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Abstract

We study asymptotic properties of maximum likelihood estimators of drift parameters

for a jump-type Heston model based on continuous time observations, where the jump

process can be any purely non-Gaussian Lévy process of not necessarily bounded varia-

tion with a Lévy measure concentrated on (−1,∞). We prove strong consistency and

asymptotic normality for all admissible parameter values except one, where we show only

weak consistency and mixed normal (but non-normal) asymptotic behavior. It turns out

that the volatility of the price process is a measurable function of the price process. We

also present some numerical illustrations to confirm our results.

1 Introduction

Parameter estimation, especially studying asymptotic properties of maximum likelihood esti-

mator (MLE) of drift parameters for Cox–Ingersoll–Ross (CIR) and Heston models is an active
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area of research mainly due to the wide range of applications of these models in financial

mathematics.

The present paper gives a new contribution to the theory of asymptotic properties of MLE

for jump-type Heston models based on continuous time observations. Concerning related works,

due to the vast literature on parameter estimation for Heston models, we will restrict ourselves

to mention only papers that investigate the very same types of questions. For a detailed and

recent survey on parameter estimation for Heston models in general, see the Introduction of

Barczy and Pap [6].

Overbeck [33] studied MLE of the drift parameters of the first coordinate process of a

(diffusion type) Heston model (see (1.1)) based on continuous time observations, which is

nothing else but a CIR process, also called square root process or Feller process. Ben-Alaya

and Kebaier [8], [9] made a progress in MLE for the CIR process, giving explicit forms of joint

Laplace transforms of the building blocks of this MLE as well.

Barczy and Pap [6] considered a Heston model{
dYt = (a− bYt) dt+ σ1

√
Yt dWt,

dXt = (α− βYt) dt+ σ2

√
Yt
(
% dWt +

√
1− %2 dBt

)
,

t ∈ [0,∞),(1.1)

where a, σ1, σ2 ∈ (0,∞), b, α, β ∈ R, % ∈ (−1, 1) and (Wt, Bt)t∈[0,∞) is a 2-dimensional

standard Wiener process. Here (Xt)t∈[0,∞) is the log-price process of an asset, (Yt)t∈[0,∞) is its

stochastic volatility (or instantaneous variance), σ1 ∈ (0,∞) is the so-called volatility of the

volatility, and % ∈ (−1, 1) is the correlation between the driving standard Wiener processes

(Wt)t∈[0,∞) and (%Wt +
√

1− %2Bt)t∈[0,∞). The MLE of the drift parameters (a, b, α, β)

and its asymptotic behavior have been investigated based on continuous time observations

(Yt, Xt)t∈[0,T ] with T ∈ (0,∞) for all admissible parameter values (according to b > 0, b = 0,

and b < 0). It turned out that, for all t ∈ [0, T ], Yt is a measurable function of (Xt)t∈[0,T ],

hence, for the calculation of the MLE in question, one does not need the sample (Yt)t∈[0,T ].

The original Heston model (see Heston [18]) takes the form{
dYt = κ(θ − Yt) dt+ σ

√
Yt dWt,

dSt = µSt dt+ St
√
Yt
(
% dWt +

√
1− %2 dBt

)
,

t ∈ [0,∞),(1.2)

where (St)t∈[0,∞) is the price process of an asset, µ ∈ R is the rate of return of the asset,

θ ∈ (0,∞) is the so-called long variance (long run average price variance, i.e., the limit of

E(Yt) as t→∞), κ ∈ (0,∞) is the rate at which (Yt)t∈[0,∞) reverts to θ, and σ ∈ (0,∞)

is the so-called volatility of the volatility. We call the attention that there are two differences

between the models (1.1) and (1.2). Namely, in (1.2) the coefficient κ can only be positive,

while in (1.1) the corresponding coefficient b can be an arbitrary real number. In other words,

the first coordinate process in (1.1) can be subcritical, critical or supercritical (according to

b > 0, b = 0, and b < 0), but in (1.2) it can only be subcritical (since κ > 0). Moreover, the

second coordinate process in (1.2) is the price process, while in (1.1) it is the log-price process.
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In this paper we study a jump-type Heston model (also called a stochastic volatility with

jumps model, SVJ model){
dYt = κ(θ − Yt) dt+ σ

√
Yt dWt,

dSt = µSt dt+ St
√
Yt
(
% dWt +

√
1− %2 dBt

)
+ St− dLt,

t ∈ [0,∞),(1.3)

where (Lt)t∈[0,∞) is a purely non-Gaussian Lévy process independent of (Wt, Bt)t∈[0,∞) with

Lévy–Khintchine representation

(1.4) E(eiuL1) = exp

{
iγu+

∫ ∞
−1

(eiuz − 1− iuz1(−1,1](z))m(dz)

}
, u ∈ R,

where γ ∈ R and m is a Lévy measure concentrated on (−1,∞) with m({0}) = 0. Here, let

us recall that the Lévy process L has finite variation on each interval [0, t], t ∈ [0,∞), if and

only if
∫ 1

−1
|z|m(dz) <∞, see, e.g., Sato [35, Theorem 21.9]. We point out that the assumption

P(Y0 ∈ [0,∞), S0 ∈ (0,∞)) = 1 and the assumption in question on the support of the Lévy

measure m assure that P(St ∈ (0,∞) for all t ∈ [0,∞)) = 1 (see Proposition 2.1), so the

process S can be used for modeling prices in a financial market. From the point of view of

financial mathematics, a natural question may occur concerning the model (1.3). Namely, is the

drift coefficient of the second SDE in (1.3) well-adjusted in the sense that the discounted price

process forms a martingale under some suitable equivalent martingale measure? We renounce

to consider this question, we just note that one may have to choose the parameter µ in an

appropriate way to assure this property. In Lamberton and Lapeyre [27, Section 7] one can find

a detailed discussion of the same type of question for a jump-type Black-Scholes model, where

the jumps of the log-price process is modeled by a compound Poisson process. They derived a

necessary and sufficient condition for the drift coefficient of the underlying SDE in terms of the

discounting factor and the parameters of the compound Poisson process in question in order

that the discounted price process is a martingale, see [27, page 146]. For a good survey on

jump-type Heston models, pricing and hedging in these models, see Runggaldier [34]. In fact,

the model (1.3) is quite popular in finance with the special choice of the Lévy process L as a

compound Poisson process. Namely, let

Lt :=
πt∑
i=1

(eJi − 1), t ∈ [0,∞),(1.5)

where (πt)t∈[0,∞) is a Poisson process with intensity λ ∈ (0,∞), (Ji)i∈N is a sequence of

independent identically distributed random variables having no atom at zero (i.e., P(J1 = 0) =

0), and being independent of π as well. We also suppose that π, (Ji)i∈N, W and B are

independent. One can interpret J as the jump size of the logarithm of the asset price. Then

E(eiuL1) = exp

{
λ

∫ ∞
−1

(eiuz − 1)m(dz)

}

= exp

{
iuλ

∫ 1

−1

z m(dz) + λ

∫ ∞
−1

(eiuz − 1− iuz1[−1,1](z))m(dz)

}
, u ∈ R,
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has the form (1.4) with m being the distribution of eJ1−1 and γ = λ
∫ 1

−1
z m(dz). Moreover,

St takes the form

St = S0 exp

{∫ t

0

(
µ− 1

2
Yu

)
du+

∫ t

0

√
Yu (% dWu +

√
1− %2 dBu) +

πt∑
i=1

Ji

}
(1.6)

for t ∈ [0,∞), see (2.1). We note that the SDE (1.3) with the Lévy process L given in (1.5)

has been studied, e.g., by Bates [7, equation (1)], Bakshi et al. [3, equations (1) and (2) with

R ≡ 0], by Broadie and Kaya [12, equations (30)-(31)] (where a factor St− is missing from the

last term of equation (30)), by Runggaldier [34, Remark 3.1 with λt ≡ λ] and by Sun et al. [37,

equation (1) with Jv = 0]. Bates [7], Bakshi et al. [3] and Broadie and Kaya [12] have chosen

the common distribution of J as a normal distribution. Bakshi et al. [3] used this model

for studying (European style) S&P 500 options, e.g., they derived a practically implementable

closed-form pricing formula. Broadie and Kaya [12] gave an exact simulation algorithm for

this model, further, they considered the pricing of forward start options in this model. Sun

et al. [37] have chosen the common distribution of J as a normal distribution, a one-sided

exponential distribution or a two-sided distribution, and they applied the Fourier-cosine series

expansion method for pricing vanilla options under these jump-type Heston models.

The aim of this paper is to study the MLE of the parameter ψ := (θ, κ, µ) for the model

(1.3) based on continuous time observations (Yt, St)t∈[0,T ] with T ∈ (0,∞), starting the process

(Y, S) from some deterministic initial value (y0, s0) ∈ (0,∞)2 supposing that σ, %, γ and

the Lévy measure m are known. Here we stress that under these assumptions, the underlying

statistical space corresponding to the parameters (κ, θ, µ) ∈ (0,∞)2×R is identifiable, however

it would not be true for the statistical space corresponding to the parameters (κ, θ, µ, γ) ∈
(0,∞)2×R2. We call the attention that the MLE in question contains stochastic integrals with

respect to L. We prove that, for all t ∈ [0, T ], Lt is a measurable function (i.e., a statistic)

of (St)t∈[0,T ], by providing a sequence of measurable functions of (St)t∈[0,T ] converging in

probability to Lt, see Remark 2.4 (note that this sequence depends on γ and m as well).

Further, it turns out that Yt for all t ∈ [0, T ], and the parameters σ and % are also

measurable functions of (St)t∈[0,T ], see Remarks 2.5 and 2.6, respectively. Hence, for the

calculation of the MLE in question, one needs only the sample (St)t∈[0,T ], the parameter γ

and the Lévy measure m (γ and m are needed for the reconstruction of (Lt)t∈[0,T ]). Though

we do not need to estimate the parameters σ and %, it is worth mentioning that the market

microstructure effects may cause serious damage to the approximation of σ and % given in

Remark 2.6 and to the MLE of (θ, κ, µ) in case of high-frequency observations as in Zhang et

al. [41]. This type of question can be another interesting topic for future research.

The paper is organized as follows. In Section 2, we prove that the SDE (1.3) has a pathwise

unique strong solution (under some appropriate conditions), see Proposition 2.1, we recall a

result about the existence of a unique stationary distribution and ergodicity for the process

(Yt)t∈[0,∞) given by the first equation in (1.3), see Theorem 2.2. In Proposition 2.3, we derive a

Grigelionis representation for the process (St)t∈[0,∞). Further, we prove that for all t ∈ [0, T ],

Lt and Yt are measurable functions of (St)t∈[0,T ], and we justify why we do not estimate the

4



parameters σ and %, see Remarks 2.4, 2.5 and 2.6. Section 3 is devoted to study the existence

and uniqueness of the MLE (θ̂T , κ̂T , µ̂T ) of (θ, κ, µ) based on observations (Yt, St)t∈[0,T ] with

T ∈ (0,∞). In Proposition 3.2, under appropriate conditions, we prove the unique existence

of (θ̂T , κ̂T , µ̂T ), and we derive an explicit formula for it as well, see (3.11). In Remark 3.5, we

describe the connection with the so called score vector due to Sørensen [36] and the estimating

equation due to Luschgy [31], [32] leading to the same estimator. In Section 4, we prove that

the MLE of (θ, κ, µ) is strongly consistent if θ, κ ∈ (0,∞) with θκ ∈
(
σ2

2
,∞
)
, and weakly

consistent if θ, κ ∈ (0,∞) with θκ = σ2

2
, see Theorem 4.1 and Remark 4.2, respectively.

Section 5 is devoted to investigate the asymptotic behaviour of the MLE of (θ, κ, µ). In

Theorem 5.1, provided that θ, κ ∈ (0,∞) with θκ ∈
(
σ2

2
,∞
)
, we show that the MLE

of (θ, κ, µ) is asymptotically normal with a usual square root normalization (T 1/2), but as

usual, the asymptotic covariance matrix depends on the unknown parameters θ and κ, as

well. To get around this problem, we also replace the normalization T 1/2 by a random one

(depending only on the sample, but not on the parameters θ, κ and µ) with the advantage

that the MLE of (θ, κ, µ) with the random scaling is asymptotically 3-dimensional standard

normal. Theorem 5.3 is a counterpart of Theorem 5.1 in some sense. Namely, provided that

θ, κ ∈ (0,∞) with θκ = σ2

2
, we derive two limit theorems for the MLE (θ̂T , κ̂T , µ̂T ) with

mixed normal limit distributions. First, we have a non-random scaling, but for µ̂T instead of

the usual scaling T 1/2 we have T ; and then we have a random scaling as well. We point

out that, surprisingly, the limit distributions in Theorems 5.1 and 5.3 do not depend on L

(roughly speaking, they do not depend on the jump part). From a practical point of view, a

natural question can occur, namely, how one can decide whether Theorems 5.1 and 5.3 can be

applied (if yes, then which one), since one does not know the product θκ of the unknown

parameters θ and κ in advance. To answer this question, one can build up a probe for

testing the null hypothesis θκ = σ2

2
against some alternative hypothesis, e.g., θκ > σ2

2
. In

Section 6 we present some numerical illustrations of our limit theorems. We close the paper

with Appendices, where we recall certain sufficient conditions for the absolute continuity of

probability measures induced by semimartingales together with a representation of the Radon–

Nikodym derivative (Appendix A), some limit theorems for continuous local martingales for

studying asymptotic behavior of (θ̂T , κ̂T , µ̂T ) (Appendix B) and a version of the continuous

mapping theorem (Appendix C), and we give an explicit formula for the non-normal but mixed

normal density function of the limit distribution of T (µ̂T − µ) as T → ∞ in Theorem 5.3

(Appendix D).

We call the attention that in both cases θκ > σ2

2
and θκ = σ2

2
, the CIR process Y has

a unique stationary distribution and is ergodic, nevertheless, in case θκ > σ2

2
the asymptotic

limit distribution of the MLE of ψ = (θ, κ, µ) is normal, while in case θκ = σ2

2
it is mixed

normal. The interesting point is that we have an ergodic case with an asymptotically mixed

normal (but non-normal) limit distribution. The main difference between the two ergodic cases

is that E
(

1
Y∞

)
<∞ if θκ > σ2

2
, but E

(
1
Y∞

)
=∞ if θκ = σ2

2
.
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2 Preliminaries

The next proposition is about the existence and uniqueness of a strong solution of the SDE

(1.3).

Proposition 2.1 Let (η0, ζ0) be a random vector such that η0 is independent of (Wt)t∈[0,∞)

satisfying P(η0 ∈ [0,∞), ζ0 ∈ (0,∞)) = 1. Then for all θ, κ, σ ∈ (0,∞), µ ∈ R and

% ∈ (−1, 1), there is a (pathwise) unique strong solution (Yt, St)t∈[0,∞) of the SDE (1.3) such

that P((Y0, S0) = (η0, ζ0)) = 1 and P(Yt ∈ [0,∞) and St ∈ (0,∞) for all t ∈ [0,∞)) = 1.

Further,

St = S0 exp

{∫ t

0

(
µ− 1

2
Yu

)
du+

∫ t

0

√
Yu (% dWu +

√
1− %2 dBu) + Lt

} ∏
u∈[0,t]

(1 + ∆Lu)e
−∆Lu

(2.1)

for t ∈ [0,∞), where ∆Lu := Lu − Lu−, u ∈ (0,∞), ∆L0 := 0, and the (possibly) infinite

product is absolutely convergent. If, in addition, θκ ∈
[
σ2

2
,∞
)

and P(η0 ∈ (0,∞)) = 1, then

P(Yt ∈ (0,∞) for all t ∈ [0,∞)) = 1.

Note that, due to Sato [35, Theorem 21.3], for each t ∈ (0,∞), the product
∏

u∈[0,t](1 +

∆Lu)e
−∆Lu in (2.1) contains finitely many terms different from 1 if and only if m((−1, 1]) <∞.

Proof of Proposition 2.1. By a theorem due to Yamada and Watanabe (see, e.g., Karatzas

and Shreve [25, Proposition 5.2.13]), the strong uniqueness holds for the first equation in (1.3).

By Ikeda and Watanabe [19, Example 8.2, page 221], there is a (pathwise) unique non-negative

strong solution (Yt)t∈[0,∞) of the first equation in (1.3) with any initial value η0 such that

P(η0 ∈ [0,∞)) = 1. The second equation in (1.3) can be written in the form

dSt = St− dL∗t , t ∈ [0,∞),

where

L∗t := µt+

∫ t

0

√
Yu
(
% dWu +

√
1− %2 dBu

)
+ Lt, t ∈ [0,∞),(2.2)

is a semimartingale, since the process (
√
Yt)t∈[0,∞) has continuous sample paths almost surely

and hence locally bounded almost surely yielding that
(∫ t

0

√
Yu(% dWu +

√
1− %2 dBu)

)
t∈[0,∞)

is a square integrable martingale, and since L is a semimartingale being a Lévy process (see,

e.g., Jacod and Shiryaev [22, Corollary II.4.19]). Using ∆L∗t = ∆Lt, t ∈ [0,∞), and Theorem

1 in Jaschke [23], which is a generalization of the Doléans–Dade exponential formula (see, e.g.,

Jacod and Shiryaev [22, I.4.61]), we obtain

St = S0 exp

{
L∗t − L∗0 −

1

2
〈(L∗)cont〉t

} ∏
u∈[0,t]

(1 + ∆L∗u)e
−∆L∗u

= S0 exp

{
µt+

∫ t

0

√
Yu
(
% dWu +

√
1− %2 dBu

)
+ Lt −

1

2

∫ t

0

Yu du

} ∏
u∈[0,t]

(1 + ∆Lu)e
−∆Lu ,

6



where (〈(L∗)cont〉t)t∈[0,∞) denotes the (predictable) quadratic variation process of the con-

tinuous martingale part (L∗)cont of L∗, and the (possibly) infinite product is absolutely

convergent. Here we used that 〈(L∗)cont〉t =
∫ t

0
Yu du, t ∈ [0,∞), being a consequence of the

fact that

(L∗)cont
t =

∫ t

0

√
Yu
(
% dWu +

√
1− %2 dBu

)
, t ∈ [0,∞),(2.3)

which can be checked as follows. The Lévy–Itô’s representation of L takes the form

(2.4)

Lt = lim
δ↓0

∫
(0,t]

∫
{δ<|z|61}

z
(
µL(du, dz)− dum(dz)

)
+

∫
(0,t]

∫
{1<|z|<∞}

z µL(du, dz) + γt

=:

∫ t

0

∫
R
h1(z)

(
µL(du, dz)− dum(dz)

)
+

∫ t

0

∫
R
(z − h1(z))µL(du, dz) + γt

for t ∈ [0,∞), where µL(du, dz) :=
∑

v∈[0,∞) 1{∆Lv 6=0}ε(v,∆Lv)(du, dz) is the integer-valued

Poisson random measure on [0,∞) × R associated with the jumps of the process L, ε(v,x)

denotes the Dirac measure at the point (v, x) ∈ [0,∞)× R, and

(2.5) h1(z) := z1[−1,1](z), z ∈ R,

is a truncation function, see, e.g., Sato [35, Theorem 19.2]. The first term in (2.4) is a purely

discontinuous local martingale, see, e.g., Jacod and Shiryaev [22, Definitions II.1.27]. The

second term in (2.4) can be written as a finite sum (see, e.g., Sato [35, Lemma 20.1])∫ t

0

∫
R
(z − h1(z))µL(du, dz) =

∑
u∈[0,t]

1{|∆Lu|>1}∆Lu, t ∈ [0,∞),

which is a compound Poisson process with Lévy-Khintchine representation

E
(

eiθ
∑
u∈[0,1] 1{|∆Lu|>1}∆Lu

)
= exp

{∫ ∞
1

(eiθu − 1)m(du)

}
, θ ∈ R.

Hence it is a process with finite variation over each finite interval [0, t], t ∈ [0,∞), see, e.g.,

Sato [35, Theorem 21.9]. Consequently, we conclude (2.3). An alternative way for deriving

(2.3) is as follows. Using (2.4), the process L∗ can be written in the form III.2.23 in Jacod

and Shiryaev [22], and hence, by Jacod and Shiryaev [22, Remarks III.2.28, part 1)], we get

(2.3). Thus the (pathwise) unique strong solution (St)t∈[0,∞) of the second equation in (1.3)

is given by (2.1). Further,

P(∆Lt ∈ (−1,∞) for all t ∈ [0,∞)) = 1,

since the Lévy measure m of L is concentrated on (−1, 0) ∪ (0,∞). Using again

∆L∗t = ∆Lt, t ∈ [0,∞), we obtain P(∆L∗t ∈ (−1,∞) for all t ∈ [0,∞)) = 1, and hence

P(St ∈ (0,∞) for all t ∈ [0,∞)) = 1. Indeed, if S0 = 1, then this follows, e.g., from Theorem

I.4.61 (c) in Jacod and Shiryaev [22], hence, in general, this is a consequence of formula (2.1)

and P(S0 ∈ (0,∞)) = 1.
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The proof of the last statement can be found, e.g., in Ikeda and Watanabe [19, Chapter IV,

Example 8.2] and in Lamberton and Lapeyre [27, Proposition 6.2.4]. 2

In the sequel
P−→,

D−→ and
a.s.−→ will denote convergence in probability, in distribution

and almost surely, respectively.

The following result states the existence of a unique stationary distribution and the ergod-

icity for the process (Yt)t∈[0,∞) given by the first equation in (1.3), see, e.g., Feller [17], Cox et

al. [13, Equation (20)], Li and Ma [29, Theorem 2.6] or Theorem 3.1 with α = 2 and Theorem

4.1 in Barczy et al. [5].

Theorem 2.2 Let θ, κ, σ ∈ (0,∞). Let (Yt)t∈[0,∞) be the unique strong solution of the first

equation of the SDE (1.3) satisfying P(Y0 ∈ [0,∞)) = 1.

(i) Then Yt
D−→ Y∞ as t→∞, and the distribution of Y∞ is given by

E(e−λY∞) =
(

1 +
σ2

2κ
λ
)− 2θκ

σ2

, λ ∈ [0,∞),(2.6)

i.e., Y∞ has Gamma distribution with parameters 2θκ/σ2 and 2κ/σ2, hence

E(Y K
∞ ) =

Γ
(

2θκ
σ2 +K

)(
2κ
σ2

)K
Γ
(

2θκ
σ2

) , K ∈
(
−2θκ

σ2
,∞
)
.

Especially, E(Y∞) = θ. Further, if θκ ∈
(
σ2

2
,∞
)
, then E

(
1
Y∞

)
= 2κ

2θκ−σ2 .

(ii) For all Borel measurable functions f : R→ R such that E(|f(Y∞)|) <∞, we have

(2.7)
1

T

∫ T

0

f(Yu) du
a.s.−→ E(f(Y∞)) as T →∞.

Note that, by Proposition 2.1, the process (Yt, St)t∈[0,∞) is a semimartingale, see, e.g., Jacod

and Shiryaev [22, I.4.34]. Now we derive a so-called Grigelionis form for the semimartingale

(St)t∈[0,∞), see, e.g., Jacod and Shiryaev [22, III.2.23] or Jacod and Protter [21, Theorem 2.1.2].

Proposition 2.3 Let θ, κ, σ ∈ (0,∞), µ ∈ R, % ∈ (−1, 1). Let (Yt, St)t∈[0,∞) be the unique

strong solution of the SDE (1.3) satisfying P(Y0 ∈ [0,∞), S0 ∈ (0,∞)) = 1. Then

(2.8)

St = S0 + (µ+ γ)

∫ t

0

Su du+

∫ t

0

(∫
R
(h1(Su−z)− Su−h1(z))m(dz)

)
du

+

∫ t

0

Su
√
Yu
(
% dWu +

√
1− %2 dBu

)
+

∫ t

0

∫
R
h1(Su−z)

(
µL(du, dz)− dum(dz)

)
+

∫ t

0

∫
R
(Su−z − h1(Su−z))µL(du, dz)

for t ∈ [0,∞), where h1 is defined in (2.5).

8



Proof. Using (2.4) and Proposition II.1.30 in Jacod and Shiryaev [22], we obtain

St = S0 + (µ+ γ)

∫ t

0

Su du+

∫ t

0

Su
√
Yu
(
% dWu +

√
1− %2 dBu

)
+

∫ t

0

∫
R
Su−h1(z)

(
µL(du, dz)− dum(dz)

)
+

∫ t

0

∫
R
Su−(z − h1(z))µL(du, dz)

for t ∈ [0,∞). In order to prove the statement, it is enough to show∫ t

0

∫
R
Su−h1(z)

(
µL(du, dz)− dum(dz)

)
= I1 − I2,(2.9) ∫ t

0

∫
R
Su−(z − h1(z))µL(du, dz) = I3 + I4,(2.10)

with

I1 :=

∫ t

0

∫
R
h1(Su−z)

(
µL(du, dz)− dum(dz)

)
,

I2 :=

∫ t

0

∫
R
(h1(Su−z)− Su−h1(z))

(
µL(du, dz)− dum(dz)

)
,

I3 :=

∫ t

0

∫
R
(Su−z − h1(Su−z))µL(du, dz),

I4 :=

∫ t

0

∫
R
(h1(Su−z)− Su−h1(z))µL(du, dz),

and the equality

(2.11) I4 − I2 = I5 with I5 :=

∫ t

0

(∫
R
(h1(Su−z)− Su−h1(z))m(dz)

)
du.

For the equations (2.9), (2.10) and (2.11), it suffices to check the existence of I2, I3 and I5.

First note that for every s ∈ (0,∞) we have

h1(sz)− sh1(z) =


sz1{1<|z|6 1

s
} if s ∈ (0, 1), z ∈ R,

0 if s = 1, z ∈ R,

−sz1{ 1
s
<|z|61} if s ∈ (1,∞), z ∈ R.

(2.12)

The existence of I2 will be a consequence of I2 = I2,1 − I2,2 − I2,3 with

I2,1 :=

∫ t

0

∫
R
Su−z1{1<|z|6 1

Su−
}1{Su−∈(0,1)} µ

L(du, dz),

I2,2 :=

∫ t

0

∫
R
Su−z1{1<|z|6 1

Su−
}1{Su−∈(0,1)} dum(dz),

I2,3 :=

∫ t

0

∫
R
Su−z1{ 1

Su−
<|z|61}1{Su−∈(1,∞)}

(
µL(du, dz)− dum(dz)

)
.

9



Here we have

|I2,1| 6
∫ t

0

∫
R
|Su−z|1{1<|z|6 1

Su−
}1{Su−∈(0,1)} µ

L(du, dz) 6
∫ t

0

∫
R
1{1<|z|} µ

L(du, dz) <∞,

see, e.g., Sato [35, Lemma 20.1]. Moreover,

|I2,2| 6
∫ t

0

∫
R
|Su−z|1{1<|z|6 1

Su−
}1{Su−∈(0,1)} dum(dz)

6
∫ t

0

∫
R
1{1<|z|} dum(dz) = tm({z ∈ R : |z| > 1}) <∞.

Further, the function Ω × [0,∞) × R 3 (ω, t, z) 7→ h1(z) belongs to Gloc(µ
L), see Jacod

and Shiryaev [22, Definitions II.1.27, Theorem II.2.34]. We have |z1{ 1
Su−

<|z|61}1{Su−∈(1,∞)}| 6
|h1(z)|, hence, by the definition of Gloc(µ

L), the function Ω × [0,∞) × R 3 (ω, t, z) 7→
z1{ 1

Su−
<|z|61}1{Su−∈(1,∞)} also belongs to Gloc(µ

L). By Jacod and Shiryaev [22, Proposition

II.1.30], we conclude that the function Ω×[0,∞)×R 3 (ω, t, z) 7→ Su−z1{ 1
Su−

<|z|61}1{Su−∈(1,∞)}

also belongs to Gloc(µ
L), thus the integral I2,3 exists, and hence we obtain the existence of

I2, and hence of I1.

Next observe that we have ∆St = St−∆Lt, t ∈ [0,∞), see, e.g., Jacod and Shiryaev [22,

page 60, formula (5)]. Consequently,

I3 =

∫ t

0

∫
R
Su−z1{|Su−z|>1} µ

L(du, dz) =
∑
u∈[0,t]

Su−(∆Lu)1{|Su−∆Lu|>1} =
∑
u∈[0,t]

∆Su1{|∆Su|>1}

is a finite sum, since the process (St)t∈[0,∞) admits càdlàg trajectories, hence there can be at

most finitely many points u ∈ [0, t] at which the jump |∆Su| exceeds 1, see, e.g., Billingsley

[11, page 122]. Thus we obtain the existence of I3, and hence of I4.

Finally, we have

|I5| 6
∫ t

0

(∫
R
|Su−z|1{1<|z|6 1

Su−
}1{Su−∈(0,1)}m(dz)

)
du

+

∫ t

0

(∫
R
|Su−z|1{ 1

Su−
<|z|61}1{Su−∈(1,∞)}m(dz)

)
du

6
∫ t

0

(∫
R
1{1<|z|}m(dz)

)
du+

(∫
R
|Su−z|21{|z|61}m(dz)

)
du

= tm({z ∈ R : |z| > 1}) +

∫ t

0

S2
u− du

∫ 1

−1

|z|2m(dz) <∞,

hence we conclude the existence of I5. 2

In the next remark, we show that, for all t ∈ [0, T ], Lt is a measurable function of

(St)t∈[0,T ] depending on the parameter γ and the Lévy measure m.
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Remark 2.4 For all t ∈ [0, T ] and δ ∈ (0, 1),∫
(0,t]

∫
{δ<|z|61}

z
(
µL(du, dz)− dum(dz)

)
=
∑
u∈[0,t]

1{δ<|∆Lu|61}∆Lu −
∫

(0,t]

∫
{δ<|z|61}

z dum(dz)

=
∑
u∈[0,t]

1{δ< |∆Su|
Su−

61}
∆Su
Su−

− t
∫
{δ<|z|61}

z m(dz),

which is a measurable function of (St)t∈[0,T ]. Similarly, for all t ∈ [0, T ],∫
(0,t]

∫
{1<|z|<∞}

z µL(du, dz) =
∑
u∈[0,t]

1{|∆Lu|>1}∆Lu =
∑
u∈[0,t]

1{ |∆Su|
Su−

>1}
∆Su
Su−

,

which is a measurable function of (St)t∈[0,T ] as well. Hence, using (2.4), for all t ∈ [0, T ],∑
u∈[0,t]

1{ |∆Su|
Su−

>δ}
∆Su
Su−

− t
∫
{δ<|z|61}

z m(dz) + γt
P−→ Lt as δ ↓ 0,

yielding that Lt is a measurable function of (St)t∈[0,T ]. In the special case of

(2.13) Lt =
∑
s∈[0,t]

∆Ls, t ∈ [0,∞),

the above statement readily follows from ∆Ls = ∆Ss
Ss−

, s ∈ [0,∞). Condition (2.13) is satisfied

if
∫ 1

−1
|z|m(dz) <∞ and γ =

∫ 1

−1
z m(dz), since, by (1.4),

Lt =

∫ t

0

∫
R
z µL(du, dz) + t

(
γ −

∫ 1

−1

z m(dz)

)
=
∑
s∈[0,t]

∆Ls + t

(
γ −

∫ 1

−1

z m(dz)

)

for t ∈ [0,∞), see Sato [35, Theorem 19.3]. Recall that, using (1.4), the Lévy process L has

finite variation on each interval [0, t], t ∈ [0,∞), if and only if
∫ 1

−1
|z|m(dz) <∞, see, e.g.,

Sato [35, Theorem 21.9]. For example, it is satisfied for a compound Poisson process given in

(1.5), where m is a probability measure. 2

In the next remark, we show that, for all t ∈ [0, T ], Yt is a measurable function of

(St)t∈[0,T ].

Remark 2.5 Let θ, κ, σ ∈ (0,∞), µ ∈ R, % ∈ (−1, 1). Let (Yt, St)t∈[0,∞) be the unique

strong solution of the SDE (1.3) satisfying P(Y0 ∈ [0,∞), S0 ∈ (0,∞)) = 1. The Grigelionis

representation given in Proposition 2.3 implies that the continuous martingale part Scont of

S is

Scont
t =

∫ t

0

Su
√
Yu
(
% dWu +

√
1− %2 dBu

)
, t ∈ [0,∞),(2.14)
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see Jacod and Shiryaev [22, III.2.28 Remarks, part 1)]. Consequently, the (predictable) quadratic

variation process of Scont is 〈Scont〉t =
∫ t

0
S2
uYu du, t ∈ [0,∞). Since

P(St, St− ∈ (0,∞) for all t ∈ [0,∞)) = 1

with the convention S0− := S0 (due to Proposition 2.1), one can apply Itô’s rule to the

function f(x) = log(x), x ∈ (0,∞), for which f ′(x) = 1/x, f ′′(x) = −1/x2, x ∈ (0,∞),

and we obtain

logST = logS0 +

∫ T

0

dSu
Su−
− 1

2

∫ T

0

1

S2
u

d〈Scont〉u +
∑
u∈[0,T ]

(
logSu − logSu− −

1

Su−
∆Su

)

= logS0 + µT +

∫ T

0

√
Yu(% dWu +

√
1− %2 dBu)−

1

2

∫ T

0

Yu du+ LT

+
∑
u∈[0,T ]

(
log

Su
Su−

+ 1− Su
Su−

)

(2.15)

for T ∈ [0,∞), see, e.g., von Weizsäcker and Winkler [39, Theorem 8.4.1]. All terms in

(2.15) are well-defined. In particular, the last term is a process with finite variation over each

finite interval [0, t], t ∈ [0,∞), see, e.g., Sato [35, Lemma 21.8.(iii)]. Taking into account

of the Lévy–Itô’s representation (2.4) of L, we conclude that the continuous martingale part

(logS)cont of logS is (logS)cont
t =

∫ t
0

√
Yu
(
% dWu +

√
1− %2 dBu

)
, t ∈ [0,∞). Hence the

(predictable) quadratic variation process of (logS)cont is

〈(logS)cont〉t =

∫ t

0

Yu du, t ∈ [0,∞).

By Theorem I.4.47 a) in Jacod and Shiryaev [22],

bntc∑
i=1

(logS i
n
− logS i−1

n
)2 P−→ [logS]t as n→∞, t ∈ [0,∞),

where bxc and ([logS]t)t∈[0,∞) denotes the integer part of a real number x ∈ R, and the

quadratic variation process of the semimartingale logS, respectively. By Theorem I.4.52 in

Jacod and Shiryaev [22],

[logS]t = 〈(logS)cont〉t +
∑
u∈[0,t]

(logSu − logSu−)2, t ∈ [0,∞).

Consequently, for all t ∈ [0,∞), we have

bntc∑
i=1

(logS i
n
− logS i−1

n
)2 −

∑
u∈[0,t]

(logSu − logSu−)2 P−→ 〈(logS)cont〉t as n→∞.
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Note that this convergence holds almost surely along a suitable subsequence, the members of

this sequence are measurable functions of (Su)u∈[0,t], hence, using Theorems 4.2.2 and 4.2.8 in

Dudley [16], we obtain that 〈(logS)cont〉t =
∫ t

0
Yu du is a measurable function (i.e., a statistic)

of (Su)u∈[0,t]. Moreover,

(2.16)
〈(logS)cont〉t+h − 〈(logS)cont〉t

h
=

1

h

∫ t+h

t

Ys ds
a.s.−→ Yt as h→ 0, t ∈ [0,∞),

since Y has continuous sample paths almost surely. Consequently, for all t ∈ [0, T ], Yt is a

measurable function (i.e., a statistic) of (Su)u∈[0,T ] (where for t = T , one may take h ↑ 0),

however, we also point out that this measurable function remains inexplicit. 2

Next we give statistics for the parameters σ and % using continuous time observations

(St)t∈[0,T ] with some T > 0. Due to this result we do not consider the estimation of these

parameters, they are supposed to be known.

Remark 2.6 Let θ, κ, σ ∈ (0,∞), µ ∈ R, % ∈ (−1, 1), and P(Y0 ∈ [0,∞), S0 ∈ (0,∞)) = 1.

Then for all T > 0,[
σ2 %σ

%σ 1

]
=

1∫ T
0
Ys ds

[
〈Y 〉T 〈Y, (logS)cont〉T

〈Y, (logS)cont〉T 〈(logS)cont〉T

]
=: Σ̂T ,

where (〈Y, (logS)cont〉t)t∈[0,∞) denotes the (predictable) quadratic covariation process of Y

and (logS)cont, since, by the SDEs (1.3) and (2.15),

〈Y 〉T = σ2

∫ T

0

Yu du, 〈(logS)cont〉T =

∫ T

0

Yu du, 〈Y, (logS)cont〉T = %σ

∫ T

0

Yu du.

We point out that P
(∫ T

0
Yu du ∈ (0,∞)

)
= 1. Indeed, if ω ∈ Ω is such that [0, T ] 3 s 7→ Ys(ω)

is continuous and Yt(ω) ∈ [0,∞) for all t ∈ [0,∞), then we have
∫ T

0
Yu(ω) du = 0 if and

only if Yu(ω) = 0 for all u ∈ [0, T ]. Using the method of the proof of Theorem 3.1 in Barczy

et. al [4], we get P(
∫ T

0
Yu du = 0) = 0, as desired. We note that Σ̂T is a statistic, i.e., there

exists a measurable function Ξ : D([0, T ],R) → R2×2 such that Σ̂T = Ξ((Su)u∈[0,T ]), where

D([0, T ],R) denotes the space of real-valued càdlàg functions defined on [0, T ], since

(2.17)

1
1
n

∑bnT c
i=1 Y i−1

n

bnT c∑
i=1

[
Y i
n
− Y i−1

n

logS i
n
− logS i−1

n

][
Y i
n
− Y i−1

n

logS i
n
− logS i−1

n

]>

− 1
1
n

∑bnT c
i=1 Y i−1

n

∑
u∈[0,T ]

[
0 0

0 (logSu − logSu−)2

]
P−→ Σ̂T as n→∞,

where the convergence in (2.17) holds almost surely along a suitable subsequence, the members

of the sequence in (2.17) are measurable functions of (Su)u∈[0,T ] (due to Remark 2.5), and one
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can use Theorems 4.2.2 and 4.2.8 in Dudley [16]. Next we prove (2.17). By Theorems I.4.47

a) and I.4.52 in Jacod and Shiryaev [22],

bnT c∑
i=1

(Y i
n
− Y i−1

n
)2 P−→ [Y ]T = 〈Y 〉T ,

bnT c∑
i=1

(logS i
n
− logS i−1

n
)2 P−→ [logS]T = 〈(logS)cont〉T +

∑
u∈[0,T ]

(logSu − logSu−)2,

bnT c∑
i=1

(Y i
n
− Y i−1

n
)(logS i

n
− logS i−1

n
)

P−→ [Y, logS]T = 〈Y, (logS)cont〉T

as n → ∞, where ([Y, logS]t)t∈[0,∞) denotes the quadratic covariation process of the semi-

martingales Y and logS. Consequently,

bnT c∑
i=1

[
Y i
n
− Y i−1

n

logS i
n
− logS i−1

n

][
Y i
n
− Y i−1

n

logS i
n
− logS i−1

n

]>

−
∑
u∈[0,T ]

[
0 0

0 (logSu − logSu−)2

]
P−→
(∫ T

0

Yu du

)
Σ̂T as n→∞,

see, e.g., van der Vaart [38, Theorem 2.7, part (vi)]. Moreover,

1

n

bnT c∑
i=1

Y i−1
n

a.s.−→
∫ T

0

Yu du as n→∞

since Y has continuous sample paths almost surely. Hence (2.17) follows by Slutsky’s lemma.

Finally, we note that the sample size T is fixed above, and it is enough to know any short

sample (Su)u∈[0,T ] to carry out the above calculations. 2

3 Existence and uniqueness of MLE

From this section, we will consider the jump-type Heston model (1.3) with known σ ∈ (0,∞),

% ∈ (−1, 1), γ ∈ R, Lévy measure m, and deterministic initial value (Y0, S0) = (y0, s0) ∈
(0,∞)2, and we will consider ψ := (θ, κ, µ) ∈ (0,∞)2 × R =: Ψ as a parameter.

Let Pψ denote the probability measure induced by (Yt, St)t∈[0,∞) on the measurable space

(D([0,∞),R2),D([0,∞),R2)) of R2-valued càdlàg functions defined on [0,∞) endowed with a

right continuous filtration (Dt([0,∞),R2))t∈[0,∞), see Appendix A. Further, for all T ∈ (0,∞),

let Pψ,T := Pψ|DT ([0,∞),R2) be the restriction of Pψ to DT ([0,∞),R2).

Let us write the Heston model (1.3) in the form

(3.1)

[
dYt

dSt

]
= A(Yt, St)H(ψ) dt+ Γ(Yt, St)

[
dWt

dBt

]
+

[
0

St− dLt

]
, t ∈ [0,∞),
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where the functions A : [0,∞)×(0,∞)→ R2×3, Γ : [0,∞)×(0,∞)→ R2×2 and H : R3 → R3

are defined by

A(y, s) :=

[
1 −y 0

0 0 s

]
, Γ(y, s) :=

√
y

[
σ 0

%s
√

1− %2s

]
, H(x1, x2, x3) :=


x1x2

x2

x3


for (y, s) ∈ [0,∞) × (0,∞) and (x1, x2, x3) ∈ R3. Note that H is bijective on the set

R× (R \ {0})× R having inverse

H−1(y1, y2, y3) =

(
y1

y2

, y2, y3

)
, (y1, y2, y3) ∈ R× (R \ {0})× R.(3.2)

Let us introduce the function Σ : [0,∞)× (0,∞)→ R2×2 given by

Σ(y, s) := Γ(y, s)Γ(y, s)> = y

[
σ2 %σs

%σs s2

]
, (y, s) ∈ [0,∞)× (0,∞).

If (y, s) ∈ (0,∞)2 then Σ(y, s) is invertible, namely,

(3.3)

Σ(y, s)−1 = (Γ(y, s)>)−1Γ(y, s)−1 =
1

(1− %2)σ2ys2

[√
1− %2s −%s

0 σ

][√
1− %2s 0

−%s σ

]

=
1

(1− %2)σ2ys2

[
s2 −%σs
−%σs σ2

]
.

Further, let

Gt :=

∫ t

0

A(Yu, Su)
>Σ(Yu, Su)

−1A(Yu, Su) du, t ∈ [0,∞),

f t :=

∫ t

0

A(Yu−, Su−)>Σ(Yu−, Su−)−1

[
dYu

dSu − Su− dLu

]
, t ∈ [0,∞),

provided that P(Yt ∈ (0,∞) for all t ∈ [0,∞)) = 1, which holds if θκ ∈
[
σ2

2
,∞
)
. Using (3.3),

we obtain

Gt =

∫ t

0

A(Yu, Su)
>(Γ(Yu, Su)

>)−1Γ(Yu, Su)
−1A(Yu, Su) du

=

∫ t

0

(Γ(Yu, Su)
−1A(Yu, Su))

>(Γ(Yu, Su)
−1A(Yu, Su)) du

=
1

(1− %2)σ2

∫ t

0

1

Yu


1 −Yu −%σ
−Yu Y 2

u %σYu

−%σ %σYu σ2

 du, t ∈ [0,∞),

(3.4)
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provided that P(Yt ∈ (0,∞) for all t ∈ [0,∞)) = 1, since

(3.5) Γ(y, s)−1A(y, s) =
1

σ
√

(1− %2)y

[√
1− %2 −y

√
1− %2 0

−% %y σ

]
, (y, s) ∈ (0,∞)2.

The next lemma is about the form of the Radon–Nikodym derivative
dPψ,T
dP
ψ̃,T

for certain

ψ, ψ̃ ∈ Ψ.

Lemma 3.1 Let ψ = (θ, κ, µ) ∈ Ψ and ψ̃ := (θ̃, κ̃, µ̃) ∈ Ψ with θκ, θ̃κ̃ ∈
[
σ2

2
,∞
)
. Then

for all T ∈ (0,∞), the probability measures Pψ,T and Pψ̃,T are absolutely continuous with

respect to each other, and, under P,

(3.6) log
dPψ,T
dPψ̃,T

(Ỹ , S̃) =
(
H(ψ)−H(ψ̃)

)>
f̃T −

1

2

(
H(ψ)−H(ψ̃)

)>
G̃T

(
H(ψ) +H(ψ̃)

)
,

where Ỹ , S̃, G̃ and f̃ are the processes corresponding to the parameter ψ̃.

Proof. In what follows, we will apply Theorem III.5.34 in Jacod and Shiryaev [22] (see

also Appendix A). We will work on the canonical space (D([0,∞),R2),D([0,∞),R2)). Let

(ηt, ζt)t∈[0,∞) denote the canonical process (ηt, ζt)(ω) := ω(t), ω ∈ D([0,∞),R2), t ∈ [0,∞).

Using (3.1) and (2.4), the Heston model (1.3) can be written in the form[
Yt

St

]
=

[
y0

s0

]
+

∫ t

0

(
A(Yu, Su)H(ψ) +

[
0

γSu

])
du

+

∫ t

0

Γ(Yu, Su)

[
dWu

dBu

]
+

[
0∫ t

0

∫
R Su−h1(z)(µL(du, dz)− dum(dz))

]

+

[
0∫ t

0

∫
R Su−(z − h1(z))µL(du, dz)

]
, t ∈ [0,∞).

Using Proposition 2.3, we obtain[
Yt

St

]
=

[
y0

s0

]
+

∫ t

0

(
A(Yu, Su)H(ψ) +

[
0

γSu +
∫
R(h1(Su−z)− Su−h1(z))m(dz)

])
du

+

∫ t

0

Γ(Yu, Su)

[
dWu

dBu

]
+

[
0∫ t

0

∫
R h1(Su−z)(µL(du, dz)− dum(dz))

]

+

[
0∫ t

0

∫
R(Su−z − h1(Su−z))µL(du, dz)

]
, t ∈ [0,∞),
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which is a special case of III.2.23 in Jacod and Shiryaev [22], since[
Yt

St

]
=

[
y0

s0

]
+

∫ t

0

(
A(Yu, Su)H(ψ) +

[
0

γSu +
∫
R(h1(Su−z)− Su−h1(z))m(dz)

])
du

+

∫ t

0

Γ(Yu, Su)

[
dWu

dBu

]
+

∫ t

0

∫
R
h2

([
0

Su−z

])
(µL(du, dz)− dum(dz))

+

∫ t

0

∫
R

([
0

Su−z

]
− h2

([
0

Su−z

]))
µL(du, dz), t ∈ [0,∞),

(3.7)

with the truncation function h2(z) := z1[−1,1]2(z), z ∈ R2, where we used that[
0

h1(z)

]
= h2

([
0

z

])
, z ∈ R.

By Proposition 2.1, the SDE (1.3) has a pathwise unique strong solution (with the given

deterministic initial value (y0, s0) ∈ (0,∞)2), and hence, by Theorem III.2.26 in Jacod and

Shiryaev [22], under the probability measure Pψ, the canonical process (ηt, ζt)t∈[0,∞) is a

semimartingale with semimartingale characteristics (B(ψ), C, ν) associated with the truncation

function h2, where

B
(ψ)
t =

∫ t

0

(
A(ηu, ζu)H(ψ) +

[
0

γζu +
∫
R(h1(ζuz)− ζuh1(z))m(dz)

])
du,

Ct =

∫ t

0

Γ(ηu, ζu)Γ(ηu, ζu)
> du =

∫ t

0

Σ(ηu, ζu) du,

for t ∈ [0,∞), and

ν(dt, dy, dz) = K(ηt, ζt, dy, dz) dt

with the Borel transition kernel K from [0,∞)2 × R2 into R2 given by

K(y, s, R) :=

∫
R
1R\{0}(0, sz)m(dz) for (y, s) ∈ [0,∞)2 and R ∈ B(R2).

The aim of the following discussion is to check the set of sufficient conditions presented in

Appendix A (of which the notations will be used) in order to have right to apply Theorem

III.5.34 in Jacod and Shiryaev [22]. First note that (Ct)t∈[0,∞) and ν(dt, dy, dz) do not

depend on the unknown parameter ψ, and hence V (ψ,ψ̃) is identically one and then (A.3)

and (A.4) readily hold. We also have

Pψ
(
ν({t} × R2) = 0

)
= Pψ

(∫
{t}
K(ηs, ζs,R2) ds = 0

)
= 1, t ∈ [0,∞), ψ ∈ Ψ.
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Further, (Ct)t∈[0,∞) can be represented as Ct =
∫ t

0
cu dFu, t ∈ [0,∞), where the stochas-

tic processes (ct)t∈[0,∞) and (Ft)t∈[0,∞) are given by ct := Σ(ηt, ζt), t ∈ [0,∞), and

Ft = t, t ∈ [0,∞). Next, note that, under the condition θκ ∈
[
σ2

2
,∞
)
, we have

Pψ((ηt, ζt) ∈ (0,∞)2 for all t ∈ [0,∞)) = 1 (due to Proposition 2.1), hence, by (3.3), for

each t ∈ [0,∞), the matrix ct is invertible Pψ-almost surely. Consequently, for all

ψ = (θ, κ, µ) ∈ Ψ and ψ̃ = (θ̃, κ̃, µ̃) ∈ Ψ with θκ, θ̃κ̃ ∈
[
σ2

2
,∞
)
,

B
(ψ)
t −B(ψ̃)

t =

∫ t

0

A(ηu, ζu)(H(ψ)−H(ψ̃)) du =

∫ t

0

cuβ
(ψ̃,ψ)
u dFu, t ∈ [0,∞),

where the stochastic process (β
(ψ̃,ψ)
t )t∈[0,∞) is given by

β
(ψ̃,ψ)
t = c−1

t A(ηt, ζt)(H(ψ)−H(ψ̃)) = Σ(ηt, ζt)
−1A(ηt, ζt)(H(ψ)−H(ψ̃)), t ∈ [0,∞),

which yields (A.5).

Next we check (A.6), i.e.,

Pψ
(∫ t

0

(
β(ψ̃,ψ)
u

)>
cuβ

(ψ̃,ψ)
u dFu <∞

)
= 1, t ∈ [0,∞).(3.8)

We have∫ t

0

(β(ψ̃,ψ)
s )>csβ

(ψ̃,ψ)
s dFs

= (H(ψ)−H(ψ̃))>
∫ t

0

A(ηs, ζs)
>(Σ(ηs, ζs)

−1)>A(ηs, ζs) ds (H(ψ)−H(ψ̃))

= (H(ψ)−H(ψ̃))>Gt(H(ψ)−H(ψ̃)), t ∈ [0,∞),

where Gt, t ∈ [0,∞), is understood as the original Gt, t ∈ [0,∞), replacing (Y, S) by (η, ζ).

Since η has continuous sample paths Pψ-almost surely and Pψ(ηt ∈ (0,∞), ∀ t ∈ [0,∞)) = 1

(due to θκ ∈ [σ
2

2
,∞)), we have Pψ(inft∈[0,T ] ηt ∈ (0,∞)) = 1 for all T ∈ [0,∞), which,

together with the Pψ-almost sure continuity of η and formula (3.4), yield (3.8).

Next, we check that, under the probability measure Pψ, local uniqueness holds for the

martingale problem on the canonical space corresponding to the triplet (B(ψ), C, ν) with

the given initial value (y0, s0) with Pψ as its unique solution. By Proposition 2.1, the

SDE (1.3) has a pathwise unique strong solution (with the given deterministic initial value

(y0, s0) ∈ (0,∞)2), and hence Theorem III.2.26 in Jacod and Shiryaev [22] yields that the set

of all solutions to the martingale problem on the canonical space corresponding to (B(ψ), C, ν)

has only one element (Pψ) yielding the desired local uniqueness. We also mention that

Theorem III.4.29 in Jacod and Shiryaev [22] implies that under the probability measure Pψ,

all local martingales have the integral representation property relative to (η, ζ).

By Theorem III.5.34 in Jacod and Shiryaev [22] (see also Appendix A), Pψ,T and Pψ̃,T
are equivalent (one can change the roles of ψ and ψ̃), and under the probability measure
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Pψ̃,T , we have

dPψ,T
dPψ̃,T

(η, ζ) = exp

{∫ T

0

(
β(ψ̃,ψ)
u

)> [d(ηcont)
(ψ̃)
u

d(ζcont)
(ψ̃)
u

]
− 1

2

∫ T

0

(
β(ψ̃,ψ)
u

)>
cuβ

(ψ̃,ψ)
u du

}

for T ∈ (0,∞), where ((ηcont)
(ψ̃)
t , (ζcont)

(ψ̃)
t )t∈[0,∞) denotes the continuous (local) martingale

part of (ηt, ζt)t∈[0,∞) under Pψ̃. Using part 1) of Remarks III.2.28 in Jacod and Shiryaev [22]

and (3.7), the continuous (local) martingale part (Ỹ cont
t , S̃cont

t )t∈[0,∞) of (Ỹt, S̃t)t∈[0,∞) takes

the form [
Ỹ cont
t

S̃cont
t

]
=

∫ t

0

Γ(Ỹu, S̃u)

[
dWu

dBu

]
, t ∈ [0,∞),

and, by (3.1), we have

(3.9)

[
dỸ cont

t

dS̃cont
t

]
=

[
dỸt

dS̃t

]
− A(Ỹt, S̃t)H(ψ̃) dt−

[
0

S̃t− dLt

]
, t ∈ [0,∞).

Hence, under P,

log
dPψ,T
dPψ̃,T

(Ỹ , S̃) = (H(ψ)−H(ψ̃))>
∫ T

0

A(Ỹu, S̃u−)>Σ(Ỹu, S̃u−)−1

[
dỸu

dS̃u − S̃u− dLu

]

− (H(ψ)−H(ψ̃))>
(∫ T

0

A(Ỹu, S̃u)
>Σ(Ỹu, S̃u)

−1A(Ỹu, S̃u) du

)
H(ψ̃)

− 1

2
(H(ψ)−H(ψ̃))>

(∫ T

0

A(Ỹu, S̃u)
>Σ(Ỹu, S̃u)

−1A(Ỹu, S̃u) du

)
(H(ψ)−H(ψ̃))

= (H(ψ)−H(ψ̃))>f̃T − (H(ψ)−H(ψ̃))>G̃TH(ψ̃)

− 1

2
(H(ψ)−H(ψ̃))>G̃T (H(ψ)−H(ψ̃)),

which yields the statement. 2

Note that f̃T in Lemma 3.1 contains a stochastic integral with respect to L, but, by

Remark 2.4, for all t ∈ [0, T ], Lt is a measurable function of (S̃t)t∈[0,T ] (depending on γ

and m).

We point out that we use the condition θκ ∈ [σ
2

2
,∞) in the proof of Lemma 3.1 to assure

the invertibility of (ct)t∈[0,∞).

Next, using Lemma 3.1, by considering Pψ̃,T as a fixed reference measure, we will derive an

MLE for the parameter ψ = (θ, κ, µ) based on the observations (Yt, St)t∈[0,T ]. Our method

for deriving an MLE is one of the known ones in the literature, and it turns out that these

lead to the same estimator ψ̂T , see Remark 3.5. Let us denote the right hand side of (3.6) by
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ΛT (ψ, ψ̃) replacing (f̃T , G̃T ) by (fT ,GT ). For convenience, first we calculate an MLE ψ̂T

of the parameter ψ on the set R3 based on the observations (Yt, St)t∈[0,T ], namely,

ψ̂T := arg max
ψ∈R3

ΛT (ψ, ψ̃),

which will turn out to be not dependent on ψ̃. Here the function ΛT is extended for all

ψ = (θ, κ, µ) ∈ R3 in a natural way (note that for the calculation of the random matrices Gt,

t ∈ [0,∞), and the random vectors f t, t ∈ [0,∞), one does not need to know the parameters

ψ or ψ̃). In Remark 3.3, we describe the connection between ψ̂T and an MLE given by

arg maxψ∈Ψ ΛT (ψ, ψ̃) on the set Ψ.

Proposition 3.2 Let θ, κ ∈ (0,∞) with θκ ∈
[
σ2

2
,∞
)
, µ ∈ R, σ ∈ (0,∞), % ∈ (−1, 1),

and (Y0, S0) = (y0, s0) ∈ (0,∞)2. Then for all T ∈ (0,∞), there exists a unique MLE

ψ̂T = (θ̂T , κ̂T , µ̂T )> of ψ = (θ, κ, µ)> on the set R3 based on the observations (Yt, St)t∈[0,T ]

taking the form

(3.10) ψ̂T =


θ̂T

κ̂T

µ̂T

 =


(G−1

T fT )1

(G−1
T fT )2

(G−1
T fT )2

(G−1
T fT )3

 ,
provided that GT is strictly positive definite and (G−1

T fT )2 6= 0, which hold almost surely.

Further, we have

θ̂T =

∫ T
0
Yu du

∫ T
0

dYu
Yu
− T

∫ T
0

dYu + %σT
∫ T

0
dSu−Su− dLu

Su−
− %σT 2

∫ T
0

dSu−Su− dLu
YuSu−∫ T

0
du
Yu

T
∫ T

0
dYu
Yu
−
∫ T

0
du
Yu

∫ T
0

dYu + %σ
∫ T

0
du
Yu

∫ T
0

dSu−Su− dLu
Su−

− %σT
∫ T

0
dSu−Su− dLu

YuSu−

,

κ̂T =
T
∫ T

0
dYu
Yu
−
∫ T

0
du
Yu

∫ T
0

dYu + %σ
∫ T

0
du
Yu

∫ T
0

dSu−Su− dLu
Su−

− %σT
∫ T

0
dSu−Su− dLu

YuSu−∫ T
0
Yu du

∫ T
0

du
Yu
− T 2

,

µ̂T =

∫ T
0

dSu−Su− dLu
YuSu−∫ T

0
du
Yu

.

(3.11)

Proof. The function ΛT can be written in the form

ΛT (ψ, ψ̃) = −1

2
H(ψ)>GTH(ψ) +H(ψ)>fT − c, ψ ∈ R3,

with

c := H(ψ̃)>fT −
1

2
H(ψ̃)>GTH(ψ̃),

since the symmetry of Σ(y, s)−1, (y, s) ∈ (0,∞)2, implies the symmetry of GT , and hence

H(ψ̃)>GTH(ψ) = H(ψ)>GTH(ψ̃). The symmetric random matrix GT is almost surely
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strictly positive definite, since its k × k minors, k ∈ {1, 2, 3} (see, (3.4)), are almost surely

positive, namely,

1

(1− %2)σ2

∫ T

0

du

Yu
> 0,

1

((1− %2)σ2)2

(∫ T

0

Yu du

∫ T

0

du

Yu
− T 2

)
> 0,

1

((1− %2)σ2)2

(∫ T

0

Yu du

∫ T

0

du

Yu
− T 2

)∫ T

0

du

Yu
> 0

almost surely. Indeed,
∫ T

0
du
Yu

> 0 a.s. follows from P(Yt ∈ (0,∞) for all t ∈ [0,∞)) = 1,

which can be found, e.g., in Lamberton and Lapeyre [27, Proposition 6.2.4] (see also Proposition

2.1), and the proof of
∫ T

0
Yu du

∫ T
0

du
Yu
> T 2 a.s. is given, e.g., in Barczy and Pap [6, Lemma

3.3]. Thus the matrix GT is almost surely invertible, namely,

G−1
T =

1(∫ T
0
Yu du

∫ T
0

du
Yu
− T 2

) ∫ T
0

du
Yu

×


σ2
∫ T

0
Yu du

∫ T
0

du
Yu
− %2σ2T 2 (1− %2)σ2T

∫ T
0

du
Yu

%σ
∫ T

0
Yu du

∫ T
0

du
Yu
− %σT 2

(1− %2)σ2T
∫ T

0
du
Yu

(1− %2)σ2
(∫ T

0
du
Yu

)2
0

%σ
∫ T

0
Yu du

∫ T
0

du
Yu
− %σT 2 0

∫ T
0
Yu du

∫ T
0

du
Yu
− T 2


whenever

∫ T
0
Yu du

∫ T
0

du
Yu
> T 2 and

∫ T
0

du
Yu
> 0, which hold almost surely. Provided that GT

is strictly positive definite, we have

ΛT (ψ, ψ̃) = −1

2

(
H(ψ)−G−1

T fT
)>
GT

(
H(ψ)−G−1

T fT
)

+
1

2
f>TG

−1
T fT − c 6

1

2
f>TG

−1
T fT − c,

and equality holds if and only if H(ψ) = G−1
T fT . The aim of the following discussion

is to show that the inverse mapping H−1 given in (3.2) can be applied to G−1
T fT =:

((G−1
T fT )1, (G

−1
T fT )2, (G

−1
T fT )3) almost surely, that is, P((G−1

T fT )2 = 0) = 0. Apply-

ing (3.3), we obtain

fT =
1

(1− %2)σ2


∫ T

0
dYu
Yu
− %σ

∫ T
0

dSu−Su− dLu
YuSu−

−
∫ T

0
dYu + %σ

∫ T
0

dSu−Su− dLu
Su−

−%σ
∫ T

0
dYu
Yu

+ σ2
∫ T

0
dSu−Su− dLu

YuSu−

 , T ∈ (0,∞).

Using the explicit formula for G−1
T , we obtain

(G−1
T fT )2 =

T
∫ T

0
dYu
Yu
−
∫ T

0
du
Yu

∫ T
0

dYu + %σ
∫ T

0
du
Yu

∫ T
0

dSu−Su− dLu
Su−

− %σT
∫ T

0
dSu−Su− dLu

YuSu−∫ T
0
Yu du

∫ T
0

du
Yu
− T 2

.

By the SDE (1.3),∫ T

0

dSu − Su− dLu
Su−

=

∫ T

0

[
µ du+

√
Yu
(
% dWu +

√
1− %2 dBu

)]
,

∫ T

0

dSu − Su− dLu
YuSu−

=

∫ T

0

µ du+
√
Yu
(
% dWu +

√
1− %2 dBu

)
Yu

.

(3.12)
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Applying again the SDE (1.3), we have∫ T

0

√
Yu dWu =

1

σ

(
YT − y0 −

∫ T

0

κ(θ − Yu) du

)
,

∫ T

0

dWu√
Yu

=
1

σ

∫ T

0

dYu − κ(θ − Yu) du

Yu
,

where ∫ T

0

dYu
Yu

= log(YT )− log(y0) +
σ2

2

∫ T

0

du

Yu
.

Indeed, since P(Yt ∈ (0,∞) for all t ∈ [0,∞)) = 1, one can apply Itô’s rule to the function

f(x) = log(x), x ∈ (0,∞), for which f ′(x) = 1/x, f ′′(x) = −1/x2, x ∈ (0,∞), and we

obtain

log(YT ) = log(y0) +

∫ T

0

dYu
Yu
− σ2

2

∫ T

0

du

Yu
, T ∈ [0,∞),(3.13)

see von Weizsäcker and Winkler [39, Theorem 8.1.1]. Hence, using the independence of the

processes Y and B, the conditional distribution of (G−1
T fT )2 given (Yu)u∈[0,T ] is Gaussian

and hence absolutely continuous, implying

P((G−1
T fT )2 = 0) = E(P((G−1

T fT )2 = 0 | (Yu)u∈[0,T ])) = 0.

Consequently,

H−1(G−1
T fT ) = arg max

ψ∈R3

ΛT (ψ, ψ̃),

provided that GT is strictly positive definite and (G−1
T fT )2 6= 0, which hold almost surely,

hence there exists a unique MLE ψ̂T = (θ̂T , κ̂T , µ̂T )> = H−1(G−1
T fT ) of ψ = (θ, κ, µ)> on

the set R3 based on the observations (Yt, St)t∈[0,T ] yielding (3.10). Using again the explicit

formula for G−1
T , we obtain (3.11) as well. Note that ψ̂T is a measurable function of the

observations (Yt, St)t∈[0,T ], since all the integrals appearing in ψ̂T are measurable functions

of this process. Indeed, in Remark 2.4 we showed that for all t ∈ [0, T ], Lt is a measurable

function of (Su)u∈[0,T ], and one can use the arguments of Remarks 2.5 and 2.6 together with

Proposition I.4.44 in Jacod and Shiryaev [22], and Theorems 4.2.2 and 4.2.8 in Dudley [16].

For example, for all T ∈ [0,∞),

bnT c∑
i=1

(S i
n
− S i−1

n
)− S i−1

n
−(L i

n
− L i−1

n
)

Y i−1
n
S i−1

n
−

P−→
∫ T

0

dSu − Su− dLu
YuSu−

as n→∞.

2

Remark 3.3 We call the attention that later on it will turn out that ψ̂T is a weakly con-

sistent estimator of ψ (see, Theorem 4.1 and Remark 4.2) yielding that P(ψ̂T ∈ Ψ) =

P(H−1(G−1
T fT ) ∈ Ψ)→ 1 as T →∞ for each ψ ∈ Ψ, and hence

P
(
H−1(G−1

T fT ) = arg max
ψ∈Ψ

ΛT (ψ, ψ̃)
)
→ 1 as T →∞.

Consequently, the probability that there exists a unique MLE ψ∗T of ψ on the set Ψ based

on the observations (Yt, St)t∈[0,T ] converges to 1 as T → ∞, and P(ψ∗T = ψ̂T ) → 1 as

T →∞. 2
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Remark 3.4 To make it clear, we point out that the expression for (θ̂T , κ̂T ) in (3.11) is not

the same as the MLE of (θ, κ) based only on the continuous time observation (Yt)t∈[0,T ] for

the first coordinate process of (1.3), see, e.g., Overbeck [33], because our statistical setup is

different. 2

Remark 3.5 In the literature there is another way of deriving an MLE. Sørensen [36] defined

an MLE of ψ as a solution of the equation Λ̇T (ψ) = 0, where Λ̇T (ψ) is the so-called score

vector given in formula (3.3) in Sørensen [36]. Luschgy [31], [32] called this equation as an

estimating equation. With the notations of the proof of Lemma 3.1, taking into account of the

form of β(ψ̃,ψ) and the fact that V (ψ,ψ̃) is identically one, we have

Λ̇T (ψ) :=

∫ T

0

Ḣ(ψ)>A(Yu, Su)
>Σ(Yu, Su)

−1

[
dY cont

u

dScont
u

]

=

∫ T

0

Ḣ(ψ)>A(Yu, Su)
>Σ(Yu, Su)

−1

([
dYu

dSu

]
− A(Yu, Su)H(ψ) du−

[
0

Su− dLu

])
for ψ ∈ R3 and T ∈ (0,∞) with

Ḣ(ψ) =


κ θ 0

0 1 0

0 0 1

 , ψ =


θ

κ

µ

 ∈ R3.

Using (3.9) and the definitions of fT and GT , we obtain

Λ̇T (ψ) = Ḣ(ψ)
>

(fT −GTH(ψ)),

hence the estimating equation Λ̇T (ψ) = 0, ψ ∈ R3, has a unique solution H−1(G−1
T fT )

provided that GT is strictly positive definite and (G−1
T fT )2 6= 0, which hold almost surely.

Recall that this unique solution coincides with ψ̂T , see (3.10). 2

4 Consistency of MLE

Theorem 4.1 If θ, κ ∈ (0,∞) with θκ ∈
(
σ2

2
,∞
)
, µ ∈ R, σ ∈ (0,∞), % ∈ (−1, 1),

and (Y0, S0) = (y0, s0) ∈ (0,∞)2, then the MLE of ψ = (θ, κ, µ) is strongly consistent, i.e.,

ψ̂T =
(
θ̂T , κ̂T , µ̂T

) a.s.−→ ψ = (θ, κ, µ) as T →∞.

Proof. Obviously, it is enough to show that G−1
T fT

a.s.−→ H(ψ) as T → ∞, since then

ψ̂T = H−1(G−1
T fT )

a.s.−→ H−1(H(ψ)) = ψ as T →∞, using the continuity of H−1 and that

P((G−1
T fT )2 = 0) = 0, see Section 3. Using the SDE (3.1), we obtain fT = GTH(ψ) + hT ,

T ∈ [0,∞), with

hT :=

∫ T

0

A(Yu, Su)
>Σ(Yu, Su)

−1Γ(Yu, Su)

[
dWu

dBu

]
.
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Thus

(4.1) G−1
T fT −H(ψ) = G−1

T hT = (DTGT )−1(DThT ), T ∈ (0,∞),

with

DT :=


1∫ T

0
du
Yu

0 0

0 1∫ T
0 Yu du

0

0 0 1∫ T
0

du
Yu

 ,
provided that GT is invertible and

∫ T
0

du
Yu
> 0 and

∫ T
0
Yu du > 0, which hold almost surely,

see Section 3. We have

DTGT =
1

(1− %2)σ2


1 − 1

T−1
∫ T
0

du
Yu

−%σ

− 1

T−1
∫ T
0 Yu du

1 %σ

T−1
∫ T
0 Yu du

−%σ %σ

T−1
∫ T
0

du
Yu

σ2

 , T ∈ (0,∞).

Using that Σ(Yu, Su)
−1 = (Γ(Yu, Su)

>)−1Γ(Yu, Su)
−1, u ∈ [0, T ], and (3.5), we obtain

(4.2)

hT =

∫ T

0

A(Yu, Su)
>(Γ(Yu, Su)

>)−1

[
dWu

dBu

]
=

∫ T

0

(Γ(Yu, Su)
−1A(Yu, Su))

>

[
dWu

dBu

]

=
1

σ
√

1− %2

∫ T

0

1√
Yu


√

1− %2 dWu − % dBu

−
√

1− %2Yu dWu + %Yu dBu

σ dBu

 ,
and hence

DThT =
1

σ
√

1− %2


h

(1)

T

h
(2)

T

h
(3)

T


with

h
(1)

T :=

∫ T
0

√
1−%2 dWu−% dBu√

Yu∫ T
0

du
Yu

, h
(2)

T := −
∫ T

0

√
Yu(
√

1− %2 dWu − % dBu)∫ T
0
Yu du

, h
(3)

T := σ

∫ T
0

dBu√
Yu∫ T

0
du
Yu

.

By part (i) of Theorem 2.2, E(Y∞) = θ and E
(

1
Y∞

)
= 2κ

2θκ−σ2 , and hence, part (ii) of Theorem

2.2 implies

DTGT
a.s.−→ 1

(1− %2)σ2


1 − 1

E
(

1
Y∞

) −%σ

− 1
E(Y∞)

1 %σ
E(Y∞)

−%σ %σ

E
(

1
Y∞

) σ2

 =:
1

(1− %2)σ2
S as T →∞.(4.3)
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We have

det(S) = (1− %2)σ2

(
1− 1

E(Y∞)E
(

1
Y∞

)) > 0

since E(Y∞)E
(

1
Y∞

)
= 2θκ

2θκ−σ2 > 1, hence the matrix S is invertible, and we conclude

(4.4) (DTGT )−1 a.s.−→ (1− %2)σ2S−1 as T →∞.

The aim of the following discussion is to show convergence

(4.5) DThT
a.s.−→ 0 as T →∞.

The strong law of large numbers for continuous local martingales (see, e.g., Theorem B.1)

implies h
(1)

T
a.s.−→ 0 as T →∞, since, by part (ii) of Theorem 2.2,

1

T

∫ T

0

ds

Ys

a.s.−→ E
( 1

Y∞

)
=

2κ

2θκ− σ2
∈ (0,∞) as T →∞,

implying ∫ T

0

ds

Ys
= T · 1

T

∫ T

0

ds

Ys

a.s.−→∞ as T →∞.

Convergences h
(2)

T
a.s.−→ 0 as T →∞, and h

(3)

T
a.s.−→ 0 as T →∞ can be proved in the same

way, since, by part (ii) of Theorem 2.2,

1

T

∫ T

0

Ys ds
a.s.−→ E(Y∞) = θ ∈ (0,∞) as T →∞,

implying ∫ T

0

Ys ds = T · 1

T

∫ T

0

Ys ds
a.s.−→∞ as T →∞.

Consequently, we conclude (4.5). By (4.1), (4.4) and (4.5), we obtain G−1
T fT

a.s.−→ H(ψ) as

T →∞, hence we conclude the statement. 2

Remark 4.2 For the case θκ = σ2

2
, Theorem 5.3 implies weak consistency of the MLE of

(θ, κ, µ). 2

5 Asymptotic behaviour of MLE

Theorem 5.1 If θ, κ ∈ (0,∞) with θκ ∈
(
σ2

2
,∞
)
, µ ∈ R, σ ∈ (0,∞), % ∈ (−1, 1), and

(Y0, S0) = (y0, s0) ∈ (0,∞)2, then the MLE of ψ = (θ, κ, µ) is asymptotically normal, namely,

T 1/2(ψ̂T −ψ)
D−→ N3(0,V ) as T →∞,(5.1)
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where the matrix V is given by

1

2κ3


σ2(2θκ− %2σ2) −2(1− %2)σ2κ2 %σκ(2θκ− σ2)

−2(1− %2)σ2κ2 4κ4(1− %2) 0

%σκ(2θκ− σ2) 0 κ2(2θκ− σ2)

 .(5.2)

With a random scaling, we have

RTQT (ψ̂T −ψ)
D−→ N3(0, I3) as T →∞,(5.3)

where I3 denotes the 3× 3 identity matrix, and RT , T ∈ (0,∞), and QT , T ∈ (0,∞),

are 3 × 3 (not uniquely determined) random matrices with properties T−1/2RT
P−→ C as

T → ∞ with some C ∈ R3×3, R>TRT = GT , T ∈ (0,∞), and QT
P−→ Q as T → ∞,

where

Q :=


κ θ 0

0 1 0

0 0 1

 .
For a possible choice of RT and QT , T ∈ (0,∞), see Remark 5.2.

Remark 5.2 Note that the limiting covariance matrix V in (5.1) depends only on the un-

known parameters θ and κ, but not on (the unknown) µ. The advantage of the random

scaling is that the limiting covariance matrix in (5.3) is the 3× 3 identity matrix I3 which

does not depend on any of the unknown parameters. Note also that for RT and QT one can

choose, for instance,

RT =
1

σ
√

1− %2

√∫ T
0

du
Yu


∫ T

0
du
Yu

−T −%σ
∫ T

0
du
Yu

0
√∫ T

0
Yu du

∫ T
0

du
Yu
− T 2 0

0 0 σ
√

1− %2
∫ T

0
du
Yu


and

QT =


σ2

2T

∫ T
0

du
Yu(

1
T

∫ T
0 Yu du

)(
1
T

∫ T
0

du
Yu

)
−1

1
T

∫ T
0
Yu du 0

0 1 0

0 0 1

 .
Indeed, we have R>TRT = GT , T ∈ (0,∞) (which is, in fact, the Cholesky factorization of GT ),

T−1/2RT =
1

σ
√

1− %2

√
1
T

∫ T
0

du
Yu


1
T

∫ T
0

du
Yu

−1 −%σ
T

∫ T
0

du
Yu

0
√(

1
T

∫ T
0
Yu du

)(
1
T

∫ T
0

du
Yu

)
− 1 0

0 0
σ
√

1−%2

T

∫ T
0

du
Yu



a.s.−→ 1

σ
√

1− %2
√

E
(

1
Y∞

)

E
(

1
Y∞

)
−1 −%σ E

(
1
Y∞

)
0

√
E(Y∞)E

(
1
Y∞

)
− 1 0

0 0 σ
√

1− %2 E
(

1
Y∞

)


26



as T →∞, and QT
a.s.−→ Q as T →∞, since

σ2

2T

∫ T
0

du
Yu(

1
T

∫ T
0
Yu du

)(
1
T

∫ T
0

du
Yu

)
− 1

a.s.−→
σ2

2
E
(

1
Y∞

)
E(Y∞)E

(
1
Y∞

)
− 1

= κ,
1

T

∫ T

0

Ys ds
a.s.−→ E(Y∞) = θ

as T →∞ by part (i) of Theorem 2.2. Hence then the random scaling factor has the form

RTQT =
1

σ
√

1− %2

√∫ T
0

du
Yu


σ2T

2

(∫ T
0

du
Yu

)2

∫ T
0 Yu du

∫ T
0

du
Yu
−T 2

1
T

(∫ T
0
Yu du

∫ T
0

du
Yu
− T 2

)
−%σ

∫ T
0

du
Yu

0
√∫ T

0
Yu du

∫ T
0

du
Yu
− T 2 0

0 0 σ
√

1− %2
∫ T

0
du
Yu

 .
2

Proof of Theorem 5.1. For (5.1), it is enough to prove

(5.4) T 1/2(G−1
T fT −H(ψ))

D−→ N3(0,V 0) as T →∞,

where

V 0 :=
2θκ− σ2

2κ


σ2 + (1− %2)(2θκ− σ2) 2κ(1− %2) %σ

2κ(1− %2) 4κ2(1−%2)
2θκ−σ2 0

%σ 0 1

 .
Indeed, then one can apply Lemma C.1 with S1 = S2 = R3, C = R3, with a random vector

ξ having distribution N3(0,V 0), with ξT = T 1/2(G−1
T fT −H(ψ)), T ∈ (0,∞), and with

functions F : R3 → R3 and FT : R3 → R3, T ∈ (0,∞), given by

F (x) := Q−1x, FT (x) :=




x1−θx2

T−1/2x2+κ

x2

x3

 if x2 6= −T 1/2κ,

0 if x2 = −T 1/2κ,

for x = (x1, x2, x3) ∈ R3 and T ∈ (0,∞). We have

FT (T 1/2(G−1
T fT −H(ψ))) =


T 1/2 (G−1

T fT )1−θκ−θ((G−1
T fT )2−κ)

(G−1
T fT )2

T 1/2((G−1
T fT )2 − κ)

T 1/2((G−1
T fT )3 − µ)

 = T 1/2(ψ̂T −ψ),

provided that (G−1
T fT )2 6= 0, which holds almost surely. Moreover, FT (xT ) → F (x) as

T → ∞ if xT → x as T → ∞, since then, for sufficiently large T ∈ (0,∞), we have

(xT )2 6= −T 1/2κ. Consequently, (5.4) and Lemma C.1 imply

T 1/2(ψ̂T −ψ) = FT (T 1/2(G−1
T fT −H(ψ)))

D−→ F (ξ) = Q−1ξ
D
= N3(0,Q−1V 0(Q−1)>)
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as T →∞, where Q−1V 0(Q−1)> = V , hence we obtain (5.1).

By the first equality in (4.1), we have

(5.5) T 1/2(G−1
T fT −H(ψ)) = T 1/2G−1

T hT = (T−1GT )−1(T−1/2hT ),

provided that GT is invertible, which holds almost surely, see Section 3. By part (i) of

Theorem 2.2, E(Y∞) = θ ∈ (0,∞) and E
(

1
Y∞

)
= 2κ

2θκ−σ2 ∈ (0,∞), and hence, part (ii) of

Theorem 2.2 and (3.4) imply

T−1GT
a.s.−→ E(G∞) as T →∞,(5.6)

with

G∞ :=
1

(1− %2)σ2Y∞


1 −Y∞ −%σ
−Y∞ Y 2

∞ %σY∞

−%σ %σY∞ σ2

 ,
where Y∞ has Gamma distribution with parameters 2θκ/σ2 and 2κ/σ2. The matrix E(G∞)

is invertible, namely,

[E(G∞)]−1 =
1(

E(Y∞)E
(

1
Y∞

)
− 1
)
E
(

1
Y∞

)

×


σ2 E(Y∞)E

(
1
Y∞

)
− %2σ2 (1− %2)σ2 E

(
1
Y∞

)
%σ E(Y∞)E

(
1
Y∞

)
− %σ

(1− %2)σ2 E
(

1
Y∞

)
(1− %2)σ2

(
E
(

1
Y∞

))2
0

%σ E(Y∞)E
(

1
Y∞

)
− %σ 0 E(Y∞)E

(
1
Y∞

)
− 1

 ,
since E(Y∞)E

(
1
Y∞

)
= 2θκ

2θκ−σ2 > 1, which yields [E(G∞)]−1 = V 0. Whence we conclude

(5.7) (T−1GT )−1 a.s.−→ V 0 as T →∞.

By (4.2), the process (ht)t∈[0,∞) is a 3-dimensional continuous local martingale with (pre-

dictable) quadratic variation process 〈h〉t = Gt, t ∈ [0,∞). Using (5.6), the central

limit theorem for multidimensional continuous local martingales, see Theorem B.2, yields

T−1/2hT
D−→ N3(0,E(G∞)) = N3(0,V −1

0 ) as T →∞. Hence, by (5.5) and (5.7),

T 1/2(G−1
T fT −H(ψ))

D−→ N3(0,V 0V
−1
0 V 0) = N3(0,V 0) as T →∞,

thus we obtain (5.4).

With random scaling, by (5.1) and Slutsky’s lemma, we obtain

RTQT (ψ̂T −ψ) = (T−1/2RT )QT

[
T 1/2(ψ̂T −ψ)

] D−→ N3(0, (CQ)V (CQ)>)

as T →∞. Moreover, by the assumptions on RT , T ∈ (0,∞),

T−1GT = (T−1/2RT )>(T−1/2RT )
P−→ C>C as T →∞.
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Thus, comparing with (5.6), we obtain C>C = E(G∞) = V −1
0 . Using Q−1V 0(Q−1)> = V ,

we obtain

(CQ)V (CQ)> = (CQ)Q−1(C>C)−1(Q−1)>(CQ)> = I3,

and we conclude (5.3). 2

Theorem 5.3 If θ, κ ∈ (0,∞) with θκ = σ2

2
, µ ∈ R, σ ∈ (0,∞), % ∈ (−1, 1), and

(Y0, S0) = (y0, s0) ∈ (0,∞)2, then
T 1/2(θ̂T − θ)
T 1/2(κ̂T − κ)

T (µ̂T − µ)

 D−→


−σ2
√

1−%2

√
2κ3

Z1√
2(1− %2)κZ1

%σ
κT +

σ
√

1−%2

κ
√
T Z2

 as T →∞,(5.8)

where T := inf{t ∈ [0,∞) : Wt = 1} with a standard Wiener process (Wt)t∈[0,∞), and Z1

and Z2 are independent standard normally distributed random variables, independent from

T . With a random scaling, we have
σT 2

2
√

1−%2
(∫ T

0 Yu du
)3/2 (θ̂T − θ)

1

σ
√

1−%2

(∫ T
0
Yu du

)1/2
(κ̂T − κ)

σT 2

2
∫ T
0 Yu du

(µ̂T − µ)

 D−→


−Z1

Z1

%
T +

√
1−%2

√
T Z2

 as T →∞.(5.9)

Note that the limit distribution in Theorem 5.3 (which can be considered as the asymptotic

error of the estimator (θ̂T , κ̂T , µ̂T )) is a mixed normal distribution. Moreover, the first and

second coordinates of the limit distributions in (5.8) and (5.9) are linearly dependent. In spite of

this fact, one can give asymptotic confidence sets for (θ, κ), namely, ellipses together with their

interiors and with center (θ̂T , κ̂T ). Indeed, the sum of the squares of the first two coordinates

of the left-hand side of (5.9), which one can call a normalized squared error of (θ, κ), converges

weakly to 2Z2
1 , being a chi-squared distribution of degree 1 (multiplied by 2). Surprisingly,

the mixed normal limit distributions of the third coordinate in (5.8) and (5.9) are not centered.

In Appendix D we derive an explicit formula for the density function of %σ
κT +

σ
√

1−%2

κ
√
T Z2, which

is the limit distribution of T (µ̂T − µ) as T →∞ in Theorem 5.3.

Proof of Theorem 5.3. Since P(T ∈ (0,∞)) = 1, the limit distributions in (5.8) and (5.9)

are well defined. We have again E(Y∞) = θ ∈ (0,∞), implying

1

T

∫ T

0

Yu du
a.s.−→ θ and

∫ T

0

Yu du
a.s.−→∞ as T →∞.(5.10)

Due to Ben Alaya and Kebaier [8, Proposition 4], we have

1

T 2

∫ T

0

du

Yu

D−→ T ∗ as T →∞,(5.11)

29



where T ∗ := inf{t ∈ [0,∞) :W∗t = κ
σ
} with a standard Wiener process (W∗t )t∈[0,∞). Applying

the scaling property of a standard Wiener process, we obtain

T ∗ = inf
{
t ∈ [0,∞) :

σ

κ
W∗t = 1

}
D
= inf

{
t ∈ [0,∞) :Wσ2

κ2 t
= 1
}

= inf
{κ2

σ2
s ∈ [0,∞) :Ws = 1

}
=
κ2

σ2
inf
{
s ∈ [0,∞) :Ws = 1

}
=
κ2

σ2
T ,

where
D
= denotes equality in distribution. We may and do suppose that T ∗ = κ2

σ2T . Using

P(T ∗ ∈ (0,∞)) = 1, we conclude

1
1
T

∫ T
0

du
Yu

=
1

T

1
1
T 2

∫ T
0

du
Yu

D−→ 0 · 1

T ∗
= 0 as T →∞,

and hence,

(5.12)
1

1
T

∫ T
0

du
Yu

P−→ 0 as T →∞,

implying also
1∫ T

0
du
Yu

=
1

T

1
1
T

∫ T
0

du
Yu

P−→ 0 as T →∞.

Since the function (0,∞) 3 T 7→ 1∫ T
0

du
Yu

is monotone decreasing, we obtain

1∫ T
0

du
Yu

a.s.−→ 0 and

∫ T

0

du

Yu

a.s.−→∞ as T →∞.

For (5.8), it is enough to prove

(5.13) CT (G−1
T fT −H(ψ))

D−→


σ2

κT

Z1

√
2(1− %2)κ

%σ
κT +

Z2σ
√

1−%2

κ
√
T

 as T →∞,

where

CT :=


T 0 0

0 T 1/2 0

0 0 T

 .
Indeed, then one can apply Lemma C.1 with S1 = S2 = R3, C = R3, with

ξ =


σ2

κT

Z1

√
2(1− %2)κ

%σ
κT +

Z2σ
√

1−%2

κ
√
T

 ,
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with ξT = CT (G−1
T fT − H(ψ)), T ∈ (0,∞), and with functions F : R3 → R3 and

FT : R3 → R3, T ∈ (0,∞), given by

F (x) := Bx, FT (x) :=




T−1/2x1−θx2

T−1/2x2+κ

x2

x3

 if x2 6= −T 1/2κ,

0 if x2 = −T 1/2κ,

for x = (x1, x2, x3) ∈ R3 and T ∈ (0,∞), where

B :=


0 − σ2

2κ2 0

0 1 0

0 0 1

 .
We have

FT (CT (G−1
T fT −H(ψ))) =


T−1/2T ((G−1

T fT )1−θκ)−θT 1/2((G−1
T fT )2−κ)

(G−1
T fT )2

T 1/2((G−1
T fT )2 − κ)

T ((G−1
T fT )3 − µ)

 = C̃T (ψ̂T −ψ),

provided that (G−1
T fT )2 6= 0, which holds almost surely, where

C̃T :=


T 1/2 0 0

0 T 1/2 0

0 0 T

 .
Moreover, FT (xT )→ F (x) as T →∞ if xT → x as T →∞, since then, for sufficiently

large T ∈ (0,∞), we have (xT )2 6= −T 1/2κ. Consequently, (5.13) and Lemma C.1 imply

C̃T (ψ̂T −ψ) = FT (CT (G−1
T fT −H(ψ)))

D−→ F (ξ) = Bξ as T →∞,

hence we obtain (5.8).

Now we turn to prove (5.13). By the first equality in (4.1), we have

(5.14)
CT (G−1

T fT −H(ψ)) = CTG
−1
T hT = (CTG

−1
T CT )(C−1

T hT )

= (C−1
T GTC

−1
T )−1(C−1

T hT ),

provided that GT is invertible, which holds almost surely, see Section 3. We have

C−1
T GTC

−1
T =

1

(1− %2)σ2


T−2

∫ T
0

du
Yu

−T−1/2 −%σT−2
∫ T

0
du
Yu

−T−1/2 T−1
∫ T

0
Yu du %σT−1/2

−%σT−2
∫ T

0
du
Yu

%σT−1/2 σ2T−2
∫ T

0
du
Yu

 ,
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and, by (4.2),

C−1
T hT =

1

σ
√

1− %2


h̃

(1)
T

h̃
(2)
T

h̃
(3)
T


with

h̃
(1)
T :=

1

T

∫ T

0

√
1− %2 dWu − % dBu√

Yu
, h̃

(2)
T := − 1√

T

∫ T

0

√
Yu(
√

1− %2 dWu − % dBu),

h̃
(3)
T :=

σ

T

∫ T

0

dBu√
Yu
.

By (5.10), 1
T

∫ T
0
Yu du

a.s.−→ θ as T → ∞. Ben Alaya and Kebaier [9, proof of Theorem 7]

proved log(YT )
T

P−→ 0 as T →∞. Using the SDE (3.1), (3.13) and θκ = σ2

2
,

(5.15)

∫ T

0

σ dWu√
Yu

=

∫ T

0

dYu
Yu
− θκ

∫ T

0

du

Yu
+ κT = log(YT )− log(y0) + κT,

thus

(5.16)
1

T

∫ T

0

dWu√
Yu

P−→ κ

σ
as T →∞.

Consequently, (5.13) will follow from

(5.17) (C−1
T GTC

−1
T ,C−1

T hT )
D−→ (G̃∞, h̃∞) as T →∞

with

G̃∞ :=
1

(1− %2)σ2


T ∗ 0 −%σT ∗

0 θ 0

−%σT ∗ 0 σ2T ∗

 , h̃∞ :=
1

σ
√

1− %2


κ
√

1−%2

σ
− %Z2

√
T ∗

−Z3

√
θ(1− %2) + %Z4

√
θ

σZ2

√
T ∗

 ,
where Z3 and Z4 are independent standard normally distributed random variables, inde-

pendent from Z2 and T ∗. Indeed, provided that (5.17) holds, by the continuous mapping

theorem,

(CTG
−1
T CT ,C

−1
T hT )

D−→ (G̃
−1

∞ , h̃∞) as T →∞,

since G̃∞ is invertible almost surely with inverse

G̃
−1

∞ =
1

T ∗


σ2 0 %σ

0 1
θ
(1− %2)σ2T ∗ 0

%σ 0 1

 ,
and hence, by (5.14) and the continuous mapping theorem,

CT (G−1
T fT −H(ψ))

D−→ G̃
−1

∞ h̃∞ as T →∞,
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where, with Z1 := −
√

1− %2Z3 + %Z4,

G̃
−1

∞ h̃∞ =
1

σT ∗
√

1− %2


σ2
(
κ
√

1−%2

σ
− %Z2

√
T ∗
)

+ %σ2Z2

√
T ∗

1√
θ

(1− %2)σ2T ∗(−Z3

√
1− %2 + %Z4)

%σ
(κ√1−%2

σ
− %Z2

√
T ∗
)

+ σZ2

√
T ∗



=
1

σT ∗
√

1− %2


σκ
√

1− %2

1√
θ

(1− %2)σ2T ∗Z1

%κ
√

1− %2 + σ(1− %2)Z2

√
T ∗

 =


κ
T ∗

Z1

√
2(1− %2)κ

%κ
σT ∗ +

Z2

√
1−%2

√
T ∗

 ,
thus we obtain (5.13) using that T ∗ = κ2

σ2T .

Now we turn to prove (5.17). It will follow from Slutsky’s lemma, continuous mapping

theorem and from(
1√
T

∫ T

0

√
Yu dWu,

1

T

∫ T

0

dWu√
Yu
,

1√
T

∫ T

0

√
Yu dBu,

1

T

∫ T

0

dBu√
Yu
,

1

T

∫ T

0

Yu du,
1

T 2

∫ T

0

du

Yu

)
D−→
(√

θ Z3,
κ

σ
,
√
θZ4, Z2

√
T ∗, θ, T ∗

)
as T →∞,

which will be a consequence of (5.10), (5.11), (5.16), Slutsky’s lemma (or part (v) of Theorem

2.7 in van der Vaart [38]), and(
1√
T

∫ T

0

√
Ys dWs,

1√
T

∫ T

0

√
Ys dBs,

1

T

∫ T

0

dBs√
Ys
,

1

T 2

∫ T

0

ds

Ys

)
D−→
(√

θ Z3,
√
θ Z4, Z2

√
T ∗, T ∗

)
as T →∞.

(5.18)

Using the SDE (1.3),

(5.19) σ

∫ T

0

√
Ys dWs = YT − y0 − θκT + κ

∫ T

0

Ys ds,

consequently,
∫ T

0

√
Ys dWs is measurable with respect to the σ-algebra σ((Ys)s∈[0,T ]). For all

(u1, u2, u3, v) ∈ R4 and T ∈ (0,∞), we have

E

(
exp

{
iu1√
T

∫ T

0

√
Ys dWs +

iu2√
T

∫ T

0

√
Ys dBs +

iu3

T

∫ T

0

dBs√
Ys

+
iv

T 2

∫ T

0

ds

Ys

})

= E

[
E

(
exp

{
iu1√
T

∫ T

0

√
Ys dWs +

iu2√
T

∫ T

0

√
Ys dBs +

iu3

T

∫ T

0

dBs√
Ys

+
iv

T 2

∫ T

0

ds

Ys

}∣∣∣∣∣ (Ys)s∈[0,T ]

)]
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= E

[
exp

{
iu1√
T

∫ T

0

√
Ys dWs +

iv

T 2

∫ T

0

ds

Ys

}

× E

(
exp

{
i

∫ T

0

(
u2

√
Ys√
T

+
u3

T
√
Ys

)
dBs

}∣∣∣∣∣ (Ys)s∈[0,T ]

)]

= E

(
exp

{
iu1√
T

∫ T

0

√
Ys dWs +

iv

T 2

∫ T

0

ds

Ys

}
exp

{
−1

2

∫ T

0

(
u2

2Ys
T

+
u2

3

T 2Ys
+

2u2u3

T 3/2

)
ds

})

= exp

{
−u2u3√

T

}
E

(
exp

{
iu1√
T

∫ T

0

√
Ys dWs −

u2
2

2T

∫ T

0

Ys ds− u2
3

2T 2

∫ T

0

ds

Ys
+

iv

T 2

∫ T

0

ds

Ys

})
,

where we used the independence of Y and B yielding that the conditional distribution of∫ T
0

(
u2
√
Ys√
T

+ u3

T
√
Ys

)
dBs given (Ys)s∈[0,T ] is normal. We may and do suppose that Z2 and Z4

are independent also from (Ys)s∈[0,T ]. Then, in a similar way, for all (u1, u2, u3, v) ∈ R4 and

T ∈ (0,∞), we have

E

(
exp

{
iu1√
T

∫ T

0

√
Ys dWs +

iu2Z4√
T

(∫ T

0

Ys ds

)1/2

+
iu3Z2

T

(∫ T

0

ds

Ys

)1/2

+
iv

T 2

∫ T

0

ds

Ys

})

= E

[
E

(
exp

{
iu1√
T

∫ T

0

√
Ys dWs +

iu2Z4√
T

(∫ T

0

Ys ds

)1/2

+
iu3Z2

T

(∫ T

0

ds

Ys

)1/2

+
iv

T 2

∫ T

0

ds

Ys

}∣∣∣∣∣ (Ys)s∈[0,T ]

)]

= E

[
exp

{
iu1√
T

∫ T

0

√
Ys dWs +

iv

T 2

∫ T

0

ds

Ys

}

× E

(
exp

{
iu2Z4√
T

(∫ T

0

Ys ds

)1/2

+
iu3Z2

T

(∫ T

0

ds

Ys

)1/2
}∣∣∣∣∣ (Ys)s∈[0,T ]

)]

= E

(
exp

{
iu1√
T

∫ T

0

√
Ys dWs +

iv

T 2

∫ T

0

ds

Ys

}
exp

{
− u

2
2

2T

∫ T

0

Ys ds− u2
3

2T 2

∫ T

0

ds

Ys

})
,

which is the same as the previous expectation except the factor exp{−u2u3√
T
}. Ben Alaya and

Kebaier [9, proof of Theorem 7] proved(
YT − θκT + κ

∫ T
0
Ys ds

√
T

,
1

T 2

∫ T

0

ds

Ys

)
D−→
(

σ2

√
2κ

Z3, T ∗
)

as T →∞,

hence, by (5.19),(
1√
T

∫ T

0

√
Ys dWs,

1

T 2

∫ T

0

ds

Ys

)
D−→
(√

θ Z3, T ∗
)

as T →∞.

34



By Slutsky’s lemma, we obtain

(5.20)

(
1√
T

∫ T

0

√
Ys dWs, Z2, Z4,

1

T

∫ T

0

Ys ds,
1

T 2

∫ T

0

ds

Ys

)
D−→
(√

θ Z3, Z2, Z4, θ, T ∗
)

as T →∞. Using the continuity theorem, we obtain

E

(
exp

{
iu1√
T

∫ T

0

√
Ys dWs +

iu2√
T

∫ T

0

√
Ys dBs +

iu3

T

∫ T

0

dBs√
Ys

+
iv

T 2

∫ T

0

ds

Ys

})

= exp

{
−u2u3√

T

}
E

(
exp

{
iu1√
T

∫ T

0

√
Ys dWs −

u2
2

2T

∫ T

0

Ys ds− u2
3

2T 2

∫ T

0

ds

Ys
+

iv

T 2

∫ T

0

ds

Ys

})

= exp

{
−u2u3√

T

}

× E

(
exp

{
iu1√
T

∫ T

0

√
Ys dWs +

iu2Z4√
T

(∫ T

0

Ys ds

)1/2

+
iu3Z2

T

(∫ T

0

ds

Ys

)1/2

+
iv

T 2

∫ T

0

ds

Ys

})

→ E

(
exp

{
iu1

√
θ Z3 + iu2

√
θ Z4 + iu3Z2

√
T ∗ + ivT ∗

})
as T →∞

for all (u1, u2, u3, v) ∈ R4. By the continuity theorem, we obtain (5.18).

With a random scaling, we have
σT 2

2
√

1−%2 (
∫ T
0 Yu du)3/2

(θ̂T − θ)

1

σ
√

1−%2

(∫ T
0
Yu du

)1/2
(κ̂T − κ)

σT 2

2
∫ T
0 Yu du

(µ̂T − µ)

 =
˜̃
CT (ψ̂T −ψ), T ∈ (0,∞),

with

˜̃
CT :=


σT 2

2
√

1−%2 (
∫ T
0 Yu du)3/2

0 0

0 1

σ
√

1−%2

(∫ T
0
Yu du

)1/2
0

0 0 σT 2

2
∫ T
0 Yu du

 .
We have ˜̃

CT (ψ̂T −ψ) = (
˜̃
CT C̃

−1

T )C̃T (ψ̂T −ψ),

where

˜̃
CT C̃

−1

T =


σ

2
√

1−%2 ( 1
T

∫ T
0 Yu du)3/2

0 0

0 1

σ
√

1−%2

(
1
T

∫ T
0
Yu du

)1/2
0

0 0 σ
2
T

∫ T
0 Yu du

 .
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Applying (5.10), (5.11), (5.16), (5.18), Slutsky’s lemma (or part (v) of Theorem 2.7 in van der

Vaart [38]) and the continuous mapping theorem, we obtain

( ˜̃
CT C̃

−1

T , C̃T (ψ̂T−ψ)
) D−→




√
2κ3

σ2
√

1−%2
0 0

0 1√
2κ(1−%2)

0

0 0 κ
σ

 ,

− σ2Z1√

2κ3

√
1− %2

Z1

√
2(1− %2)κ

%σ
κT +

Z2σ
√

1−%2

κ
√
T


 as T →∞.

Using again the continuous mapping theorem, we obtain (5.9). 2

Remark 5.4 Putting formally θκ = σ2

2
into the formula of V given in (5.2) of Theorem 5.1,

one can observe that the joint limit distribution of the first two coordinates in (5.1) of Theorem

5.1 and in (5.8) of Theorem 5.3 coincide. 2

Remark 5.5 According to Theorem 7 in Ben Alaya and Kebaier [9], if a =
σ2

1

2
and b ∈ (0,∞),

then, based on continuous time observations (Yt)t∈[0,T ], T ∈ (0,∞), for the MLE (âT , b̂T ) of

(a, b) for the first coordinate process of the SDE (1.1), we have[
T (âT − a)

T 1/2(̂bT − b)

]
D−→

[
σ2

1

bT√
2bZ1

]
as T →∞,(5.21)

where Z1 is a standard normally distributed random variable independent of T introduced

in Theorem 5.3. Hence, using Slutsky’s lemma and that b̂T converges in probability to b as

T →∞ (following from (5.21)), we get

T 1/2

(
âT

b̂T
− a

b

)
= T 1/2 bâT − ab̂T

b̂bT
= T 1/2 b(âT − a)− a(̂bT − b)

b̂bT

=
T−1/2bT (âT − a)− aT 1/2(̂bT − b)

b̂bT

D−→ − a
b2

√
2bZ1 = −

√
2a√
b3
Z1

as T →∞. Let us observe that in the special case of % = 0, we have âT
b̂T

= θ̂T and b̂T = κT ,

T > 0 (for the explicit formulae for âT and b̂T , see Ben Alaya and Kebaier [9, Section 3.1]).

Moreover, in case of a = θκ = σ2

2
and b = κ, we have −

√
2a√
b3

= − σ2
√

2κ3
. Hence, under the

conditions of Theorem 5.3 together with % = 0, the joint (weak) convergence of the first two

coordinates of (5.8) follows from Theorem 7 in Ben Alaya and Kebaier [9]. 2

6 Numerical illustrations

We present some numerical illustrations in order to confirm our limit theorems given in Sections

4 and 5. We call the attention to the fact that our numerical illustrations using synthetic data

can not be considered as simulations or a receipt for handling real data set of (Y, S), since, as

it will turn out, we use the standard Wiener processes (Wt)t∈[0,∞) and (Bt)t∈[0,∞) appearing
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in (1.3) that can not be observed. Hence the main aim of this section is to confirm the scaling

factors and the limit distributions of the derived MLE in Theorems 5.1 and 5.3. In order

to approximate the estimator ψ̂T given in (3.10), one could generate sample paths of the

model (1.3), and then one could approximate the estimator ψ̂T given in (3.10) based on the

generated sample paths. For this, it would be sufficient to simulate, for a large time T > 0,

the random variables

YT , I1,T :=

∫ T

0

Yu du, I2,T :=

∫ T

0

du

Yu
, I3,T :=

∫ T

0

dYu
Yu

,

I4,T :=

∫ T

0

dSu − Su− dLu
Su−

, I5,T :=

∫ T

0

dSu − Su− dLu
YuSu−

.

It is well known that the random variable YT has a non-central chi-squared distribution

(see, e.g., Alfonsi [2, Proposition 1.2.11]) that can be simulated exactly. Further, Broadie and

Kaya [12, Section 3.2] proposed an exact simulation method of (YT , I1,T ), and more recently,

Ben Alaya and Kebaier [8, Sections 4.1 and 4.2] developed an analogous method to simulate

(YT , I2,T ). In the context of our current study, it would be possible to compute the Laplace

transform of the couple (I1,T , I2,T ) conditionally on YT , and using relation (3.13), we could

derive an exact simulation method for the random vector (YT , I1,T , I2,T , I3,T ). However, due

to the lack of an exact simulation method for the couple (I4,T , I5,T ), we choose to approximate

the quantities (YT , I1,T , I2,T , I3,T , I4,T , I5,T ) using discretization schemes, like the famous Euler

one (see, e.g., Kloeden and Platen [26] or Alfonsi [2, Chapter 2]). Nevertheless, it is important

to note that the discretization of the CIR process presents some troubles because of the square

root in the diffusion coefficient. Several papers deal with this problem, see for example Alfonsi

[1] and Berkaoui et al. [10].

For a given time step T
n

with n ∈ N, we use the drift implicit Euler scheme introduced

by Alfonsi [1] to approximate the process (Yt)t∈[0,T ] at times tni = iT
n

, i ∈ {0, . . . , n}, by the

following non-linear recursion, Y n
0 = y0 ∈ (0,∞) and

Y n
tni+1

=


σ
2
(Wtni+1

−Wtni
) +

√
Y n
tni

+

√
(σ

2
(Wtni+1

−Wtni
) +

√
Y n
tni

)2 + (1 + κT
2n

)(2θκ− σ2

2
)T
n

2 + κT
n


2

,

for i ∈ {0, . . . , n−1}. Note that, due to Alfonsi [1], this scheme is well defined for θ, κ ∈ (0,∞)

and θκ ∈ (σ
2

4
,∞
)

covering the case θκ ∈ [σ
2

2
,∞
)

as well, which ensures the unique existence

of a MLE of (θ, κ, µ), see Proposition 3.2. Moreover, the strong convergence rate of this

approximation is of order 1 in case of θκ ∈ (σ
2

2
,∞), see Alfonsi [1] for more details. Then,

we can easily approximate I1,T , I2,T and I3,T respectively, by

In1,T :=
T

n

n−1∑
i=0

Y n
tni
, In2,T :=

T

n

n−1∑
i=0

1

Y n
tni

, In3,T :=
n−1∑
i=0

Y n
tni+1
− Y n

ti

Y n
tni

.

Alternatively, using the relation (3.13), one can also use the approximation

Ĩn3,T := log(Y n
tnn

)− log(y0) +
σ2

2
In2,T .
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Since we just would like to present some numerical illustrations of our limit theorems and not

to provide simulations, we will not approximate the processes (Lt)t∈[0,∞) and (St)t∈[0,∞),

instead, applying the equations (3.12), we can use

In4,T := µT +
n−1∑
i=0

√
Y n
tni

(%(Wtni+1
−Wtni

) +
√

1− %2(Btni+1
−Btni

)),

In5,T := µIn2,T +
n−1∑
i=0

%(Wtni+1
−Wtni

) +
√

1− %2(Btni+1
−Btni

)√
Y n
tni

.

Here, we point out that In4,T and In5,T use the standard Wiener processes (Wt)t∈[0,∞) and

(Bt)t∈[0,∞) appearing in (1.3) that can not be observed, so In4,T and In5,T can not be used for

approximating I4,T and I5,T , respectively, given a real dataset of (Y, S). However, the main

advantage of this procedure is that it allows us to handle numerical illustrations involving any

arbitrary purely non-Gaussian Lévy process (Lt)t∈R+ with Lévy–Khintchine representation

given in (1.4). Hence, by (3.11), we approximate θ̂T , κ̂T and µ̂T by

θ̂nT :=
In1,T I

n
2,T I

n
3,T − TIn2,T (Y n

T − y0) + %σTIn2,T I
n
4,T − %σT 2In5,T

TIn2,T I
n
3,T −

(
In2,T )2(Y n

T − y0) + %σ
(
In2,T )2In4,T − %σTIn2,T In5,T

,

κ̂nT :=
TIn3,T − In2,T (Y n

T − y0) + %σIn2,T I
n
4,T − %σTIn5,T(

In1,T I
n
2,T − T 2

) ,

µ̂nT :=
In5,T
In2,T

.

For the numerical implementation, we consider two case studies, one with θκ > σ2/2, and

another with θκ = σ2/2.

First we take θ = 2, κ = 0.5, µ = 1−
√

e, σ = 0.2, % = 0.5, y0 = 1, s0 = 100, T
n

= 0.01,

and we simulate M = 4000 independent trajectories of the normalized error T 1/2(ψ̂T − ψ).

Note that θκ > σ2

2
with this choice of parameters. In Table 1 we give the relative errors for

T ∈ {10, 100, 300}. Note that, when T increases we need of course a suitable number of time

steps n to guarantee a good approximation. The obtained relative errors confirm the strong

Relative error T = 10 T = 100 T = 300

|θ̂nT − θ|/θ 0.0010578 0.0002387 0.0000658

|κ̂nT − κ|/κ 0.2803024 0.0532183 0.0214441

|µ̂nT − µ|/µ 0.0380512 0.0060456 0.0034771

Table 1: Relative errors.

consistency of the estimator ψ̂T stated in Theorem 4.1. In Figure 1 we illustrate the law of

each suitably scaled coordinate of the MLE ψ̂T = (θ̂T , κ̂T , µ̂T ) for T = 300. As a consequence
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Figure 1: From the left to the right, the density histograms of the suitably scaled errors given

in (6.1), (6.2) and (6.3). In each case, the red line denotes the density function of the standard

normal distribution.

of Theorem 5.1, we have√
2κ3T

σ2(2θκ− %2σ2)
(θ̂T − θ)

D−→ N (0, 1) as T →∞,(6.1)

√
T

2κ(1− %2)
(κ̂T − κ)

D−→ N (0, 1) as T →∞,(6.2)

√
2κT

2θκ− σ2
(µ̂T − µ)

D−→ N (0, 1) as T →∞.(6.3)

The obtained density histograms in Figure 1 confirm our results in Theorem 5.1.

Next we take θ = 2, κ = 0.5, µ = 1−
√

e, σ =
√

2, % = 0.5, y0 = 1, s0 = 100, n = 30000,

and we simulate M = 4000 independent trajectories of the appropriately normalized error

ψ̂T − ψ. Note that θκ = σ2

2
with this choice of parameters. In Figure 2 we illustrate the

law of each suitably scaled coordinate of the MLE ψ̂T = (θ̂T , κ̂T , µ̂T ) for T = 300. As a

consequence of Theorem 5.3, we have√
2κ3T

σ4(1− %2)
(θ̂T − θ)

D−→ N (0, 1) as T →∞,(6.4)

√
T

2κ(1− %2)
(κ̂T − κ)

D−→ N (0, 1) as T →∞,(6.5)

T (µ̂T − µ)
D−→ %σ

κT
+
σ
√

1− %2

κ
√
T

Z2 as T →∞.(6.6)
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Figure 2: From the left to the right, the density histograms of the suitably scaled errors given

in (6.4), (6.5) and (6.6). The red line denotes the density functions of corresponding limit

distributions.

We plot the density function of the limit distribution in (6.6) using its explicit form given in

Appendix D. Note that it is cutted at the level 0.06, since it tends to infinity at 0. In case

of the parameter κ, one can see a bias in Figure 2, which, in our opinion, is caused by the

bad performance of the applied discretization scheme together with the approximation method

of the integrals in question, when θκ = σ2

2
. We have not been able to find any discretization

scheme to explain the bias (we tried the truncated Euler scheme, see, e.g., Deelstra and Delbaen

[14], and the symmetrized Euler scheme, see, e.g., Diop [15] or Berkaoui et al. [10]). Eventually,

this bad performance can also be observed whenever the ratio 2θκ
σ2 is close to 1. And to top

it all, one can observe the same phenomena already in case of the MLE (âT , b̂T ) of (a, b) of

the first coordinate process of the SDE (1.1) based on continuous time observations (Yt)t∈[0,T ],

T ∈ (0,∞), for both âT and b̂T (for an expression of (âT , b̂T ), see Overbeck [33]). So we

conclude that the bias for κ seen in Figure 2 is not related to the fact that the model (1.3)

contains a jump part.

As we mentioned in the Introduction, the model (1.3) with L as a compound Poisson

process given in (1.5) is quite popular in finance. In this special case, one can use another

illustration method without applying the equations (3.12), but still using the standard Wiener

processes (Wt)t∈[0,∞) and (Bt)t∈[0,∞). Namely, for all 0 6 s < t, by (1.6),

St = Ss exp

{∫ t

s

(
µ− 1

2
Yu

)
du+

∫ t

s

√
Yu (% dWu +

√
1− %2 dBu) +

πt∑
k=πs+1

Jk

}
,

hence we can approximate the price process (St)t∈[0,T ] by the recursion Sn0 = s0 ∈ (0,∞) and

Sntni+1

Sntni
= exp

{
µT

n
− T

2n
Y n
tni

+
√
Y n
tni

(%(Wtni+1
−Wtni

) +
√

1− %2(Btni+1
−Btni

)) +

πtn
i+1∑

k=πtn
i

+1

Jk

}
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for i ∈ {0, . . . , n − 1}. Note that the process (πt)t∈[0,∞) is a Poisson process with intensity

λ being independent of (Wt, Bt)t∈[0,∞), and it can be easily simulated. Therefore, given

independently an i.i.d. sequence of random variables (Jk)k∈N, one can simulate at the same

time the term
∑πtn

i+1

k=πtn
i

+1 Jk together with the increments Ltni+1
− Ltni =

∑πtn
i+1

k=πtn
i

+1(eJk − 1),

i ∈ {0, . . . , n− 1}. Further, one can approximate I4,T and I5,T respectively by

Ĩn4,T :=
n−1∑
i=0

(
Sntni+1

Sntni
− 1

)
− LT and Ĩn5,T :=

n−1∑
i=0

1

Y n
tni

(
Sntni+1

Sntni
− 1

)
−

n−1∑
i=0

Ltni+1
− Ltni
Y n
tni

.

We remark that Sntni ∈ (0,∞), n ∈ N, i ∈ {0, 1, . . . , n − 1}, so Ĩn4,T and Ĩn5,T are well-

defined. Here we take again θ = 2, κ = 0.5, µ = 1 −
√

e, σ = 0.2, % = 0.5, y0 = 1,

s0 = 100, n = 30000 and additionally, λ = 1 and a random variable J1 with standard

normal distribution. We simulate M = 2000 independent trajectories of the normalized error

T 1/2(ψ̂T − ψ). Note that θκ > σ2

2
with this choice of parameters. In Figure 3 we illustrate

the law of each suitably scaled coordinate of the MLE ψ̂T = (θ̂T , κ̂T , µ̂T ) which confirms our

results in Theorem 5.1.

Figure 3: From the left to the right, the density histograms of the suitably scaled errors given

in (6.1), (6.2) and (6.3). In each case, the red line denotes the density function of the standard

normal distribution.

Finally, we note that we used the open source software Scilab for making the simulations.

Appendix

A Likelihood-ratio process

Based on Jacod and Shiryaev [22], see also Jacod and Mémin [20], Sørensen [36] and Luschgy

[32], we recall certain sufficient conditions for the absolute continuity of probability measures in-
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duced by semimartingales together with a representation of the corresponding Radon–Nikodym

derivative (likelihood-ratio process).

Let D([0,∞),Rd) denote the space of Rd-valued càdlàg functions defined on [0,∞). Let

(ηt)t∈[0,∞) denote the canonical process ηt(ω) := ω(t), ω ∈ D([0,∞),Rd), t ∈ [0,∞). Put

Fηt := σ(ηs, s ∈ [0, t]), t ∈ [0,∞), and

Dt([0,∞),Rd) :=
⋂
ε>0

Fηt+ε, t ∈ [0,∞), D([0,∞),Rd) := σ

( ⋃
t∈[0,∞)

Fηt

)
.

Let Ψ ⊂ Rk be an arbitrary non-empty set, and let Pψ, ψ ∈ Ψ, are probability measures

on the canonical space (D([0,∞),Rd),D([0,∞),Rd)). Suppose that for each ψ ∈ Ψ, under

Pψ, the canonical process (ηt)t∈[0,∞) is a semimartingale with semimartingale characteristics

(B(ψ), C, ν(ψ)) associated with a fixed Borel measurable truncation function h : Rd → Rd,

see Jacod and Shiryaev [22, Definition II.2.6 and Remark II.2.8]. Namely, Ct := 〈(ηcont)(ψ)〉t,
t ∈ [0,∞), where (〈(ηcont)(ψ)〉t)t∈[0,∞) denotes the (predictable) quadratic variation process

(with values in Rd×d) of the continuous martingale part (ηcont)(ψ) of η under Pψ, ν(ψ) is

the compensator of the integer-valued random measure µη on [0,∞) × Rd associated with

the jumps of η under Pψ given by

(A.1) µη(ω, dt, dx) :=
∑

s∈[0,∞)

1{∆ηs(ω) 6=0}ε(s,∆ηs(ω))(dt, dx), ω ∈ D([0,∞),Rd),

where ε(t,x) denotes the Dirac measure at the point (t,x) ∈ [0,∞)×Rd, and ∆ηt := ηt−ηt−,

t ∈ (0,∞), ∆η0 := 0, and B(ψ) is the predictable process (with values in Rd having finite

variation over each finite interval [0, t], t ∈ [0,∞)) appearing in the canonical decomposition

η̃t = η0 +M
(ψ)
t +B

(ψ)
t , t ∈ [0,∞),

of the special semimartingale (η̃t)t∈[0,∞) under Pψ given by

η̃t := ηt −
∑
s∈[0,t]

(ηs − h(∆ηs)), t ∈ [0,∞),

where (M
(ψ)
t )t∈[0,∞) is a local martingale with M

(ψ)
0 = 0. We call the attention that, by our

assumption, the process C = 〈(ηcont)(ψ)〉 does not depend on ψ, although (ηcont)(ψ) might

depend on ψ. In addition, assume that Pψ(ν(ψ)({t} × Rd) = 0) = 1 for every ψ ∈ Ψ,

t ∈ [0,∞), and Pψ(η0 = x0) = 1 with some x0 ∈ Rd for every ψ ∈ Ψ. Note that we have

the semimartingale representation

(A.2)

ηt = x0 +B
(ψ)
t + (ηcont)

(ψ)
t +

∫ t

0

∫
Rd
h(x) (µη − ν(ψ))(ds, dx)

+

∫ t

0

∫
Rd

(x− h(x))µη(ds, dx), t ∈ [0,∞),
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of η under Pψ, see Jacod and Shiryaev [22, Theorem II.2.34]. Moreover, for each ψ ∈ Ψ,

let us choose a nondecreasing, continuous, adapted process (F
(ψ)
t )t∈[0,∞) with F

(ψ)
0 = 0 and

a predictable process (c
(ψ)
t )t∈[0,∞) with values in the set of all symmetric positive semidefinite

d× d matrices such that

Ct =

∫ t

0

c(ψ)
s dF (ψ)

s

Pψ-almost sure for every t ∈ [0,∞). Due to the assumption Pψ(ν(ψ)({t} × Rd) = 0) = 1

for every ψ ∈ Ψ, t ∈ [0,∞), such choices of (F
(ψ)
t )t∈[0,∞) and (c

(ψ)
t )t∈[0,∞) are possible,

see Jacod and Shiryaev [22, Proposition II.2.9 and Corollary II.1.19]. Let P denote the

predictable σ-algebra on D([0,∞),Rd)× [0,∞). Assume also that for every ψ, ψ̃ ∈ Ψ, there

exist a P ⊗ B(Rd)-measurable function V (ψ̃,ψ) : D([0,∞),Rd)× [0,∞)×Rd → (0,∞) and a

predictable Rd-valued process β(ψ̃,ψ) satisfying

ν(ψ)(dt, dx) = V (ψ̃,ψ)(t,x)ν(ψ̃)(dt, dx),(A.3) ∫ t

0

∫
Rd

(√
V (ψ̃,ψ)(s,x)− 1

)2

ν(ψ̃)(ds, dx) <∞,(A.4)

B
(ψ)
t = B

(ψ̃)
t +

∫ t

0

c(ψ)
s β(ψ̃,ψ)

s dF (ψ)
s +

∫ t

0

∫
Rd

(V (ψ̃,ψ)(s,x)− 1)h(x) ν(ψ̃)(ds, dx),(A.5) ∫ t

0

(β(ψ̃,ψ)
s )>c(ψ)

s β(ψ̃,ψ)
s dF (ψ)

s <∞,(A.6)

Pψ-almost sure for every t ∈ [0,∞). Further, assume that for each ψ ∈ Ψ, local unique-

ness holds for the martingale problem on the canonical space corresponding to the triplet

(B(ψ), C, ν(ψ)) with the given initial value x0 with Pψ as its unique solution. Then for each

T ∈ [0,∞), Pψ,T is absolutely continuous with respect to Pψ̃,T , where Pψ,T := Pψ|DT ([0,∞),Rd)

denotes the restriction of Pψ to DT ([0,∞),Rd) (similarly for Pψ̃,T ), and, under Pψ̃,T , the

corresponding likelihood-ratio process takes the form

log
dPψ,T
dPψ̃,T

(η) =

∫ T

0

(β(ψ̃,ψ)
s )> d(ηcont)(ψ̃)

s − 1

2

∫ T

0

(β(ψ̃,ψ)
s )>c(ψ)

s β(ψ̃,ψ)
s dF (ψ)

s

+

∫ T

0

∫
Rd

(V (ψ̃,ψ)(s,x)− 1) (µη − ν(ψ̃))(ds, dx)

+

∫ T

0

∫
Rd

(log(V (ψ̃,ψ)(s,x))− V (ψ̃,ψ)(s,x) + 1)µη(ds, dx)

(A.7)

for all T ∈ (0,∞), see Jacod and Shiryaev [22, Theorem III.5.34].

In what follows we give a proof for (A.7) using Jacod and Shiryaev [22], since in the liter-

ature we could not find a detailed proof. Using the notations of Jacod and Shiryaev [22],

under Pψ the triplets (B(ψ), C, ν(ψ)) and (B(ψ̃), C, ν(ψ̃)) satisfy III.5.5 in Jacod and

Shiryaev [22] with Y = V (ψ̃,ψ), A = F (ψ) and c = c(ψ), and the filtration Dt([0,∞),Rd),

t ∈ [0,∞), is generated by (ηt)t∈[0,∞). Moreover, at = ν(ψ)({t} × Rd) = 0 and Ŷt =
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∫
Rd V

(ψ̃,ψ)(t,x) ν(ψ)({t} × dx) = 0 Pψ-almost surely for all t ∈ [0,∞), hence σ = inf{t ∈
[0,∞) : either Ŷt > 1, or at = 1 and Ŷt < 1} =∞ Pψ-almost surely. Then, by (A.4) and (A.6),

we have

Ht =

∫ t

0

(β(ψ̃,ψ)
s )>c(ψ)

s β(ψ̃,ψ)
s dF (ψ)

s +

∫ t

0

∫
Rd

(√
V (ψ̃,ψ)(s,x)− 1

)2

ν(ψ̃)(ds, dx) <∞

Pψ-almost sure for every t ∈ [0,∞). Consequently, Tn = inf{t ∈ [0,∞) : Ht > n} → ∞
as n→∞ Pψ-almost sure (due to the fact that (Ht)t∈[0,∞) is a nondecreasing process), and

hence Pψ(∆ = [0,∞)) = 1, and the Hypothesis III.5.29 in Jacod and Shiryaev [22] holds.

Thus, by Theorem III.5.34 in Jacod and Shiryaev [22], Pψ,T is absolutely continuous with

respect to Pψ̃,T for all T ∈ [0,∞), and under Pψ̃,T , the density process (likelihood ratio

process) (ZT )T∈[0,∞) takes the form

ZT =
dPψ,T
dPψ̃,T

(η) = exp

{
NT −

1

2

∫ T

0

(β(ψ̃,ψ)
s )>c(ψ)

s β(ψ̃,ψ)
s dF (ψ)

s

} ∏
s∈[0,T ]

(1 + ∆Ns)e
−∆Ns

for T ∈ [0,∞) with

NT :=

∫ T

0

(β(ψ̃,ψ)
s )> d(ηcont)(ψ̃)

s +

∫ T

0

∫
Rd

(V (ψ̃,ψ)(s,x)− 1) (µη − ν(ψ̃))(ds, dx)

for T ∈ [0,∞). Further, the density process (ZT )T∈[0,∞) satisfies

ZT = 1 +

∫ T

0

Zs− dNs under Pψ̃,T for each T ∈ [0,∞),

see Jacod and Shiryaev [22, III.5.20]. Taking into account the fact that Pψ(ν(ψ)({s} × Rd) =

0) = 1 for every ψ ∈ Ψ, s ∈ [0,∞), and the definition of the stochastic integral with respect

to the random measure µη − ν(ψ̃) (see Jacod and Shiryaev [22, Definition II.1.27]), we obtain

∆Ns(ω) = (V (ψ̃,ψ)(s,∆ηs(ω))(ω)− 1)1{∆ηs(ω) 6=0}, ω ∈ D([0,∞),Rd), s ∈ [0,∞).

Hence, using that V (ψ̃,ψ) is positive, we have Pψ̃(inf{t ∈ [0,∞) : ∆Nt = −1} =∞) = 1, and

consequently, Pψ̃(ZT ∈ (0,∞)) = 1 for all T ∈ (0,∞), see Jacod and Shiryaev [22, Theorem

I.4.61]. Further,∏
s∈[0,T ]

(1 + ∆Ns)e
−∆Ns =

∏
s∈[0,T ]

(V (ψ̃,ψ)(s,∆ηs)1{∆ηs 6=0} + 1{∆ηs=0})e
−(V (ψ̃,ψ)(s,∆ηs)−1)1{∆ηs 6=0}

= exp

{ ∑
s∈[0,T ]

(
log(V (ψ̃,ψ)(s,∆ηs))− V (ψ̃,ψ)(s,∆ηs) + 1

)
1{∆ηs 6=0}

}

= exp

{∫ T

0

∫
Rd

(
log(V (ψ̃,ψ)(s,x))− V (ψ̃,ψ)(s,x) + 1

)
µη(ds, dx)

}
,

yielding (A.7), where the existence of the integral in the exponent above follows from the facts

that Pψ̃(ZT ∈ (0,∞)) = 1, assumption (A.6) and Pψ̃(NT ∈ R) = 1 for all T ∈ R (due to

Jacod and Shiryaev [22, Proposition III.5.10 and III.5.12]).
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B Limit theorems for continuous local martingales

In what follows we recall some limit theorems for continuous local martingales. We use these

limit theorems for studying the asymptotic behaviour of the MLE of ψ = (θ, κ, µ). First we

recall a strong law of large numbers for continuous local martingales.

Theorem B.1 (Liptser and Shiryaev [30, Lemma 17.4]) Let
(
Ω,F , (Ft)t∈[0,∞),P

)
be a

filtered probability space satisfying the usual conditions. Let (Mt)t∈[0,∞) be a square-integrable

continuous local martingale with respect to the filtration (Ft)t∈[0,∞) such that P(M0 = 0) = 1.

Let (ξt)t∈[0,∞) be a progressively measurable process such that

P
(∫ t

0

ξ2
u d〈M〉u <∞

)
= 1, t ∈ [0,∞),

and ∫ t

0

ξ2
u d〈M〉u

a.s.−→∞ as t→∞,(B.1)

where (〈M〉t)t∈[0,∞) denotes the (predictable) quadratic variation process of M . Then∫ t
0
ξu dMu∫ t

0
ξ2
u d〈M〉u

a.s.−→ 0 as t→∞.(B.2)

If (Mt)t∈[0,∞) is a standard Wiener process, the progressive measurability of (ξt)t∈[0,∞) can

be relaxed to measurability and adaptedness to the filtration (Ft)t∈[0,∞).

The next theorem is a special case of the central limit theorem for multidimensional square-

integrable continuous local martingales, see, e.g., Jacod and Shiryaev [22, Corollary VIII.3.24]

or van Zanten [40, Theorem 4.1].

Theorem B.2 Let
(
Ω,F , (Ft)t∈[0,∞),P

)
be a filtered probability space satisfying the usual

conditions. Let (M t)t∈[0,∞) be a d-dimensional square-integrable continuous local martingale

with respect to the filtration (Ft)t∈[0,∞) such that P(M 0 = 0) = 1 and

t−1〈M〉t
P−→ U as t→∞,

where U ∈ Rd×d. Then

t−1/2M t
D−→ Nd(0,U) as t→∞.

C A version of the continuous mapping theorem

The following version of continuous mapping theorem can be found for example in Kallenberg

[24, Theorem 3.27].

45



Lemma C.1 Let (S1, dS1) and (S2, dS2) be metric spaces and (ξn)n∈N, ξ be random

elements with values in S1 such that ξn
D−→ ξ as n → ∞. Let F : S1 → S2 and

Fn : S1 → S2, n ∈ N, be measurable mappings and C ∈ B(S1) such that P(ξ ∈ C) = 1 and

limn→∞ dS2(Fn(sn), F (s)) = 0 if limn→∞ dS1(sn, s) = 0 and s ∈ C. Then Fn(ξn)
D−→ F (ξ)

as n→∞.

D Explicit formula for a density function

We show that the mixed normal but non-normal density function of %σ
κT +

σ
√

1−%2

κ
√
T Z2, which is

the limit distribution of T (µ̂T − µ) as T →∞ in Theorem 5.3, has the form

(D.1) f(x) =
κ

2πσ
√

1− %2

∫ ∞
0

1

t
exp

{
− 1

2t
− (κxt− %σ)2

2σ2(1− %2)t

}
dt, x ∈ R \ {0},

and

(D.2) lim
x→0

f(x) =∞.

It is known that the density function of T takes the form fT (t) = (2πt3)−1/2e−1/(2t)
1R++(t),

t ∈ R. Using the independence of T and Z2, we have

P
(
%σ

κT
+
σ
√

1− %2

κ
√
T

Z2 6 x

∣∣∣∣ T = t

)
= P

(
Z2 6

(x− %σ
κT )κ

√
T

σ
√

1− %2

∣∣∣∣ T = t

)

=
1√
2π

∫ κxt−%σ
σ
√

(1−%2)t

−∞
e−u

2/2 du, x ∈ R, t ∈ R++.

By the law of total expectation, we obtain

P
(
%σ

κT
+
σ
√

1− %2

κ
√
T

Z2 6 x

)
=

∫ ∞
0

g(x, t) dt, x ∈ R,

with

g(x, t) :=
1√
2πt3

e−
1
2t

(
1√
2π

∫ κxt−%σ
σ
√

(1−%2)t

−∞
e−u

2/2 du

)
, x ∈ R, t ∈ R++.

The aim of the following discussion is to show that, by the dominated convergence theorem,

d

dx

∫ ∞
0

g(x, t) dt = lim
h→0

∫ ∞
0

g(x+ h, t)− g(x, t)

h
dt = f(x), x ∈ R \ {0}.(D.3)

For all x ∈ R and t ∈ R++, we have

lim
h→0

g(x+ h, t)− g(x, t)

h
= ∂1g(x, t) =

κ

2πσ
√

1− %2t
exp

{
− 1

2t
− (κxt− %σ)2

2σ2(1− %2)t

}
.(D.4)

46



Moreover, for all x ∈ R \ {0}, t ∈ R++ and h ∈
[
− |x|

2
, |x|

2

]
\ {0}, we have∣∣∣∣g(x+ h, t)− g(x, t)

h

∣∣∣∣ 6 sup
ξ∈[−1,1]

|∂1g(x+ ξh, t)| 6 sup
ξ∈[−1,1]

∣∣∣∂1g
(
x+ ξ

x

2
, t
)∣∣∣.

For x ∈ R \ {0}, ξ ∈ [−1, 1] and t ∈ R++, we have∣∣∣∂1g
(
x+ ξ

x

2
, t
)∣∣∣ 6 κ

2πσ
√

1− %2t
e−

1
2t 6

κ

eπσ
√

1− %2
,

since supt∈R++
t−1e−

1
2t = 2e−1. Further, for x ∈ R \ {0}, ξ ∈ [−1, 1] and t ∈ R++, we have∣∣∣κ(x+ ξ

x

2

)
t− %σ

∣∣∣ > ∣∣∣κ(x+ ξ
x

2

)
t
∣∣∣− |%σ| > 1

2

∣∣∣κ(x+ ξ
x

2

)
t
∣∣∣

whenever
1

2

∣∣∣κ(x+ ξ
x

2

)
t
∣∣∣ > |%σ|,

equivalently, whenever

t >
2|%σ|∣∣κ(x+ ξ x

2

)∣∣ =
2|%|σ

κ
(
1 + 1

2
ξ
)
|x|
,

which holds if

t >
4|%|σ
κ|x|

+ 1 =: T0(x) ∈ R++.

Consequently, for x ∈ R \ {0}, ξ ∈ [−1, 1] and t ∈ (T0(x),∞), we have∣∣∣κ(x+ ξ
x

2

)
t− %σ

∣∣∣ > 1

2

∣∣∣κ(x+ ξ
x

2

)
t
∣∣∣ =

1

2
κ
(

1 +
ξ

2

)
|x|t > κ|x|t

4
,

and hence, by the second equality in (D.4),∣∣∣∂1g
(
x+ ξ

x

2
, t
)∣∣∣ 6 κ

2πσ
√

1− %2T0(x)
exp

{
− κ2x2

32σ2(1− %2)
t

}
.

We conclude that for x ∈ R \ {0}, ξ ∈ [−1, 1] and t ∈ R++, we have∣∣∣∂1g
(
x+ ξ

x

2
, t
)∣∣∣ 6 G(t, x)

with

G(t, x) :=
κ

eπσ
√

1− %2
1[0,T0(x)](t) +

κ

2πσ
√

1− %2T0(x)
exp

{
− κ2x2

32σ2(1− %2)
t

}
1(T0(x),∞)(t)

for t ∈ R++ and x ∈ R \ {0}, and the function R+ 3 t 7→ G(t, x) is integrable on R+,

hence the dominated convergence theorem can be used, and we obtain (D.1).

One can derive (D.3) in another way. Since g(x, t) 6 1√
2πt3

e−
1
2t , x ∈ R, t ∈ R++,

the improper integral
∫∞

0
g(x, t) dt is uniformly convergent for x ∈ R. Further, for any

t, a, A ∈ R++ and x ∈ R with a < |x| < A, we have

G(t, x) 6
κ

eπσ
√

1− %2
1[0,T0(a)](t) +

κ

2πσ
√

1− %2T0(A)
exp

{
− κ2a2

32σ2(1− %2)
t

}
1(T0(A),∞)(t)
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showing that the improper integral
∫∞

0
∂1g(x, t) dt is uniformly convergent for a < |x| < A

with a < A, a,A ∈ R++. This together with the continuity of the functions R × R++ 3
(x, t) 7→ g(x, t) ∈ R and R × R++ 3 (x, t) 7→ ∂1g(x, t) ∈ R yield (D.3), see, e.g., Lang [28,

pages 337-339].

Moreover, for all x ∈ R \ {0}, we have

f(x) >
κ

2πσ
√

1− %2
exp

{
−1

2
+

2%σκx

2σ2(1− %2)
− %2σ2

2σ2(1− %2)

}∫ ∞
1

1

t
exp

{
− κ2x2t

2σ2(1− %2)

}
dt,

where

lim
x→0

exp

{
−1

2
+

2%σκx

2σ2(1− %2)
− %2σ2

2σ2(1− %2)

}
= exp

{
−1

2
− %2σ2

2σ2(1− %2)

}
and ∫ ∞

1

1

t
exp

{
− κ2x2t

2σ2(1− %2)

}
dt =

∫ ∞
x2

1

u
exp

{
− κ2u

2σ2(1− %2)

}
du→∞ as x→ 0,

hence we obtain (D.2).
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[39] von Weizsäcker, H. and Winkler, G. (1990). Stochastic integrals. An introduction,

Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig.

[40] van Zanten, H. (2000). A multivariate central limit theorem for continuous local mar-

tingales. Statistics & Probability Letters 50(3) 229–235.
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