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Abstract 23 

 From the suspensions of cellulose nanocrystals (CNCs) derived from cotton and flax 24 

by acidic hydrolysis, transparent and smooth films were produced with different plasticizers 25 

and an amino-aldehyde based cross-linking agent in a wide composition range by a 26 

simultaneous casting and wet cross-linking process. The effect of cross-linker concentration 27 

on the optical and tensile properties and on the morphology of CNC films was investigated by 28 

various measurements. The interaction of films with liquid water and water vapour was also 29 

characterized by water sorption and water contact angle as well as performing a sinking test. 30 

Cross-linking improved the transparency, reduced the porosity and surface free energy, and 31 

prevented the delamination of CNC films in water at a concentration of 10 % or higher. The 32 

surface of CNC films is basic in character and has an electron donor property. The 33 

CNC/amino-aldehyde films had a high tensile strength (45 MPa) and modulus (11 GPa).  34 
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1. Introduction 35 

 Nanocrystalline cellulose, which can be extracted from cellulose-based materials by an 36 

acidic hydrolysis, consists of rod-like nano-sized crystals of cellulose and possesses several 37 

attractive properties, such as versatile fibre morphology, easy surface modification, large 38 

surface area and high aspect ratio (Klemm et al., 2011; Tang, Sisler, Grishkewich, & Tam, 39 

2017). Cellulose nanocrystals (CNCs) have been used for various applications, such as 40 

antimicrobial/antiviral systems, tissue engineering, drug/gene delivery, biosensors, adsorbents 41 

in wastewater treatment, super-capacitors, conductive films, electronic sensors, Pickering 42 

emulsifier, drilling fluid, antioxidant or food additive/packaging. In recent years, there has 43 

been an increasing interest in the production of transparent thin films of CNCs with special 44 

properties and the number of research papers published in this field has been growing 45 

exponentially (Lagerwall et al., 2014; Majoinen, Kontturi, Ikkala, & Gray, 2012; Sun et al., 46 

2018; Tang et al., 2017).  47 

CNC films are highly hydrophilic and this property can limit their applications in certain 48 

areas. Water sorption of CNC films was found to be similar to that of MFC films (around 25-49 

30 % mass gain), and the water contact angle was around 45° (Belbekhouche et al., 2011). 50 

The thickness of CNC ultrathin films changed proportional to the changes in relative 51 

humidity. At the point of hydration, each individual CNC in the film became enveloped by a 1 52 

nm thick layer of adsorbed water vapour (Niinivaara, Faustini, Tammelin, & Kontturi, 2015).  53 

To improve the properties of films and to modify their interaction with water, the 54 

cellulose in CNC films is usually cross-linked during or after casting. In chemical cross-55 

linking, polymer chains are interconnected by permanent covalent bonds, which results in a 56 

brittle product (Peng, Zhai, She, & Gao, 2015; Yang, Zhao, Xu, & Sun, 2013). Chemical 57 

cross-linking of cellulose is a well-known reaction in the field of textile finishing and can be 58 
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carried out in a heterogeneous system with various aldehydes. However, only formaldehyde, 59 

glutaraldehyde and gyloxal cross-link successfully the cellulose, resulting in wrinkle recovery 60 

cellulosic textiles (Frick & Harper, 1982; Kim & Csiszár, 2005). Commonly used cross-61 

linking agents are amino-aldehyde compounds (such as urea-formaldehyde and melamine 62 

formaldehyde) which are widely applied to improve the wearing and easy-care properties of 63 

cellulosic textiles.  64 

The cross-linking can be carried out in fully swollen or partially swollen fibres (both are 65 

called as wet cross-linking), or in dry state (so-called dry cross-linking). Depending on the 66 

accessibility and reactivity of the different cellulose areas, conversion of cellulosic fibres can 67 

progress to various degrees. Three different situations are possible in the reactions: (1) 68 

formation of one covalent bond between the cross-linker and a cellulose chain; (2) formation 69 

of at least two covalent bonds between the cross-linker and a cellulose chain (intra-chain 70 

linkage); (3) formation of at least two covalent bonds between the cross-linker and two 71 

cellulose chains (cross-linking). All of these reactions affect the properties of cellulosic 72 

substrates in a greater or lesser degree. Cross-linking has the most significant and distinctive 73 

effects (Krässig, 1993; Rouette, 2002). In optimal conditions, the amino-aldehyde based pre-74 

polymers mixed with cellulose lead to composite formation (Devallencourt, Saiter, & 75 

Capitaine, 2000). 76 

Aldehyde-aided cross-linking was also used in the preparation of nanocellulose films 77 

with advanced properties. Nanocomposite films of microfibrillated cellulose (MFC) and 78 

melamine formaldehyde (MF) were semi-transparent, stiff and brittle, and their density 79 

increased with increasing MF content (Henriksson & Berglund, 2007). Moisture sorption of 80 

the MFC/MF films was lower than that of the neat MFC films, due to the interaction between 81 

the resin and the hydroxyl groups of the cellulose surface, which left fewer hydroxyl groups 82 

accessible for water molecules. The maximum of Young-modulus, 19.3 GPa was measured 83 
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for the MFC/MF nanocomposite films. Besides cross-linking, only the introduction of a cross-84 

linker to nanocellulose can also enhance the water repellence of nanocellulose films by filling 85 

the pores in it and reducing polarity. Improvements in the mechanical properties of films were 86 

also achieved by increasing the water repellence, since water itself acts as a plasticizer in 87 

nanocellulose films (Henriksson & Berglund, 2007).  88 

Extensive work has been done on using cross-linking agents different from aldehydes.  89 

Thermo-responsive and water-responsive shape-memory polymer nanocomposites were 90 

developed by chemically cross-linking cellulose nanocrystals with polycaprolactone (PCL) 91 

and polyethylene glycol (Liu, Li, Yang, Zheng, & Zhou, 2015). Since PCL is hydrophobic, it 92 

may be used to develop water repellent CNC composites. As the ratio of nanocellulose to 93 

PCL decreased, the water repellence of PCL-nanocellulose nanocomposites increased (Si, 94 

Cui, Wang, Liu, & Liu, 2016). Poly(acrylic acid) was used as a cross-linking agent in a 95 

poly(vinyl alcohol)/CNC nanocomposite. The formation of ester linkages between poly(vinyl 96 

alcohol) and CNC resulted in a highly networked structure and improved mechanical 97 

properties (Pakzad, Simonsen, & Yassar, 2012). Cross-linking of nanocellulose with citric 98 

acid has also been studied (Quellmalz & Mihranyan, 2015). For other biopolymers such as 99 

polyhydroxyalkanoates, cross-linking was also beneficial and a significant improvement in 100 

the mechanical properties and water resistance of composites was achieved (Raza, Riaz, & 101 

Banat, 2017).  102 

In spite of the fact that amino-aldehyde based compounds are the most frequently used 103 

cross-linking agents of cellulose and they are widely applied in the field of finishing of 104 

cellulosic textiles, very little is known about their use in cross-linking of nanocrystalline 105 

cellulose. Thus the goal of our study was to prepare cellulose nanocrystal/amino-aldehyde 106 

(CNC/AA) nanocomposite films, to demonstrate the effect of wet cross-linking of cellulose 107 

on the structure and properties of nanocrystalline cellulose-based thin films, and to evaluate 108 
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the interaction of films with water as a function of cross-linking. Cellulose nanocrystals were 109 

extracted from bleached cotton and flax fibres by sulphuric acid hydrolysis. Two plasticizers 110 

(sorbitol and glycerol) were used for casting a series of films with an amino-aldehyde (AA) 111 

based cross-linking agent applied in a wide range of concentrations. The results proved that 112 

the properties of CNC films can be enhanced and tuned by the amino-aldehyde based cross-113 

linking of cellulose. 114 

2. Experimental 115 

2.1 Preparation of cellulose nanocrystals 116 

 CNCs were prepared from bleached cotton and flax plain-weave fabrics (110 g/m2 and 117 

165 g/m2, respectively) provided by Pannon-Flax Linen Weaving Co. (Hungary) and used 118 

without any further wet treatment. The nanocrystals were denoted as cotton-CNC and flax-119 

CNC, depending on the source of cellulose. The fabrics were ground using a ball mill (Mixer 120 

Mill MM400, Retsch GmBH, Germany), then 10.0 g of the fine powders were hydrolyzed 121 

with 64 wt % sulphuric acid (acid to fibre ratio: 8.75 ml/g) at 45 °C for 25 min (Hamad & Hu, 122 

2010). Subsequent to the post-treatments (washing, centrifugation and dialysis), the total 123 

volume of the stock suspensions was subjected to ultrasonication for 10 min using an 124 

ultrasonic horn type reactor (Vibra-Cell VCX500, Sonics & Materials, Inc. CT, USA) at 60 % 125 

amplitude with a driving frequency of 20 kHz (Csiszar, Kalic, Kobol, & Ferreira, 2016). The 126 

dry solid content of the suspension was determined by drying (at 80 C) and weighing 2 ml of 127 

the suspension. Yield of CNC calculated as a percentage of the initial weight of the bleached 128 

fibres was in the range of 41-43 %. The final aqueous suspensions contained 2-3 weight % of 129 

CNCs.  130 
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2.2 Preparation of films from the CNC suspensions 131 

 Rectangular films were cast from the aqueous suspension of CNCs on the surface of a 132 

polypropylene plastic sheet, and their water content was allowed to evaporate at room 133 

temperature for about 2 days. In order to overcome the brittle nature of the CNC films, two 134 

different plasticizers, namely sorbitol and glycerol were added in 20 % concentration (Csiszár 135 

& Nagy, 2017). These polyhydroxy compounds were already successfully applied as 136 

plasticizers for thermoplastic starch films (Mathew & Dufresne, 2002).  137 

For the cross-linking of cellulose nanocrystals, an amino-aldehyde based, water 138 

soluble cross-linking agent (dimethylol-dihydroxy-ethylene-urea) with an acidic catalyst 139 

(trade names: Reaknitt B-FV and Reaknitt Catalyst FV, respectively, received from Bezema 140 

AG, Switzerland), recommended for wet cross-linking of cellulosic textiles, were added in 141 

different percentages (0, 2.5, 5, 10, 20, 30, 50 % and 0, 0.75, 1.5, 3.3, 6.6, 10, 16.7 %, 142 

respectively) on a dry CNC basis to the CNC suspensions before casting. Both the cross-143 

linking agent and the catalyst were commercialized in water as solvent medium. The cross-144 

linking reaction of cellulose took place in the presence of the applied catalyst for about 2 days 145 

at room temperature. The thickness of films was in the range of 31-44 µm and slightly 146 

increased with increasing the concentration of the cross-linking agent. 147 

The chemical reaction between the amino-aldehyde based cross-linking agents and the 148 

hydroxyl groups of cellulose usually takes place with addition of acidic catalyst, which acts as 149 

a reaction trigger and accelerator. Acidic catalyst breaks the carbon-oxygen linkage in the N-150 

methylol group of the AA-based cross-linker with discharging of water (equation 1) and then 151 

catalyses the reaction with a hydroxyl group of cellulose (equation 2) (Rouette, 2002). 152 
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 153 

Conditioning and determining the physical and mechanical properties of the detached 154 

films were carried out in a test laboratory where the temperature and humidity were controlled 155 

to 23 C and 55 %, respectively. Since cotton-CNC and flax-CNC films containing either 156 

sorbitol or glycerol plasticizers and an amino-aldehyde based cross-linking agent were 157 

produced in a relatively wide composition range, films with selected compositions were only 158 

investigated in some of the experiments. Furthermore, the films prepared with 50 % cross-159 

linking agent content were characterized exclusively by tensile properties in order to find out 160 

whether the tensile strength was a maximum or not at a cross-linking agent concentration of 161 

30 %. 162 

2.3 Characterization of CNC films 163 

 From the suspensions, transparent and smooth thin films were cast. Transparency was 164 

characterized by the transmittance values measured at 600 nm using a Unicam UV 500 (USA) 165 

spectrophotometer. For measuring the haze, films were tested by a Color Quest XE 166 

(HunterLab, Reston, USA) spectrophotometer. Haze specifies the percentage of transmitted 167 

light that while passing through the specimen, deviates from the incident beam by more than 168 

2.5 ° (Wang, Kamal, & Rey, 2001). 169 

Morphology of the films was characterized by scanning electron microscopy (SEM) 170 

using a JEOL JSM 6380 LA equipment. SEM micrographs were taken of the fracture surface 171 

of films which were frozen in liquid nitrogen and subsequently broken. For determining the 172 

density of films, the weight of 13 specimens from each of the films in different series as well 173 
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as their area and thickness were measured. Then, for the determination of film porosity the 174 

theoretical pore-free density of films was calculated from the density of film components 175 

weighted by their mass fraction. Density values of 1.57, 1.49, 1.26 and 1.4 g/cm3 were used 176 

for the CNCs, sorbitol, glycerol and the amino-aldehyde based cross-linker, respectively. In 177 

the calculation, the density of air was neglected (Henriksson & Berglund, 2007). The 178 

following formula was used for the calculation of porosity:  179 

Porosity (%) = (theoretical density – measured density)/(theoretical density)×100       (3) 180 

Density and porosity data were used for statistical analysis, where the univariate analysis of 181 

variance (ANOVA) was applied. Parameters of the fitted trend-lines were calculated by 182 

regression analysis. Details of the statistical tests are included in the Supporting Information. 183 

Contact angles were measured at 23 °C and 55 % relative humidity using a Rame-Hart 184 

contact angle goniometer (USA) with a camera and a drop image standard software of DT-185 

Acquire. Liquid drops of 20 μl were deposited on each film and the image of drops was 186 

captured immediately by the camera. The values reported are the average of contact angles of 187 

at least 5 drops for each sample. To calculate the surface energy of the CNC films, contact 188 

angle measurement was carried out with two liquid probes: distilled water and diiodomethane 189 

(Sigma Aldrich, 99%); and from the equilibrium contact angle data the surface free energy 190 

was calculated by the Owens-Wendt formula (Owens & Wendt, 1969): 191 

           𝛾𝐿𝑉(𝑐𝑜𝑠 + 1) = 2 (𝛾𝐿𝑉
𝑑 𝛾𝑆𝑉

𝑑 )
1/2

+ 2 (𝛾𝐿𝑉
𝑝 𝛾𝑆𝑉

𝑝 )
1/2

                                        (4) 192 

where LV, LV
d and LV

p are the surface tension of the liquid and that of its dispersion and polar 193 

components, respectively, used in the measurements. The values of LV, LV
d and LV

p used for 194 

the calculations are 72.8, 21.8 and 51.0 mJ/m2 for distilled water, and 51.0, 51.0 and 0 mJ/m2 195 

for diiodomethane.SV
d and SV

p are the dispersion and polar components of the surface free 196 
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energy of films, respectively. The total surface free energy of the films was calculated by the 197 

following equation:  198 

                            
p

SV

d

SV

total

S  
                                                                          (5)

 199 

Moisture regain (based on the dry weight of films) at 55 % relative humidity was 200 

determined using a Denver Instrument IR-35 (USA) moisture analyzer. Two sinking tests 201 

were developed for characterising the swelling behaviour of CNC films in liquid water. (1) In 202 

the dynamic sinking test, a film sample (1×1 cm) was laid gently onto the surface of distilled 203 

water (50 ml) under orbital shaking at 100 rpm (Boeco OS 20, Germany) at room 204 

temperature, and the elapsed time for the complete immersion of the film (if any) was 205 

recorded. (2) In the static sinking test the measurement introduced above was carried out but 206 

without shaking and for 24 hours. The extent of swelling was characterized by measuring the 207 

water uptake of films. After floating or immersion for 24 hours, the excess water was 208 

removed from the surface of samples and the mass was measured. Water uptake as a 209 

percentage of dry weight (weight of water/initial dry weight of the film) was calculated. 210 

Furthermore, each of the films from the static sinking test was dried and the percentage 211 

weight loss of the initial dry weight of films was also calculated in order to characterize the 212 

delamination of nanocrystals and/or dissolution of components in the nanocomposite films (if 213 

any) occurring during the 24-hour test. 214 

The crystalline structure of cellulose in films plasticized with both plasticizers and prepared 215 

with or without 10 or 30 % cross-linking agent content was characterized by X-ray diffraction 216 

(XRD) using a Philips PW 1710/PW 1820 diffractometer at 2θ=4-40°. To define the 217 

crystallinity index (CrI), the following equation was used:  218 

                    CrI (%) =(1-IAM/I200)×100                                                                           (6) 219 

where IAM denotes the intensity of diffraction at 2θ=18°, and I200  represents the maximum 220 

intensity of the 200 lattice diffractions at 2θ=22.7° (Segal, Creely, Martin, & Conrad, 1959). 221 
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Mechanical properties were examined using an Instron 5566 tensile tester (USA) 222 

equipped with a 500 N load cell. At least ten specimens with the size of 7×50 mm were cut 223 

from each of the films in different series. They were tested at 10 mm/min cross-head speed 224 

and with 20 mm span length. Linear trend lines were fitted to the initial steep sections of 225 

typical stress strain curves of films, in order to determine the Young’s modulus of films (He et 226 

al., 2016).  227 

3. Results  228 

3.1 Transparency and haziness  229 

Smooth and transparent films with a thickness of c.a. 40 µm were cast from the aqueous 230 

suspensions of cellulose nanocrystals, and then the water content was evaporated. Besides 231 

plasticizers (i.e. glycerol and sorbitol), different amount of an amino-aldehyde cross-linker 232 

was added to the suspension in order to investigate the effect of wet cross-linking on the 233 

structure and properties of the cotton-CNC and flax-CNC films. UV-vis spectra proved that 234 

none of the films has significant absorbance in the wavelength range of visible light (Table 1), 235 

and they are transparent and colourless. However, there are some differences in the 236 

transparency of films. The flax-CNC films and the films plasticized with glycerol are less 237 

transparent than the cotton-CNC and the sorbitol plasticized films, respectively. Also, when 238 

adding cross-linking agent, the transmittance values at 600 nm are slightly increasing. 239 

 240 

 241 

 242 

 243 

 244 
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Table 1  245 

Transmittance and crystallinity index of cotton-CNC and flax-CNC films plasticized with 246 

sorbitol or glycerol and prepared with different amount of amino-aldehyde based cross-247 

linking agent. 248 

Characte-

ristics 

Source 

of 

cellulose 

Type of 

plasticizer 

  

Concentration of cross-linking agent (%) 

 0 2.5 5 10 20 30 

Transmittance 

(%)a 

Cotton Sorbitol 73 80 82 83 83 83 

Glycerol 74 79 82 81 78 80 

Flax Sorbitol 72 75 77 79 79 80 

Glycerol 70 72 73 78 75 74 

Crystallinity 

index (%)b,c 

Cotton Sorbitol 93.6 - d  -  93.3 - 91.7 

Glycerol 93.3 - - 88.0 - 87.3 

Flax Sorbitol 89.7 - - 85.4 - 85.2 

Glycerol 88.4 - - 83.6 - 83.5 

a At 600 nm 249 

b Determined by XRD.  250 

c Crystallinity of the cellulose sources, namely the ground bleached cotton and flax: 75.9 % and 251 

64.8 %, respectively (Csiszár & Nagy, 2017). 252 

d - Not determined. 253 

Haze-index data correlate well with the transmittance values and reveal in general that 254 

cotton-CNC films are less hazy (Fig. 1a) than the flax-CNC films (Fig. 1b), and the haze-255 

indices are in the range of 8-20 % and 14-27 %, respectively. Moreover, films plasticized with 256 

sorbitol show lower haze-index (8-23 %) than those plasticized with glycerol (12-27 %). 257 
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Thus, the flax-CNC films plasticized by glycerol show the highest values of haze-index. 258 

However, they are still transparent.  259 
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 260 

Fig. 1. Haze-index of cotton-CNC (a) and flax-CNC (b) films, plasticized with sorbitol or 261 

glycerol, as a function of amino-aldehyde based cross-linker concentration. 262 

Concerning the effect of cross-linking agent on the haziness of films, it is obvious that 263 

when the AA cross-linking agent concentration increases, the haze-index first decreases and 264 

then levels off at 10 % cross-linking agent content (Fig. 1). The tendency and shape of curves 265 

are similar for each series of films, however, the minimum values are different for each. The 266 

lowest haze-index is around 8 and 12 % for cotton-CNC films and 13 and 16 % for flax-CNC 267 

films plasticized with sorbitol and glycerol, respectively. Furthermore, the addition of cross-268 

linking agent leads to formation of films with very smooth surface compared to the structure 269 

of other surfaces. This can also influence haziness, since a rougher surface deflects more light 270 

than a smoother one (Roy Choudhury, 2014).  271 

3.2 Morphology  272 

 Scanning electron micrographs were taken to characterize the morphology of CNC 273 

films by examining the surfaces fractured at the boiling point of liquid nitrogen. The effects of 274 
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cellulose source (cotton, flax), type of plasticizer (sorbitol, glycerol) and the amount of 275 

amino-aldehyde cross-linking agent were examined. The scanning electron micrographs of 276 

plasticized films from different sources confirmed our earlier observations that neither the 277 

source of cellulose nor the type of plasticizer affect significantly the inner morphology and 278 

structure of CNC films (Csiszár & Nagy, 2017). Adding 30 % cross-linking agent to the CNC 279 

suspension before film casting, however, leads to a slightly rougher fractured surface, as it is 280 

demonstrated for flax-CNC films in Fig. 2. Consequently, films with cross-linking agent have 281 

a slightly tougher structure, which presumably occurs because of cross-linked nanocrystals. 282 

Researchers examined SEM images of CNC dry film cross sections and found that cellulose 283 

nanocrystals exhibit a self-assembled, closely packed layer-by-layer arrangement in dry films 284 

(Abraham et al., 2016; Csiszár & Nagy, 2017), which can be seen also in the SEM images of 285 

Fig. 2. This phenomenon was explained by the liquid crystalline properties and anti-parallel 286 

crystalline arrangement of cellulose Iβ structure, which was proven by 13C-NMR 287 

spectroscopy (Larsson, Hult, Wickholm, Pettersson, & Iversen, 1999).  288 
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 289 

Fig. 2. Scanning electron photomicrographs of the fractured surface of flax-CNC films: (a) 290 

plasticized with 20 % glycerol; (b) plasticized with 20 % glycerol and cross-linked with 30 % 291 

amino-aldehyde based cross-linking agent.    292 

Changes in morphology of CNC-nanocomposite films were further characterized by 293 

measuring density and porosity values. Density data of the sorbitol plasticized cotton-CNC 294 

films (Fig. 3a) reveal that by increasing the concentration of cross-linking agent to 20 %, 295 

density grows from 1.30 ± 0.04 to 1.36 ± 0.03 g/cm3, as AA fills the pores between 296 

nanocrystals. By further increasing the cross-linking agent content from 20 to 30 %, the 297 

density values slightly decrease after passing the maximum reached at about 20 %. This is 298 
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accounted for the lower density of cross-linking agent (1.4 g/cm3) compared to that of 299 

cellulose nanocrystals (1.57 g/cm3). Films plasticized by glycerol and made from flax-CNC 300 

follow similar trends, but differences are observed mainly between the values of cotton-CNC 301 

and flax CNC films (Figs. 3a and b). Density of MFC films (around 1.34 g/cm3) (Henriksson 302 

& Berglund, 2007) was found to be similar to that of CNC films.  303 
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Fig. 3. Density (a, b) and porosity (c, d) of CNC films from cotton (a, c) and flax (b, c), 306 

plasticized with sorbitol or glycerol, as a function of amino-aldehyde based cross-linker 307 

concentration. 308 
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Sorbitol plasticized films show higher density than glycerol plasticized ones. 309 

Moreover, cotton-CNC films are denser than flax-CNC films (Figs. 3a and b). Results fit with 310 

an earlier study on plasticized CNC films (Csiszár & Nagy, 2017). It should be mentioned that 311 

the standard deviation of each sample is notable. However, statistical analysis showed that 312 

cellulose source, plasticizer type and also the amount of cross-linking agent significantly 313 

affects  the density values of films (p<0.05). An empirically selected quadratic polynomial 314 

correlation was fitted in the graph of density versus the amount of cross-linking agent, and 315 

maximum density is reached at approximately 20 % cross-linking agent content. Analysis of 316 

variance indicated that there is no significant difference between the shapes of the fitted 317 

curves (Table S1 and S2, Supplementary Material).  318 

Porosity of films was also defined (Henriksson & Berglund, 2007). The difference 319 

between porosity of cotton- and flax-CNC films could be explained by the higher chance of 320 

aggregation for flax-CNC films, which was proven earlier (Csiszár & Nagy, 2017). Thus, 321 

cotton-CNC films are denser and less porous than flax-CNC films, containing more 322 

aggregated regions. Statistical analysis showed that cellulose source significantly affects the 323 

porosity of films (p<0.05). However, the effect of plasticizer type is not significant. An 324 

empirically selected exponentially decaying trend line was fitted in the graph of porosity 325 

versus the amount of cross-linking agent. Fitted curves for sorbitol and glycerol plasticized 326 

cotton- or flax-CNC results are joint, because of the insignificant effect of plasticizer type on 327 

film porosity. Analysis of variance showed that there is no significant difference between the 328 

shape of the fitted curves (Table S3 and S4 in Supplementary Material). In a previous study, 329 

similar results were presented concerning the effect of cellulose source and plasticizer on the 330 

porosity of CNC films (Csiszár & Nagy, 2017). When increasing the amount of cross-linking 331 

agent, porosity values decrease: from around 16 to 12, and from 25 to 21 % for cotton- and 332 

flax-CNC films, respectively (Figs. 3c and d). This is caused by the cross-linking agent that 333 
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fills the porous parts of CNC films. Minimum porosity is reached at c.a. 20 % cross-linking 334 

agent content, in all four groups. Thus, porosity can be adjusted by setting the cross-linker 335 

amount. Less porous structure adsorbs less water, which phenomenon was examined 336 

henceforward. 337 

The crystallinity of cellulose in some compositions of CNC films (prepared with both 338 

plasticizers at 0, 10 and 30 % AA content) was also characterized by XRD (Table 1). While in 339 

the original cotton and flax ground fibres the crystallinity of cellulose was 75.9 % and 64.8 %, 340 

respectively, the crystallinity in CNC films is significantly higher, since the acidic hydrolysis 341 

removed the non-crystalline constituents from the fibres. The values range from 83.5 % to 342 

93.6 % and depend slightly on both the cellulose source and the type of plasticizers. This 343 

means that the crystallinity of flax CNC-films and films plasticized with glycerol is slightly 344 

smaller compared to the cotton CNC-films and films plasticized with sorbitol, respectively. 345 

Furthermore, the crystallinity slightly decreases with the increasing cross-linking agent 346 

content of films. The lower crystallinity can be explained by the smaller lateral dimension of 347 

the fibrillar units in nanocrystals, which was created by interfibrillar swelling (Krässig, 1993). 348 

Swelling can disrupt the naturally existing aggregations of nanocrystals and increases the 349 

accessible surface of particles. The greater the reactive surface is, the smaller the lateral 350 

dimensions of the nanocrystals are. Consequently, the smaller lateral dimensions involve an 351 

increased interaction with the cross-linking agent and result in a more diffuse equatorial X-ray 352 

diffraction. Since flax-CNC has a higher aggregation ability, and glycerol is a better 353 

plasticizer than sorbitol (Csiszár & Nagy, 2017), the decrease in crystallinity is more 354 

pronounced in the cross-linked flax-CNC films plasticized with glycerol. More significant 355 

decrease in crystallinity of polyhydroxybutyrate (PHB) was observed due to the presence of 356 

residual amorphous PVA used as an emulsifier in the formation of PHB nanospheres (Abid, 357 

Raza, & Rehman, 2016). 358 
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3.3 Interaction with water  359 

In the next experiments the interaction of CNC films with liquid water and water 360 

vapour was investigated. First, the surface energetics of films was characterized and the 361 

dispersion (SV
d) and polar (SV

p) components of surface free energy were determined by 362 

contact angle measurements against water and diiodomethane. All cotton- and flax-CNC neat 363 

films display small water contact angles of about 16 °, indicating good wetting property and 364 

high hydrophilicity. Water contact angles of the neat cotton and flax films increase 365 

significantly from about 16 to 70 °, while the contact angles against diiodomethane decreases 366 

only by about 30-40 %, with the increasing amount of cross-linking agent in the range of 0-30 367 

% (Table 2). Based on the contact angle data, the surface free energy of CNC films was 368 

calculated. Results prove that the total surface free energy values decrease from 74-76 to 53-369 

54 mJ/m2 when increasing the amount of cross-linking agent (Table 2). However, the total 370 

surface free energy values hardly differ for the films derived from different cellulose sources 371 

and cast with different plasticizers. For neat CNC films prepared by spin-coating, the 372 

equilibrium water and diiodomethane contact of angles of 23.7 and 27.8 °, respectively, were 373 

measured, and a slightly lower surface free energy (58 mJ/m2) was calculated (Aulin et al., 374 

2009).   375 

Changes in the dispersion (SV
d) and polar (SV

p) components of surface free energy as 376 

a function of concentration of cross-linking agent are presented in Figs. 4 a and b for cotton-377 

CNC and flax-CNC films, respectively. The shape of the relevant curves appears to be 378 

roughly the same for all films, indicating that only the amount of cross-linking agent affects 379 

the surface energetic. By increasing the concentration of cross-linking agent, the dispersion 380 

component of the surface free energy (SV
d) increases slightly (from about 42 to 47 mJ/m2), 381 

while the polar component (SV
p) decreases drastically (from about 33 to 5 mJ/m2). Since the 382 

SV
d values of the surface free energy are larger than the SV

p ones for both the neat and 383 
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composite films, the surface of CNC films is basic in character and has an electron donor 384 

property.   385 

Table 2 386 

Contact angles against water and diiodomethane, and surface free energy of cotton-CNC and 387 

flax-CNC films, plasticized with sorbitol or glycerol and prepared with different amount of 388 

amino-aldehyde based cross-linking agent. 389 

Characte-

ristics 

Source 

of 

cellulose 

Type of 

plasticizer 

  

Concentration of cross-linking agent (%) 

 

 0 2.5 5 10 20 30 

Water 

contact 

angle (°) 

Cotton Sorbitol 17 ± 2 20 ± 3 25 ± 3 33 ± 2 37 ± 1 70 ± 4 

Glycerol 16 ± 4 18 ± 1 23 ± 2 31 ± 3 33 ± 3 66 ± 2 

Flax Sorbitol 16 ± 3 21 ± 4 28 ± 3 31 ± 4 36 ± 5 70 ± 1 

Glycerol 17 ± 2 18 ± 2 29 ± 1 32 ± 3 35 ± 2 68 ± 2 

Diiodo-

methane 

contact 

angle (°) 

Cotton Sorbitol 39 ± 3 34 ± 3 32 ± 2 28 ± 2 26 ± 2 22 ± 1 

Glycerol 31 ± 2 30 ± 3 26 ± 2 25 ± 2 24 ± 2 22 ± 3 

Flax Sorbitol 33 ± 3 28 ± 1 26 ± 3 25 ± 3 24 ± 3 22 ± 2 

Glycerol 29 ± 2 28 ± 2 24 ± 2 24 ± 3 23 ± 2 21 ± 3 

Surface 

free energy 

(mJ/m2) 

Cotton Sorbitol 74 74 73 70 68 53 

Glycerol 76 76 74 71 71 54 

Flax Sorbitol 76 75 73 71 69 53 

Glycerol 76 76 72 71 70 54 

 390 
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Fig. 4. Dispersion (SV
d) and polar components (SV

p) of surface free energy of cotton-CNC (a) 392 

and flax-CNC (b) films, plasticized with sorbitol or glycerol, as a function of amino-aldehyde 393 

based cross-linker concentration. 394 

Moisture regain is related to the accessible internal surface in the conditioned cotton 395 

fibre (Bertoniere & King, 1992; Krässig, 1993). Moisture regain at 55 % relative humidity 396 

reveals that CNC films with more cross-linking agent absorb less water. Data in Figs. 5a and 397 

b decrease gradually from about 4 to 2 %. The deposition of cross-linking agent on the surface 398 

of cellulose nanocrystals and between the nanocrystals decreases the porosity of films (Figs. 399 

3c and d) and also the available internal cellulose surfaces for water vapour sorption, resulting 400 

in a lower amount of absorbed water (Figs. 5a and b). There is no difference in moisture 401 

regain of cotton-CNC and flax-CNC films, thus the source of cellulose and the type of 402 

plasticizer do not affect the moisture regain values, whereas their dependence on the 403 

concentration of AA cross-linker is obvious. The shape of curves in Figs 5a and b is similar, 404 

indicating that each film with the same cross-linking agent content absorbs water vapour at 405 

approximately the same rate. Due to the cross-linking reaction at higher concentrations, the 406 

amount of accessible hydroxyl groups on the surface of nanocrystals decreases and, as a 407 

result, the interaction of cellulose with water is hindered. Thus, cross-linking suppresses the 408 
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water sorption of CNC films, and the moisture regain data suggest a decrease in the internal 409 

surface in the conditioned CNC films.  410 
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 411 

Fig. 5. Moisture regain of cotton-CNC (a) and flax-CNC films (b), plasticized with sorbitol or 412 

glycerol, as a function of amino-aldehyde based cross-linker concentration. 413 

Results of dynamic sinking test (Fig. 6a) reveal that progressive cross-linking causes 414 

an increase in sinking time. Immersion of films laid onto the surface of distilled water 415 

depends largely on the surface energetic and morphology of films. All changes in these 416 

parameters that occurred during cross-linking affect the sinking behaviour of films. Sinking 417 

time as a function of the amount of cross-linker shows a general growing trend, which is 418 

evident from the data of all four series of films (Fig. 6a). Sinking time data were higher for 419 

cotton-CNC films (11-30 min) than for flax-CNC films (4-17 min), which can be attributed to 420 

the higher porosity of the flax-CNC films (Fig. 3 d). Sorbitol plasticized films show higher 421 

values (6-30 min) than films made with glycerol (4-22 min). The highest sinking time (30 422 

min) was measured for the sorbitol plasticized cotton-CNC film with 20 % cross-linking agent 423 

content. It has to be mentioned that Fig. 6a does not show the data of films with 30 % cross-424 

linking agent, since they do not immerse at all during the 2-hour dynamic test.  425 
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Furthermore, it was also observed that the treatment in water under orbital shaking 426 

disintegrates the films at lower concentrations of cross-linking agent (0, 2, 5 and 10 %) into 427 

cellulose nanocrystals and their aggregates during the course of two hours. However, cross-428 

linking agent with a concentration of 20 % or more prevents delamination and preserves the 429 

original shape of films. At higher concentrations of a cross-linker, besides the filling of pores,  430 

another process, i.e. cross-linking also occurs (Frick & Harper, 1982) resulting in a water 431 

resistant CNC film. For spin-coated films, a heat-treatment at 90 °C for 4 hours was applied to 432 

avoid delamination upon exposure to an aqueous solution (Aulin et al., 2009).  433 

To investigate further the interaction of films with water, we developed a method to 434 

measure the water uptake of films. For textiles and fibres, the method of water of imbibition 435 

provides similar (but not identical) information on water holding capacity and reflects the 436 

internal volume of the fibres in the water-swollen state (Bertoniere, Martin, Florine, & 437 

Rowland, 1972). For films, the values of water uptake derived from the static sinking test can 438 

be related to the internal volume of cellulose in the swollen state and can also be used for 439 

characterizing the rate of swelling. From the results of water uptake plotted in Fig. 6b it 440 

appears that maximum swelling occurs at 10 % cross-linking agent concentration, the values 441 

are higher for the flax-CNC films (160 and 130 %) than for the cotton-CNC ones (150 and 442 

100 %) and also higher for the glycerol plasticized films than for the sorbitol plasticized ones 443 

(160 and 150 % vs. 130 and 100 %, respectively). Results also reveal that with increasing the 444 

concentration of cross-linking agent from 10 to 20 % the water uptake decreases abruptly. 445 

Then the water uptake levels off at about 20 % cross-linking agent content. This correlates 446 

well with the tendencies of film porosity in Figs. 3c and d, since both porosity and water 447 

uptake decrease with increasing cross-linking agent content and the minimum values in both 448 

are reached at 20 % cross-linking agent content. In addition, the films with 20 and 30 % cross-449 
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linker content display similar swelling behaviour, their water uptake is under 10 %, indicating 450 

a compact and tightly bound structure.  451 

It is also obvious that when the time of sinking or the water uptake are plotted against 452 

cross-linking agent concentration in Figs 6a and b, respectively, the differences between the 453 

films tested become much more apparent than in the relationships obtained in the preceding 454 

experiments. It means that the extent of properties mentioned here depends not only on the 455 

concentration of cross-linking agent, but also on the source of cellulose and the type of 456 

plasticizers.  457 

It was observed that films with lower cross-linking agent content (0, 2.5 and 5 %) have 458 

‘disappeared’ during the course of treatment, which may result from the delamination of 459 

nanocrystals by a progressive and infinite swelling of films. However, films with a cross-460 

linking agent concentration of 10 % or more retain their shape and besides the water uptake, 461 

the dried weight can also be determined. The results in Fig. 6c reveal the weight loss of films 462 

at equal cross-linking agent content that occurred over the course of 24 hours is very similar, 463 

indicating that neither the source of cellulose nor the type of plasticizer affects the data. Thus, 464 

the extent of weight loss depends only on the concentration of cross linking agent. The most 465 

water resistant films contain 30 % of cross-linking agent and their weight decreases only by 466 

about 5 %. At 10 % of cross-linking agent, however, about the 20 weight % of films is 467 

released, which may be attributed to the removal of plasticizer and/or the disruption of the 468 

edges of films. Information from swelling experiments gives further evidence about the wet-469 

curing of nanocrystals with an amino-aldehyde based compound.470 
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 471 

Fig. 6. Results of sinking tests of cotton-CNC and flax-CNC films plasticized with sorbitol or glycerol, as a function of the amount of amino-472 

aldehyde based cross-linking agent. Dynamic sinking test: (a) sinking time as a function of cross-linking agent content (0, 2.5, 5, 10 and 20 %). 473 

Static sinking test at 10, 20 and 30 % cross-linking agent content: (b) water uptake as a percentage of dry weight of CNC film by swelling over 474 

the course of 24-hours; c) weight loss of CNC films caused by sinking test over the course of 24-hours. Calculation of values (%) in Figs. b and c 475 

was based on the initial dry weight of films. 476 
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3.4 Mechanical properties of the CNC nanocomposite films   477 

Tensile properties of CNC films were also tested but in a slightly wider concentration 478 

range of the cross-linker (0-50 %). Results in Figs 7a and b reveal that the tensile strength of 479 

neat films (0 %) increases from about 18-32 MPa to around 40 MPa and then decreases with 480 

increasing cross-linking agent concentration. The maximum tensile strength values can be 481 

reached at 30 % cross-linker content for all the films tested. The elongation-at-break values 482 

also show a maximum (2.5-4 %) at a cross-linking agent concentration of 2.5 % and then 483 

decrease sharply. It can be assumed that a small amount of cross-linking agent works also as a 484 

plasticizer for nanocellulose (Henriksson & Berglund, 2007). Results in the former chapters 485 

proved that a concentration of 2.5-5 % is not enough for building a cross-linked structure 486 

between the cellulose nanocrystals. Nevertheless, by penetrating into the connection points 487 

between the nanocrystals during the course of a simultaneous casting-wet curing and covalent 488 

bonding to the accessible hydroxyl groups of cellulose surfaces, the cross-linking agent can 489 

prevent the development of a hydrogen bonding network in CNC films. Since this hydrogen 490 

bonded structure is responsible for the stiffness of films, cross-linking agent at low 491 

concentrations contributes to slipping of nanocrystals on each other. However, at higher 492 

concentrations the stiffness of films is higher and the elongation-at-break values decrease to 493 

0.3-1.2 %. This proves that at higher cross-linking agent concentration (> 5 %) cellulose 494 

nanocrystals are cross-linked in CNC films.  495 

The modulus of films was determined from the initial slope of typical stress-strain 496 

curves (Table 3). It was found that modulus increases (from 3-6 GPa to 9-11 GPa) with the 497 

increasing amount of cross-linking agent in films. The maximum modulus value achieved was 498 

higher for cotton-CNC (c.a. 11 GPa) then for flax-CNC (c.a. 9 GPa). The type of plasticizer 499 

does not especially affect the values, however, at lower cross-linking agent concentrations, 500 

some diversity with respect to modulus can be observed.  501 
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Furthermore, the moduli in Table 3 show correlations with the crystallinity indices in 502 

Table 1 since films with higher extent of crystallinity tend to have higher modulus. The 503 

correlation coefficients were found to be 0.5943, 0.3527 and 0.6489 for the films prepared 504 

with 0, 10 and 30 % cross-linking agent, respectively. 505 
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Fig. 7. Tensile strength (a, b) and elongation at break (c, d) of CNC films from cotton (a, c) 509 

and flax (b, d), plasticized with sorbitol or glycerol, made with different amount of cross-510 

linker. The uncertainty of data is represented by a 95 % confidence interval. 511 

 512 
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Table 3 513 

Young’s modulus (GPa) of cotton-CNC and flax-CNC films plasticized with sorbitol or 514 

glycerol and prepared with different amount of amino-aldehyde based cross-linking agent. 515 

Concentration 

of cross-linking 

agent (%) 

Source of cellulose 

Cotton  Flax  

Type of plasticizer 

Sorbitol Glycerol Sorbitol Glycerol 

0 5.56 ± 0.53 4.19 ± 0.61 5.01 ± 0.45 3.21 ± 0.32 

2.5 2.76 ± 0.74 2.23 ± 0.71 3.12 ± 0.39 2.12 ± 0.81 

5 3.53 ± 0.55 2.61 ± 0.58 4.03 ± 0.58 2.53 ± 0.74 

10 4.89 ± 0.81 4.07 ± 0.72 5.47 ± 0.61 3.51 ± 0.81 

20 8.37 ± 0.32 5.61 ± 0.39 6.41 ± 0.76 5.27 ± 0.32 

30 9.91 ± 0.81 6.83 ± 0.76 8.72 ± 0.72 7.39 ± 0.55 

50 11.22 ± 0.32 10.57 ± 0.45 9.03 ± 0.71 8.52 ± 0.53 

 516 

The effect of cross-linking of nanocellulose with different reagents was also reported 517 

in the scientific literature. When nanopaper was cross-linked by first soaking it in 16 wt % 518 

citric acid solution in the presence of 1 wt % sodium hypophosphate (pH 2) overnight and 519 

then curing at 160 °C for 10 min in a hot-press, its mechanical properties were not improved 520 

in dry state, but the modulus was increased from 5.3 to 8.5 GPa. Furthermore, the wet 521 

strength of the cross-linked nanopaper improved  significantly and an almost ten-fold increase 522 

in the stress to failure value was detected (Quellmalz & Mihranyan, 2015).  523 
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4. Discussion 524 

Transparent and smooth nanocomposite films were prepared from cellulose 525 

nanocrystals extracted from cotton and flax fibres, with different plasticizers (sorbitol, 526 

glycerol) and an amino-aldehyde based cross-linking agent in a wide composition range (0-30 527 

wt %), during the course of a simultaneous casting and wet curing. The effect of cross-linker 528 

concentration on the morphology, optical and tensile properties of films was investigated, and 529 

the interaction of films with liquid water and water vapour was also characterized by various 530 

measurements. Results showed that properties of films were substantially affected by the 531 

concentration of cross-linking agent, but were only slightly influenced by the source of 532 

cellulose and type of plasticizers.   533 

While the transparency of films was unaffected, the haze-index decreased significantly 534 

with the increasing concentration of cross-linker. SEM micrographs revealed that the 535 

fractured surface of the cross-liked films became slightly rougher comparing to the neat 536 

counterparts. Density increased and porosity decreased when cross-linking occurred, and a 537 

maximum density and a minimum porosity were reached at an amino-aldehyde concentration 538 

of 20 %. Furthermore, the crystallinity of cellulose in the composite films slightly decreased 539 

with the increasing concentration of cross-linking agent. Besides the cross-linking agent 540 

content, the source of cellulose and the type of plasticizer had also an effect on the 541 

crystallinity.  542 

All cotton- and flax-CNC neat films displayed small water contact angles of about 16 543 

°, indicating good wetting property and high hydrophilicity. Significantly higher water contact 544 

angles were measured for the cross linked films (66-70 ° at 30 % cross-linker concentration) 545 

and simultaneously a drastic decrease (from about 33 to 5 mJ/m2) in the polar component 546 

(SV
p) of surface free energy was calculated. The surface of CNC films is basic in character 547 

and has an electron donor property. Cross-liked films with a less porous structure absorbed 548 
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less water. Moisture regain decreased with the increasing amount of the cross-linking agent, 549 

indicating a decrease in the internal surface in the conditioned CNC films. Furthermore, 550 

cross-linking suppressed the swelling determined by water uptake, and prevented the 551 

delamination of CNC films at a cross-linker concentration of 10 % or higher.  552 

The tensile strength of CNC films first increased from about 18-32 MPa to around 40 553 

MPa and then decreased with increasing cross-linking agent concentration. The maximum 554 

tensile strength was measured at 30 % cross-linker content. Elongation-at-break values also 555 

reached a maximum (2.5-4 %) at a cross-linking agent concentration of 2.5 %, suggesting that 556 

the small amount of cross-linking agent worked as a plasticizer for nanocellulose. All the 557 

presented results demonstrated that the structure and properties of CNC films can be modified 558 

and tuned by cross-linking with and amino-aldehyde based compound.  559 

5. Conclusions 560 

In the frame of this study, cellulose nanocrystal/amino-aldehyde biocomposite films 561 

were prepared and characterized. In the simultaneous casting and wet cross-linking process 562 

the nanocellulose particles had enough time for self-ordering and forming a compact three-563 

dimensional layered structure. The cross-linking agent made the interactions of CNC particles 564 

stronger and modified the optical and tensile properties as well as the morphology of films. 565 

Furthermore, a significant improvement in water resistance was achieved. The effect of the 566 

cross-linking agent in the applied concentration range was more significant than that of the 567 

cellulose source (cotton or flax) or the type of plasticizers (sorbitol or glycerol).  568 
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