satisfying

Proposition 3.3. Assume that the extensions $E_{\alpha}^{\prime} / E_{\alpha}$ are Galois for all $\alpha \in \Delta$ and let $H^{\prime}:=\prod_{\alpha \in \Delta} H_{\alpha}^{\prime}$ where $H_{\alpha}^{\prime}:=\operatorname{Gal}\left(E_{\alpha}^{\text {sep }} / E_{\alpha}^{\prime}\right)$. Then we have $\left(E_{\Delta}^{s e p}\right) H_{\Delta}^{\prime}=E_{\Delta}^{\prime}$. In particular, the subring $\left(E_{\Delta}^{s e p}\right)^{H_{\mathbb{Q}_{p}, \Delta}}$ of $H_{\mathbb{Q}_{p}, \Delta \text {-invariants }}$ in $E_{\Delta}^{\text {sep }}$ equals E_{Δ} with the previously defined action of $\Gamma_{\Delta} \cong G_{\mathbb{Q}_{p}, \Delta} / H_{\mathbb{Q}_{p}, \Delta}$.

Proof. Since X_{Δ} is H_{Δ}^{\prime}-invariant and $\underset{\longrightarrow}{\lim }$ can be interchanged with taking H_{Δ}^{\prime}-invariants, it suffices to show that whenever

$$
E_{\alpha}=\mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right) \leq E_{\alpha}^{\prime}=\mathbb{F}_{q_{\alpha}^{\prime}}\left(\left(X_{\alpha}^{\prime}\right)\right) \leq E_{\alpha}^{\prime \prime}=\mathbb{F}_{q_{\alpha}^{\prime \prime}}\left(\left(X_{\alpha}^{\prime \prime}\right)\right)
$$

is a a sequence of finite Galois extensions for each $\alpha \in \Delta$ then we have $\left(E_{\Delta}^{\prime \prime+}\right)^{H_{\Delta}^{\prime}}=E_{\Delta}^{\prime+}$. The containment $\left(E_{\Delta}^{\prime \prime+}\right)^{H_{\Delta}^{\prime}} \supseteq E_{\Delta}^{\prime+}$ is clear. We prove the converse by induction on $|\Delta|$. Note that the ideal $\mathcal{M}_{\alpha} \triangleleft E_{\Delta}^{\prime \prime+}$ generated by $X_{\alpha}^{\prime \prime}$ is invariant under the action of H_{Δ}^{\prime} for any fixed α in Δ. Moreover, for any integer $k \geq 1$ the ring $E_{\alpha}^{\prime \prime+} / \mathcal{M}_{\alpha}^{k}$ is finite dimensional over \mathbb{F}_{p}. Therefore the image of $\left(E_{\Delta}^{\prime \prime+}\right)^{H_{\Delta}^{\prime}}$ under the quotient map $E_{\Delta}^{\prime \prime+} \rightarrow E_{\Delta}^{\prime \prime+} / \mathcal{M}_{\alpha}^{k}$ is contained in

$$
\begin{aligned}
&\left(E_{\Delta}^{\prime \prime+} / \mathcal{M}_{\alpha}^{k}\right)^{H_{\Delta}^{\prime}} \subseteq\left(E_{\Delta}^{\prime \prime+} / \mathcal{M}_{\alpha}^{k}\right)^{H_{\Delta \backslash\{\alpha\}}^{\prime}}=\left(E_{\Delta \backslash\{\alpha\}}^{\prime \prime+} \otimes_{\mathbb{F}_{p}}\left(E_{\alpha}^{\prime \prime+} / \mathcal{M}_{\alpha}^{k}\right)\right)^{H_{\Delta \backslash \alpha\}}^{\prime}}= \\
&=\left(E_{\Delta \backslash\{\alpha\}}^{\prime \prime+}\right)^{H_{\Delta \backslash\{\alpha\}}^{\prime}} \otimes_{\mathbb{F}_{p}}\left(E_{\alpha}^{\prime \prime+} / \mathcal{M}_{\alpha}^{k}\right)=E_{\Delta \backslash\{\alpha\}}^{\prime+} \otimes_{\mathbb{F}_{p}}\left(E_{\alpha}^{\prime \prime+} / \mathcal{M}_{\alpha}^{k}\right)
\end{aligned}
$$

by induction. Taking the projective limit with respect to $k \geq 1$ we deduce that $\left(E_{\Delta}^{\prime \prime+}\right)^{H_{\Delta}^{\prime}}$ is contained in the power series ring

$$
\left(\mathbb{F}_{q_{\alpha}^{\prime \prime}} \otimes_{\mathbb{F}_{p}} \bigotimes_{\beta \in \Delta \backslash\{\alpha\}, \mathbb{F}_{p}} \mathbb{F}_{q_{\beta}^{\prime}}\right)\left[\left[X_{\alpha}^{\prime \prime}, X_{\beta}^{\prime} \mid \beta \in \Delta \backslash\{\alpha\}\right]\right] \subseteq E_{\Delta}^{\prime \prime+}
$$

Now using the action of H_{α}^{\prime} in a similar argument as above (reducing modulo the k th power of the ideal generated by all the $X_{\beta}^{\prime}, \beta \in \Delta \backslash\{\alpha\}$ for all $k \geq 1$) we deduce the statement.

The subring $E_{\Delta, \circ}^{s e p} \cong \bigotimes_{\alpha \in \Delta, \mathbb{F}_{p}} E_{\alpha}^{\text {sep }}$ in $E_{\Delta}^{s e p}$ is the inductive limit of $E_{\Delta, \circ}^{\prime} \subseteq E_{\Delta}^{\prime}$ where E_{α}^{\prime} runs through the finite separable extensions of E_{α} for each $\alpha \in \Delta$.

Let V be a finite dimensional representation of the group $G_{\mathbb{Q}_{p}, \Delta}$ over \mathbb{F}_{p}. The basechange $E_{\Delta}^{s e p} \otimes_{\mathbb{F}_{p}} V$ is equipped with the diagonal semilinear action of $G_{\mathbb{Q}_{p}, \Delta}$ and with the Frobenii φ_{α} for $\alpha \in \Delta$. These all commute with each other. We define the value of the functor \mathbb{D} at V by putting

$$
\mathbb{D}(V):=\left(E_{\Delta}^{s e p} \otimes_{\mathbb{F}_{p}} V\right)^{H_{Q}, \Delta},
$$

By Lemma $3.3 \mathbb{D}(V)$ is a module over E_{Δ} inheriting the action of the monoid $T_{+, \Delta}$ from the action of $\varphi_{\alpha}(\alpha \in \Delta)$ and the Galois group $G_{\mathbb{Q}_{p}, \Delta}$ on $E_{\Delta}^{s e p} \otimes_{\mathbb{F}_{p}} V$. Our key Lemma is the following.

Lemma 3.4. The $E_{\Delta}^{\text {sep }}$-module $E_{\Delta}^{s e p} \otimes_{\mathbb{F}_{p}} V$ admits a basis consisting of elements fixed by $H_{\mathbb{Q}_{p}, \Delta}$.
Proof. At first consider the $E_{\Delta, \circ}^{s e p}$-module $E_{\Delta, \circ}^{s e p} \otimes_{\mathbb{F}_{p}} V$. We show by induction on $|\Delta|$ that $E_{\Delta, \circ}^{s e p} \otimes_{\mathbb{F}_{p}} V$ admits a basis consisting of $H_{\mathbb{Q}_{p}, \Delta \text {-invariant vectors. The statement follows from }}$ this noting that $E_{\Delta, \circ}^{s e p}$ is a subring in $E_{\Delta}^{s e p}$ therefore the required basis exists also in $E_{\Delta}^{s e p} \otimes_{\mathbb{F}_{p}} V \cong$ $E_{\Delta}^{s e p} \otimes_{E_{\Delta, \circ}^{s e p}}^{s e}\left(E_{\Delta, \circ}^{s e p} \otimes_{\mathbb{F}_{p}} V\right)$.

By Hilbert's Thm. 90 the $H_{\mathbb{Q}_{p}, \alpha}$-module $E_{\alpha}^{\text {sep }} \otimes_{\mathbb{F}_{p}} V$ is trivial for each $\alpha \in \Delta$. So we have an $E_{\alpha}^{s e p}$-basis $e_{1}^{(\alpha)}, \ldots, e_{d}^{(\alpha)}$ of $E_{\alpha}^{s e p} \otimes_{\mathbb{F}_{p}} V$ consisting of $H_{\mathbb{Q}_{p}, \alpha}$-invariant elements. Since we have an action of the direct product $H_{\mathbb{Q}_{p}, \Delta}$ on V, the E_{α}-vector space

$$
V_{\alpha}:=E_{\alpha} e_{1}^{(\alpha)}+\cdots+E_{\alpha} e_{d}^{(\alpha)}=\left(E_{\alpha}^{s e p} \otimes_{\mathbb{F}_{p}} V\right)^{H_{Q_{p}, \alpha}}
$$

admits a linear action of the group $H_{\mathbb{Q}_{p}, \Delta \backslash\{\alpha\}}$. Now note that the representations V and V_{α} of the group $H_{\mathbb{Q}_{p}, \Delta \backslash\{\alpha\}}$ become isomorphic over the field $E_{\alpha}^{\text {sep }}$ by construction. Since $H_{\mathbb{Q}_{p}, \Delta \backslash\{\alpha\}}$ acts through a finite quotient on V, there is a finite extension E_{α}^{\prime} of E_{α} contained in $E_{\alpha}^{s e p}$ such that we have an isomorphism $E_{\alpha}^{\prime} \otimes_{\mathbb{F}_{p}} V \cong E_{\alpha}^{\prime} \otimes_{E_{\alpha}} V_{\alpha}$ of $H_{\mathbb{Q}_{p}, \Delta \backslash\{\alpha\}}$-representations. Making this identification and writing $e_{i}:=1 \otimes e_{i} \in E_{\alpha}^{\prime} \otimes_{\mathbb{F}_{p}} V$ (resp. $e_{i}^{(\alpha)}:=1 \otimes e_{i}^{(\alpha)}$), $i=1, \ldots, d$, for a basis e_{1}, \ldots, e_{d} in V (resp. for the basis $e_{1}^{(\alpha)}, \ldots e_{d}^{(\alpha)}$ in V_{α}) by an abuse of notation, we find a matrix $B \in \mathrm{GL}_{d}\left(E_{\alpha}^{\prime}\right)$ with $B \rho(h)=\rho_{\alpha}(h) B$ for all $h \in H_{\mathbb{Q}_{p}, \Delta \backslash\{\alpha\}}$ where $\rho(h) \in \mathrm{GL}_{d}\left(\mathbb{F}_{p}\right)$ (resp. $\rho_{\alpha}(h) \in \mathrm{GL}_{d}\left(E_{\alpha}\right)$) is the matrix of the action of h on V (resp. on V_{α}) in the basis e_{1}, \ldots, e_{d} (resp. $e_{1}^{(\alpha)}, \ldots e_{d}^{(\alpha)}$). Now $E_{\alpha}^{\prime} / E_{\alpha}$ is a finite separable extension, so there exists a primitive element $u \in E_{\alpha}^{\prime}$ with $E_{\alpha}^{\prime}=E_{\alpha}(u)$. Hence we may write B is a $\operatorname{sum} B=B(u)=$ $B_{0}+B_{1} u+\cdots+B_{n-1} u^{n-1}$ for some matrices $B_{0}, B_{1}, \ldots, B_{n-1} \in E_{\alpha}^{d \times d}$ with $n:=\left|E_{\alpha}^{\prime}: E_{\alpha}\right|$. Since $\operatorname{det} B \neq 0$, the polynomial $\operatorname{det}(B(x)):=\operatorname{det}\left(B_{0}+B_{1} x+\cdots+B_{n-1} x^{n-1}\right) \in E_{\alpha}[x]$ is not identically 0 . As E_{α} is an infinite field, there exists a $u_{0} \in E_{\alpha}$ with $\operatorname{det} B\left(u_{0}\right) \neq 0$. Now
we have $\rho(h)=B\left(u_{0}\right)^{-1} \rho_{\alpha}(h) B\left(u_{0}\right)$ for all $h \in H_{\mathbb{Q}_{p}, \Delta \backslash\{\alpha\}}$, ie. the representations V and V_{α} of $H_{\mathbb{Q}_{p}, \Delta \backslash\{\alpha\}}$ are isomorphic already over E_{α}. This shows that there exists a basis $v_{1}^{(\alpha)}, \ldots v_{d}^{(\alpha)}$ in V_{α} such that the action of each h in $H_{\mathbb{Q}_{p}, \Delta \backslash\{\alpha\}}$ is given by a matrix in $\mathrm{GL}_{d}\left(\mathbb{F}_{p}\right)$ in this basis. We put

$$
\begin{aligned}
& V_{\Delta \backslash\{\alpha\}}:=\mathbb{F}_{p} v_{1}^{(\alpha)}+\ldots \mathbb{F}_{p} v_{d}^{(\alpha)} \subset V_{\alpha}=\left(E_{\alpha}^{s e p} \otimes_{\mathbb{F}_{p}} V\right)^{H_{\mathbb{Q}_{p}, \alpha}}= \\
&=\left(\bigotimes_{\beta \in \Delta \backslash\{\alpha\}} 1 \otimes\left(E_{\alpha}^{s e p} \otimes_{\mathbb{F}_{p}} V\right)\right)^{H_{\mathbb{Q}_{p}, \alpha}} \subseteq\left(E_{\Delta, \circ}^{s e p} \otimes_{\mathbb{F}_{p}} V\right)^{H_{\mathbb{Q}_{p}, \alpha}} .
\end{aligned}
$$

By induction we find a basis v_{1}, \ldots, v_{n} of $E_{\Delta \backslash\{\alpha\}}^{s e p} \otimes_{\mathbb{F}_{p}} V_{\Delta \backslash\{\alpha\}} \subseteq\left(E_{\Delta, \circ}^{s e p} \otimes_{\mathbb{F}_{p}} V\right)^{H_{\mathbb{Q}_{p}, \alpha}}$ consisting of $H_{\mathbb{Q}_{p}, \Delta \backslash\{\alpha\}}$-invariant elements which are $H_{\mathbb{Q}_{p}, \alpha}$-invariant, as well, by construction. Therefore v_{1}, \ldots, v_{n} is an $H_{\mathbb{Q}_{p}, \Delta}$-invariant basis of $E_{\Delta, \circ}^{s e p} \otimes_{\mathbb{F}_{p}} V$ as required.

Lemma 3.5. We have $\left(E_{\Delta}^{s e p}\right)^{\times} \cap E_{\Delta}=E_{\Delta}^{\times}$.
Proof. Let u be arbitrary in $\left(E_{\Delta}^{\text {sep }}\right)^{\times} \cap E_{\Delta}$. Since u is invariant under the action of $H_{\mathbb{Q}_{p}, \Delta}$, so is its inverse u^{-1} whence it also lies in E_{Δ} by Lemma 3.3.

Lemma 3.6. We have $\bigcap_{\alpha \in \Delta}\left(E_{\Delta}^{s e p}\right)^{\varphi_{\alpha}=\mathrm{id}}=\mathbb{F}_{p}$.
Proof. The containment $\mathbb{F}_{p} \subseteq \bigcap_{\alpha \in \Delta}\left(E_{\Delta}^{s e p}\right)^{\varphi_{\alpha}=\mathrm{id}} \subseteq\left(E_{\Delta}^{s e p}\right)^{\varphi_{s}=\mathrm{id}}$ is obvious. On the other hand, let $u \in E_{\Delta}^{\text {sep }}$ be arbitrary such that $\varphi_{\alpha}(u)=u$ for all $\alpha \in \Delta$. Then we also have $u^{p}=\varphi_{s}(u)=u$ as φ_{s} is the absolute Frobenius on $E_{\Delta}^{s e p}$. Since $E_{\Delta}^{s e p}$ is defined as an inductive limit, u lies in $E_{\Delta}^{\prime} \cong\left(\bigotimes_{\alpha \in \Delta, \mathbb{F}_{p}} \mathbb{F}_{q_{\alpha}}\right)\left[\left[X_{\alpha}^{\prime} \mid \alpha \in \Delta\right]\right]\left[X_{\Delta}\right]$ for some collection $E_{\alpha}^{\prime}=\mathbb{F}_{q_{\alpha}}\left(\left(X_{\alpha}^{\prime}\right)\right)(\alpha \in \Delta)$ of finite separable extensions of E_{α}. Note that $\bigotimes_{\alpha \in \Delta, \mathbb{F}_{p}} \mathbb{F}_{q_{\alpha}}$ is a finite étale algebra over \mathbb{F}_{p}, in particular, it is reduced. Therefore we have $\left|u^{p}\right|_{\text {prod }}=|u|_{\text {prod }}^{p}$. We deduce $|u|_{\text {prod }}=1$ unless $u=0$. In particular, u lies in $E_{\Delta}^{\prime+}=\left(\bigotimes_{\alpha \in \Delta, \mathbb{F}_{p}} \mathbb{F}_{q_{\alpha}}\right)\left[\left[X_{\alpha}^{\prime} \mid \alpha \in \Delta\right]\right]$. The constant term $u_{0} \in \bigotimes_{\alpha \in \Delta, \mathbb{F}_{p}} \mathbb{F}_{q_{\alpha}}$ also satisfies $\varphi_{\alpha}\left(u_{0}\right)=u_{0}$ for all $\alpha \in \Delta$. For a fixed $\alpha \in \Delta$ we choose an \mathbb{F}_{p}-basis d_{1}, \ldots, d_{n} of $\bigotimes_{\beta \in \Delta \backslash\{\alpha\}, \mathbb{F}_{p}} \mathbb{F}_{q_{\beta}}$ and write $u_{0}=\sum_{i=1}^{n} c_{i} \otimes d_{i}$ with $c_{i} \in \mathbb{F}_{q_{\alpha}}$. This decomposition is unique and we compute

$$
\sum_{i=1}^{n} c_{i} \otimes d_{i}=u_{0}=\varphi_{\alpha}\left(u_{0}\right)=\sum_{i=1}^{n} c_{i}^{p} \otimes d_{i}
$$

We deduce $c_{i}=c_{i}^{p}$, ie. $c_{i} \in \mathbb{F}_{p}$ for all $1 \leq i \leq n$. It follows by induction on $|\Delta|$ that u_{0} lies in \mathbb{F}_{p}. Now $u-u_{0}$ is also fixed by each $\varphi_{\alpha}(\alpha \in \Delta)$, but we have $\left|u-u_{0}\right|_{p r o d}<1$. This implies by the discussion above that $u=u_{0}$ is in \mathbb{F}_{p} as desired.
Proposition 3.7. $\mathbb{D}(V)$ is an étale $T_{+, \Delta}$-module over E_{Δ} of rank $d:=\operatorname{dim}_{\mathbb{F}_{p}} V$. Moreover, we have $E_{\Delta}^{\text {sep }} \otimes_{E_{\Delta}} \mathbb{D}(V) \cong E_{\Delta}^{\text {sep }} \otimes_{\mathbb{F}_{p}} V$ and

$$
V=\bigcap_{\alpha \in \Delta}\left(E_{\Delta}^{s e p} \otimes_{E_{\Delta}} \mathbb{D}(V)\right)^{\varphi_{\alpha}=\mathrm{id}}
$$

Proof. By Lemmata 3.3 and $3.4 \mathbb{D}(V)$ is a free module of rank d over E_{Δ}. Moreover, the matrix of φ_{α} in any basis of $\mathbb{D}(V)$ is invertible in $E_{\Delta}^{s e p}$, therefore also in E_{Δ} by Lemma 3.5. So the action of $T_{+, \Delta}$ on $\mathbb{D}(V)$ is étale. The last statement is a direct consequence of Lemmata 3.4 and 3.6 .

Lemma 3.8. For objects V, V_{1}, V_{2} in $\operatorname{Rep}_{\mathbb{F}_{p}}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$ we have $\mathbb{D}\left(V_{1} \otimes_{\mathbb{F}_{p}} V_{2}\right) \cong \mathbb{D}\left(V_{1}\right) \otimes_{E_{\Delta}} \mathbb{D}\left(V_{2}\right)$ and $\mathbb{D}\left(V^{*}\right) \cong \mathbb{D}(V)^{*}$.

Proof. We compute

$$
\begin{array}{r}
\mathbb{D}\left(V_{1} \otimes_{\mathbb{F}_{p}} V_{2}\right)=\left(E_{\Delta}^{s e p} \otimes_{\mathbb{F}_{p}} V_{1} \otimes_{\mathbb{F}_{p}} V_{2}\right)^{H_{\mathbb{Q}_{p}, \Delta}} \cong\left(\left(E_{\Delta}^{s e p} \otimes_{\mathbb{F}_{p}} V_{1}\right) \otimes_{E_{\Delta}^{s e p}}\left(E_{\Delta}^{s e p} \otimes_{\mathbb{F}_{p}} V_{2}\right)\right)^{H_{\mathbb{Q}_{p}, \Delta}} \cong \\
\left(\left(E_{\Delta}^{s e p} \otimes_{E_{\Delta}} \mathbb{D}\left(V_{1}\right)\right) \otimes_{E_{\Delta}^{s e p}}\left(E_{\Delta}^{s e p} \otimes_{E_{\Delta}} \mathbb{D}\left(V_{2}\right)\right)\right)^{H_{\mathbb{Q}_{p}, \Delta}} \cong \\
\cong\left(E_{\Delta}^{s e p} \otimes_{E_{\Delta}}\left(\mathbb{D}\left(V_{1}\right) \otimes_{E_{\Delta}} \mathbb{D}\left(V_{2}\right)\right)\right)^{H_{\mathbb{Q}_{p}, \Delta}} \cong \mathbb{D}\left(V_{1}\right) \otimes_{E_{\Delta}} \mathbb{D}\left(V_{2}\right) .
\end{array}
$$

For the second statement we have

$$
\begin{array}{r}
\mathbb{D}\left(V^{*}\right)=\left(E_{\Delta}^{s e p} \otimes_{\mathbb{F}_{p}} \operatorname{Hom}_{\mathbb{F}_{p}}\left(V, \mathbb{F}_{p}\right)\right)^{H_{\mathbb{Q}_{p}, \Delta}} \cong \operatorname{Hom}_{E_{\Delta}}^{\text {sep }}\left(E_{\Delta}^{s e p} \otimes_{\mathbb{F}_{p}} V, E_{\Delta}^{s e p}\right)^{H_{\mathbb{Q}_{p}, \Delta}} \cong \\
\cong \operatorname{Hom}_{E_{\Delta}^{s e p}}\left(E_{\Delta}^{s e p} \otimes_{E_{\Delta}} \mathbb{D}(V), E_{\Delta}^{s e p}\right)^{H_{\mathbb{Q}_{p}, \Delta}} \cong\left(E_{\Delta}^{s e p} \otimes_{E_{\Delta}} \operatorname{Hom}_{E_{\Delta}}\left(\mathbb{D}(V), E_{\Delta}\right)\right)^{H_{\mathbb{Q}_{p}, \Delta}} \cong \mathbb{D}(V)^{*}
\end{array}
$$

Theorem 3.9. \mathbb{D} is a fully faithful tensor functor from the category $\operatorname{Rep}_{\mathbb{F}_{p}}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$ to the category $\mathcal{D}^{e t}\left(\varphi_{\Delta}, \Gamma_{\Delta}, E_{\Delta}\right)$.

Proof. Let $f: V_{1} \rightarrow V_{2}$ be a nonzero morphism in $\operatorname{Rep}_{\mathbb{F}_{p}}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$. Then the $E_{\Delta}^{s e p}$-linear map $\mathrm{id} \otimes f: E_{\Delta}^{s e p} \otimes_{\mathbb{F}_{p}} V_{1} \rightarrow E_{\Delta}^{s e p} \otimes_{\mathbb{F}_{p}} V_{2}$ is also nonzero. By the last statement in Prop. 3.7 it follows that $\mathbb{D}(f) \neq 0$ therefore the faithfulness.

Now let V_{1} and V_{2} be arbitrary objects in $\operatorname{Rep}_{\mathbb{F}_{p}}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$ and $\theta: \mathbb{D}\left(V_{1}\right) \rightarrow \mathbb{D}\left(V_{2}\right)$ be a morphism in $\mathcal{D}^{e t}\left(\varphi_{\Delta}, \Gamma_{\Delta}, E_{\Delta}\right)$. Then by Prop. 3.7 we obtain a $G_{\mathbb{Q}_{p}, \Delta}$-equivariant \mathbb{F}_{p}-linear map

$$
f: V_{1}=\bigcap_{\alpha \in \Delta}\left(E_{\Delta}^{s e p} \otimes_{E_{\Delta}} \mathbb{D}\left(V_{1}\right)\right)^{\varphi_{\alpha}=\mathrm{id}} \rightarrow \bigcap_{\alpha \in \Delta}\left(E_{\Delta}^{s e p} \otimes_{E_{\Delta}} \mathbb{D}\left(V_{2}\right)\right)^{\varphi_{\alpha}=\mathrm{id}}=V_{2}
$$

induced by θ for which we have $\theta=\mathbb{D}(f)$. Therefore \mathbb{D} is full. The compatibility with tensor products is proven in Lemma 3.8.

Remark. Note that any étale $T_{+, \Delta}$-module D in the image of the functor \mathbb{D} is free as a module over E_{Δ} by construction.

Consider the diagonal embedding diag: $G_{\mathbb{Q}_{p}} \hookrightarrow G_{\mathbb{Q}_{p}, \Delta}$ sending $g \in G_{\mathbb{Q}_{p}}$ to (g, \ldots, g). This defines a functor diag: $\operatorname{Rep}_{\mathbb{F}_{p}}\left(G_{\mathbb{Q}_{p}, \Delta}\right) \rightarrow \operatorname{Rep}_{\mathbb{F}_{p}}\left(G_{\mathbb{Q}_{p}}\right)$ via restriction. On the other hand, we have the reduction map $\ell: \mathcal{D}^{\text {et }}\left(\varphi_{\Delta}, \Gamma_{\Delta}, E_{\Delta}\right) \rightarrow \mathcal{D}^{e t}(\varphi, \Gamma, E)$ to usual (φ, Γ)-modules defined in section 2.4 of [11]. Recall that this is given by taking the quotient by the ideal generated by $\left(X_{\alpha}-X_{\beta} \mid \alpha, \beta \in \Delta\right)$ and restricting to the diagonal $\varphi=\varphi_{s}=\prod_{\alpha \in \Delta} \varphi_{\alpha}$ and $\Gamma:=$ $\{(\gamma, \ldots, \gamma)\} \leq \Gamma_{\Delta}$.

Corollary 3.10. There is a natural isomorphism $\widehat{\operatorname{diag}} \cong \mathbb{V}_{F} \circ$ ८ $\circ \mathbb{D}$ of functors $\operatorname{Rep}_{\mathbb{F}_{p}}\left(G_{\mathbb{Q}_{p}, \Delta}\right) \rightarrow$ $\operatorname{Rep}_{\mathbb{F}_{p}}\left(G_{\mathbb{Q}_{p}}\right)$ where $\mathbb{V}_{F}: \mathcal{D}^{e t}(\varphi, \Gamma, E) \rightarrow \operatorname{Rep}_{\mathbb{F}_{p}}\left(G_{\mathbb{Q}_{p}}\right)$ is Fontaine's functor from classical étale (φ, Γ)-modules to Galois representations.

Proof. We may identify $E_{\alpha} \xrightarrow{\sim} E=\mathbb{F}_{p}((X))$ by sending $X_{\alpha} \rightarrow X$ for all $\alpha \in \Delta$. We extend this identification to $E_{\alpha}^{\text {sep }} \rightarrow E^{\text {sep }}$. So we obtain a map $\ell^{\text {sep }}: E_{\Delta}^{\text {sep }} \rightarrow E^{\text {sep }}$ sending each subring $E_{\alpha}^{\text {sep }}$ to $E^{\text {sep }}$ via these identifications and completing on the level of each finite extension E_{Δ}^{\prime}. We do this in a way so that the diagonal embedding of $G_{\mathbb{Q}_{p}} \hookrightarrow G_{\mathbb{Q}_{p}, \Delta}$ acts on the quotient $E^{s e p}$ in the usual way. The restriction of $\ell^{\text {sep }}$ to E_{Δ} is the map $\ell: E_{\Delta} \rightarrow E$ defined above, so the diagram

commutes. Thus for an object V in $\operatorname{Rep}_{\mathbb{F}_{p}}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$ we compute

$$
\begin{array}{r}
\mathbb{V}_{F} \circ \ell \circ \mathbb{D}(V)=\mathbb{V}_{F}\left(E \otimes_{E_{\Delta}, \ell} \mathbb{D}(V)\right)=\mathbb{V}_{F}\left(\left(E^{\text {sep }}\right)^{H_{\mathbb{Q}_{p}}} \otimes_{E_{\Delta} \ell \ell} \mathbb{D}(V)\right)= \\
=\mathbb{V}_{F}\left(\left(E^{\text {sep }} \otimes_{E_{\Delta}^{s e p}, \ell^{\text {sep }}} E_{\Delta}^{\text {sep }} \otimes_{E_{\Delta}} \mathbb{D}(V)\right)^{H_{\mathbb{Q}_{p}}}\right)=\mathbb{V}_{F}\left(\left(E^{\text {sep }} \otimes_{E_{\Delta}^{s e p}, \ell^{s e p}} E_{\Delta}^{\text {sep }} \otimes_{\mathbb{F}_{p}} V\right)^{H_{\mathbb{Q}_{p}}}\right)= \\
=\mathbb{V}_{F}\left(\left(E^{\text {sep }} \otimes_{\mathbb{F}_{p}} V\right)^{H_{\mathbb{Q}_{p}}}\right)=\mathbb{V}_{F} \circ \mathbb{D}_{F}(V)=\left.V\right|_{\operatorname{diag}\left(G_{\mathbb{Q}_{p}}\right)}=\widehat{\operatorname{diag}}(V) .
\end{array}
$$

3.2 The functor \mathbb{V}

In order to show that the functor \mathbb{D} is essentially surjective, we construct its quasi-inverse \mathbb{V}. Let D be an object in $\mathcal{D}^{e t}\left(\varphi_{\Delta}, \Gamma_{\Delta}, E_{\Delta}\right)$. The group $G_{\mathbb{Q}_{p}, \Delta}$ acts on $E_{\Delta}^{\text {sep }} \otimes_{E_{\Delta}} D$ via the formula $g(\lambda \otimes x):=g(\lambda) \otimes \chi_{c y c}(g)(x)\left(g \in G_{\mathbb{Q}_{p}, \Delta}, \lambda \in E_{\Delta}^{s e p}, x \in D\right)$ where $\chi_{c y c}: G_{\mathbb{Q}_{p}, \Delta} \rightarrow \Gamma_{\Delta}$ is the quotient map. Moreover, each partial Frobenius $\varphi_{\alpha}(\alpha \in \Delta)$ acts semilinearly on $E_{\Delta}^{s e p} \otimes_{E_{\Delta}} D$ via the formula $\varphi_{\alpha}(\lambda \otimes x):=\varphi_{\alpha}(\lambda) \otimes \varphi_{\alpha}(x)$. All these actions commute with each other by construction. We define

$$
\mathbb{V}(D):=\bigcap_{\alpha \in \Delta}\left(E_{\Delta}^{s e p} \otimes_{E_{\Delta}} D\right)^{\varphi_{\alpha}=\mathrm{id}}
$$

$\mathbb{V}(D)$ is a-a priori not necessarily finite dimensional-representation of $G_{\mathbb{Q}_{p}, \Delta}$ over \mathbb{F}_{p}.
Lemma 3.11. For any integer $r>0$ we have $\bigcap_{\beta \in \Delta}\left(E_{\Delta \backslash\{\alpha\}}^{s e p}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right)\right)^{\varphi_{\beta}=\mathrm{id}}=\mathbb{F}_{p}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right)$.
Proof. This follows from Lemma 3.6 noting that $\mathbb{F}_{p}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right)$ is a finite dimensional $\mathbb{F}_{p^{-}}$ vector space on which φ_{β} acts identically for all $\beta \in \Delta \backslash\{\alpha\}$ and we have $E_{\Delta \backslash\{\alpha\}}^{s e p}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \cong$ $E_{\Delta \backslash\{\alpha\}}^{s e p} \otimes_{\mathbb{F}_{p}} \mathbb{F}_{p}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right)$.

Lemma 3.12. For any integer $r>0$ and finitely generated $E_{\bar{\alpha}}^{+} /\left(X_{\alpha}^{r}\right)$-module M we have an identification $E_{\Delta \backslash\{\alpha\}}^{s e p}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{E_{\frac{\alpha}{\alpha}}^{+} /\left(X_{\alpha}^{r}\right)} M \cong E_{\Delta \backslash\{\alpha\}}^{s e p} \otimes_{E_{\Delta \backslash\{\alpha\}}} M$.

Proof. This follows from the isomorphism $E_{\bar{\alpha}}^{+} /\left(X_{\alpha}^{r}\right) \cong E_{\Delta \backslash\{\alpha\}}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right)$.
For a subset $S \subseteq \Delta$ we put $E_{S}^{s e p+}:=\underset{\longrightarrow}{\lim } E_{S}^{\prime+}$ so we have $E_{S}^{s e p}=E_{S}^{s e p+}\left[X_{S}^{-1}\right]$.
Lemma 3.13. $E_{S}^{\text {sep }}$ (resp. $E_{S}^{\text {sep }}$) is flat as a module over E_{S} (resp. over E_{S}^{+}) for all $S \subseteq \Delta$.

Proof. By construction, E_{S}^{\prime} (resp. $E_{S}^{\prime+}$) is finite free over E_{S} (resp. over E_{S}^{+}), so $E_{S}^{s e p}$ (resp. $\left.E_{S}^{s e p+}\right)$ is the direct limit of flat modules hence flat.

Lemma 3.14. We have $\left(E_{\Delta \backslash\{\alpha\}}^{s e p+}\left[\left[X_{\alpha}\right]\right]\left[X_{\Delta}^{-1}\right]\right)^{H_{Q_{p}, \Delta \backslash\{\alpha\}}}=E_{\Delta}$.
Proof. We have $E_{\Delta}=E_{\Delta \backslash\{\alpha\}}^{+}\left[\left[X_{\alpha}\right]\right]\left[X_{\Delta}^{-1}\right]$ where $E_{\Delta \backslash\{\alpha\}}^{+}=\left(E_{\Delta \backslash\{\alpha\}}^{s e p+}\right)^{H_{\mathbb{Q} p}, \Delta \backslash\{\alpha\}}$ by Lemma 3.3 and $H_{\mathbb{Q}_{p}, \Delta \backslash\{\alpha\}}$ acts trivially on both X_{α} and X_{Δ}, so acts on the power series ring $\left.E_{\Delta \backslash\{\alpha\}}^{+}\left[X_{\alpha}\right]\right]$ coefficientwise.

Our main result in this section is the following
Theorem 3.15. The functors \mathbb{D} and \mathbb{V} are quasi-inverse equivalences of categories between the Tannakian categories $\operatorname{Rep}_{\mathbb{F}_{p}}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$ and $\mathcal{D}^{e t}\left(\varphi_{\Delta}, \Gamma_{\Delta}, E_{\Delta}\right)$.

Corollary 3.16. Any object D in $\mathcal{D}^{e t}\left(\varphi_{\Delta}, \Gamma_{\Delta}, E_{\Delta}\right)$ is a free module over E_{Δ}.
Proof. This follows from the essential surjectivity of \mathbb{D} using the remark after Thm. 3.9.
Proof of Thm. 3.15. This is a long proof that we divide into 5 steps.
Step 1. Reducing the statement to the essential surjectivity of \mathbb{D}. By Thm. 3.9 the functor \mathbb{D} is fully faithful and we have $\mathbb{V} \circ \mathbb{D}(V) \cong V$ naturally in V for any object V in $\operatorname{Rep}_{\mathbb{F}_{p}}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$ by Prop. 3.7. Moreover, by Lemma 3.8 \mathbb{D} is compatible with tensor products and duals. So it remains to show that \mathbb{D} is essentially surjective. We proceed by induction on $|\Delta|$. For $|\Delta|=1$ this is a classical result of Fontaine (see e.g. Thm. 2.21 in [5]). Suppose that $|\Delta|>1$, fix $\alpha \in \Delta$, and pick an object D in $\mathcal{D}^{e t}\left(\varphi_{\Delta}, \Gamma_{\Delta}, E_{\Delta}\right)$.

Step 2. The goal here is to trivialize the φ_{β}-action $(\beta \in \Delta \backslash\{\alpha\})$ on $D_{\bar{\alpha}}^{+*} / X_{\alpha}^{r}$ uniformly in r by tensoring up with $E_{\Delta \backslash\{\alpha\}}^{s e p}$. By Prop. $2.10 D_{\bar{\alpha}}^{+*}$ is an étale $T_{+, \bar{\alpha}^{-}}$module over $E_{\bar{\alpha}}^{+}$. Reducing $\bmod X_{\alpha}^{r}$ for an integer $r>0$ we deduce that $D_{\bar{\alpha}, r}^{+*}:=D_{\bar{\alpha}}^{+*} / X_{\alpha}^{r} D_{\bar{\alpha}}^{+*}$ is an étale $T_{+, \bar{\alpha}}$-module over $E_{\bar{\alpha}}^{+} /\left(X_{\alpha}^{r}\right) \cong E_{\Delta \backslash\{\alpha\}}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right)$. Since each $\varphi_{\beta}(\beta \in \Delta \backslash\{\alpha\})$ acts trivially on the variable X_{α}, we have a natural isomorphism of functors

$$
E_{\Delta \backslash\{\alpha\}}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{E_{\Delta \backslash\{\alpha\}}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right), \varphi_{t}} \cong E_{\Delta \backslash\{\alpha\}} \otimes_{E_{\Delta \backslash\{\alpha\}}, \varphi_{t}}
$$

for all $t \in T_{+, \bar{\alpha}}$. Hence $D_{\bar{\alpha}, r}^{+*}$ is an object in $\mathcal{D}^{e t}\left(\varphi_{\Delta \backslash\{\alpha\}}, \Gamma_{\Delta \backslash\{\alpha\}}, E_{\Delta \backslash\{\alpha\}}\right)$ since $E_{\Delta \backslash\{\alpha\}}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right)$ is finitely generated as a module over $E_{\Delta \backslash\{\alpha\}}$. By induction, we can trivialize $D_{\bar{\alpha}, r}^{+*}$ over $E_{\Delta \backslash\{\alpha\}}^{s e p}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right)$: the natural map

$$
\begin{align*}
E_{\Delta \backslash\{\alpha\}}^{s e p}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) & \otimes_{\mathbb{F}_{p}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right)} \bigcap_{\beta \in \Delta \backslash\{\alpha\}}\left(E_{\Delta \backslash\{\alpha\}}^{s e p}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{E_{\frac{\alpha}{\alpha}}^{+} /\left(X_{\alpha}^{r}\right)} D_{\bar{\alpha}, r}^{+*}\right)^{\varphi_{\beta}=\mathrm{id}} \xrightarrow{\sim} \\
& \xrightarrow{\sim} E_{\Delta \backslash\{\alpha\}}^{s e p}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{E_{\bar{\alpha}}^{+} /\left(X_{\alpha}^{r}\right)} D_{\bar{\alpha}, r}^{+*} \cong E_{\Delta \backslash\{\alpha\}}^{s e p}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{E_{\bar{\alpha}}^{+}} D_{\bar{\alpha}}^{+*} \tag{4}
\end{align*}
$$

is an isomorphism for all $r>0$ using Lemmata 3.11 and 3.12. Our key Lemma is the following consequence of Prop. 2.10.
Lemma 3.17. There exists a finitely generated E_{Δ}^{+}-submodule $M \leq D_{\bar{\alpha}}^{+*}$ such that

$$
\begin{equation*}
\bigcap_{\beta \in \Delta \backslash\{\alpha\}}\left(E_{\Delta \backslash\{\alpha\}}^{s e p}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{E_{\bar{\alpha}}^{+}} D_{\bar{\alpha},}^{+*}\right)^{\varphi_{\beta}=\mathrm{id}} \tag{5}
\end{equation*}
$$

is contained in the image of the map

$$
\begin{equation*}
E_{\Delta \backslash\{\alpha\}}^{s e p+}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{E_{\Delta}^{+}} M \rightarrow E_{\Delta \backslash\{\alpha\}}^{s e p+}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{E_{\Delta}^{+}} D_{\bar{\alpha}}^{+*} \cong E_{\Delta \backslash\{\alpha\}}^{s e p}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{E_{\bar{\alpha}}^{+}} D_{\bar{\alpha}}^{+*} \tag{6}
\end{equation*}
$$

induced by the inclusion $M \leq D_{\bar{\alpha}}^{+*}$ for all $r>0$. Moreover, M can be chosen in such a way that (6) is injective.

Proof. We show that $M:=X_{\Delta \backslash\{\alpha\}}^{-k}\left(D^{+} \cap D_{\bar{\alpha}}^{+*}\right)$ will do for k large enough. Since D^{+}is finitely generated over E_{Δ}^{+}, so is M by noetherianity. Using Lemma 2.11 we choose $k>0$ so that we have $D_{\bar{\alpha}}^{+*}=\bigcup_{l \geq 0} E_{\Delta}^{+} \varphi_{\bar{\alpha}}^{l}(M)$, ie. we put $M:=X_{\Delta \backslash\{\alpha\}}^{-1} D_{0}$. For any fixed $r>0$ there exists an integer $l_{r} \geq 0$ such that (5) is contained in

$$
\begin{array}{r}
E_{\Delta \backslash\{\alpha\}}^{s e p+}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{E_{\Delta}^{+}} X_{\Delta \backslash\{\alpha\}}^{-p^{l_{r}+1}} M \subseteq E_{\Delta \backslash\{\alpha\}}^{s e p+}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{E_{\Delta}^{+}} E_{\Delta}^{+} \varphi_{\frac{1}{\alpha}}^{l_{r}}(M)= \\
=E_{\Delta \backslash\{\alpha\}}^{s e p+}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \varphi_{\frac{l_{r}}{\alpha}}\left(E_{\Delta \backslash\{\alpha\}}^{s e p+}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{E_{\Delta}^{+}} M\right) .
\end{array}
$$

Now if x lies in (5), then we have $\varphi_{\bar{\alpha}}^{l_{r}}(x)=x$. On the other hand, x lies in

$$
E_{\Delta \backslash\{\alpha\}}^{\prime}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \varphi_{\bar{\alpha}}^{l_{r}}\left(E_{\Delta \backslash\{\alpha\}}^{\prime}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{E_{\Delta}^{+}} M\right)
$$

for some finite separable extensions $E_{\beta}^{\prime} / E_{\beta}$ for $\beta \in \Delta \backslash\{\alpha\}$ and $E_{\Delta \backslash\{\alpha\}}^{\prime}:=\widehat{\bigotimes}_{\beta \in \Delta \backslash\{\alpha\}, \mathbb{F}_{p}} E_{\beta}^{\prime}$. Therefore x lies in fact in $E_{\Delta \backslash\{\alpha\}}^{\prime}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{E_{\Delta}^{+}} M$ by the injectivity of the map

$$
\begin{aligned}
& \operatorname{id} \otimes \varphi_{\frac{l}{\alpha}}^{l_{r}}: E_{\Delta \backslash\{\alpha\}}^{\prime}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{E_{\Delta \backslash\{\alpha\}}^{\prime}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right), \varphi_{\bar{\alpha}}^{l}}\left(E_{\Delta \backslash\{\alpha\}}^{\prime}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{E_{\bar{\alpha}}^{+}} D_{\bar{\alpha}}^{+*}\right) \rightarrow \\
& \rightarrow E_{\Delta \backslash\{\alpha\}}^{\prime}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{E_{\bar{\alpha}}^{+}} D_{\bar{\alpha}}^{+*}
\end{aligned}
$$

($D_{\bar{\alpha}}^{+*}$ is étale) noting that the absolute Frobenius $\varphi_{\bar{\alpha}}: E_{\Delta \backslash\{\alpha\}}^{\prime} \rightarrow E_{\Delta \backslash\{\alpha\}}^{\prime}$ is injective since the ring $E_{\Delta \backslash\{\alpha\}}^{\prime}$ is the localization of a power series ring over a finite étale algebra over \mathbb{F}_{p}, in particular, it is reduced.

Finally, by Lemma $2.7 D_{\bar{\alpha}}^{+*} / M$ has no X_{α}-torsion as $D_{\bar{\alpha}}^{+*} / M \cong D_{\bar{\alpha}}^{+*}+X_{\Delta \backslash\{\alpha\}}^{-k} D^{+} /\left(X_{\Delta \backslash\{\alpha\}}^{-k} D^{+}\right)$ is contained in $D_{\bar{\alpha}}^{+} /\left(X_{\Delta \backslash\{\alpha\}}^{-k} D^{+}\right) \cong D_{\bar{\alpha}}^{+} / D^{+}$. Therefore the map (6) is injective.

Step 3. The goal here is to show the following compatibility of our construction with projective limits with respect to r.
Lemma 3.18. We have

$$
\begin{aligned}
& {\underset{r}{r}}_{\lim _{r}}\left(E_{\Delta \backslash\{\alpha\}}^{s e p+}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{E_{\Delta}^{+}} M\right) \cong E_{\Delta \backslash\{\alpha\}}^{s e p+}\left[\left[X_{\alpha}\right]\right] \otimes_{E_{\Delta}^{+}} M, \\
& {\underset{r}{r}}_{\lim _{r}}\left(E_{\Delta \backslash\{\alpha\}}^{s e p}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{E_{\bar{\alpha}}^{+}} D_{\bar{\alpha}}^{+*}\right) \cong E_{\Delta \backslash\{\alpha\}}^{s e p}\left[\left[X_{\alpha}\right]\right] \otimes_{E_{\bar{\alpha}}^{+}} D_{\bar{\alpha}}^{+*} \quad \text {, and } \\
& {\underset{r}{\mid c}}_{\underset{r}{\lim }}\left(E_{\Delta \backslash\{\alpha\}}^{s e p}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{\mathbb{F}_{p}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right)} \bigcap_{\beta \in \Delta \backslash\{\alpha\}}\left(E_{\Delta \backslash\{\alpha\}}^{s e p}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{E_{\bar{\alpha}}^{+} /\left(X_{\alpha}^{r}\right)} D_{\bar{\alpha}, r}^{+*}\right)^{\varphi_{\beta}=\mathrm{id}}\right) \cong \\
& \cong E_{\Delta \backslash\{\alpha\}}^{s e p}\left[\left[X_{\alpha}\right]\right] \otimes_{\mathbb{F}_{p} \llbracket X_{\alpha} \rrbracket} \bigcap_{\beta \in \Delta \backslash\{\alpha\}}\left(E_{\Delta \backslash\{\alpha\}}^{s e p}\left(\left(X_{\alpha}\right)\right) \otimes_{E_{\Delta}} D\right)^{\varphi_{\beta}=\mathrm{id}} .
\end{aligned}
$$

Proof. Since M is contained in D, M has no X_{α}-torsion. In particular, M is flat as a module over the local ring $\mathbb{F}_{p}\left[\left[X_{\alpha}\right]\right]$. Now we deduce that M and $E_{\Delta \backslash\{\alpha\}}^{s e p+}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right)$ are Tor-independent over E_{Δ}^{+}by Lemma 3.13 since we have the identification

$$
E_{\Delta \backslash\{\alpha\}}^{s e p+}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{E_{\Delta}^{+}} M \cong E_{\Delta \backslash\{\alpha\}}^{s e p+} \otimes_{E_{\Delta \backslash\{\alpha\}}^{+}}\left(\mathbb{F}_{p}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{\mathbb{F}_{p} \llbracket X_{\alpha} \rrbracket} M\right)
$$

On the other hand, M is finitely generated over E_{Δ}^{+}, so we short exact sequences

$$
0 \rightarrow M_{1} \rightarrow\left(E_{\Delta}^{+}\right)^{k_{0}} \xrightarrow{f_{0}} M \rightarrow 0 \quad \text { and } \quad 0 \rightarrow M_{2} \rightarrow\left(E_{\Delta}^{+}\right)^{k_{1}} \rightarrow M_{1} \rightarrow 0
$$

by noetherianity. In order to simplify notation write $(\cdot)_{r}$ for $E_{\Delta \backslash\{\alpha\}}^{s e p+}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{E_{\Delta}^{+}} \cdot$ to obtain an exact sequence

$$
\left(M_{2}\right)_{r} \rightarrow\left(E_{\Delta}^{+}\right)_{r}^{k_{1}} \xrightarrow{f_{1, r}}\left(E_{\Delta}^{+}\right)_{r}^{k_{0}} \xrightarrow{f_{0, r}}(M)_{r} \rightarrow 0
$$

for all $r>0$ using the Tor-indepence above. Now since the natural map $(N)_{r_{1}} \rightarrow(N)_{r_{2}}$ is surjective for any E_{Δ}^{+}-module N and $r_{1} \geq r_{2}>0$ by the right exactness of $\cdot \otimes_{E_{\Delta}^{+}} N$, the natural map $\operatorname{Ker}\left(f_{0, r_{1}}\right) \rightarrow \operatorname{Ker}\left(f_{0, r_{2}}\right)$ is also surjective (applying this in case $N=M_{1}$ and a diagram chasing). So the Mittag-Leffler property is satisfied for these projective systems showing that the map $\varliminf_{\varliminf_{r}} f_{0, r}$ is surjective with kernel $\varliminf_{\varliminf_{r}} \operatorname{Ker}\left(f_{0, r}\right)=\lim _{r} \operatorname{Im}\left(f_{1, r}\right)$. Applying the same trick as above with $N=M_{2}$ we deduce that the projective system $\operatorname{Ker}\left(f_{1, r}\right)$ also satisfies the Mittag-Leffler property showing that $\varliminf_{r} f_{1, r}$ has image ${\underset{\zeta}{<}}_{r} \operatorname{Im}\left(f_{1, r}\right)$. In particular, $\lim _{\overparen{r}}(M)_{r}$ is the cokernel of the map ${\underset{\longleftarrow}{\lim _{r}}}_{r} f_{1, r}:\left(E_{\Delta \backslash\{\alpha\}}^{s e p+}\left[\left[X_{\alpha}\right]\right]\right)^{k_{1}} \rightarrow\left(E_{\Delta \backslash\{\alpha\}}^{s e p+}\left[\left[X_{\alpha}\right]\right]\right)^{k_{0}}$ and so is $E_{\Delta \backslash\{\alpha\}}^{s e p+}\left[\left[X_{\alpha}\right]\right] \otimes_{E_{\Delta}^{+}} M$ as claimed. The second statement follows in the exactly same way.

For the third statement note that the isomorphism (4) and the surjectivity of the map $E_{\Delta \backslash\{\alpha\}}^{s e p}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r_{1}}\right) \otimes_{E_{\bar{\alpha}}^{+}} D_{\bar{\alpha}}^{+*} \rightarrow E_{\Delta \backslash\{\alpha\}}^{s e p}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r_{2}}\right) \otimes_{E_{\bar{\alpha}}^{+}} D_{\bar{\alpha}}^{+*}$ implies that the map

$$
\begin{aligned}
& \bigcap_{\beta \in \Delta \backslash\{\alpha\}}\left(E_{\Delta \backslash\{\alpha\}}^{s e p}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r_{1}}\right) \otimes_{E_{\bar{\alpha}}^{+} /\left(X_{\alpha}^{r_{1}}\right)} D_{\bar{\alpha}, r}^{+*}\right)^{\varphi_{\beta}=\mathrm{id}} \rightarrow \\
\rightarrow & \bigcap_{\beta \in \Delta \backslash\{\alpha\}}\left(E_{\Delta \backslash\{\alpha\}}^{s e p}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r_{2}}\right) \otimes_{E_{\bar{\alpha}}^{+} /\left(X_{\alpha}^{r_{2}}\right)} D_{\bar{\alpha}, r}^{+*}\right)^{\varphi_{\beta}=\mathrm{id}}
\end{aligned}
$$

is also onto for all $r_{1} \geq r_{2}$. Therefore the natural map

$$
\begin{array}{r}
\bigcap_{\beta \in \Delta \backslash\{\alpha\}}\left(E_{\Delta \backslash\{\alpha\}}^{s e p}\left[\left[X_{\alpha}\right]\right] \otimes_{E_{\bar{\alpha}}^{+}} D_{\bar{\alpha}}^{+*}\right)^{\varphi_{\beta}=\mathrm{id}}= \\
=\lim _{r}=\bigcap_{\beta \in \Delta \backslash\{\alpha\}}\left(E_{\Delta \backslash\{\alpha\}}^{s e p}\left[X_{\alpha}\right] /\left(X_{\alpha}^{r}\right) \otimes_{E_{\bar{\alpha}}^{+} /\left(X_{\alpha}^{r}\right)} D_{\bar{\alpha}, r}^{+*}\right)^{\varphi_{\beta}=\mathrm{id}} \rightarrow \\
\rightarrow \bigcap_{\beta \in \Delta \backslash\{\alpha\}}\left(E_{\Delta \backslash\{\alpha\}}^{s e p}\left[X_{\alpha}\right] /\left(X_{\alpha}\right) \otimes_{E_{\bar{\alpha}}^{+} /\left(X_{\alpha}\right)} D_{\bar{\alpha}, r}^{+*}\right)^{\varphi_{\beta}=\mathrm{id}}
\end{array}
$$

is also onto using the second statement of the Lemma. On the other hand, the kernel of this map equals

$$
\begin{array}{r}
\bigcap_{\beta \in \Delta \backslash\{\alpha\}}\left(E_{\Delta \backslash\{\alpha\}}^{s e p}\left[\left[X_{\alpha}\right]\right] \otimes_{E_{\bar{\alpha}}^{+}} D_{\bar{\alpha}}^{+*}\right)^{\varphi_{\beta}=\mathrm{id}} \cap X_{\alpha} E_{\Delta \backslash\{\alpha\}}^{s e p}\left[\left[X_{\alpha}\right]\right] \otimes_{E_{\bar{\alpha}}^{+}} D_{\bar{\alpha}}^{+*}= \\
=X_{\alpha} \bigcap_{\beta \in \Delta \backslash\{\alpha\}}\left(E_{\Delta \backslash\{\alpha\}}^{s e p}\left[\left[X_{\alpha}\right]\right] \otimes_{E_{\bar{\alpha}}^{+}} D_{\bar{\alpha}}^{+*}\right)^{\varphi_{\beta}=\mathrm{id}}
\end{array}
$$

since X_{α} is fixed by each φ_{β} and $E_{\Delta \backslash\{\alpha\}}^{s e p}\left[\left[X_{\alpha}\right]\right] \otimes_{E_{\bar{\alpha}}^{+}} D_{\bar{\alpha}}^{+*}$ has no X_{α}-torsion. This shows, in particular, that $\bigcap_{\beta \in \Delta \backslash\{\alpha\}}\left(E_{\Delta \backslash\{\alpha\}}^{s e p}\left[\left[X_{\alpha}\right]\right] \otimes_{E_{\bar{\alpha}}^{+}} D_{\bar{\alpha}}^{+*}\right)^{\varphi_{\beta}=\mathrm{id}}$ is finitely generated over $\mathbb{F}_{p}\left[\left[X_{\alpha}\right]\right]$ by the topological Nakayama Lemma (see [1]). Moreover, it is torsion-free hence free as $E_{\Delta \backslash\{\alpha\}}^{s e p}\left[\left[X_{\alpha}\right]\right] \otimes_{E_{\bar{\alpha}}^{+}} D_{\bar{\alpha}}^{+*}$ has no X_{α}-torsion either. In particular,

$$
E_{\Delta \backslash\{\alpha\}}^{s e p}\left[\left[X_{\alpha}\right]\right] \otimes_{\mathbb{F}_{p} \llbracket X_{\alpha} \rrbracket} \bigcap_{\beta \in \Delta \backslash\{\alpha\}}\left(E_{\Delta \backslash\{\alpha\}}^{s e p}\left(\left(X_{\alpha}\right)\right) \otimes_{E_{\Delta}} D\right)^{\varphi_{\beta}=\mathrm{id}}
$$

is X_{α}-adically complete and the result follows.
Step 4. The goal here is to obtain a $\left(\varphi_{\alpha}, \Gamma_{\alpha}\right)$-module D_{α} over E_{α} (by trivializing the action of each $\varphi_{\beta}, \beta \in \Delta \backslash\{\alpha\}$) which is at the same time a linear representation of the group $G_{\mathbb{Q}_{p}, \Delta \backslash\{\alpha\}}$. We take projective limits of the inclusions in Lemma 3.17 with respect to r to conclude (using Lemma 3.18) that

$$
\bigcap_{\beta \in \Delta \backslash\{\alpha\}}\left(E_{\Delta \backslash\{\alpha\}}^{s e p}\left[\left[X_{\alpha}\right]\right] \otimes_{E_{\bar{\alpha}}^{+}} D_{\bar{\alpha}}^{+*}\right)^{\varphi_{\beta}=\mathrm{id}}
$$

is contained in the image of the map

$$
E_{\Delta \backslash\{\alpha\}}^{s e p+}\left[\left[X_{\alpha}\right]\right] \otimes_{E_{\Delta}^{+}} M \rightarrow E_{\Delta \backslash\{\alpha\}}^{s e p}\left[\left[X_{\alpha}\right]\right] \otimes_{E_{\bar{\alpha}}^{+}} D_{\bar{\alpha}}^{+*}
$$

Note that $M\left[X_{\Delta}^{-1}\right]=D_{\bar{\alpha}}^{+*}\left[X_{\Delta}^{-1}\right]=D_{\bar{\alpha}}^{+*}\left[X_{\alpha}^{-1}\right]=D$ and φ_{β} acts trivially on X_{α}. So inverting X_{Δ} above we deduce that

$$
D_{\alpha}:=\bigcap_{\beta \in \Delta \backslash\{\alpha\}}\left(E_{\Delta \backslash\{\alpha\}}^{s e p}\left(\left(X_{\alpha}\right)\right) \otimes_{E_{\Delta}} D\right)^{\varphi_{\beta}=\mathrm{id}}
$$

is contained in the image of the map

$$
E_{\Delta \backslash\{\alpha\}}^{s e p+}\left[\left[X_{\alpha}\right]\right]\left[X_{\Delta}^{-1}\right] \otimes_{E_{\Delta}} D \hookrightarrow E_{\Delta \backslash\{\alpha\}}^{s e p}\left(\left(X_{\alpha}\right)\right) \otimes_{E_{\Delta}} D
$$

On the other hand, by (4) and the third statement of Lemma 3.18 we have an isomorphism

$$
\begin{equation*}
E_{\Delta \backslash\{\alpha\}}^{s e p}\left(\left(X_{\alpha}\right)\right) \otimes_{\mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right)} D_{\alpha} \xrightarrow[\rightarrow]{\sim} E_{\Delta \backslash\{\alpha\}}^{s e p}\left(\left(X_{\alpha}\right)\right) \otimes_{E_{\Delta}} D . \tag{7}
\end{equation*}
$$

Lemma 3.19. The finite dimensional $\mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right)$-vector space D_{α} has the structure of an étale $\left(\varphi_{\alpha}, \Gamma_{\alpha}\right)$-module. At the same time it is a (linear) representation of the group $G_{\mathbb{Q}_{p}, \Delta \backslash\{\alpha\}}$. These two actions commute with each other.

Proof. The operator φ_{α} and the groups Γ_{α} and $G_{\mathbb{Q}_{p}, \Delta \backslash\{\alpha\}}$ act naturally on D_{α}. For the étaleness of the action of φ_{α} on D_{α} note that we have $\mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right) \otimes_{\mathbb{F}_{p}\left(X_{\alpha}\right), \varphi_{\alpha}} D \cong D$ by the étale property of φ_{α} on D and that φ_{β} acts trivially on $\mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right)$. So we compute

$$
\begin{aligned}
& \mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right) \otimes_{\mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right), \varphi_{\alpha}} D_{\alpha}=\mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right) \otimes_{\mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right), \varphi_{\alpha}} \bigcap_{\beta \in \Delta \backslash\{\alpha\}}\left(E_{\Delta \backslash\{\alpha\}}^{s e p}\left(\left(X_{\alpha}\right)\right) \otimes_{E_{\Delta}} D\right)^{\varphi_{\beta}=\mathrm{id}}= \\
&= \bigcap_{\beta \in \Delta \backslash\{\alpha\}}\left(\mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right) \otimes_{\left.\mathbb{F}_{p}\left(X_{\alpha}\right)\right), \varphi_{\alpha}} E_{\Delta \backslash\{\alpha\}}^{s e p}\left(\left(X_{\alpha}\right)\right) \otimes_{E_{\Delta}} D\right)^{\varphi_{\beta}=\mathrm{id}}= \\
&= \bigcap_{\beta \in \Delta \backslash\{\alpha\}}\left(E_{\Delta \backslash\{\alpha\}}^{s e p}\left(\left(X_{\alpha}\right)\right) \otimes_{E_{\Delta}} \mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right) \otimes_{\mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right), \varphi_{\alpha}} D\right)^{\varphi_{\beta}=\mathrm{id}} \cong \\
& \cong \bigcap_{\beta \in \Delta \backslash\{\alpha\}}\left(E_{\Delta \backslash\{\alpha\}}^{s e p}\left(\left(X_{\alpha}\right)\right) \otimes_{E_{\Delta}} D\right)^{\varphi_{\beta}=\mathrm{id}}=D_{\alpha}
\end{aligned}
$$

Step 5. We show the essential surjectivity of \mathbb{D} here. Now we apply $\mathbb{V}_{F, \alpha}=\left(E_{\alpha}^{\text {sep }} \otimes_{\mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right)}\right.$.) $\varphi_{\alpha}=$ id on D_{α} to obtain a finite dimensional \mathbb{F}_{p}-representation V of $G_{\mathbb{Q}_{p}, \Delta}$. Moreover, we have $\operatorname{dim}_{\mathbb{F}_{p}} V=\operatorname{dim}_{\mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right)} D_{\alpha}=\operatorname{rk}_{E_{\Delta}} D$ by the isomorphism (7) since $\mathbb{V}_{F, \alpha}$ is rank-preserving by Fontaine's classical result. Using again the isomorphism (7) and the containment $D_{\alpha} \subset$ $E_{\Delta \backslash\{\alpha\}}^{s e p+}\left[\left[X_{\alpha}\right]\right]\left[X_{\Delta}^{-1}\right] \otimes_{E_{\Delta}} D$ we conclude an injective map

$$
E_{\Delta \backslash\{\alpha\}}^{s e p+}\left[\left[X_{\alpha}\right]\right]\left[X_{\Delta}^{-1}\right] \otimes_{\mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right)} D_{\alpha} \hookrightarrow E_{\Delta \backslash\{\alpha\}}^{s e p+}\left[\left[X_{\alpha}\right]\right]\left[X_{\Delta}^{-1}\right] \otimes_{E_{\Delta}} D
$$

and applying $E_{\alpha}^{\text {sep }} \otimes_{\mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right)} \cdot$ another injective composite map

$$
\begin{array}{r}
E_{\Delta}^{s e p} \otimes_{\mathbb{F}_{p}} V \hookrightarrow \\
\hookrightarrow\left(E_{\Delta \backslash\{\alpha\}}^{s e p+}\left[\left[X_{\alpha}\right]\right]\left[X_{\Delta}^{-1}\right] \otimes_{\mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right)} E_{\alpha}^{s e p}\right) \otimes_{\mathbb{F}_{p}} V \cong \\
\cong E_{\Delta \backslash\{\alpha\}}^{s e p+}\left[\left[X_{\alpha}\right]\right]\left[X_{\Delta}^{-1}\right] \otimes_{\mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right)} E_{\alpha}^{s e p} \otimes_{\mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right)} D_{\alpha}= \\
=E_{\alpha}^{s e p} \otimes_{\mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right)} E_{\Delta \backslash\{\alpha\}}^{s e p+}\left[\left[X_{\alpha}\right]\right]\left[X_{\Delta}^{-1}\right] \otimes_{\mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right)} D_{\alpha} \hookrightarrow \\
\hookrightarrow\left(E_{\alpha}^{s e p} \otimes_{\mathbb{F}_{p}\left(\left(X_{\alpha}\right)\right)} E_{\Delta \backslash\{\alpha\}}^{s e p+}\left[\left[X_{\alpha}\right]\right]\left[X_{\Delta}^{-1}\right]\right) \otimes_{E_{\Delta}} D .
\end{array}
$$

Taking $G_{\mathbb{Q}_{p}, \Delta}$-invariants of this inclusion we deduce an inclusion $\mathbb{D}(V) \hookrightarrow D$ using Lemma 3.14. However, this is an isomorphism by Prop. 2.1 in [11] as $\mathbb{D}(V)$ and D have the same rank.

Remarks. 1. Even though we have constructed V in the proof of the above theorem by a different procedure from just putting $V:=\mathbb{V}(D)$, we still have an isomorphism $V \cong \mathbb{V}(\mathbb{D}(V)) \cong \mathbb{V}(D)$ by Prop. 3.7.
2. If κ is a finite extension of \mathbb{F}_{p}, then we have an equivalence of categories between $\operatorname{Rep}_{\kappa}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$ and $\mathcal{D}^{e t}\left(\varphi_{\Delta}, \Gamma_{\Delta}, \kappa \otimes_{\mathbb{F}_{p}} E_{\Delta}\right)$. Indeed, we have a natural isomorphism $\left(\kappa \otimes_{\mathbb{F}_{p}}\right.$ $\left.E_{\Delta}^{s e p}\right) \otimes_{\kappa} \cong E_{\Delta}^{\text {sep }} \otimes_{\mathbb{F}_{p}} \cdot$ as functors on $\operatorname{Rep}_{\kappa}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$.

4 The case of p-adic representations

4.1 Cohomological preliminaries

We will need the following multivariable analogue of Hilbert's Theorem 90 (additive form).
Proposition 4.1. The continuous group cohomology $H_{\text {cont }}^{1}\left(H_{\mathbb{Q}_{p}, \Delta}, E_{\Delta}^{s e p}\right)$ vanishes.
Proof. By Prop. 3.3 it suffices to show that for finite Galois extensions $E_{\alpha}^{\prime} / E_{\alpha}$ (for all $\alpha \in \Delta$) with Galois group $H_{\alpha}^{\prime}:=\operatorname{Gal}\left(E_{\alpha}^{\prime} / E_{\alpha}\right)$ we have $H^{1}\left(H^{\prime}, E_{\Delta}^{\prime}\right)=\{1\}$ where we put $H^{\prime}:=$ $\prod_{\alpha \in \Delta} H_{\alpha}^{\prime}$. Choose a normal basis $e_{1}, \ldots, e_{n_{\alpha}} \in E_{\alpha}^{\prime}$ over E_{α} for each $\alpha \in \Delta$. By Lemma 3.2 the set $\left\{\prod_{\alpha \in \Delta} e_{i_{\alpha}} \mid 1 \leq i_{\alpha} \leq n_{\alpha}, \alpha \in \Delta\right\}$ is a basis of the free E_{Δ}-module E_{Δ}^{\prime}. In particular, $E_{\Delta}^{\prime} \cong E_{\Delta}\left[H^{\prime}\right]$ is induced as an H^{\prime}-module whence the cohomology group $H^{1}\left(H^{\prime}, E_{\Delta}^{\prime}\right)$ is trivial.

Let D be an abelian group admitting an action of the commutative monoid $\prod_{\alpha \in \Delta} \varphi_{\alpha}^{\mathbb{N}}$. Fix a total ordering $<$ on Δ and consider the complex

$$
\Phi^{\bullet}(D): 0 \rightarrow D \rightarrow \bigoplus_{\alpha \in \Delta} D \rightarrow \cdots \rightarrow \bigoplus_{\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \in\binom{\Delta}{r}} D \rightarrow \cdots \rightarrow D \rightarrow 0
$$

where for all $0 \leq r \leq|\Delta|-1$ the map $d_{\alpha_{1}, \ldots, \alpha_{r}}^{\beta_{1}, \ldots, \beta_{r+1}}: D \rightarrow D$ from the component in the r th term corresponding to $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \subseteq \Delta$ to the component corresponding to the ($r+1$)-tuple $\left\{\beta_{1}, \ldots, \beta_{r+1}\right\} \subseteq \Delta$ is given by

$$
d_{\alpha_{1}, \ldots, \alpha_{r}}^{\beta_{1}, \ldots, \beta_{r+1}}= \begin{cases}0 & \text { if }\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \nsubseteq\left\{\beta_{1}, \ldots, \beta_{r+1}\right\} \\ (-1)^{\varepsilon}\left(\operatorname{id}-\varphi_{\beta}\right) & \text { if }\left\{\beta_{1}, \ldots, \beta_{r+1}\right\}=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \cup\{\beta\}\end{cases}
$$

where $\varepsilon=\varepsilon\left(\alpha_{1}, \ldots, \alpha_{r}, \beta\right)$ is the number of elements in the set $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ smaller than β. Since the operators (id $-\varphi_{\beta}$) commute with each other, $\Phi^{\bullet}(D)$ is a chain complex of abelian groups. Note that for each $\alpha \in \Delta$ we have a complex

$$
\Phi_{\alpha}^{\bullet}(D): 0 \rightarrow D \xrightarrow{\text { id }-\varphi_{\alpha}} D \rightarrow 0
$$

such that $\Phi^{\bullet}\left(E_{\Delta}^{\text {sep }}\right)$ is a kind of completed tensor product of the complexes $\Phi_{\alpha}^{\bullet}\left(E_{\alpha}^{\text {sep }}\right)$. More precisely, the tensor product over \mathbb{F}_{p} of the complexes $\Phi^{\bullet}\left(E_{\alpha}^{\text {sep }}\right)$ is the complex $\Phi^{\bullet}\left(E_{\Delta, \circ}^{s e p}\right)$ which is therefore acyclic in nonzero degrees with 0th cohomology equal to \mathbb{F}_{p} by the Künneth formula. Note that there are no higher Tor's as the tensor product is taken over the field \mathbb{F}_{p}. We need the following completed version of this observation.

Proposition 4.2. The complex $\Phi^{\bullet}\left(E_{\Delta}^{\text {sep }}\right)$ is acyclic in nonzero degrees with 0th cohomology equal to \mathbb{F}_{p}.

The following Lemma is well-known.
Lemma 4.3. For any finite separable extension $E_{\alpha}^{\prime} / E_{\alpha}$ the map id $-\varphi_{\alpha}: X_{\alpha}^{\prime} E_{\alpha}^{\prime+} \rightarrow X_{\alpha}^{\prime} E_{\alpha}^{\prime+}$ is bijective.

Proof. The kernel of id $-\varphi_{\alpha}$ is \mathbb{F}_{p} which is not contained in $X_{\alpha}^{\prime} E_{\alpha}^{\prime+}$. On the other hand, $\sum_{n=0}^{\infty} \varphi_{\alpha}^{n}$ converges on this set and is therefore an inverse to id $-\varphi_{\alpha}$ by formal reasons.

Our key is the following
Lemma 4.4. For all $\alpha \in S \subseteq \Delta$ the map id $-\varphi_{\alpha}: E_{S}^{s e p} \rightarrow E_{S}^{s e p}$ is surjective with kernel $E_{S \backslash\{\alpha\}}^{s e p}$.

Proof. We may assume $S=\Delta$. The inclusion $E_{\Delta \backslash\{\alpha\}}^{s e p} \subseteq \operatorname{Ker}\left(\mathrm{id}-\varphi_{\alpha}\right)$ is clear. For a collection $E_{\beta} \leq E_{\beta}^{\prime}=\mathbb{F}_{q_{\beta}}\left(\left(X_{\beta}^{\prime}\right)\right)(\beta \in \Delta)$ of finite separable extensions the ring E_{Δ}^{\prime} is embedded into $\left(E_{\Delta \backslash\{\alpha\}}^{\prime} \otimes_{\mathbb{F}_{p}} \mathbb{F}_{q_{\alpha}}\right)\left(\left(X_{\alpha}^{\prime}\right)\right)$. By comparing the coefficients we find that $\left(E_{\Delta \backslash\{\alpha\}}^{\prime} \otimes_{\mathbb{F}_{p}}\right.$ $\left.\mathbb{F}_{\|_{\alpha}}\right)\left(\left(X_{\alpha}^{\prime}\right)\right)^{\varphi_{\alpha}=\mathrm{id}}=E_{\Delta \backslash\{\alpha\}}^{\prime}$.

For the surjectivity pick an element c in $E_{\Delta}^{\prime} \subset E_{\Delta}^{s e p}$ for some collection of finite separable extensions $E_{\beta} \leq E_{\beta}^{\prime}=\mathbb{F}_{q_{\beta}}\left(\left(X_{\beta}^{\prime}\right)\right)(\beta \in \Delta)$. There exists an integer $k \geq 0$ such that c lies in $X_{\Delta}^{-k} E_{\Delta}^{\prime+}=\widehat{\bigotimes}_{\beta \in \Delta, \mathbb{F}_{p}} X_{\beta}^{-k} E_{\beta}^{\prime+}$. So we may write c as a convergent $\operatorname{sum} c=\sum_{n=1}^{\infty} c_{\bar{\alpha}, n} \otimes c_{\alpha, n}$ such that $c_{\bar{\alpha}, n} \in X_{\Delta \backslash\{\alpha\}}^{-k} E_{\Delta \backslash\{\alpha\}}^{\prime+}$ with $c_{\bar{\alpha}, n} \rightarrow 0$ and $c_{\alpha, n} \in X_{\alpha}^{-k} E_{\alpha}^{\prime+}$. Now the images of the elements $c_{\alpha, n}(n \geq 1)$ under the map $E_{\alpha}^{\prime} / X_{\alpha}^{\prime} E_{\alpha}^{\prime+}$ are contained in the finite set $X_{\alpha}^{-k} E_{\alpha}^{\prime+} / X_{\alpha}^{\prime} E_{\alpha}^{\prime+}$, so by Lemma 4.3 there exists an finite separable extension $E_{\alpha}^{\prime} \leq E_{\alpha}^{\prime \prime}$ such that $c_{\alpha, n}=d_{\alpha, n}-\varphi_{\alpha}\left(d_{\alpha, n}\right)$ for some $d_{\alpha, n} \in E_{\alpha}^{\prime \prime}$ for all $n \geq 1$. Moreover, the X_{α}-adic valuation of $d_{\alpha, n}$ is bounded by that of the X_{α}-adic valuation of $c_{\alpha, n}$ showing that the sum $d:=\sum_{n=1}^{\infty} c_{\bar{\alpha}, n} \otimes d_{\alpha, n}$ defines an element in $E_{\Delta}^{\text {sep }}$ with $c=d-\varphi_{\alpha}(d)$.

Proof of Prop. 4.2. We proceed by induction on $|\Delta|$. The case $|\Delta|=1$ is clear, so suppose $n:=|\Delta|>1$ and we have proven the statement for any proper subset $S \subsetneq \Delta=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. Let $c=\left(c_{S}\right)_{S \in\binom{\Delta}{r}} \in \bigoplus_{S \in\binom{\Delta}{r}} E_{\Delta}^{s e p}$ be a cocycle in degree r. By Lemma 4.4 we find an element $x=\left(x_{U}\right)_{U \in\binom{\Delta}{r-1}}$ with $d_{U}=0$ for all U with $\alpha_{n} \nmid U$ such that $\left(c-d^{r-1}(x)\right)_{S}=0$ for all $S \in\binom{\Delta}{r}$ with $\alpha_{n} \in S$. Indeed, the map $\cup\left\{\left\{\alpha_{n}\right\}:\binom{\Delta \backslash\left\{\alpha_{n}\right\}}{r-1} \rightarrow\left\{\left.S \in\binom{\Delta}{r} \right\rvert\, \alpha_{n} \in S\right\}\right.$ is a bijection and by our assumption that x is concentrated into $\binom{\Delta \backslash\left\{\alpha_{n}\right\}}{r-1} \subset\binom{\Delta}{r-1}$ only the $S \backslash\{\alpha\}$-component of x contributes to the S component of $d^{r-1}(x)$ for $\alpha_{n} \in S$. So by replacing c with $c-d^{r-1}(x)$ we may assume without loss of generality that $c_{S}=0$ for all S containing α_{n}. In particular, for $S^{\prime} \in\left(\underset{r}{\Delta \backslash\left\{\alpha_{n}\right\}}\right)$ we compute

$$
\begin{array}{r}
0=\left(d^{r}(c)\right)_{S^{\prime} \cup\left\{\alpha_{n}\right\}}=(-1)^{r}\left(\mathrm{id}-\varphi_{\alpha_{n}}\right)\left(c_{S^{\prime}}\right)+\sum_{\beta \in S^{\prime}}(-1)^{\varepsilon(\beta, S)}\left(\mathrm{id}-\varphi_{\beta}\right)\left(c_{S^{\prime} \cup\left\{\alpha_{n}\right\} \backslash\{\beta\}}\right)= \\
=(-1)^{r}\left(\mathrm{id}-\varphi_{\alpha_{n}}\right)\left(c_{S^{\prime}}\right) .
\end{array}
$$

Using Lemma 4.4 again this yields $c_{S^{\prime}} \in E_{\Delta \backslash\left\{\alpha_{n}\right\}}^{s e p}$ for all $S^{\prime} \in\binom{\Delta}{r}$. Now the statement follows by induction.

The association $D \mapsto \Phi^{\bullet}(D)$ is an exact functor from the category of abelian groups with an action of $\prod_{\alpha \in \Delta} \varphi_{\alpha}^{\mathbb{N}}$ to the category of chain complexes of abelian groups. In particular, for any short exact sequence $0 \rightarrow D_{1} \rightarrow D_{2} \rightarrow D_{3} \rightarrow 0$, we have a short exact sequence $0 \rightarrow \Phi^{\bullet}\left(D_{1}\right) \rightarrow \Phi^{\bullet}\left(D_{2}\right) \rightarrow \Phi^{\bullet}\left(D_{3}\right) \rightarrow 0$ of chain complexes. This yields a long exact sequence

$$
0 \rightarrow h^{0} \Phi^{\bullet}\left(D_{1}\right) \rightarrow h^{0} \Phi^{\bullet}\left(D_{2}\right) \rightarrow h^{0} \Phi^{\bullet}\left(D_{3}\right) \rightarrow h^{1} \Phi^{\bullet}\left(D_{1}\right) \rightarrow h^{1} \Phi^{\bullet}\left(D_{2}\right) \rightarrow h^{1} \Phi^{\bullet}\left(D_{3}\right) \rightarrow \cdots
$$

of abelian groups.

4.2 The multivariable p-adic coefficient ring

Our goal in this section is to lift E_{Δ} and $E_{\Delta}^{s e p}$ to characteristic 0 so we can classify p-adic representations of $G_{\mathbb{Q}_{p}, \Delta}$. Recall [5] that $\mathcal{O}_{\mathcal{E}} \cong \lim _{\hbar} \mathbb{Z} /\left(p^{h}\right)((X))$ is constructed as a Cohen ring of $E \cong \mathbb{F}_{p}((X))$. Via the embedding $X \mapsto[\varepsilon]-1$ these are subrings of \tilde{B} which is defined as $\tilde{B}:=W\left(\widehat{E^{\text {sep } p}}\right)\left[p^{-1}\right]$ where $W\left(\widehat{\left.E^{\text {sep }}\right)}\right.$ is the ring of p-typical Witt vectors of the completion $\widehat{E^{s e p}}$ (with respect to the X-adic topology) of the separable closure $E^{s e p}$. Here $[\varepsilon]$ denotes the Teichmüller representative of the sequence $\varepsilon=\left(\varepsilon_{n}\right)_{n} \in \lim _{x \rightarrow x^{p}} \mathcal{O}_{\mathbb{C}_{p}} \cong \widehat{E^{\text {sep }}}+$ of p-power roots of unity with $\varepsilon_{1} \neq 1$. Note that $\widehat{E^{\text {sep }}}$ is an algebraically closed field of characteristic p which is, in fact, isomorphic to the tilt $\mathbb{C}_{p}^{b}=\operatorname{Frac}\left(\lim _{x \mapsto x^{p}} \mathcal{O}_{\mathbb{C}_{p}} /(p)\right)$ of \mathbb{C}_{p} in the modern terminology. Further, for any finite extension E^{\prime} / E contained in $E^{\text {sep }}$ there exists a unique finite unramified extension \mathcal{E}^{\prime} of $\mathcal{E}=\mathcal{O}_{\mathcal{E}}\left[p^{-1}\right]$ contained in \tilde{B} with residue field E^{\prime} (Prop. 4.20 in [5]).

We define the ring $\mathcal{O}_{\mathcal{E}_{\Delta}}$ as the projective limit $\lim _{h}\left(\mathbb{Z} /\left(p^{h}\right)\left[\left[X_{\alpha} \mid \alpha \in \Delta\right]\right]\left[X_{\Delta}^{-1}\right]\right)$ and put $\mathcal{E}_{\Delta}:=\mathcal{O}_{\mathcal{E}_{\Delta}}\left[p^{-1}\right]$ so we have $\mathcal{O}_{\mathcal{E}_{\Delta}} /(p) \cong E_{\Delta}$. The Iwasawa algebra $\mathcal{O}_{\mathcal{E}_{\Delta}}^{+}=\mathbb{Z}_{p}\left[\left[X_{\alpha} \mid \alpha \in \Delta\right]\right] \leq$ $\mathcal{O}_{\mathcal{E}_{\Delta}}$ is isomorphic to the completed tensor product of the one-variable Iwasawa algebras $\mathcal{O}_{\mathcal{E}_{\alpha}}^{+}:=\mathbb{Z}_{p}\left[\left[X_{\alpha}\right]\right](\alpha \in \Delta)$ over \mathbb{Z}_{p}. This motivates the way we can lift E_{Δ}^{\prime} to characteristic 0 for a collection $E_{\alpha}^{\prime} / E_{\alpha}(\alpha \in \Delta)$ of finite separable extensions. We define

$$
\mathcal{O}_{\mathcal{E}_{\Delta}^{\prime}}^{+}:=\bigotimes_{\alpha \in \Delta, \mathbb{Z}_{p}} \mathcal{O}_{\mathcal{E}_{\alpha}^{\prime}}
$$

as a completed tensor product. If we write $E_{\alpha}^{\prime}=\mathbb{F}_{q_{\alpha}}\left(\left(X_{\alpha}^{\prime}\right)\right)(\alpha \in \Delta)$ then we may identify $\mathcal{O}_{\mathcal{E}_{\Delta}^{\prime}}^{+}$ with the power series ring $\left(\bigotimes_{\alpha \in \Delta, \mathbb{Z}_{p}} W\left(\mathbb{F}_{q_{\alpha}}\right)\right)\left[\left[X_{\alpha}^{\prime} \mid \alpha \in \Delta\right]\right]$ over the finite étale \mathbb{Z}_{p}-algebra $\bigotimes_{\alpha \in \Delta, \mathbb{Z}_{p}} W\left(\mathbb{F}_{q_{\alpha}}\right)$. We define $\mathcal{O}_{\mathcal{E}_{\Delta}^{\prime}}$ as the p-adic completion $\widehat{\mathcal{O}_{\mathcal{E}_{\Delta}^{\prime}}^{+}\left[X_{\Delta}^{-1}\right]}=\lim _{h} \mathcal{O}_{\mathcal{E}_{\Delta}^{\prime}}^{+}\left[X_{\Delta}^{-1}\right] /\left(p^{h}\right)$ and put $\mathcal{E}_{\Delta}^{\prime}:=\mathcal{O}_{\mathcal{E}_{\Delta}^{\prime}}\left[p^{-1}\right]$. We have the following alternative characterization of $\mathcal{O}_{\mathcal{E}_{\Delta}^{\prime}}$.

Lemma 4.5. Writing $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ we have

$$
\mathcal{O}_{\mathcal{E}_{\Delta}^{\prime}} \cong \mathcal{O}_{\mathcal{E}_{\alpha_{1}}^{\prime}} \otimes_{\mathcal{O}_{\mathcal{E}_{1}}}\left(\cdots\left(\mathcal{O}_{\mathcal{E}_{\alpha_{n}}^{\prime}} \otimes_{\mathcal{E}_{\mathcal{E}_{\alpha_{n}}}} \mathcal{O}_{\mathcal{E}_{\Delta}}\right)\right)
$$

In particular, $\mathcal{O}_{\mathcal{E}_{\Delta}^{\prime}}$ is a free module of rank $\prod_{i=1}^{n}\left|E_{\alpha_{i}}^{\prime}: E_{\alpha_{i}}\right|$ over $\mathcal{O}_{\mathcal{E}_{\Delta}}$.
Proof. Each $\mathcal{O}_{\mathcal{E}_{\alpha_{i}}^{\prime}}$ is naturally a subring in $\mathcal{O}_{\mathcal{E}_{\Delta}^{\prime}}$ and so is $\mathcal{O}_{\mathcal{E}_{\Delta}}$. Therefore there is a ring homomorphism from the right hand side to the left hand side which is an isomorphism modulo p by Lemma 3.2. The first statement follows from the p-adic completeness of both sides.

Since $\mathcal{O}_{\mathcal{E}_{\alpha_{i}}}$ is a complete discrete valuation ring, $\mathcal{O}_{\mathcal{E}_{\alpha_{i}}^{\prime}}$ is finite free over $\mathcal{O}_{\mathcal{E}_{\alpha_{i}}}$ of rank $\left|E_{\alpha_{i}}^{\prime}: E_{\alpha_{i}}\right|(i=1, \ldots, n)$. Therefore the second statement.

Now we define $\mathcal{E}_{\Delta}^{u r}:=\underset{\longrightarrow}{\lim } \mathcal{E}_{\Delta}^{\prime}$ and $\mathcal{O}_{\mathcal{E}_{\Delta}^{u r}}:=\underset{\longrightarrow}{\lim } \mathcal{O}_{\mathcal{E}_{\Delta}^{\prime}}$ where E_{α}^{\prime} runs over the finite subextensions of E_{α} in $E_{\alpha}^{s e p}$ for all $\alpha \in \Delta$. Further, we denote by $\widehat{\mathcal{E}_{\Delta}^{u r}}$ (resp. by $\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}}$) the p-adic completion of $\mathcal{E}_{\Delta}^{u r}$ (resp. of $\mathcal{O}_{\mathcal{E}_{\Delta}^{u r}}$. We have $\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}} /(p) \cong E_{\Delta}^{s e p}$ by construction. The group $G_{\mathbb{Q}_{p}, \Delta}$ acts naturally on $\widehat{\mathcal{E}_{\Delta}^{u r}}$ (resp. on $\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}}$). Moreover, for each $\alpha \in \Delta$ we have the Frobenius lift φ_{α} on \tilde{B}_{α} (the copy of \tilde{B} indexed by α) which acts on $[\varepsilon]$ by raising to the p th power
(as it is a Teichmüller representative). So we have $\varphi_{\alpha}\left(X_{\alpha}\right)=\left(X_{\alpha}+1\right)^{p}-1$. For each finite extension $E_{\alpha}^{\prime} / E_{\alpha}$ we have $\varphi\left(\mathcal{E}_{\alpha}^{\prime}\right) \subset \mathcal{E}_{\alpha}^{\prime}$, so this defines an action of φ_{α} on the rings $\mathcal{E}_{\Delta}^{u r}, \mathcal{O}_{\mathcal{E}_{\Delta}^{u r}}$, $\widehat{\mathcal{E}_{\Delta}^{u r}}$, and $\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}}$ for all $\alpha \in \Delta$. These operators commute with each other and with the action of the group $G_{\mathbb{Q}_{p}, \Delta}$.

Proposition 4.6. We have

$$
\begin{array}{ll}
\widehat{\mathcal{E}_{\Delta}^{u r}}{ }^{H_{\mathbb{Q}_{p}, \Delta}}=\mathcal{E}_{\Delta}, & \bigcap_{\alpha \in \Delta} \widehat{\mathcal{E}}^{u{ }_{u}^{u r}} \varphi_{\alpha}=\mathrm{id} \\
\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}}^{H_{Q_{p}, \Delta}}=\mathcal{O}_{\mathcal{E}_{\Delta}}, & \bigcap_{\alpha \in \Delta} \mathcal{O}_{\overline{\mathcal{E}_{\Delta}^{u r}}}^{\varphi_{\alpha}^{u r}}=\text { and } \\
=\mathbb{Z}_{p} .
\end{array}
$$

Proof. The statements on $\widehat{\mathcal{E}_{\Delta}^{u r}}$ follow from those on $\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}}$ as p is $\varphi_{\alpha^{-}}$and $H_{\mathbb{Q}_{p}, \Delta \text {-invariant for }}$ all $\alpha \in \Delta$. Moreover, the latter statements are consequences of Prop. 3.3, resp. Lemma 3.6 using devissage.

4.3 The equivalence of categories

We denote by $\operatorname{Rep}_{\mathbb{Z}_{p}}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$ (resp. by $\left.\operatorname{Rep}_{\mathbb{Q}_{p}}\left(G_{\mathbb{Q}_{p}, \Delta}\right)\right)$ the category of continuous representations of $G_{\mathbb{Q}_{p}, \Delta}$ on finitely generated \mathbb{Z}_{p}-modules (resp. on finite dimensional \mathbb{Q}_{p}-vector spaces). Let T (resp. V) be an object in $\operatorname{Rep}_{\mathbb{Z}_{p}}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$ (resp. in $\operatorname{Rep}_{\mathbb{Q}_{p}}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$). We define

$$
\mathbb{D}(T):=\left(\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}} \otimes_{\mathbb{Z}_{p}} T\right)^{H_{\mathbb{Q}_{p}, \Delta}} \quad\left(\text { resp. } \mathbb{D}(V):=\left(\widehat{\mathcal{E}_{\Delta}^{u r}} \otimes_{\mathbb{Q}_{p}} V\right)^{H_{\mathbb{Q}_{p}, \Delta}}\right)
$$

By Prop. 4.6 $\mathbb{D}(T)$ (resp. $\mathbb{D}(V)$) is a module over $\mathcal{O}_{\mathcal{E}_{\Delta}}$ (resp. over \mathcal{E}_{Δ}). Moreover, it admits an action of the monoid $T_{+, \Delta}$: the action of $\varphi_{\alpha}(\alpha \in \Delta)$ is trivial on T (resp. on $V)$ and therefore comes from the action on $\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}}$ (resp. on $\widehat{\mathcal{E}_{\Delta}^{u r}}$) defined above. The action of $\Gamma_{\Delta}=G_{\mathbb{Q}_{p}, \Delta} / H_{\mathbb{Q}_{p}, \Delta}$ comes from the diagonal action of $G_{\mathbb{Q}_{p}, \Delta}$ on $\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}} \otimes_{\mathbb{Z}_{p}} T$ (resp. on $\left.\widehat{\mathcal{E}_{\Delta}^{u r}} \otimes_{\mathbb{Q}_{p}} V\right)$.
Proposition 4.7. Let T be an object in $\operatorname{Rep}_{\mathbb{Z}_{p}}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$. The natural map

$$
\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}} \otimes_{\mathcal{E}_{\Delta}} \mathbb{D}(T) \rightarrow \mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}} \otimes_{\mathbb{Z}_{p}} T
$$

is an isomorphism.
Proof. This is very similar to the proof of Prop. 2.30 in [5. We proceed in two steps. Assume first that T is killed by a power p^{h} of p. We use induction on h. The case $h=1$ is done in Prop. 3.7. Now for $h>1$ we have a short exact sequence $0 \rightarrow T_{1} \rightarrow T \rightarrow T_{2} \rightarrow 0$ of objects in $\operatorname{Rep}_{\mathbb{Z}_{p}}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$ such that $p T_{1}=0$ and $p^{h-1} T_{2}$. Since $\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}}$ has no p-torsion, it is flat as \mathbb{Z}_{p}-module. Therefore we obtain a short exact sequence

$$
0 \rightarrow \mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}} \otimes_{\mathbb{Z}_{p}} T_{1} \rightarrow \mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}} \otimes_{\mathbb{Z}_{p}} T \rightarrow \mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}} \otimes_{\mathbb{Z}_{p}} T_{2} \rightarrow 0
$$

Now we have an identification $\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}} \otimes_{\mathbb{Z}_{p}} T_{1} \cong E_{\Delta}^{s e p} \otimes_{\mathbb{F}_{p}} T_{1} \cong E_{\Delta}^{s e p} \otimes_{E_{\Delta}} \mathbb{D}\left(T_{1}\right)$. In particular, as a representation of $H_{\mathbb{Q}_{p}, \Delta}$ we have $\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}} \otimes_{\mathbb{Z}_{p}} T_{1} \cong\left(E_{\Delta}^{s e p}\right)^{\operatorname{dim}_{\mathbb{F}_{p}} T_{1}}$. In particular, Prop. 4.1 yields
$H_{\text {cont }}^{1}\left(H_{\mathbb{Q}_{p}, \Delta}, \mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{\mu r}}} \otimes_{\mathbb{Z}_{p}} T_{1}\right)=\{1\}$. By the long exact sequence of continuous $H_{\mathbb{Q}_{p}, \Delta}$-cohomology we deduce the exactness of the sequence

$$
0 \rightarrow \mathbb{D}\left(T_{1}\right) \rightarrow \mathbb{D}(T) \rightarrow \mathbb{D}\left(T_{2}\right) \rightarrow 0
$$

Now we have a commutative diagram

with exact rows. Thus the vertical map in the middle is an isomorphism by induction using the 5-lemma.

The general case follows from this by taking the projective limit of the isomorphisms above for $T / p^{h} T$ as h tends to infinity.

An étale $T_{+, \Delta}$-module over $\mathcal{O}_{\mathcal{E}_{\Delta}}$ is a finitely generated $\mathcal{O}_{\mathcal{E}_{\Delta}}$-module D together with a semilinear action of the monoid $T_{+, \Delta}$ such that for all $\varphi_{t} \in T_{+, \Delta}$ the map

$$
\operatorname{id} \otimes \varphi_{t}: \varphi_{t}^{*} D:=\mathcal{O}_{\mathcal{E}_{\Delta}} \otimes_{\mathcal{O}_{\varepsilon_{\Delta}}, \varphi_{t}} D \rightarrow D
$$

is an isomorphism. We denote by $\mathcal{D}^{e t}\left(\varphi_{\Delta}, \Gamma_{\Delta}, \mathcal{O}_{\mathcal{E}_{\Delta}}\right)$ the category of étale $T_{+, \Delta}$-modules over $\mathcal{O}_{\mathcal{E}_{\Delta}}$. As in the mod p case, $\mathcal{D}^{e t}\left(\varphi_{\Delta}, \Gamma_{\Delta}, \mathcal{O}_{\mathcal{E}_{\Delta}}\right)$ has the structure of a neutral Tannakian category. If D is finitely generated $\mathcal{O}_{\mathcal{E}_{\Delta}}$ module that is killed by a power p^{h} of p we define the generic length of D as length ${ }_{g e n} D:=\sum_{i=1}^{h} \mathrm{rk}_{E_{\Delta}} p^{i-1} D / p^{i} D$ where $\mathrm{rk}_{E_{\Delta}}$ denotes the generic rank (ie. dimension over $\operatorname{Frac}\left(E_{\Delta}\right)$ of the localisation at (0)).

Corollary 4.8. The functor \mathbb{D} is exact. $\mathbb{D}(T)$ is an object in $\mathcal{D}^{\text {et }}\left(\varphi_{\Delta}, \Gamma_{\Delta}, \mathcal{O}_{\mathcal{E}_{\Delta}}\right)$ for any T in $\operatorname{Rep}_{\mathbb{Z}_{p}}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$. Moreover, if T is killed by a power of p then the we have $\operatorname{length}_{\text {gen }} \mathbb{D}(T)=$ length $_{\mathbb{Z}_{p}} T$.

Proof. If T is an object in $\operatorname{Rep}_{\mathbb{Z}_{p}}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$ such that $p^{h} T=0$, then we have $H^{1}\left(H_{\mathbb{Q}_{p}, \Delta}, \mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}} \otimes_{\mathbb{Z}_{p}}\right.$ $T)=\{1\}$ by induction on h using the long exact sequence of continuous $H_{\mathbb{Q}_{p}, \Delta}$-cohomology. So the exactness of \mathbb{D} on finite length objects in $\operatorname{Rep}_{\mathbb{Z}_{p}}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$ follows the same way as in the proof of Prop. 4.7 in the special case when $p T_{1}=0$. Now if $0 \rightarrow T_{1} \rightarrow T_{2} \rightarrow T_{3} \rightarrow 0$ is an arbitrary short exact sequence in $\operatorname{Rep}_{\mathbb{Z}_{p}}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$ then we have an exact sequence

$$
0 \rightarrow T_{1}\left[p^{h}\right] \rightarrow T_{2}\left[p^{h}\right] \rightarrow T_{3}\left[p^{h}\right] \xrightarrow{\frac{\partial}{h}} T_{1} / p^{h} T_{1} \rightarrow T_{2} / p^{h} T_{2} \rightarrow T_{3} / p^{h} T_{3} \rightarrow 0
$$

of finite length objects for all $h \geq 1$. Applying \mathbb{D} yields an exact sequence

$$
0 \rightarrow \mathbb{D}\left(T_{1}\left[p^{h}\right]\right) \rightarrow \mathbb{D}\left(T_{2}\left[p^{h}\right]\right) \rightarrow \mathbb{D}\left(T_{3}\left[p^{h}\right]\right) \rightarrow \mathbb{D}\left(T_{1} / p^{h} T_{1}\right) \rightarrow \mathbb{D}\left(T_{2} / p^{h} T_{2}\right) \rightarrow \mathbb{D}\left(T_{3} / p^{h} T_{3}\right) \rightarrow 0
$$

for all $h \geq 1$. Since T_{i} is finitely generated over \mathbb{Z}_{p}, we have $T_{i}\left[p^{h}\right]=\left(T_{i}\right)_{\text {tors }}$ for $h \geq h_{0}$ large enough $(i=1,2,3)$. In particular, the connecting map $T_{i}\left[p^{(n+1) h}\right] \xrightarrow{p^{h} .} T_{i}\left[p^{n h}\right]$ is the zero map for $h \geq h_{0}$ and $i=1,2,3$. Thus the Mittag-Leffler property is satisfied for both $\operatorname{Im}\left(\partial_{h}\right)_{h}$ and
$\operatorname{Coker}\left(\partial_{h}\right)_{h}$ as the map $T_{1} / p^{h+1} T_{1} \rightarrow T_{1} / p^{h} T_{1}$ is surjective for all $h \geq 1$. Hence taking the projective limit we obtain an exact sequence $0 \rightarrow \mathbb{D}\left(T_{1}\right) \rightarrow \mathbb{D}\left(T_{2}\right) \rightarrow \mathbb{D}\left(T_{3}\right) \rightarrow 0$ as claimed.

The statement on the generic length follows from the exactness using Prop. 3.7 and induction on h such that $p^{h} T=0$. In particular, $\mathbb{D}(T)$ is finitely generated over $\mathcal{O}_{\mathcal{E}_{\Delta}}$ if T has finite length. Now if T is not necessarily of finite length then we apply the exactness of \mathbb{D} on the exact sequence $0 \rightarrow T[p] \rightarrow T \xrightarrow{p} T \rightarrow T / p T \rightarrow 0$ we obtain that $\mathbb{D}(T / p T)=\mathbb{D}(T) / p \mathbb{D}(T)$ which is finitely generated over E_{Δ}. Therefore $\mathbb{D}(T)$ is finitely generated over $\mathcal{O}_{\mathcal{E}_{\Delta}}$ by the p-adic completeness of $\mathbb{D}(T)$ (by definition we have $\lim _{h} \mathbb{D}\left(T / p^{h} T\right)=\mathbb{D}(T)$).

Finally, the étale property for finite length modules follows by induction on the length from the case $h=1$ (Prop. 3.7) and in general by taking the projective limit.

Conversely, let D be an object in $\mathcal{D}^{\text {et }}\left(\varphi_{\Delta}, \Gamma_{\Delta}, \mathcal{O}_{\mathcal{E}_{\Delta}}\right)$. We define

$$
\mathbb{T}(D):=\bigcap_{\alpha \in \Delta}\left(\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}} \otimes_{\mathcal{O}_{\Delta}} D\right)^{\varphi_{\alpha}=\mathrm{id}}
$$

This is a \mathbb{Z}_{p}-module admitting a diagonal action of $G_{\mathbb{Q}_{p}, \Delta}$ via the formula $g(\lambda \otimes d):=g(\lambda) \otimes$ $\chi(g)(d)$ where $\chi: G_{\mathbb{Q}_{p}, \Delta} \rightarrow \Gamma_{\Delta}$ is the quotient map.

Proposition 4.9. For any object $D \operatorname{in} \mathcal{D}^{e t}\left(\varphi_{\Delta}, \Gamma_{\Delta}, \mathcal{O}_{\mathcal{E}_{\Delta}}\right)$, the natural map

$$
\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}} \otimes_{\mathbb{Z}_{p}} \mathbb{T}(D) \rightarrow \mathcal{O}_{\widehat{\mathcal{\varepsilon}_{\Delta}^{u r}}} \otimes_{\mathcal{O}_{\Delta}} D
$$

is an isomorphism.
Proof. This is completely analogous to the proof of Prop. 2.31 in 5. We proceed in two steps. At first assume that $p^{h} D=0$ for some integer $h \geq 1$. Consider the exact sequence $0 \rightarrow D[p] \rightarrow D \rightarrow D / D[p] \rightarrow 0$ and apply the exact functor $\Phi^{\bullet} \circ\left(\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}} \otimes_{\mathcal{O}_{\mathcal{E}_{\Delta}}} \cdot\right)$ to obtain an exact sequence

$$
0 \rightarrow \Phi^{\bullet}\left(\mathcal{O}_{\widehat{\mathcal{\varepsilon}_{\Delta}^{u r}}} \otimes_{\mathcal{O}_{\Delta}} D[p]\right) \rightarrow \Phi^{\bullet}\left(\mathcal{O}_{\widehat{\mathcal{\varepsilon}_{\Delta}^{u r}}} \otimes_{\mathcal{E}_{\Delta}} D\right) \rightarrow \Phi^{\bullet}\left(\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}} \otimes_{\mathcal{E}_{\Delta}} D / D[p]\right) \rightarrow 0
$$

By Thm. $3.15 D[p]$ is in the image of the functor \mathbb{D} whence $\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}} \otimes_{\mathcal{O}_{\varepsilon_{\Delta}}} D[p]$ is isomorphic to $\left(E_{\Delta}^{s e p}\right)^{\mathrm{rk}_{E_{\Delta}}} D[p]$ as a $\prod_{\alpha \in \Delta} \varphi_{\alpha}^{\mathbb{N}}$-module using Prop. 3.7. In particular, $h^{1} \Phi^{\bullet}\left(\mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}} \otimes_{\mathcal{E}_{\Delta}} D[p]\right)=0$ by Prop. 4.2. This yields an exact sequence

$$
0 \rightarrow \mathbb{T}(D[p]) \rightarrow \mathbb{T}(D) \rightarrow \mathbb{T}(D / D[p]) \rightarrow 0
$$

and the statement follows the same way as in the proof of Prop. 4.7.
The general case follows by taking the limit.
Now note that $\mathbb{T}(D)$ is finitely generated over \mathbb{Z}_{p} : this is obvious in the case when $p^{h} D=0$ using induction on h and in the general case by Nakayama's lemma as we have $\mathbb{T}(D)=$ $\varliminf_{\swarrow} \lim _{h}\left(D / p^{h} D\right)$ by construction. So we deduce
Theorem 4.10. The functors \mathbb{D} and \mathbb{T} are quasi-inverse equivalences of categories between the Tannakian categories $\operatorname{Rep}_{\mathbb{Z}_{p}}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$ and $\mathcal{D}^{e t}\left(\varphi_{\Delta}, \Gamma_{\Delta}, \mathcal{O}_{\mathcal{E}_{\Delta}}\right)$.

Finally, an étale $T_{+, \Delta}$-module over \mathcal{E}_{Δ} is a finitely generated \mathcal{E}_{Δ}-module D together with a semilinear action of the monoid $T_{+, \Delta}$ such that there exists an object D_{0} in $\mathcal{D}^{\text {et }}\left(\varphi_{\Delta}, \Gamma_{\Delta}, \mathcal{O}_{\mathcal{E}_{\Delta}}\right)$ with an isomorphism $D \cong D_{0}\left[p^{-1}\right]=\mathcal{E}_{\Delta} \otimes_{\mathcal{O}_{\mathcal{E}}} D_{0}$. We denote by $\mathcal{D}^{e t}\left(\varphi_{\Delta}, \Gamma_{\Delta}, \mathcal{E}_{\Delta}\right)$ the category of étale $T_{+, \Delta}$-modules over \mathcal{E}_{Δ}. As before, $\mathcal{D}^{\text {et }}\left(\varphi_{\Delta}, \Gamma_{\Delta}, \mathcal{E}_{\Delta}\right)$ has the structure of a neutral Tannakian category. We have the following characteristic 0 version of the category equivalence:

Theorem 4.11. The functors

$$
\begin{aligned}
V & \mapsto \mathbb{D}(V):=\left(\widehat{\mathcal{E}_{\Delta}^{u r}} \otimes_{\mathbb{Q}_{p}} V\right)^{H_{\mathbb{Q}_{p}, \Delta}} \\
D & \mapsto \mathbb{V}(D):=\bigcap_{\alpha \in \Delta}\left(\widehat{\mathcal{E}_{\Delta}^{u r}} \otimes_{\mathcal{E}_{\Delta}} D\right)^{\varphi_{\alpha}=\mathrm{id}}
\end{aligned}
$$

are quasi-inverse equivalences of categories between the Tannakian categories $\operatorname{Rep}_{\mathbb{Q}_{p}}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$ and $\mathcal{D}^{e t}\left(\varphi_{\Delta}, \Gamma_{\Delta}, \mathcal{E}_{\Delta}\right)$.

Proof. Since $G_{\mathbb{Q}_{p}, \Delta}$ is compact, any finite dimensional \mathbb{Q}_{p}-representation V contains a $G_{\mathbb{Q}_{p}, \Delta^{-}}$ invariant lattice T. The statement follows from Thm. 4.10 by inverting p on both sides. The compatibility with tensor products and duals follows the same way as in characteristic p.

Remarks. 1. If A is a \mathbb{Z}_{p}-algebra which is finitely generated as a module over \mathbb{Z}_{p}, then we have an equivalence of categories between $\operatorname{Rep}_{A}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$ and $\mathcal{D}^{e t}\left(\varphi_{\Delta}, \Gamma_{\Delta}, A \otimes_{\mathbb{Z}_{p}} \mathcal{O}_{\mathcal{E}_{\Delta}}\right)$. Indeed, we have a natural isomorphism $\left(A \otimes_{\mathbb{Z}_{p}} \mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}}\right) \otimes_{A} \cong \mathcal{O}_{\widehat{\mathcal{E}_{\Delta}^{u r}}} \otimes_{\mathbb{Z}_{p}} \cdot$ as functors on $\operatorname{Rep}_{A}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$. Similarly, if K is a finite extension of \mathbb{Q}_{p}, then we have an equivalence of categories between $\operatorname{Rep}_{K}\left(G_{\mathbb{Q}_{p}, \Delta}\right)$ and $\mathcal{D}^{e t}\left(\varphi_{\Delta}, \Gamma_{\Delta}, K \otimes_{\mathbb{Q}_{p}} \mathcal{E}_{\Delta}\right)$.
2. It is expected that there is a similar equivalence of categories for representations of the $|\Delta|$ th direct power of the group $\operatorname{Gal}\left(\overline{\mathbb{Q}_{p}} / F\right)$ for a finite extension F / \mathbb{Q}_{p}. However, at this point it is not clear what type of (φ, Γ)-modules one should consider. The usual cyclotomic (φ, Γ)-modules do not seem to be well-suited for the purpose of the p-adic and mod p Langlands programme. On the other hand, the Lubin-Tate setting may not work properly in characteristic p due to the non-existence of the distinguished left inverse ψ of φ. To work over the character variety of the group \mathcal{O}_{F} [2] seems, however, to be a good candidate.

References

[1] Balister P., Howson S., Note on Nakayama's lemma for compact Λ-modules, Asian J. Math. 1(2) (1997), 224-229.
[2] Berger L., Schneider P., Xie B., Rigid character groups, Lubin-Tate theory, and (φ, Γ) modules, preprint (2015)
[3] Colmez P., (φ, Γ)-modules et représentations du mirabolique de $G L_{2}\left(\mathbb{Q}_{p}\right)$, Astérisque 330 (2010), 61-153.
[4] Dee J., $\Phi-\Gamma$-Modules for families of Galois representations, J. of Algebra 235 (2001), 636-664.
[5] Fontaine J.-M., Ouyang Y., Theory of p-adic Galois representations, book in preparation
[6] Hartshorne R., Residues and duality, Springer (1966).
[7] Scholze P., Lecture notes on p-adic geometry (written by J. Weinstein), https://math.berkeley.edu/ jared/Math274/ScholzeLectures.pdf
[8] Wedhorn Th., Adic spaces, preprint (2012)
[9] Weibel Ch., An introduction to homological algebra, Cambridge studies in advanced mathematics 38, Cambridge University Press, 1994.
[10] Weibel Ch., The K-book: An introduction to algebraic K-theory, Graduate Studies in Math. vol. 145, AMS, 2013.
[11] Zábrádi G., Multivariable (φ, Γ)-modules and smooth o-torsion representations, preprint (2015), arXiv:1511.01037

[^0]: *This research was supported by a Hungarian OTKA Research grant K-100291 and by the János Bolyai Scholarship of the Hungarian Academy of Sciences. I would like to thank the Arithmetic Geometry and Number Theory group of the University of Duisburg-Essen, campus Essen, for its hospitality and for financial support from SFB TR45 where parts of this paper was written.

