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Abstract

Efficiency is a core concept of multi-objective optimization problems and
multi-attribute decision making. In the case of pairwise comparison matrices
a weight vector is called efficient if the approximations of the elements of the
pairwise comparison matrix made by the ratios of the weights cannot be improved
in any position without making it worse in some other position. A pairwise
comparison matrix is called double perturbed if it can be made consistent by
altering two elements and their reciprocals. The most frequently used weighting
method, the eigenvector method is analyzed in the paper, and it is shown that
it produces an efficient weight vector for double perturbed pairwise comparison
matrices.

Keywords: pairwise comparison matrix, efficiency, Pareto optimality, eigen-
vector

1 Introduction
Ranking alternatives, or picking the best alternative is a commonly investigated prob-
lem. The case of a single cardinal objective function to be maximized or minimized
is long studied by various operations research disciplines. This is however often not
feasible. Alternatives can be ranked by assigning a cardinal utility to them, or by set-
ting up ordinal preference relations among them. In the case of a single criterion and
a single decision maker, modelling the preferences is often possible through standard
methods. If there are multiple, often contradicting criteria, this becomes significantly
harder. A dominant alternative, which is the best with respect to all criteria, very
rarely exists. Thus, when a decision making method is used to aid the decision of a
decision maker, some form of compromise is needed. Modelling the preferences of the
decision maker by ranking or weighting the criteria can accomplish such a compro-
mise. It allows the “best” alternative to be chosen (or the possible alternatives to be
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ranked) with respect to the subjective preferences of the decision maker. Examples of
multi-criteria decision problems range from “Which house to buy?” or “What should
the company invest in?” to public tenders.

When weighting criteria, giving the weights directly is almost never feasible. In-
stead, a common method is to apply pairwise comparisons. Answers to the questions
“How many times is Criterion A more important than Criterion B?” and so on (which
are explicit cardinal ratios) can be arranged in a matrix, called a pairwise compari-
son matrix (PCM). Formally, a PCM is a square matrix A = [aij]i,j=1,...,n with the
properties aij > 0 and aij = 1/aji (which implies aii = 1). If the cardinal transitivity
property aikakj = aij for all i, j, k = 1, . . . , n also holds for a PCM, it is called con-
sistent, otherwise it is called inconsistent [21]. Let PCMn denote the set of PCMs of
size n× n. The next step is to extract the weights of criteria from the PCM. Several
methods exist for this task [3, 10, 13, 18]. The eigenvector method (EM) is one of the
classical [21], important and most often studied weighting methods related to pairwise
comparison matrices, its further analysis is actual and relevant both in decision theory
and operations research. We focus on EM in this paper. The eigenvector method gives
the weight vectorwEM = (w1, . . . , wn)

T as the right Perron eigenvector ofA ∈ PCMn,
thus AwEM = λmaxw

EM holds, where λmax is the principal eigenvalue of A. λmax ≥ n,
and λmax = n if and only if A is consistent [21]. A consistent PCM can be written as

A =


1 x1 x2 . . . xn−1

1/x1 1 x2/x1 . . . xn−1/x1
1/x2 x1/x2 1 . . . xn−1/x2
...

...
... . . . ...

1/xn−1 x1/xn−1 x2/xn−1 . . . 1

 ∈ PCMn,

where x1, . . . , xn−1 > 0.
The elements of a PCM approximate the ratios of the weights, therefore the ratios

of the elements of the weight vector should be as close as possible to the corresponding
matrix elements. If a weight vector cannot be trivially improved in this regard (there
is no other weight vector which is at least as good approximation, and strictly better
in at least one position), it is called Pareto optimal or efficient. It has been proved
that the eigenvector method does not always produce an efficient solution [4, Section
3]. However, in some special cases the eigenvector method always gives an efficient
weight vector. If the PCM is simple perturbed, i.e., it differs from a consistent PCM
in only one element and its reciprocal, the principal right eigenvector is efficient [1].
In the paper this will be extended to double perturbed PCMs, which only differ from
a consistent PCM in two elements and their reciprocals.

These special types of PCMs are not just theoretically important, but also occur
in real decision problems. Poesz [20] gathered a handful of empirical PCMs that were
analyzed in [8]. Although double perturbed PCMs are rare among large PCMs, they
appear more frequently among smaller matrices, in other words, when the number of
criteria is small. This is especially true if one considers simple perturbed and consistent
PCMs as special cases of double perturbed PCMs (see [8, Table 1] – note there is a
misprint in the cited Table, the number in the “3 elements to modify” column in the
4× 4 row should be 6 instead of 0). We also conducted an analysis of the prevalence
of double perturbed PCMs among the empirical matrices analyzed in [6]. Below is a
supplemented version of [8, Table 1] that also includes the results from [6]. The PCMs
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Number of 1 element 2 elements 3 elements
Dimension matrices Consistent to modify to modify to modify
3× 3 30 14 16 – –
4× 4 20+134 1+3 6+10 7+31 6*+90
5× 5 19 1 1 5 1
6× 6 21+152 0+1 1+1 1+1 0+0
7× 7
and larger 47+159 0+0 1+0 0+0 0+0

Table 1: The number of element modifications needed to get a consistent PCM.
*There was a misprint in [8, Table 1], this number was 0. The correct value is 6.

in [6] had sizes 4 × 4, 6 × 6 and 8 × 8. The numbers after the + sign are from [6],
all others are from [8]. As it can be seen from Table 1, double (and less) perturbed
PCMs are rare among large matrices, but they appear among smaller ones.

In Section 2 we will introduce the key definitions and tools used in the paper,
together with an example. In Section 3 the main result of the paper is presented:
through obtaining explicit formulas for the principal right eigenvector and a series of
lemmas, the efficiency of the principal right eigenvector is shown for the case of double
perturbed PCMs. The proofs of the lemmas, are given in detail in the Appendix. In
Section 4 conclusions follow.

2 Efficiency and perturbed pairwise comparison ma-
trices

The general form of a multi-objective optimization problem ([14, Chapter 2][23, Chap-
ter 6]) is

min{f1(y), f2(y), . . . , fm(y), . . . , fM(y)}
subject to y ∈ S

where M ≥ 2 denotes the number of objective functions, fm : Rn → R for all 1 ≤ m ≤
M. Variables are y = (y1, y2, . . . , yn) and the feasible set is denoted by S ⊆ Rn.

Efficiency or Pareto optimality is a basic concept of multi-objective optimization
and multi-attribute decision making, too. A vector y ∈ S is called efficient, if there
does not exist another vector y′ ∈ S such that fm(y′) ≤ fm(y) for all 1 ≤ m ≤ M,
and fk(y′) < fk(y) for at least one index k.

Let A = [aij]i,j=1,...,n ∈ PCMn and w = (w1, w2, . . . , wn)
T be a positive weight

vector (S = Rn
++, the positive orthant of the n-dimensional Euclidean space), where n

is the number of criteria. Let us specify the objective functions by fij(w) :=
∣∣∣aij − wi

wj

∣∣∣
for all i 6= j. We have M = n2 − n objective functions.
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Definition 1. A positive weight vector w is called efficient if no other positive weight
vector w′ = (w′1, w

′
2, . . . , w

′
n)
T exists such that∣∣∣∣aij − w′i

w′j

∣∣∣∣ ≤ ∣∣∣∣aij − wi
wj

∣∣∣∣ for all 1 ≤ i, j ≤ n, (1)∣∣∣∣ak` − w′k
w′`

∣∣∣∣ < ∣∣∣∣ak` − wk
w`

∣∣∣∣ for some 1 ≤ k, ` ≤ n. (2)

A weight vector w is called inefficient if it is not efficient.
It follows from the definition that an arbitrary renormalization does not influence

(in)efficiency.

Remark 1. Weight vector w is efficient if and only if cw is efficient for any c > 0.

For a consistent PCM aij = wEMi /wEMj for all i, j = 1, . . . , n [21], which implies
the following remark:

Remark 2. The principal right eigenvector wEM is efficient for every consistent PCM.

For inconsistent PCMs however, the principal right eigenvector can be inefficient,
found by Blanquero, Carrizosa and Conde [4, Section 3]. This result was also rein-
forced by Bajwa, Choo and Wedley [3], by Conde and Pérez [11] and by Fedrizzi [17].
Blanquero, Carrizosa and Conde [4] developed LP models to test whether a weight
vector is efficient. Bozóki and Fülöp [7] further developed the models and provided
algorithms to improve an inefficient weight vector. Anholcer and Fülöp [2] devised a
new algorithm to derive an efficient solution from an inconsistent PCM.

Furthermore, Bozóki [5] showed that the principal right eigenvector of a whole class
of matrices, namely the parametric PCM

A(p, q) =



1 p p p . . . p p
1/p 1 q 1 . . . 1 1/q
1/p 1/q 1 q . . . 1 1
...

...
... . . . ...

...
...

...
... . . . ...

...
1/p 1 1 1 . . . 1 q
1/p q 1 1 . . . 1/q 1


∈ PCMn,

where n ≥ 4, p > 0 and 1 6= q > 0, is inefficient.
Several necessary and sufficient conditions were examined by Blanquero, Carrizosa

and Conde [4], one of which is of crucial importance here. It uses a directed graph
representation as follows:

Definition 2. Let A = [aij]i,j=1,...,n ∈ PCMn and w = (w1, w2, . . . , wn)
T be a positive

weight vector. A directed graph G = (V,
−→
E )A,w is defined as follows: V = {1, 2, . . . , n}

and
−→
E =

{
arc(i→ j)

∣∣∣∣wiwj ≥ aij, i 6= j

}
.

It follows from Definition 2 that if wi/wj = aij, then there is a bidirected arc
between nodes i and j. The result of Blanquero, Carrizosa and Conde using this
representation is as follows:
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Theorem 1 ([4, Corollary 10]). Let A ∈ PCMn. A weight vector w is efficient if
and only if G = (V,

−→
E )A,w is a strongly connected digraph, that is, there exist directed

paths from i to j and from j to i for all pairs of nodes i, j.

The following numerical example provides an illustration for Theorem 1.

Example 1. Let A ∈ PCM4 be as follows:

A =


1 1 4 7
1 1 7 4
1/4 1/7 1 3
1/7 1/4 1/3 1

 .

The principal right eigenvector wEM and the consistent approximation of A generated
by wEM are as follows:

wEM =


0.39940672
0.43144159
0.10721105
0.06194064

 ,

[
wEMi
wEMj

]
=


1 0.9257 3.7254 6.4482

1.0802 1 4.0242 6.9654
0.2684 0.2485 1 1.7309
0.1551 0.1436 0.5777 1

 .

Apply Definition 2, the directed graph G = (V,
−→
E )A,wEM corresponding to A

and wEM is drawn in Figure 1. By Theorem 1, wEM is not efficient, because the
corresponding digraph is not strongly connected: no arc leaves node 1.

4

1

2

3

Figure 1: The principal right eigenvector in Example 1 is inefficient, because the
corresponding digraph is not strongly connected: no arc leaves node 1

It can be seen in a more constructive way why the principal right eigenvector
wEM is inefficient. Increase the first coordinate until 0.428844188, and keep the other
coordinates unchanged:

w′ =


0.428844188
0.431441588
0.107211052
0.061940644

 ,

[
w′i
w′j

]
=


1 0.9940 4 6.9235

1.0061 1 4.0242 6.9654
1/4 0.2485 1 1.7309
0.1444 0.1436 0.5777 1

 .

The approximation in the entries marked by bold became strictly better ((2) holds in
Definition 1), while for all other entries the approximation remained the same ((1)
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holds with equality in Definition 1).

As it can be seen from Example 1 above, Theorem 1 is a powerful an applicable
characterization of efficiency.

Open problem 1. What is the necessary and sufficient condition of the principal
right eigenvector’s efficiency?

In the rest of the paper, special types of PCMs are considered.
A simple perturbed PCM differs from a consistent PCM in only one element and

its reciprocal, or in other words it can be made consistent by altering only one element
(and its reciprocal). Thus, without loss of generality, a simple perturbed PCM can be
written as

Aδ =


1 δx1 x2 . . . xn−1

1/(δx1) 1 x2/x1 . . . xn−1/x1
1/x2 x1/x2 1 . . . xn−1/x2
...

...
... . . . ...

1/xn−1 x1/xn−1 x2/xn−1 . . . 1

 ∈ PCMn,

where x1, . . . , xn−1 > 0 and 0 < δ 6= 1.

Theorem 2 ([1, Theorem 3.1]). The principal right eigenvector of a simple perturbed
pairwise comparison matrix is efficient.

Similarly, a double perturbed PCM differs from a consistent PCM in two elements
and their reciprocals, or in other words it can be made consistent by altering two
elements (and their reciprocals). We have to differentiate between three cases of
double perturbed PCMs. Without loss of generality, every double perturbed PCM
is equivalent to one of them. Also, we can suppose without the loss of generality, that
from now on n ≥ 4, because a PCM with n = 3 is either simple perturbed or consistent.
In Case 1, the perturbed elements are in the same row, and they are multiplied by
0 < δ 6= 1 and 0 < γ 6= 1 respectively. In Case 2, they are in different rows, but this
case needs to be further divided into two subcases (2A and 2B) due to algebraic issues.
In Case 2A matrix size is 4× 4, while in Case 2B matrix size is at least 5× 5. Thus,
these matrices take the following form:

Case 1:

Pγ,δ =



1 δx1 γx2 x3 . . . xn−1
1/(δx1) 1 x2/x1 x3/x1 . . . xn−1/x1
1/(γx2) x1/x2 1 x3/x2 . . . xn−1/x2
1/x3 x1/x3 x2/x3 1 . . . xn−1/x3
...

...
...

... . . . ...
1/xn−1 x1/xn−1 x2/xn−1 x3/xn−1 . . . 1


, (3)

Case 2A:

Qγ,δ =


1 δx1 x2 x3

1/(δx1) 1 x2/x1 x3/x1
1/x2 x1/x2 1 γx3/x2
1/x3 x1/x3 x2/(γx3) 1

 , (4)
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Case 2B:

Rγ,δ =



1 δx1 x2 x3 x4 . . . xn−1
1/(δx1) 1 x2/x1 x3/x1 x4/x1 . . . xn−1/x1
1/x2 x1/x2 1 γx3/x2 x4/x2 . . . xn−1/x2
1/x3 x1/x3 x2/(γx3) 1 x4/x3 . . . xn−1/x3
1/x4 x1/x4 x2/x4 x3/x4 1 . . . xn−1/x4
...

...
...

...
... . . . ...

1/xn−1 x1/xn−1 x2/xn−1 x3/xn−1 x4/xn−1 . . . 1


. (5)

Once again, x1, . . . , xn−1 > 0 and 0 < δ, γ 6= 1.

Remark 3. If either δ = 1 or γ = 1 then the PCM is simple perturbed. If δ = γ = 1
then the PCM is consistent.

Remark 4. If n = 4 and δ = γ, then the PCM Pδ,δ in Case 1 is simple perturbed
(multiply the single element x3 in position (1,4) by δ to have a consistent PCM).

Bozóki, Fülöp and Poesz examined PCMs that can be made consistent by modify-
ing at most 3 elements [8]. Each of the three cases above corresponds to a graph: Case
1 corresponds to [8, Fig. 6(b)] while Case 2 corresponds to [8, Fig. 6(a)]. Cook and
Kress [12] and Brunelli and Fedrizzi [9] also examined the similar idea of comparing
two PCMs that differ in only one element.

3 Main result: the principal right eigenvector of a
double perturbed PCM is efficient

The main result of the paper is the extension of Theorem 2 for double perturbed
PCMs.

Theorem 3. The principal right eigenvector of a double perturbed PCM is efficient.

Proof. For the purpose of easy readability, only an outline of the proof is presented
here. The detailed proof can be found in the Appendix.

A method to acquire the explicit form of the principal right eigenvector of a PCM
when the perturbed elements are in the same row or column has been developed by
Farkas, Rózsa and Stubnya [16]. Farkas [15] writes the explicit formula for the simple
perturbed case. Our first goal is to extend the method for the double perturbed case.
Similar to [15], the characteristic polynomial is needed first. Proposition 1 covers Case
1 and Proposition 2 covers Cases 2A and 2B.

Using the formulas for the characteristic polynomial, explicit formulas can be de-
rived for the principal right eigenvector. Proposition 3 presents these formulas. For
each Case the formulas can be written in several different forms.

Utilizing the different explicit formulas for the principal right eigenvector a series
of inequalities can be proved. These inequalities are presented in 28 lemmas (Lemmas
1a–3h). The different forms of the formula for the principal right eigenvector make
it possible to use the form most suited to each proof. Obtaining these inequalities
makes it possible to prove the efficiency of the principal right eigenvector of a double
perturbed PCM.
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As per Theorem 1, the strong connectedness of the digraph in Definition 2 needs
to be shown. All possible digraphs are shown in Figures 2–4. The direction of each
arc (where applicable) is determined by the corresponding Lemma using Definition 2,
which is labeled on the arc itself. In the cases where there is a node named i, this
represents the complete subgraph of the rest of the nodes (consisting of n− 3 in Case
1 and n− 4 nodes in Case 2B). In these subgraphs there are bidirected arcs between
any two nodes, due to Lemmas 1j and 3h. This is a strongly connected subgraph, and
for any fixed j ≤ 3 the direction of the arc between nodes i and j is the same for
every i ≥ 4 in Case 1 (see Lemmas 1e, 1f, 1h, 1i). Similarly, for any fixed j ≤ 4 the
direction of the arc between nodes i and j is the same for every i ≥ 5 in Case 2B (see
Lemmas 3c, 3d, 3e). Hence, it can be contracted into a single node when analyzing
strong connectedness. Figures 2, 3, 4 correspond to Cases 1, 2A, 2B respectively.
For the strong connectedness of each digraph, it is sufficient to find a directed cycle.
Unchecked arcs are denoted by dashed lines in Figures 2–4. The directed cycles are
presented in Corollary 1, 2 and 3 for Cases 1, 2A and 2B respectively.

The presence of a directed cycle implies strong connectedness for all of the digraphs,
which implies efficiency in all cases by Theorem 1.

Figure 2: The digraph of the principal right eigenvector in Case 1 is strongly connected,
independently of the orientation of dashed arcs that have not been analyzed
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Figure 3: The digraph of the principal right eigenvector in Case 2A is strongly connected,
independently of the orientation of dashed arcs that have not been analyzed

Figure 4: The digraph of the principal right eigenvector in Case 2B is strongly connected,
independently of the orientation of dashed arcs that have not been analyzed
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4 Conclusions
In the paper we used linear algebraic methods to derive explicit formulas for the prin-
cipal eigenvector of double perturbed PCMs. We also used a necessary and sufficient
condition for efficiency which uses a directed graph representation (the weight vector
is efficient if and only if this graph is strongly connected) developed by Blanquero,
Carrizosa and Conde [4]. Double perturbed PCMs had to be divided into three cases
in order to get explicit formulas for every case. In all three cases the digraph has
been studied arc by arc, however not all arcs had to be studied in order to determine
strong connectedness. Utilizing all these tools, we have shown in the paper, that the
often used eigenvector method produces an efficient weight vector in the case of double
perturbed PCMs. This is an extension of our earlier result for simple perturbed PCMs
[1].

A direct extension to the triple (or more) perturbed case is not possible, since
all PCMs of at least 4 × 4 size which are not (at most) double perturbed are triple
perturbed, and there are examples, e.g. Example 1, of inefficiency of size 4× 4. Thus,
while in some cases (e.g. when all perturbed elements are in different rows/columns)
it may be possible to show efficiency, for all triple perturbed PCMs this is impossible.
Furthermore, a triple perturbed PCM can be equivalent to five separate basic cases
(see [8, Fig. 7]), which may need to be further divided into more subcases, making
the efficiency analysis of triple perturbed PCMs difficult. A full characterization of
the efficiency of the principal right eigenvector is still an open question, and a possible
subject of future research.
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Appendix
Let D = diag(1, 1/x1, . . . , 1/xn−1), and let e = (1, . . . , 1)T . For A ∈ PCMn,

eeT −UiV
T
i = D−1AD (6)

holds for i = 1, 2. For i = 1, A has form (3) (Case 1) and

U1 =



0 1
1− 1/δ 0
1− 1/γ 0

0 0
...

...
0 0


∈ Rn×2, V1 =



1 0
0 1− δ
0 1− γ
0 0
...

...
0 0


∈ Rn×2. (7)

For i = 2, A has form (4) or (5) (Case 2) and

U2 =



0 1 0 0
1− 1/δ 0 0 0

0 0 0 1
0 0 1− 1/γ 0
0 0 0 0
...

...
...

...
0 0 0 0


∈ Rn×4,V2 =



1 0 0 0
0 1− δ 0 0
0 0 1 0
0 0 0 1− γ
0 0 0 0
...

...
...

...
0 0 0 0


∈ Rn×4. (8)

Lemma 1 (Matrix determinant lemma, [19]). If A ∈ Rn×n is invertible, and U,V ∈
Rn×m, then

det(A+UVT ) = det(Im +VTA−1U) det(A),

where Im denotes the identity matrix of size m×m.

Lemma 2 (Sherman–Morrison formula, [22]). Let A ∈ Rn×n, u,v ∈ Rn. If A is
invertible and 1 + vTA−1u 6= 0, then

(
A+ uvT

)−1 exists, and

(
A+ uvT

)−1
= A−1 − 1

1 + vTA−1u
A−1uvTA−1.

Let A ∈ PCMn be a double perturbed PCM and Ui,Vi be as in (6). Let the
matrix KA(λ) ∈ Rn×n be defined as follows:

KA(λ) = λI+UiV
T
i − eeT = λI−D−1AD,

where I denotes In, e = (1, . . . , 1)T ∈ Rn, i = 1 in Case 1, i = 2 in Case 2, and the
second equation follows from (6).

Lemma 3. The characteristic polynomial of the double perturbed PCM A ∈ PCMn

is
pA(λ) = (−1)n det(KA(λ)).
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Proof. As before, i = 1 in Case 1 and i = 2 in Case 2.

pA(λ) = det(A− λI)
= (−1)n det(λI−A)

= (−1)n det
(
λI+D

(
UiV

T
i − eeT

)
D−1

)
= (−1)n det

(
D
(
λI+UiV

T
i − eeT

)
D−1

)
= (−1)n det(D) det

(
λI+UiV

T
i − eeT

)
det
(
D−1

)
= (−1)n det(KA(λ)).

Lemma 4. det(λI− eeT ) = λn − nλn−1.

Proof. If λ = 0, then both sides of the equation are 0. If λ 6= 0, apply Lemma 1 with
m = 1, A = λI, U = −e, V = e:

det(λI− eeT ) = (1− eT (λI)−1e) det(λI) = λn − nλn−1.

Lemma 5. If λ 6= 0 and λ 6= n, then
(
λI− eeT

)−1 exists, and(
λI− eeT

)−1
=

1

λ (λ− n)
eeT +

1

λ
I.

Proof. Apply the Sherman–Morrison formula (Lemma 2) with A = λI, u = −e,
v = e.

Lemma 6. Let U,V ∈ Rn×m be arbitrary matrices. If λ 6= 0 and λ 6= n, then

det
(
λIn +UVT − eeT

)
=
(
λn − nλn−1

)
det

(
Im +

1

λ(λ− n)
VTeeTU+

1

λ
VTU

)
.

Proof. Apply Lemma 1 with A = λIn − eeT . According to Lemma 5, A is invertible.
Utilizing Lemmas 1, 4 and 5 the following equations hold:

det
((
λIn − eeT

)
+UVT

)
= det

(
Im +VT

(
λIn − eeT

)−1
U
)
det
(
λIn − eeT

)
= det

(
Im +

1

λ(λ− n)
VTeeTU+

1

λ
VTU

)(
λn − nλn−1

)
.

We can write the characteristic polynomial of double perturbed PCMs in explicit
form.

Proposition 1. Let n ≥ 4. The characteristic polynomial of a double perturbed PCM
in form (3) (Case 1) is

pP(λ) = (−1)nλn−3
(
λ3 − nλ2 −

(
γ

δ
+
δ

γ

)
− (n− 3)

(
γ + δ +

1

γ
+

1

δ

)
+ 4n− 10

)
.
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Proof. Lemma 3 implies that

pP(λ) = (−1)n det(KP(λ)) = (−1)n det
(
λI+U1V1

T − eeT
)
,

where U1 and V1 are defined by (7). Suppose that λ 6= n and λ 6= 0. According to
Lemma 6

pP(λ) = (−1)n
(
λn − nλn−1

)
det

(
I2 +

1

λ(λ− n)
V1

TeeTU1 +
1

λ
V1

TU1

)
= (−1)n

(
λn − nλn−1

)
det(S)

= (−1)nλn−3
(
λ3 − nλ2 −

(
γ

δ
+
δ

γ

)
− (n− 3)

(
γ + δ +

1

γ
+

1

δ

)
+ 4n− 10

)
,

where

S =

(
1 + 2−1/δ−1/γ

λ(λ−n)
1

λ(λ−n) +
1
λ

(2−δ−γ)(1−1/δ)+(2−δ−γ)(1−1/γ)
λ(λ−n) + (1−δ)(1−1/δ)

λ
+ (1−γ)(1−1/γ)

λ
1 + 2−δ−γ

λ(λ−n)

)
.

A polynomial of degree n is uniquely determined by n+1 points, and we have calculated
pP(λ) in all but two points, which completes the proof.

Proposition 2. Let n ≥ 4. The characteristic polynomial of a double perturbed PCM
in form (5) (Case 2B) is

pR(λ) = (−1)nλn−5
(
λ5 − nλ4 − (n− 2)

(
γ + δ +

1

γ
+

1

δ
− 4

)
λ2 − cλ− (n− 4)c

)
,

where
c =

(γ − 1)2(δ − 1)2

γδ
.

Furthermore, the characteristic polynomial of a double perturbed PCM in form (4)
(Case 2A), pQ(λ) is a special case of pR(λ) with n = 4. Namely,

pQ(λ) = λ4 − 4λ3 − 2

(
γ + δ +

1

γ
+

1

δ
− 4

)
λ− (γ − 1)2(δ − 1)2

γδ
.

Proof. Lemma 3 implies that

pR(λ) = (−1)n det(KR(λ)) = (−1)n det
(
λI+U2V2

T − eeT
)
,

where U2 and V2 are defined by (8). Suppose that λ 6= n and λ 6= 0. According to
Lemma 6

pR(λ) = (−1)n
(
λn − nλn−1

)
det

(
I4 +

1

λ(λ− n)
V2

TeeTU2 +
1

λ
V2

TU2

)
= (−1)n

(
λn − nλn−1

)
det(T)

= (−1)nλn−5
(
λ5 − nλ4 − (n− 2)

(
γ + δ +

1

γ
+

1

δ
− 4

)
λ2 − cλ− (n− 4)c

)
,
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where

T =


1 + 1−1/δ

λ(λ−n)
1

λ(λ−n) +
1
λ

1−1/γ
λ(λ−n)

1
λ(λ−n)

(1−δ)(1−1/δ)
λ(λ−n) + (1−δ)(1−1/δ)

λ
1 + 1−δ

λ(λ−n)
(1−δ)(1−1/γ)

λ(λ−n)
1−δ

λ(λ−n)
1−1/δ
λ(λ−n)

1
λ(λ−n) 1 + 1−1/γ

λ(λ−n)
1

λ(λ−n) +
1
λ

(1−γ)(1−1/δ)
λ(λ−n)

1−γ
λ(λ−n)

(1−γ)(1−1/γ)
λ(λ−n) + (1−γ)(1−1/γ)

λ
1 + 1−γ

λ(λ−n)


and

c =
(γ − 1)2(δ − 1)2

γδ
.

Again, a polynomial of degree n is uniquely determined by n+ 1 points, and we have
calculated pR(λ) in all but two points, which completes the proof. The case n = 4 is
analogous, and

pQ(λ) = λ4 − 4λ3 − 2

(
γ + δ +

1

γ
+

1

δ
− 4

)
λ− (γ − 1)2(δ − 1)2

γδ

is resulted in.

Proposition 3. The principle right eigenvector of a double perturbed PCM can be
written in explicit ways.

In Case 1 (γ and δ are in the same row), the formulas for the principal right
eigenvector are the following:

wEM =



δγλ(λ− n+ 1)
1
x1

[γλ− (n− 2)γ + δ + (n− 3)δγ]
1
x2

[δλ− (n− 2)δ + γ + (n− 3)δγ]
1
x3

[γ + δ + δγλ− 2δγ]
...

1
xi−1

[γ + δ + δγλ− 2δγ]
...

1
xn−1

[γ + δ + δγλ− 2δγ]


, (9)

wEM =



x1γλ [δλ− (n− 2)δ + γ + n− 3]
γλ3 − (n− 1)γλ2 − (n− 3)(γ2 − 2γ + 1)

x1
x2

[γλ2 − γλ+ δλ+ (n− 3)(δγ − δ − γ + 1)]
x1
x3

[γλ2 − γλ− γ + δ + δγλ− δγ + γ2]
...

x1
xi−1

[γλ2 − γλ− γ + δ + δγλ− δγ + γ2]
...

x1
xn−1

[γλ2 − γλ− γ + δ + δγλ− δγ + γ2]


, (10)

16



wEM =



x2δλ [δ + γλ− (n− 2)γ + n− 3]
x2
x1

[δλ2 − δλ+ γλ+ (n− 3)(δγ − δ − γ + 1)]

δλ3 − (n− 1)δλ2 − (n− 3)(δ2 − 2δ + 1)
x2
x3

[δλ2 − δλ+ γ − δ + δ2 + δγλ− δγ]
...

x2
xi−1

[δλ2 − δλ+ γ − δ + δ2 + δγλ− δγ]
...

x2
xn−1

[δλ2 − δλ+ γ − δ + δ2 + δγλ− δγ]


, (11)

wEM =



x3δγλ(δ + γ + λ− 2)
x3
x1

[δγλ2 − δγλ+ γ2 + γλ− γ − δγ + δ]
x3
x2

[δγλ2 − δγλ− δγ + γ + δ2 + δλ− δ]
δγλ2 − 4δγ + γ + δ + δ2γ + γ2δ

x3
x4

[δγλ2 − 4δγ + γ + δ + δ2γ + γ2δ]
...

x3
xn−1

[δγλ2 − 4δγ + γ + δ + δ2γ + γ2δ]


. (12)

Formulas (9)–(12) give the same principal right eigenvector, up to a scalar multiplier.

In Case 2A (γ and δ are in different rows, and matrix size is 4× 4) the formulas
take the following form:

wEM =


δ(λ3γ − 3λ2γ − 1 + 2γ − γ2)

1
x1

[λ2γ − 2λγ + δ + 2λδγ − 2δγ + δγ2]
1
x2
γ [γ + λ− 1 + δλ2 − 2λδ + δ + λδγ − δγ]

1
x3

[1 + λγ − γ + λδ − δ + δγλ2 − 2λδγ + δγ]

 , (13)

wEM =


x1[δγλ

2 − 2λδγ + 1 + 2λγ − 2γ + γ2]
λ3γ − 3λ2γ − 1 + 2γ − γ2

x1
x2
γ [λγ + λ2 − 2λ− γ + 1 + λδ − δ + δγ]

x1
x3

[λ+ λ2γ − 2λγ − 1 + γ + δ + λδγ − δγ]

 , (14)

wEM =


x2δ(1 + λγ − γ)(δ + λ− 1)

x2
x1

[1 + λγ − γ + λδ − δ + δγλ2 − 2λδγ + δγ]

γ(δλ3 − 3δλ2 − 1 + 2δ − δ2)
x2
x3

[2λδγ + δλ2 − 2λδ − 2δγ + γ + δ2γ]

 , (15)

wEM =


x3δ(λγ + λ2 − 2λ− γ + 1 + λδ − δ + δγ)
x3
x1

[γ + λ− 1 + δλ2 − 2λδ + δ + λδγ − δγ]
x3
x2

[2λδ + δγλ2 − 2λδγ − 2δ + 1 + δ2]

δλ3 − 3δλ2 − 1 + 2δ − δ2

 . (16)

Again, formulas (13)–(16) give the same principal right eigenvector, up to a scalar
multiplier.

In Case 2B (γ and δ are in different rows, and matrix size is at least 5 × 5) the
formulas are the following:
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wEM =



δλ[λ3γ − (n− 1)λ2γ − (n− 3)(γ2 − 2γ + 1)]
1
x1
{λ3γ−(n−2)λ2γ+(n−2)δγλ2+[λδ+(n−4)(δ−1)](γ2−2γ+1)}
1
x2
γλ [γ + λ− 1 + δλ2 − 2λδ + δ + λδγ − δγ]

1
x3
λ [1 + λγ − γ + λδ − δ + δγλ2 − 2λδγ + δγ]

1
x4
[γ2−2γ+λ2γ+1+λδ−δγλ2−2λδγ+λγ2δ+λ3δγ−δ+2δγ−δγ2]

...
1

xn−1
[γ2−2γ+λ2γ+1+λδ−δγλ2−2λδγ+λγ2δ+λ3δγ−δ+2δγ−δγ2]


, (17)

wEM =



x1[λ3δγ−(n−2)δγλ2−(n−4)δ(γ−1)2+λ+(n−2)λ2γ−2λγ+λγ2+(n−4)(γ−1)2]

λ(λ3γ − (n− 1)λ2γ − (n− 3)(γ − 1)2)
x1
x2
γλ(λγ + λ2 − 2λ− γ + 1 + δλ− δ + δγ)

x1
x3
λ(λ+ λ2γ − 2λγ − 1 + γ + δ + λδγ − δγ)

x1
x4

(λγ2−2λγ+λ3γ+λ−γ2+2γ−λ2γ−1+δ−2δγ+δγ2+δγλ2)
...

x1
xn−1

(λγ2−2λγ+λ3γ+λ−γ2+2γ−λ2γ−1+δ−2δγ+δγ2+δγλ2)


, (18)

wEM =



x2δλ(1 + λγ − γ)(δ + λ− 1)
x2
x1
λ(1 + λγ − γ)(1 + δλ− δ)

γλ [λ3δ − (n− 1)δλ2 − (n− 3)(δ − 1)2]
x2
x3

[δλ3−(n−2)δλ2(1−γ)−2λδγ+2(n−4)δ(1−γ)+λγ+δ2λγ+(n−4)(−1+γ−δ2+δ2γ)]
x2
x4
(1 + λγ − γ)(δλ2 + 1− 2δ + δ2)

...
x2
xn−1

(1 + λγ − γ)(δλ2 + 1− 2δ + δ2)


, (19)

wEM =



x3δλ(λγ + λ2 − 2λ− γ + 1 + δλ− δ + δγ)
x3
x1
λ(γ + λ− 1)(1 + δλ− δ)

x3
x2

[λ3δγ−(n−2)δλ2(γ−1)−2δλ+2(n−4)δ(γ−1)+λ+δ2λ+(n−4)(1−γ+δ2−δ2γ)]

λ[δλ3 − (n− 1)δλ2 − (n− 3)(δ − 1)2]
x3
x4

(δγλ2+λ3δ−δλ2−2δλ−2δγ+2δ−1+γ+λ+δ2λ−δ2+δ2γ)
...

x3
xn−1

(δγλ2+λ3δ−δλ2−2δλ−2δγ+2δ−1+γ+λ+δ2λ−δ2+δ2γ)


, (20)

wEM =



x4δλ(γ
2 − 2γ + λ2γ + 1)(δ + λ− 1)

x4
x1
λ(γ2 − 2γ + λ2γ + 1)(1 + δλ− δ)

x4
x2
γλ(δγλ2+λ3δ−δλ2−2δλ−2δγ+2δ−1+γ+λ+δ2λ−δ2+δ2γ)

x4
x3
λ(δλ2+λ3δγ−δγλ2−2λδγ−2δ+2δγ−γ+1+λγ+δ2+δ2λγ−δ2γ)

(γ2 − 2γ + λ2γ + 1)(δλ2 + 1− 2δ + δ2)
x4
x5
(γ2 − 2γ + λ2γ + 1)(δλ2 + 1− 2δ + δ2)

...
x4
xn−1

(γ2 − 2γ + λ2γ + 1)(δλ2 + 1− 2δ + δ2)


. (21)

Again, formulas (17)–(21) give the same principal right eigenvector, up to a scalar
multiplier.

Proof. The proof is similar to that of the eigenvector formulas (24)–(26) in [15]. Let us
consider Case 1. LetD = diag(1, 1/x1, . . . , 1/xn−1), and letKP(λ) = λI+U1V

T
1 −eeT ,
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with U1 and V1 as defined by (7). Since D is invertible, every column of the one rank
matrix D adj(KP(λmax))D

−1 is a Perron eigenvector of P.
For Case 2, replace U1 by U2 and V1 by V2 as defined by (8).

Remark 5. Formulas (9)–(21) are positive.

Proof. It is sufficient to prove the positivity of any arbitrary element of each formula,
because the Perron–Frobenius theorem then guarantees the positivity for the vectors
as well. The conclusions of the proofs generally follow from xi > 0 for all i = 1, . . . , n,
γ, δ > 0 and λ > n ≥ 4 (or n ≥ 5 in Case 2B). The proof for each formula follows:

Formula (9): Positivity is apparent for wEM1 .
Formula (10):

wEM1 = x1γλ [δλ− (n− 2)δ + γ + n− 3]

= x1γλ [δ(λ− n+ 2) + γ + (n− 3)] .

Formula (11):

wEM1 = x2δλ [δ + γλ− (n− 2)γ + n− 3]

= x2δλ [δ + γ(λ− n+ 2) + (n− 3)] .

Formula (12): Positivity is apparent for wEM1 .
Formula (13):

wEM2 =
1

x1

[
λ2γ − 2λγ + δ + 2λδγ − 2δγ + δγ2

]
=

1

x1

[
λγ(λ− 2) + δ + 2δγ(λ− 1) + δγ2

]
.

Formula (14):

wEM1 = x1[δγλ
2 − 2λδγ + 1 + 2λγ − 2γ + γ2]

= x1[δγλ(λ− 2) + 1 + 2γ(λ− 1) + γ2].

Formula (15):

wEM1 = x2δ(1 + λγ − γ)(δ + λ− 1)

= x2δ[1 + γ(λ− 1)][δ + (λ− 1)].

Formula (16):

wEM3 =
x3
x2

[
2λδ + δγλ2 − 2λδγ − 2δ + 1 + δ2

]
=
x3
x2

[
2δ(λ− 1) + δγλ(λ− 2) + 1 + δ2

]
.

From here on in the proof, n ≥ 5.
Formula (17): wEM3 in formula (17) is the same as λwEM3 in formula (13), which is

already proven to be positive.
Formula (18): wEM3 in formula (18) is the same as λwEM3 in formula (14), which is

already proven to be positive.
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Formula (19):

wEM1 = x2δλ(1 + λγ − γ)(δ + λ− 1)

= x2δλ[1 + γ(λ− 1)][δ + (λ− 1)].

Formula (20):

wEM2 =
x3
x1
λ(γ + λ− 1)(1 + δλ− δ)

=
x3
x1
λ[γ + (λ− 1)][1 + δ(λ− 1)].

Formula (21):

wEM1 = x4δλ(γ
2 − 2γ + λ2γ + 1)(δ + λ− 1)

= x4δλ[γ
2 + γ(λ2 − 2) + 1][δ + (λ− 1)].

Using these formulas, the paper’s main result can be obtained through a series of
lemmas. Each of these lemmas corresponds to a directed edge in a digraph. Using
these results, the direction of certain arcs can be determined. Thus, it will be shown
that directed graphs of Cases 1, 2A and 2B are strongly connected. By Theorem 1,
efficiency of the principal right eigenvector is implied.

It follows from the positivity of wEM (see Remark 5), that both sides of the starting
inequalities of each lemma can be multiplied by the respective wEMi without further
discussion. Since there are 28 lemmas, the proofs are in the Appendix.

Cases of δ = 1 and γ = 1 are not covered by Lemmas 1a–3h due to Remark 3.
The first group of lemmas correspond to Case 1 (γ and δ are in the same row), i.e.,

the double perturbed PCM is written in form (3).

Lemma 1a (Case 1). δ > 1 and δ ≥ γ ⇒ wEM1 /wEM2 < δx1.

Proof. Using formula (10),

wEM1

wEM2

= x1
γλ (δλ− (n− 2)δ + γ + n− 3)

γλ3 − (n− 1)γλ2 − (n− 3)(γ2 − 2γ + 1)
.

Substitute λ = λmax in the characteristic polynomial pP(λ) by Proposition 1:

(−1)nλn−3
(
λ3 − nλ2 −

(
γ

δ
+
δ

γ

)
− (n− 3)

(
γ + δ +

1

γ
+

1

δ

)
+ 4n− 10

)
= 0,

which can be transformed to

γδλ3 − γδnλ2 = γ2 + δ2 + (n− 3)
(
γ2δ + γδ2 + δ + γ

)
− γδ(4n− 10). (22)

The statement to be proven is equivalent to

γλ (δλ+ γ − (n− 2)δ + n− 3) < δ
(
γλ3 − (n− 1)γλ2 − (n− 3)(γ − 1)2

)
.
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Using (22) this is further equivalent to

(γδλ3 − γδnλ2) + λ
(
γδ(n− 2)− γ2 − γn+ 3γ

)
− δ(n− 3)(γ − 1)2 > 0.

Now apply further equivalent transformations:

γλ (δ(n− 2)− γ − n+ 3) + γ2 + δ2 − (n− 3)(δγ2 − 2δγ + δ)

+ (n− 3)
(
δ2γ + δγ2 + δ + γ

)
− δγ(4n− 10) > 0

γλ ((δ − 1)(n− 3) + δ − γ) + γ2 + δ2

+ (n− 3)
(
δ2γ + 2δγ + γ

)
− 4δγ(n− 3)− 2δγ > 0

γλ ((δ − 1)(n− 3) + (δ − γ)) + γ(n− 3)(δ − 1)2 + (δ − γ)2 > 0.

Lemma 1b (Case 1). δ < 1 and δ ≤ γ ⇒ wEM1 /wEM2 > δx1.

Proof. According to formula (10)

wEM1

wEM2

= x1
γλ (δλ− (n− 2)δ + γ + n− 3)

γλ3 − (n− 1)γλ2 − (n− 3)(γ2 − 2γ + 1)
.

Transforming (22) similar to Lemma 1a,

γλ ((δ − 1)(n− 3) + δ − γ) + γ(n− 3)(δ − 1)2 + (δ − γ)2 < 0.

Transforming this further yields

γ(δ − 1)(n− 3) (λ+ (δ − 1)) + γλ(δ − γ) + (δ − γ)2 < 0

γ(δ − 1)(n− 3) (λ+ (δ − 1)) + (δ − γ)(γ(λ− 1) + δ) < 0.

Lemma 1c (Case 1). γ > 1 and γ ≥ δ ⇒ wEM1 /wEM3 < γx2.

Proof. The proof follows from switching the role of δ and γ in the proof of Lemma
1a.

Lemma 1d (Case 1). γ < 1 and γ ≤ δ ⇒ wEM1 /wEM3 > γx2.

Proof. The proof follows from switching the role of δ and γ in the proof of Lemma
1b.

Lemma 1e (Case 1). γ, δ > 1⇒ wEM1 /wEMi > xi−1, i = 4, . . . , n.

Proof. According to formula (9)

wEM1

wEMi
= xi−1

γδλ(λ− n+ 1)

γ + δ + γδλ− 2γδ
,

which means the statement to be proven is equivalent to

γδλ(λ− n+ 1) > γ + δ + γδλ− 2γδ.

Further equivalent transformations yield

(γδλ(λ− n)) + (2γδ − γ − δ) > 0

γδλ(λ− n) + (δ − 1)(γ − 1) + (δγ − 1) > 0.

21



Lemma 1f (Case 1). γ, δ < 1⇒ wEM1 /wEMi < xi−1, i = 4, . . . , n.

Proof. According to formula (12)

wEM1

wEMi
= xi−1

γδλ(δ + γ + λ− 2)

γδλ2 − 4γδ + γ + δ + δ2γ + γ2δ
.

Applying further equivalent transformations

γδλ(δ + γ + λ− 2)

γδλ2 − 4γδ + γ + δ + δ2γ + γ2δ
< 1

γδλ(δ + γ + λ− 2) < γδ(λ2 − 4) + γ + δ + δ2γ + γ2δ

λ(δ + γ + λ− 2) < λ2 − 4 +
1

δ
+

1

γ
+ δ + γ

0 < λ2 − 4 +
1

δ
+

1

γ
+ δ + γ − λδ − λγ − λ2 + 2λ

0 < 2(λ− 2) + (1− λ)(δ + γ) +
1

δ
+

1

γ

0 < 2(λ− 1)− 2 + (1− λ)(δ + γ) +
1

δ
+

1

γ

0 < (λ− 1)(2− δ − γ) + 1

δ
+

1

γ
− 2.

Lemma 1g (Case 1). δ S γ ⇔ wEM2 /wEM3 T x2/x1.

Proof. According to formula (9), we need to consider

wEM2

wEM3

=
x2
x1
· γλ− (n− 2)γ + δ + (n− 3)γδ

δλ− (n− 2)δ + γ + (n− 3)γδ
T 1.

Applying further equivalent transformations

γλ− (n− 2)γ + δ + (n− 3)γδ T δλ− (n− 2)δ + γ + (n− 3)γδ

λ(γ − δ)− (n− 2)(γ − δ) + δ − γ T 0

(γ − δ)(λ− n+ 1) T 0.

The third factor is positive because λ > n.

Lemma 1h (Case 1). δ ≷ 1⇔ wEM2 /wEMi ≶ xi−1/x1, i = 4, . . . , n.

Proof. According to formula (9)

wEM2

wEMi
=
xi−1
x1
· γλ− (n− 2)γ + δ + (n− 3)γδ

γ + δ + γδλ− 2γδ
.

Equivalent transformations yield

γλ− (n− 2)γ + δ + (n− 3)γδ < γ + δ + γδλ− 2γδ

0 < γ(δ − 1)(λ− n+ 1).

The third factor is positive because λ > n.
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Lemma 1i (Case 1). γ ≷ 1⇔ wEM3 /wEMi ≶ xi−1/x2, i = 4, . . . , n.

Proof. The proof follows from switching the role of δ and γ in the proof of Lemma
1h.

Lemma 1j (Case 1). wEMi /wEMj = xj−1/xi−1, i, j = 4, . . . , n.

Proof. It follows from each of formulas (9)–(12).

Corollary 1. There exists a directed cycle in each graph corresponding to Case 1
(Figure 2):

δ > 1, γ > δ : 1→ i→ 2→ 3→ 1,

γ > 1, γ < δ : 1→ i→ 3→ 2→ 1,

δ > 1, γ < 1 : 1→ 3→ i→ 2→ 1,

δ < 1, γ < δ : 1→ 3→ 2→ i→ 1,

γ < 1, γ > δ : 1→ 2→ 3→ i→ 1,

δ < 1, γ > 1 : 1→ 2→ i→ 3→ 1.

The second group of lemmas correspond to Case 2A (γ and δ are in different rows,
and matrix size is 4× 4), i.e., the double perturbed PCM is written in form (4).

Lemma 2a (Case 2A). δ ≷ 1⇔ wEM1 /wEM2 ≶ δx1.

Proof. Formula (16) is used for this proof. Multiplying both sides by wEM2 , the state-
ment to be proven can be written as:

x3δ(λγ + λ2 − 2λ− γ + 1 + λδ − δ + δγ)

≶ δx1
x3
x1

(
γ + λ− 1 + δλ2 − 2λδ + δ + λδγ − δγ

)
. (23)

Further equivalent transformations yield:

0 ≶ λ2δ − λ2 + 3λ− λγ − 3λδ + λδγ − 2δγ + 2γ + 2δ − 2

0 ≶ λ2(δ − 1) + λγ(δ − 1) + 3λ(1− δ) + 2γ(1− δ) + 2(δ − 1)

0 ≶ (δ − 1)(λ(λ− 3) + γ(λ− 2) + 2).

The second factor on the right hand side is always positive because λ > n = 4 and
γ, δ > 0.

Lemma 2b (Case 2A). δ > 1, γ < 1⇒ wEM1 /wEM3 > x2.

Proof. Formula (14) is used in this proof. Multiplying both sides by wEM3 , the state-
ment of the lemma is equivalent to:

x1(δγλ
2 − 2λδγ + 1 + 2λγ − 2γ + γ2)

< x2
x1
x2
γ
(
λγ + λ2 − 2λ− γ + 1 + λδ − δ + δγ

)
.

Further equivalent transformations yield:

0 < λ2γ − λ2γδ − 4λγ + λγ2 + 3λδγ − 2γ2 + 3γ + δγ2 − δγ − 1
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0 < λ2γ(1− δ) + λγ(γ − 1) + 3λγ(δ − 1) + (γ − 1) + 2γ(1− γ) + δγ(γ − 1)

0 < (1− δ)λγ(λ− 3) + (γ − 1)(γ(λ− 2) + δγ + 1). (24)

The second factor on the right hand side is always positive because λ > n = 4 and
γ, δ > 0.

Lemma 2c (Case 2A). δ < 1, γ > 1⇒ wEM1 /wEM3 < x2.

Proof. The proof follows from the right hand side of (24) being positive in the case of
δ < 1, γ > 1.

Lemma 2d (Case 2A). δ, γ < 1⇒ wEM1 /wEM4 < x3.

Proof. Again, formula (14) is used for this proof. Multiplying both sides by wEM4 , the
statement to be proven is equivalent to:

x1(δγλ
2 − 2λδγ + 1 + 2λγ − 2γ + γ2)

< x3
x1
x3

(
λ+ λ2γ − 2λγ − 1 + γ + δ + λδγ − δγ

)
.

Further equivalent transformations yield:

λ2γδ − λ2γ + 4λγ − 3λδγ − λ+ γ2 − 3γ + δγ − δ + 2 < 0

(δ − 1)(λ2γ − 3λγ) + (γ − 1)(λ+ γ − 2 + δ) < 0

(δ − 1)λγ(λ− 3) + (γ − 1)((λ− 2) + γ + δ) < 0. (25)

The left hand side is negative if γ, δ < 1, because λ > n = 4.

Lemma 2e (Case 2A). δ, γ > 1⇒ wEM1 /wEM4 > x3.

Proof. The proof follows from the left hand side of (25) being positive if γ, δ > 1.

Lemma 2f (Case 2A). δ, γ < 1⇒ wEM2 /wEM3 > x2/x1.

Proof. Formula (13) is used in this proof. Multiplying both sides by wEM3 , the state-
ment of the lemma can be written as:

1

x1

(
λ2γ − 2λγ + δ + 2λδγ − 2δγ + δγ2

)
>
x2
x1

1

x2
γ
(
γ + λ− 1 + δλ2 − 2λδ + δ + λδγ − δγ

)
.

Further equivalent transformations yield:

0 > λ2γδ − λ2γ − 4λδγ + 3λγ + λδγ2 + γ2 − 2δγ2 + 3δγ − γ − δ
0 > (δ − 1)(λ2γ − 3λγ) + (γ − 1)(λδγ − 2δγ + δ + γ)

0 > (δ − 1)λγ(λ− 3) + (γ − 1)(δγ(λ− 2) + δ + γ). (26)

The right hand side is negative if δ, γ < 1, because λ > n = 4.

Lemma 2g (Case 2A). δ, γ > 1⇒ wEM2 /wEM3 < x2/x1.
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Proof. The proof follows from the right hand side of (26) being positive if δ, γ > 1.

Lemma 2h (Case 2A). δ < 1, γ > 1⇒ wEM2 /wEM4 > x3/x1.

Proof. Again, formula (13) is used in this proof. Multiplying both sides by wEM4 , the
statement to be proven is equivalent to:

1

x1

(
λ2γ − 2λγ + δ + 2λδγ − 2δγ + δγ2

)
>
x3
x1

1

x3

(
1 + λγ − γ + λδ − δ + δγλ2 − 2λδγ + δγ

)
.

Further equivalent transformations yield:

0 > λ2γδ − λ2γ − 4λδγ + 3λγ + λδ + 3δγ − δγ2 − 2δ − γ + 1

0 > (δ − 1)(λ2γ − 3λγ) + (1− γ)(λδ − 2δ + δγ + 1)

0 > (δ − 1)λγ(λ− 3) + (1− γ)(δ(λ− 2) + δγ + 1). (27)

The right hand side of (27) is negative, if δ < 1, γ > 1, because λ > n = 4.

Lemma 2i (Case 2A). δ > 1, γ < 1⇒ wEM2 /wEM4 < x3/x1.

Proof. The proof follows from the right hand side of (27) being positive if δ > 1, γ <
1.

Lemma 2j (Case 2A). γ ≷ 1⇔ wEM3 /wEM4 ≶ γx3/x2.

Proof. Once again, formula (13) is used for the proof. Multiplying both sides by wEM4 ,
the first statement (for γ > 1) becomes equivalent to:

1

x2
γ
(
γ + λ− 1 + δλ2 − 2λδ + δ + λδγ − δγ

)
≶ γ

x3
x2

1

x3

(
1 + λγ − γ + λδ − δ + δγλ2 − 2λδγ + δγ

)
. (28)

Applying further equivalent transformations:

0 ≶ λ2δγ − λ2δ − 3λδγ + 3λδ + λγ − λ+ 2δγ − 2δ − 2γ + 2

0 ≶ (γ − 1)(λ2δ − 3λδ + λ+ 2δ − 2)

0 ≶ (γ − 1)(λδ(λ− 3) + (λ− 2) + 2δ). (29)

The second factor on the right hand side of (29) is positive because λ > n = 4 and
γ, δ > 0.

Corollary 2. There exists a directed cycle in each graph corresponding to Case 2A
(Figure 3):

δ > 1, γ > 1 : 1→ 4→ 3→ 2→ 1,

δ > 1, γ < 1 : 1→ 3→ 4→ 2→ 1,

δ < 1, γ < 1 : 1→ 2→ 3→ 4→ 1,

δ < 1, γ > 1 : 1→ 2→ 4→ 3→ 1.
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The last group of lemmas correspond to Case 2B, when γ and δ are in different
rows, and matrix size is at least 5 × 5, i.e., the double perturbed PCM is written in
form (5).

Lemma 3a (Case 2B). γ ≷ 1⇔ wEM3 /wEM4 ≶ γx3/x2.

Proof. Using formula (17) the proof is similar to the proof of Lemma 2j, the only
difference is in (28) where both sides are multiplied by λ, which immediately cancel
each other.

Lemma 3b (Case 2B). δ ≷ 1⇔ wEM1 /wEM2 ≶ δx1.

Proof. Using formula (21) the proof is similar to the proof of Lemma 2a, the only
difference is in (23) where both sides (the formula for wEM1 and wEM2 ) are multiplied
by λ, which immediately cancel each other. This may not be apparent about wEM2 ,
but

(γ + λ− 1)(1 + δλ− δ) = γ + λ− 1 + λγδ + λ2δ − λδ − γδ − λδ + δ

which, after reduction, gives the same formula.

Lemma 3c (Case 2B). δ ≷ 1⇔ wEM1 /wEMi ≷ xi−1, i = 5, . . . , n.

Proof. Formula (19) is used for this proof.

x2δλ(1 + λγ − γ)(δ + λ− 1) ≷ xi−1
x2
xi−1

(1 + λγ − γ)(δλ2 + 1− 2δ + δ2)

λδ2 + λ2δ − λδ ≷ δλ2 + 1− 2δ + δ2

λδ(δ − 1) + δ(1− δ) + (δ − 1) ≷ 0

(δ − 1)(δ(λ− 1) + 1) ≷ 0.

The second factor on the left hand side is always positive because λ > n ≥ 5 and
δ > 0.

Lemma 3d (Case 2B). δ ≷ 1⇔ wEM2 /wEMi ≶ xi−1/x1, i = 5, . . . , n.

Proof. Again, formula (19) is used in the proof.

x2
x1
λ(1 + λγ − γ)(1 + δλ− δ) ≶ xi−1

x1

x2
xi−1

(1 + λγ − γ)(δλ2 + 1− 2δ + δ2)

λ+ λ2δ − δλ ≶ δλ2 + 1− 2δ + δ2

0 ≶ λδ − λ+ δ2 − 2δ + 1

0 ≶ λ(δ − 1) + (δ − 1)2

0 ≶ (δ − 1)((λ− 1) + δ).

The second factor on the right hand side is always positive because λ > n ≥ 5 and
δ > 0.

Lemma 3e (Case 2B). γ ≷ 1⇔ wEM3 /wEMi ≷ xi−1/x2, i = 5, . . . , n.
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Proof. Formula (18) is used in this proof.

x1
x2
γλ(λγ + λ2 − 2λ− γ + 1 + δλ− δ + δγ)

≷
x4
x2

x1
x4

(λγ2 − 2λγ + λ3γ + λ− γ2 + 2γ − λ2γ − 1 + δ − 2δγ + δγ2 + δγλ2).

Further equivalent transformations yield:

λ2γ2 − λ2γ − 2λγ2 + 3λγ + λγ2δ − λδγ − λ+ γ2 − 2γ + 1− δ + 2δγ − δγ2 ≷ 0

(γ − 1)(λ2γ − 2λγ + λ+ λδγ + (γ − 1)− δ(γ − 1)) ≷ 0

(γ − 1)(λγ(λ− 2) + (λ− 1) + δγ(λ− 1) + γ + δ) ≷ 0.

The second factor on the left hand side is always positive because λ > n ≥ 5 and
γ, δ > 0.

Lemma 3f.
γ > 1, δ < 1⇒ wEM2 /wEM4 > x3/x1.
γ < 1, δ > 1⇒ wEM2 /wEM4 < x3/x1.

Proof. Instead of the statement of the lemma, we will prove the following stronger
statement:

γ T δ ⇔ wEM2 /wEM4 T x3/x1.

Formula (21) is used in this proof.

x4
x1
λ(γ2 − 2γ + λ2γ + 1)(1 + δλ− δ)

T
x3
x1

x4
x3
λ(δλ2 + λ3δγ − δγλ2 − 2λδγ − 2δ + 2δγ − γ + 1 + λγ + δ2 + δ2λγ − δ2γ).

This is further equivalent to

γ2 + λγ2δ − γ2δ − 2γ − 2λγδ + 2γδ + λ2γ + λ3γδ − λ2γδ + 1 + λδ − δ
T λ2δ + λ3γδ − λ2γδ − 2λγδ − 2δ + 2γδ − γ + 1 + λγ + δ2 + λγδ2 − γδ2.

Further equivalent transformations yield

λ2γ − λ2δ + λδ − λγ + λγ2δ − λγδ2 + γ2 − δ2 + γδ2 − γ2δ + 2δ − 2γ + γ − δ T 0

λ2(γ− δ) + λ(δ− γ) + λγδ(γ− δ) + (γ + δ)(γ− δ) + γδ(δ− γ) + 2(δ− γ) + (γ− δ) T 0

(γ − δ)(λ2 − λ+ λγδ + γ + δ − γδ − 1) T 0

(γ − δ)(λ2 − 2λ+ λγδ − γδ + λ− 1 + γ + δ) T 0

(γ − δ)(λ(λ− 2) + γδ(λ− 1) + (λ− 1) + γ + δ) T 0.

The second factor on the left hand side is always positive because λ > n ≥ 5 and
γ, δ > 0.
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Lemma 3g (Case 2B).
γ, δ > 1⇒ wEM1 /wEM4 > x3.
γ, δ < 1⇒ wEM1 /wEM4 < x3.

Proof. Instead of the above statement, we will prove the following stronger statement:

γδ T 1⇔ wEM1 /wEM4 T x3.

Formula (21) is used in this proof.

x4δλ(γ
2 − 2γ + λ2γ + 1)(δ + λ− 1)

T x3
x4
x3
λ(δλ2 + λ3δγ − δγλ2 − 2λδγ − 2δ + 2δγ − γ + 1 + λγ + δ2 + δ2λγ − δ2γ).

Further equivalent transformations yield:

λ2δ2γ − λ2δ + λγ2δ − λγδ2 + λδ − λγ + γ2δ2 − γδ2 − δγ2 + δ + γ − 1 T 0

(δγ − 1)(λ2δ + λγ − λδ + δγ + 1− δ − γ) T 0

(δγ − 1)(λδ(λ− 2) + γ(λ− 1) + δ(λ− 1) + δγ + 1) T 0.

The second factor is always positive because λ > n ≥ 5 and γ, δ > 0. The first factor
is positive exactly if γδ > 1, and negative exactly if γδ < 1.

Lemma 3h (Case 2B). wEMi /wEMj = xj−1/xi−1, i, j = 5, . . . , n.

Proof. It follows from each of formulas (17)–(21).

Corollary 3. There exists a directed cycle in each graph corresponding to Case 2B
(Figure 4):

δ > 1, γ > 1 : 1→ 4→ 3→ i→ 2→ 1,

δ > 1, γ < 1 : 1→ i→ 3→ 4→ 2→ 1,

δ < 1, γ < 1 : 1→ 2→ i→ 3→ 4→ 1,

δ < 1, γ > 1 : 1→ 2→ 4→ 3→ i→ 1.
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