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ABSTRACT: Nanoparticles consist of biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) 

are promising carriers for drug molecules to improve the treatment of tuberculosis. Surface 

modifiers, such as Pluronic F127, are essential for biocompatibility and for the protection against 

particle aggregation. This study demonstrates a successful approach to conjugate Pluronic F127 

coated PLGA nanoparticles with Tuftsin, which has been reported as a macrophage-targeting 

peptide. Transformation of Pluronic F127 hydroxyl groups - which have limited reactivity - into 

aldehyde groups provide a convenient way to bind aminooxy-peptide derivatives in one step 

reaction. We have also investigated that this change has no effect on the physico-chemical 

properties of the nanoparticles. Our data showed that coating nanoparticles with Pluronic-Tuftsin 

conjugate markedly increased the internalization rate and the intracellular activity of the 

encapsulated drug candidate against Mycobacterium tuberculosis. Employing this approach, a 

large variety of peptide targeted PLGA nanoparticles can be designed for drug delivery.
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Facultative and obligate intracellular pathogens are major cause of global health threats such as 

tuberculosis, HIV/AIDS and malaria. A key target of many intracellular pathogens are 

macrophages therefore, targeted delivery to those immune cells and diseased sites has crucial 

pharmaceutical benefits. Host recognition of surface modified nano- and microparticles and 

sufficient phagocytosis of the drug- or vaccine-loaded particulate systems provide attractive 

therapeutic approaches for prevention and elimination of persistent infections
1, 2

.  

 

Macrophages express a broad range of receptors such as Fc and scavenger receptors, that mediate 

their interactions as well as cellular uptake. Conjugation of such receptor-binding ligands onto 

the surface of polymeric nanoparticles can promote macrophage uptake and improve specific 

delivery through receptor mediated endocytosis. Tuftsin, a natural immunostimulatory 

tetrapeptide (Thr-Lys-Pro-Arg) has been found to increase macrophage phagocytosis, splenocyte 

proliferation, bactericidal activity and has been reported also as a macrophage-targeting peptide
3, 

4, 5, 6
. During the past decade, a new group of sequential oligopeptide carriers has been developed 

in our laboratory: oligotuftsin derivatives consisting of a (Thr-Lys-Pro-Lys-Gly) unit
7
. Based on 

further structure-activity relationship studies, another pentapeptide derivative of Tuftsin (Thr-

Lys-Pro-Pro-Arg) has been described that represents a higher affinity antagonist and bounds to 

the Tuftsin receptors more avidly than Tuftsin
8
. It was also reported that the chemical 

modification of the C-terminus to a carboxamide results in loss of biological function.  

 

Putting these observations together, a new sequence was utilized in this study: (Thr-Lys-Pro-Lys-

Gly)2-Thr-Lys-Pro-Pro-Arg (T10Tp). The conjugation site of the targeting molecule was designed 

on the N-terminus of the peptide.  

 

Over the years, a variety of synthetic polymer based nanoparticles (NPs) have been tested as 

delivery platforms, of which poly(D,L-lactic-co-glycolic acid) (PLGA) have been extensively 

investigated due to its ability to essentially modify the biodistribution of an active compound
9, 10, 

11, 12
. PLGA is synthesized from ring-opening polymerization of cyclic lactide and glycolide 

monomers and degrades via hydrolysis of its ester bonds in water
13

. Drug delivery and release 

can be efficiently controlled by the size and composition of the NP and with surface modification 

they can be designed for host cell directed delivery
14

. During the NP formulation process 

surfactants are frequently used to stabilize and reduce the surface tension of PLGA
15

. Pluronic 

F127 (PF127) is a non-ionic poloxamer type surfactant consisting of hydrophilic poly(ethylene 

oxide) (PEO) and hydrophobic poly(propylene oxide) (PPO) blocks in PEO-PPO-PEO block 

copolymer arrangement
16

. PF127 has been evaluated for numerous biomedical applications 

(recently reviewed by Akash and Rehman
17

) and due to terminal hydroxyl groups, which are 

available for conjugation, further functionalities can be added to the pharmaceutical perspectives. 

Most of the conjugation methods described in the literature, start with the reaction of PF127 with 

succinic anhydride and the resulted terminal carboxylic groups are then used in a reaction with 

amino or hydroxyl groups of different ligands such as chitosan, peptides, dendrimers, etc
18

. 

Another synthetic way is to prepare PF127-amine via reductive amination of oxidized polymer 

and then react terminal amino groups to form amide-conjugates
19, 20

. These methods involve three 

or more synthetic steps and the coupling agents and other reactants can remain in the polymer 

product. To overcome the obstacles a new synthetic route was designed in this study based on a 
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one-step quantitave reaction of aminooxy compounds with aldehydes. This conjugation technique 

does not require pre-activation and as reaction media water can be used.   

 

Aldehyde terminated PF127 was synthesized according to the method described for PEO by 

Harris et al.
19

. Briefly, PF127 was dissolved in dry DMSO and oxidized with acetic anhydride to 

result aldehyde end groups. After precipitation and filtration, the aldehyde content of the polymer 

was measured by Purpald analysis
21

, which revealed that the conversion rate of hydroxyl groups 

of PF127 to aldehyde groups was 69%. Purpald analysis was adapted to perform a more 

convenient assay in a 96-well microplate, attaining great sensitivity with sample volume of as 

little as 80 µL. Detailed synthesis and Purpald assay together with the calibration curve are 

provided in the Supporting Information.   

 

To prepare an aminooxy-peptide, a convenient solid-phase synthetic route is available, namely 

coupling Boc-aminooxyacetic acid (Boc-Aoa) to the peptide resin followed by a standard 

cleavage procedure (see Scheme 1.). Tuftsin-derivative T10Tp was produced on Wang resin in an 

automated peptide synthesizer using Fmoc/tBu strategy with DIC/HOBt coupling reagents. The 

Boc-aminooxy-group was placed at the N-terminus of the peptide. After the final cleavage, 

compound was purified and chemically characterized by RP-HPLC and mass spectrometry 

(Aminooxyacetyl-TKPKGTKPKGTKPPR, Mav
 
calcd/found: 1694.0/1694.0, Rt: 7.6 min). 

 
Scheme 1. Outline of the synthesis of PF127-aldehyde and aminooxy-Tuftsin peptide and the oxime bond 

formation on the surface of PLGA nanoparticles. 

 

Resulted aminooxy-derivative was then dissolved in dist. H2O and allowed to react with PF127-

aldehyde for 30 min. Purpald analysis revealed that the conversion of aldehyde to oxime was up 

to 90.5%.  
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To prove the appearance of the oxime bond between PF127-aldehyde polymer and aminooxy-

peptide, NMR spectroscopy was evaluated. The conjugate was subjected to NMR measurements 

carried out in DMSO-d6 solution at 23 
o
C (Figure 1 and Figure S2).  

 

 
Figure 1. Isomers of the oxime conjugate and the assignment of the NMR signals. 

 

The two triplets discernible in the 
1
H-NMR spectrum at 7.58 ppm and 7.43 ppm (with relative 

intensity of ca. 2/1 superpositioned on the broadened NH signals of the peptide fragment) were 

identified as the Ha signals originated from the oxime motifs with configurations E- and Z, 

respectively. This assignment was unambiguously evidenced by the cross-peaks in the 
1
H-

13
C-

HSQC spectrum allowing indirect detection of Ca signals at 150.2 ppm and 147.3 ppm, 

respectively, in the well-documented region characteristic for oximes. This view gains further 

support from the cross peaks generated by two-bond interactions detected by 
1
H-

13
C-HMBC 

method between Ha protons and Cb carbons disclosed at 67.1 ppm for both oximes I(E) and II(Z). 

On the other hand, assignment of Cb was based on the cross-peak generated by its three-bond 

correlation with the Hc signal which appears at 4.61 ppm as a singlet coalesced with the signal of 

Hd proton situated in a chemical environment practically identical to that of Hc. The 
1
H-

13
C-

HMBC spectrum to allow the identification of the Hb signals of I(E) and II(Z) at 3.99 ppm and 

3.95 ppm, respectively, through their cross-peaks with the previously identified Ca signals. It is of 

diagnostic importance that due to their position in the atomic sequence, exclusively Hb protons 

can be involved in not more than three-bond correlation with Ca carbon. Finally, note that in the 
1
H-

13
C-HMBC spectrum the one-bond correlations are discernible as satellites providing further 

evidence for the assignments obtained from the cross-peaks in the 
1
H-

13
C-HSQC spectrum. 

 

PLGA nanoparticles were prepared by nanoprecipitation method similar to that employed 

previously
22

. Instead of acetone, tetrahydrofuran was used during the synthesis because even 

trace amount of acetone can react with the aminooxy-peptide and consequently decrease the yield 

of the desired oxime product. Organic solution of PLGA was added to aqueous solution of 

PF127–aldehyde and stirred till the complete evaporation of THF. The aqueous PLGA sol was 

further purified by centrifugation and allowed to react with the aminooxy-peptide (Scheme 1.). 

Purpald analysis of PF127-aldehyde coated NPs revealed, that 1 mg NP lyophilizate contained 35 

nmol aldehyde, while the conversion rate of aldehyde to oxime on the surface of the NPs was up 

to 98%. The formed peptide coated NPs were then characterized by dynamic light scattering 

(DLS) and atomic force microscopy (AFM) which showed spherical particle shape (Figure S3) 
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with an average hydrodynamic diameter of 145 nm and a polydispersity of 0.11. The loading 

amount of peptide on the surface of NPs as measured by amino acid analysis, was in correlation 

with the data of Purpald analysis. Namely, 1 mg NP lyophilizate contained 38 nmol peptide. 

(Detailed NP preparation and characterization can be found in the Supporting information). 

 

To provide the proof of principle, an antitubercular agent was encapsulated into PLGA NPs and 

into peptide-Pluronic coated PLGA NPs, and the internalization rate together with the 

intracellular killing of Mycobacterium tuberculosis H37Rv (Mtb) was compared (both 

measurements are detailed in the Supporting Information). As drug candidate, a previously 

described coumaron derivative (6-hydroxy-2-(3-phenylprop-2-yn-1-ylidene)-2,3-dihydro-1-

benzofuran-3-one, shown as TB515) was employed, which was found to be active against 

virulent Mtb H37Rv bacteria at a relatively low minimal inhibitory concentration (19 µM)
23

. The 

possible target of TB515 drug candidate is the species-specific loop of M. tuberculosis dUTPase 

enzyme (EC 3.6.1.23; Rv2697), which plays an important role in preventive DNA repair 

mechanism and thymidilate biosynthesis, and essentially required for mycobacterial growth
24

. 

Moreover, the excellent fluorescent property of TB515, which is essential for flow cytometry, 

emphasises the use of TB515 compound to determine the cellular uptake rate even in its 

nanoparticulated forms without the need of further fluorescent labelling.  

 

TB515 drug candidate was dissolved in the PLGA/THF organic solution and was added to the 

aqueous solution of PF127-aldehyde followed by the conjugation with the aminooxy-peptide. 

Drug loaded nanoparticles were purified and characterized as described above. TB515 containing 

systems were found to have somewhat increased average diameter of 200 nm, along with 0.15 

polydispersity. This size increase can be interpreted by the broader size distribution of the 

particles indicated by the polydispersity causing the shifting of the determined size. Drug content 

of the NPs was determined spectrophotometrically, which revealed that TB515 content was 3.5 

w/w %.  

 

Cellular uptake of MonoMac6 monocytes, that can be considered as a human host cell model, 

was studied by flow cytometry. Cells were treated with the drug loaded, peptide conjugated 

nanoparticles (TB515-PLGA-T10Tp) and for comparison, unconjugated TB515-PLGA NPs and 

free TB515 compound. After trypsination, intracellular fluorescence intensity of the cells was 

measured by a BD LSR II flow cytometer. As shown in Figure 2. significantly higher uptake rate 

was measured for the peptide conjugated nanoparticle (TB515-PLGA-T10Tp) than for 

unconjugated TB515-PLGA, which result indicates that Tuftsin peptide labelling increased the 

internalization of the nanoparticles.  
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Figure 2. Internalization rate of drug loaded PLGA nanoparticles. Monomac6 human monocytes were treated with 

TB515 drug candidate and TB515 containing peptide conjugated and unconjugated PLGA nanoparticles. The 

intracellular fluorescent intensity was measured by flow cytometry. 

 

Intracellular killing efficacy of the nanoparticles was measured on Mtb H37Rv infected 

MonoMac6 human monocytes as described previously
25

. TB515 compound alone is not active 

against the intracellular bacteria. In contrast, PLGA encapsulation is an effective method to 

improve the intracellular antitubercular effect (Figure 3). Results also showed that Tuftsin peptide 

conjugation further enhanced the intracellular killing efficacy which can be the consequence of 

the higher internalization rate observed for the peptide conjugated nanoparticles.  
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Figure 3. Inhibition of intracellular Mycobacterium tuberculosis by peptide conjugated and unconjugated NPs. 

Cultured MonoMac6 cells were infected with Mtb H37Rv bacteria and treated with the compounds. As control, 

untreated cells were used. TB515 containing peptide conjugated PLGA NPs were more effective than unconjugated 

NPs against intracellular Mtb bacillus and expressively lower the number of detectable mycobacterial colonies, while 

free TB515 drug candidate was unable to penetrate effectively and to kill intracellular bacteria. 

 

In conclusion, we report here a convenient synthetic route to obtain peptide conjugated PLGA 

nanoparticles together with diagnostic NMR data providing unambiguous evidence for the 

presence of oxime bond connecting PF127 polymer with Tuftsin peptide chain. Peptide 

conjugation significantly increased the internalization rate to human monocytes and nevertheless, 
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intensify the antibacterial effect of an entrapped drug molecule against intracellular 

Mycobacterium tuberculosis.  

 

Supporting Information: detailed synthesis and characterization of the compounds, NMR 

spectra, NP preparation and characterization, detailed description of the biological assays. This 

material is available free of charge via the Internet at http://pubs.acs.org. 
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