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ABSTRACT: A simply supported planar truss with N-type bracing is optimized for minimum volume 
and cost. The lower chord of the truss is horizontal, but the symmetric upper chord parts are non-
parallel and their inclination angle as well as the cross-sectional area of CHS (circular hollow section) 
rods are optimized. For the calculation of required cross-sectional area of compression struts closed 
formulae are used as a good approximation of Eurocode 3 buckling curve. A special method is 
developed for the minimum volume design considering the deflection constraint. In the case of a strong 
displacement constraint the cross-sectional areas required for the allowed deflection are larger than 
those required for stress and buckling constraints. The cost function includes the cost of material, 
cutting and grinding of CHS strut ends, assembly, welding and painting. Special mathematical methods 
are used to find the optima in the case of a numerical problem. 

Keywords: tubular truss, structural optimization, overall buckling, displacement constraint, minimum 
cost design 

1. INTRODUCTION 

The aim of the present study is to solve the optimum design problem of a truss subject to a strong 
displacement constraint. In the case of stress constraints the tension rods are designed for yield stress by 
using a safety factor for loading and the compression rods are designed for overall buckling. In the case 
of a strong displacement constraint the required cross-sectional areas are larger than those required for 
stress constraints. 

In the optimum design process of a truss the optimal value of the cross-sectional areas of struts and 
the geometric characteristics of the truss are sought which minimize an objective function and fulfil the 
design and fabrication constraints. The objective function can be the volume (weight) or cost, the design 
constraints are the limitation of stress and displacement, the fabrication constraints ease the manufacture 
(welding) process. 

In the case of an active displacement constraint a special method is developed to calculate the 
required cross-sectional areas and the truss geometry.  

It is shown that the non-parallel chords are more economic than the beam with parallel chords. 
Thus, in our case the angle of the upper chord (unknowns h9 and h13 in Figure 1) is optimized. 

Another problem is the grouping of rods having the same cross-sectional area. The design of all the 
rods having different cross-sectional areas can cause difficulties in fabrication, but the design of all the 
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rods with the same cross-sectional area would be uneconomic. Thus, the economy depends on grouping 
of rods. In our case four groups are used. 

For the minimization of structural volume or cost the cross-sectional areas of rods is needed.  The 
cross-sectional area of compression rods cannot be calculated from the Eurocode 3 buckling formulae. 
Therefore approximate formulae of Japan Road Association are used. Stress and buckling constraints 
are calculated using factored forces, whilst the deflection is calculated with forces without a safety 
factor.  

To obtain comparable optima the required cross-sectional areas are not rounded to available profiles 
and the most economic δ = D/t = 50 slenderness of CHS is used. 

The limitation of the angle between CHS struts (minimum 30°) is taken into account as a fabrication 
constraint. Another fabrication constraint is that the diameters of the chords should be larger than those 
of verticals and diagonals of the bracing. 

The effect of self mass in this comparative study is neglected. 

2. SURVEY OF SELECTED LITERATURE 

In order to illustrate the literature of the optimum design of trusses, the characteristics of some 
articles are summarized in Table 1. 
 

Table 1. Literature survey of selected journal articles about the optimization of trusses. 

Abbreviations: AISC American Institute of Steel Construction, CHS Circular Hollow Section, AASHTO American 
Assoc. of State and Highway Transportation Officials, EC3 Eurocode 3 [11], W – American wide flange beam, PSO 
particle swarm optimizer, ACO ant colony strategy, HS harmony search, MINLP mixed-integer nonlinear 
programming, alum – aluminium. 

Author(s) Examples Math. 
Method 

Mate-
rial 

Buckling 
calculation 

Cross-
section 

Constraint 

Gil 2001 [1] non-parallel chords conjugates 
gradient 

Steel EC3  stress and 
geometrical 

Tong 2001 
[2] 

10-,25-bar combina-
torial 

alum.   stress and 
fundamental 
frequency 

Makris 
2002 [3] 

3-,10-,25-,60-and 
132-bar 

strain-
energy-
density 

alum. no buckling  Displacement 

Hasancebi 
2002 [4] 

224-bar 3D 
pyramid, simply 
supported  

simulated 
annealing 

steel AISC CHS, 
W-
section 

layout optimization 

Kripakaran 
2007 [5] 

10-,18-,21-bar new 
algorithm 

steel, 
alum. 

AASHTO, 
Euler 

CHS minimum cost 

Lamberti 
2008 [6] 

18-bar cantilever, 
25-bar 3D, 45-,72-
and 200-bar 

simulated 
annealing 

steel, 
alum. 

Euler  stress, nodal 
displacement 

Silih 2008 
[7] 

non-parallel chords MINLP steel EC3 CHS minimum mass or 
cost 

Kaveh 2009 
[8] 

10-,25-,120-,200-, 
and 244-bar trans-
mission tower 

PSO,  
ACO,HS 

steel, 
alum. 

AISC  stress, nodal 
displacements 

Jármai 2004 
[9] 

Simply supported, 
parallel chords, 5, 8 
spacing 

Leap-frog, 
dynamic-Q   

steel EC3 CHS optimum height, 
effect of loads, min. 
volume 

 
Remarks. (1) In trusses the compression members should be designed against overall buckling. The 

use of Euler-formula gives unsafe design, since it does not take into account the effect of initial 
imperfections and residual stresses. Therefore buckling formulae of Eurocode 3 or another up-to-date 
improved buckling formulae should be used.  
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(2) The type of the investigated cross section should be given, since it has been shown [10] that the 
cross-sectional form affects the optima significantly. 

3. MINIMUM VOLUME DESIGN OF THE TUBULAR TRUSS WITH NON-PARALLEL CHORDS 

Relatively simple formulae can be derived for trusses to minimize the structural volume and fulfil a 
displacement constraint. 
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Figure 1. The simply supported truss with non-parallel chords. 

The truss rods are divided into n-groups having the same cross-sectional areas, so 

 AA ii           i = 1…n (1) 

and the displacement constraint is given by 

 
0

1
w

LsS

EA
w

i i

iii   
 (2) 

where E is the elastic modulus, Si  is the rod force, si is the rod force from the unit force acting at the 
midspan, Li is the rod length, wo is the admissible deflection. 

From  equation (2) one obtains 

 
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iii LsS

Ew
A

0

1
 (3) 

The structural volume is calculated as 
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where 

  
i i

iii

i
ii

LsS
vLv


 21 ,  (5) 

In the minimum volume design the truss geometry is sought, which minimizes  

 211 vvV   (6) 

In the case of the simply supported truss shown in Figure 1 the spacing is constant, the non-parallel 
upper chord is determined by variable heights h9 and h13. The truss is subject to a set of vertical static 
forces F acting on the upper nodes. The displacement of the central lower node is prescribed. It is 
supposed that all the truss nodes are restrained against transverse deformation. 
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The variables to be optimized are the heights h9 and h13  as well as the cross sectional areas of rods 
(A and μi). 

The calculations show that, in the case of a strong displacement constraint the necessary rod cross-
sectional areas are so large that the stress constraints on tension and overall buckling are fulfilled. In 
spite of this fact these constraints should be checked. 

To facilitate the welding of nodes for tubular trusses a geometric fabrication constraint should be 
considered that the minimal angle between rods should be 300, in our case (Figure 1) 

  30tantan 9
1 a

h  (7) 

from which 

 173230tan9  ah mm (8) 

and 

 
3

60tan 4

   (9) 

These constraints are in our case always active. 
The rod forces and lengths (Si, si, Li) are expressed in function of h9 and the inclination angle of the 

upper chords α. 

 
 

 2
2

913 cos1sin,
1tan

1
cos,

4
tan 


 







a

hh
 (10) 

The formulae for Si, si and Li are given in Tables 2, 3, 4 and 5. 

Table 2. Characteristics of rods in the lower chord. 

i Si si Li 
1 0 0 a 
2 3.5Fa/h10 0.5a/h10 a 
3 6Fa/h11 a/h11 a 
4 7.5Fa/h12 1.5a/h12 a 

Table 3. Characteristics of rods in the upper chord. 

i Si si Li 
5 

cos

5.3

10h

Fa
 

cos

5.0

10h

a
 

cos

a
 

6 

cos

6

11h

Fa
 

cos11h

a
 

cos

a
 

7 

cos

5.7

12h

Fa
 

cos

5.1

12h

a
 

cos

a
 

8 

cos

8

13h

Fa
 

cos

2

13h

a
 

cos

a
 

Table 4. Characteristics of verticals. 

i Si si Li 

9 4F 0.5 h9 

10 -3.5F+S5sinα -0.5+s5sinα h10=h9+atanα 
11 -2.5F+S6sinα -0.5+s6sinα h11=h9+2atanα 
12 -1.5F+S7sinα -0.5+s7sinα h12=h9+3atanα 
13 -F+2S8sinα 2s8sinα h13 
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Table 5. Characteristics of diagonals. 

i Si si Li 

14 S5L14cosα/a s5L14cosα/a 22
9 ah   

15   10156 /sin5.2 hLSF     10156 /sin5.0 hLs   22
10 ah   

16   11167 /sin5.1 hLSF     11167 /sin5.0 hLs   22
11 ah   

17   12178 /sin5.0 hLSF     12178 /sin5.0 hLs   22
12 ah   

 

The rods are divided to four groups having the same cross-section): lower chord (1, 2, 3, 4), upper 
chord (5, 6, 7, 8), verticals (9, 10, 11, 12, 13) and diagonals (14, 15, 16, 17). 

In order to facilitate the fabrication, the lower and upper chords have the same cross-section (μ1 = μ2 = 1) 
and the optimal values of μ3 (multiplier for verticals) and  μ4 (multiplier for diagonals) are sought, 
which should be smaller than μ1. 

The components of 211 vvV   to be minimized are as follows. 

   
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With the optimum values of h9, h13, μ3 and μ4  

 144133
2

21 ,, AAAA
Ew

v
AA optopt

adm

opt    (13) 

The minimum structural volume is 

 Vmin = v1A1 (14) 

For a circular hollow section (CHS)  

 tDDDtA /,/2    (15) 

from which 

 


 D
t

A
D  ,  (16) 

In the design we should use the maximum value of δ, but it is limited to 50 [12]. In the case of 
available CHS profiles according to [13] δ is varied between 10-50. In order to obtain realistic optima in 
all cases the optimum δ = 50 is used.  

4. CHECK OF THE COMPRESSION RODS FOR OVERALL BUCKLING 

For check of overall buckling the approximate formulae of the Japan Road Association (JRA) [14] 
can be used instead of EC3 curve (b). In this case closed formulae can be given for cross-sectional sizes. 

 yfAN /  (17) 

 1     for      2.00   (18a) 

  545.0109.1        for      12.0   (18b) 
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
        for      1  (18c) 

Introducing the symbol 

 LD /100  (19)  

and using  /c  the closed formulae are as follows. 
For   c2.0   

 


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


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2

93475.14
1124572.0

c
c

   (20a) 

and for   c  
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
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
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









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 (20b) 

for CHS    

 
yE fL

SK
c

 

10
,

8100
2

4





  (21) 

where the limiting value of  δ = D/t = 50 is used. 

 
100

L
D


  (22) 

In the case of very long struts with small compressive force, the limitation of the strut slenderness 
can be governing. From the limitation of 

 max/   rLKR   (23) 

the required radius of gyration is 

 max/LKr R .           (24) 

According to [15] .180max   

KR is the strut end restraint factor, for chords KR = 0.9, for verticals and diagonals KR = 0.75 [16]. 
For the check of overall buckling the following constraint should be fulfilled for all compression rods 

 

 i

i

D
A              (25) 

where Ai is the optimum cross-sectional area for displacement constraint and Di is the required diameter 
from overall buckling calculation. 

5. THE COST FUNCTION 

The cost function contents the cost of material, cutting and grinding of CHS strut ends, assembly, 
welding and painting. 

The cost of material is given by 

 2VkK MM             (26) 

where an average specific cost of kM = 1.0 $/kg is considered, ρ = 7.85×10-6 kg/mm3 for steel. V2 is the 
actual structural volume (see equation (35)). 
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The cost of cutting and grinding of CHS strut ends is calculated with a formula proposed by Glijnis [17] 

   


sin3.02350

5.2
($)

t

D
kK CGFCG 
           (27) 

where kF = 1.0 $/min is the specific fabrication cost, 3CG  is a factor for work complexity, 

350mm/min is the cutting speed, 0.3 is the efficiency factor, diameter D and thickness t are in mm, α is 
the inclination angle of diagonal braces. 

In our case for verticals 

   3.02350
cos

1
1

95.2
3

3 t
DK CGCG 


             (28) 

For diagonals at the lower strut ends 

   3.02350

cos

1

25.2
4

4

1
41 t

DK i i
CGCG 



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             (29) 

where    

 ahahahah /tan,/tan,/tan,/tan 124.11310291               (30) 

For diagonals at the upper strut ends 

   3.02350

cos

1

25.2
4

4

1
42 t

DK i i
CGCG 



 

             (31) 

where 

 ii   90 , i = 1, 2, 3, 4            (32) 

The general formula for the welding cost is as follows [10,17,18]]  

 







 

i
wipi

n
wiwiww LCaCVCkK 3.11              (33) 

where kw [$/min] is the welding cost factor, C1 is the factor for the assembly usually taken as C1 = 1 
min/kg0.5, Θ is the factor expressing the complexity of assembly, the first member calculates the time of 
the assembly, κ is the number of structural parts to be assembled, ρV is the mass of the assembled 
structure, the second member estimates the time of welding, Cw and n are the constants given for the 
specified welding technology and weld type. 

Furthermore Cpi is the factor for the welding position (download 1, vertical 2, overhead 3), Lw is the 
weld length, the multiplier 1.3 takes into account the additional welding times (deslagging, chipping, 
changing the electrode). 

In our case kw = 1.0 $/min, Θ = 3, the cost of assembly and welding using SMAW (shielded metal 
arc welding) fillet welds is given by for verticals 

 







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

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For diagonals at the lower strut ends 

 
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For diagonals at the upper strut ends 
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The cost of painting is calculated as 

 6108.28,  xkSkK PPPP $/mm2            (38) 

The superficies to be painted is 

 



17

14
4133

12

9
3271 2288

i
i

i
iP LDhDhDDLDaS              (39) 

The total cost is given by 

 PwwWCGCGCGM KKKKKKKKK  2121             (40) 

6. NUMERICAL DATA 

Loads for displacement calculation (without safety factor) F = 120,000 N, for stress and buckling 
constraints F0 = 1.5, F = 180,000 N (safety factor of 1.5). Yield stress of steel fy = 355 MPa, elastic 
modulus E = 2.1×105 MPa, span length L = 24 m, allowable displacement at the middle of the span  
w0 = 32 mm = L/750. 

7. THE OPTIMIZATION PROCESS 

Calculate the optimum values of h9, h13, μ3 and μ4 to obtain Vmin or Kmin and fulfil the constraints on 
displacement, on minimum angle α1 [equation (8)], maximum angle α4 [equation (9)] as well as on 
stress and overall buckling. 

The ranges of unknowns are as follows: 1732 < h9 < 5000, 4000 < h13 < 8000 and h9 < h13,  
0.5 < μ3

 < 1, 0.5 < μ4 < 1. 
In the case of minimum volume design  equations (13) and (14) give the results and equations(25) 

should be fulfilled. In the case of minimum cost equation (40) should be minimized, for which 
equations (11), (12), (13), (16) and (35) should be used. 

8. RESULTS OF THE OPTIMIZATION 

The fabrication constraints [equation (7) and (8)] determine the optimal pair of unknowns h9 and h13 
as follows: for a given h9 a value of h13 smaller than h13opt gives larger v1v2, larger does not fulfil the 
fabrication constraint  equation (8). Table 6 shows the max h13 in function of h9. 

Table 6. Maximum h13 values in function of h9. Values in mm. 

h9 1750 1850 1950 2000 2100 2200 2300 

h13OPT 6340 6310 6280 6260 6220 6190 6160 

 
Using a MathCAD algorithm the following optima are determined: in the case of μ3 = μ4 = 0.6,  

h9opt = 1950, h13opt = 6280, v1v2min = 2.321×1015, Vmin = 3.454×108 mm3, Kmin = 7825 $, A1 = A2 = 3708, 
A3 = A4 = 2225 mm2.  
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The cross-sectional areas required for stress and buckling constraints are as follows: A1 = A2 = 2195, 
A3 = 2084, A4 = 2094 mm2. It can be seen that the cross-sectional areas determined for a strong 
displacement constraint are larger than those required for stress or buckling constraints. 

For comparison the optimum data for the truss of parallel chords: h9opt = h13opt = 5000 mm,  
Vmin = 5.852×108 mm3. Kmin = 11350 $. It can be seen that the truss of non-parallel chords is much more 
economic than the truss of parallel chords. 

9. CONCLUSIONS 

The optimization problem to be solved is the following: found the optimal geometry and cross-
sectional areas of rods which minimize the structural volume or cost for a simply supported tubular 
truss with non-parallel chords for a strong displacement constraint.  

For the solution of this problem a developed calculation method is used. Besides the displacement 
constraint the rods are checked for tension stress and overall buckling. It is shown that, in the case of a 
strong displacement constraint the cross-sectional areas are larger than those required for constraints on 
stress and buckling. 

The fabrication (welding) constraints on minimal angle between tubular rods (30°) have been also 
active. In the calculation of overall buckling the Eurocode 3 formulae are approximated by formulae of 
Japan Road Association enabling the explicit expression of the necessary cross-sectional area. 

Special formulae are used for the cost calculation. The cost function expresses the cost of material, 
cutting and grinding of the tubular (CHS) rod ends, assembly, welding and painting. It is shown that, in 
this case, the structural optima for minimum volume and minimum cost are the same. 
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