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Abstract

Nonhost resistance is the most common form of deseesistance exhibited by plants against
most pathogenic microorganisms. Type | nonhoststasce is symptomless (i.e. no
macroscopically visible cell/tissue death), imptyian early halt of pathogen growth. The
timing/speed of defences is much more rapid dutypg | nonhost resistance than during
type Il nonhost and host (“gene-for-gene”) resistarassociated with a hypersensitive
response (localized necrosis, HR). However, theham@em(s) underlying symptomless (type
I) nonhost resistance is not entirely understooeteHve assessed accumulation dynamics of
the reactive oxygen species superoxide @uring interactions of plants with a range of
biotrophic and hemibiotrophic pathogens resultingsusceptibility, symptomless nonhost
resistance or host resistance with HR. Our resliltsv that the timing of macroscopically
detectable superoxide accumulation (1-4 days afiaculation, DAI) is always associated
with the speed of the defense response (symptomlassost resistance vs. host resistance
with HR) in inoculated leaves. The relatively eaflyDAI) superoxide accumulation during
symptomless nonhost resistance of barley to whaatery mildew Blumeria graminid. sp.
tritici) is localized to mesophyll chloroplasts of ino¢athleaves and coupled to enhanced
NADPH oxidase (EC 1.6.3.1) activity and transientreases in expression of genes
regulating superoxide levels and cell death (supéeo dismutaseHvSOD1 and BAX
inhibitor-1, HvBI-1). Importantly, the partial suppression of symp&sa nonhost resistance
of barley to wheat powdery mildew by heat shock {@9 45 sec) and antioxidant (SOD and
catalase) treatments points to a functional rolsupieroxide in symptomless (type 1) nonhost

resistance.
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1. Introduction

Plants are generally resistant to a wide raoig@otential pathogens present in the
environment meaning that nonhost resistance operatiall cultivars of a given plant species
is effective against all races of a particular pgn (Heath, 2000; Gill et al., 2015; Lee et al.,
2017). Due to its durability, nonhost resistance haen considered as a potential means of
effective pathogen control. Understanding its madmas is crucial for breeding disease
resistant cultivars (Gill et al., 2015). Nonhossistance is manifested in several obstacles,
including presence/absence of e.g. plant surfagmldgy features required to initiate
pathogen growth, preformed barriers like the celllwcuticle (surface waxes), actin
microfilaments, products of glucosinolate metabuolisand induced defense responses, e.g.
lignin accumulation, production of antimicrobialskd phytoalexins and induction of
pathogenesis-related (PR) proteins (Thordal-Chrssie 2003; Mysore and Ryu, 2004; Gill et
al., 2015; Lee et al., 2017 and references herein).

The typical form of nonhost resistance (typeithout macroscopic symptoms) could
result from the initial plant defense response regjanicrobial invaders involving recognition
of pathogen-associated molecular patterns (PAM&s), called PAMP-triggered immunity
(PTI) (Jones and Dangl, 2006; Boller and Felix, 208iks and Marcel, 2009 Although
adapted pathogens suppress this reaction in thsis by the activity of effector proteins, the
typical form of host resistance (i.e. race-cultiwecific “gene-for-gene” resistance) may
develop as a second line of plant defense. Thadsis known as effector-triggered immunity
(ETI), mediated by the activity of pathogen effestoecognized by plant resistance (R)
proteins (Jones and Dangl, 2006; Dangl et al., R0TBe consequence of ETI is the
elicitation of a resistance reaction, often asdediawith localized programmed cell/tissue

death (PCD) at infection sites (hypersensitive easp, HR), ultimately limiting pathogen
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spread (Hammond-Kosack and Jones, 1997). In faohost resistance can be also associated
with an HR (type Il nonhost resistance) implyingade of ETI in both host and nonhost
resistance (Mysore and Ryu, 2004; Gill et al., 2Qde et al., 2017 and references herein).
However, the symptomless (no macroscopic HR) typerhost resistance is probably the
most common among nonhost-pathogen interactions@kdyand Ryu, 2004). During type |
nonhost resistance the plant does not show anpleisymptoms after inoculation with a
nonadapted pathogen, implying that pathogen grosvthalted early, as a consequence of
preformed and/or inducible defenses, including Ritlcontrast, during the slower type II
nonhost resistance, as in many cases of hostaresest{ETI), an HR (localized necrosis) is
triggered because the pathogen can disarm thddysts of defense and is recognized by the
plant only in later stages of pathogenesis (Mysoré Ryu, 2004). HR during both nonhost
and host resistance share similar signaling presggsg. the accumulation of reactive oxygen
species (ROS). Importantly, ROS have a dual rolenduplant defense to infections: 1)
higher ROS concentrations confer inhibition/killingf invading pathogens along with
promoting PCD of infected plant cells (HR) and @tide cross linking of cell wall
components (penetration resistance) 2) low ROS amgrations act as signhals inducing
antioxidants and pathogenesis-related genes in fiéznes adjacent to infection sites (Levine
et al., 1994; Thordal-Christensen et al., 1997; @atl., 2000; Torres et al., 2005; Hafez et al.,
2012).

The first reports on the role of the ROS hgenmo peroxide (kD.) during type Il (HR-
associated) nonhost resistance found enhance@, &tcumulation during HR-associated
nonhost resistance to plant pathogenic bact&seydomonaspp.) (Bestwick et al., 1998;
Yoda et al., 2009). Further research emphasizegitlatal role of HO, generated in plant
cell organelles (peroxisomes, chloroplasts) durldiB-associated nonhost resistance to

bacteria (Zurbriggen et al., 2009; Rojas et al}20The role of the ROS superoxide,{Qts
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dismutation by e.g. superoxide dismutases [EC 1.1p.generates #D,, Halliwell and
Gutteridge, 2015) in HR-associated nonhost resistdras been also documented. During
type Il (HR-associated) nonhost resistance inGapsicum annuuffanthomonas campestris
pv. vesicatoriainteraction, both @ and HO, accumulate much earlier than during HR-
associated host resistance to a differént campestrispathovar (Kwak et al., 2009).
Furthermore, inactivation of genes (encoding NADBKidase and Rac GTPase) that
determinein planta superoxide generation leads to suppression of $Heesated nonhost
resistance to bacterial and oomycete pathogensh{das et al., 2003; Moeder et al., 2005;
An et al., 2017).

As regards the role of ROS in symptomlesseg(typonhost resistance, it is known that
accumulation of KO, but not Q" is induced during nonhost resistance of barley beat
powdery mildew Blumeria graminisf. sp. tritici, Bgt) at cellular sites of attempted fungal
penetration in the leaf epidermis (HiuckelhovenlgtZ901a). A similar pattern of localized
H,0O, accumulation was also associated with symptomlestost resistance of cowpea
(Vigna unguiculatato the cucurbit powdery mildetrysiphe cichoracearurfMellersh et al.,
2002). These results suggest a role fgdHn directly inhibiting pathogen penetration at the
epidermis during symptomless (type I) nonhost tasie to powdery mildews. However,; O
generated in plant tissues distal to pathogen lattaight also influence defense signaling
during symptomless nonhost resistance. Trujillale{2004a) found that O was detectable
in epidermal cells distal from attacked cells iml&gaand wheat exhibiting nonhost resistance
to the powdery mildew8gt andB. graminisf. sp. hordei (Bgh), respectively, suggesting a
role for Q" in the signaling process leading to macroscopictimptomless (type 1) nonhost
resistance.

We have shown previously that macroscopicatyptomless host resistance (without

HR) can be induced to biotrophic and hemibiotropbéthogens (powdery mildews, rusts,
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bacteria) by external treatments (riboflavin-metime, xanthine-xanthine oxidase) that
generate @ one to three days after inoculation. However,dame treatments applied later
induce host resistance with HR (El-Zahaby et @04). This is in line with the enhanced
accumulation of @ and HO, correlating with HR development during bacteridtined host
resistance, a process accompanied by a drop ioxatdnt levels evident e.g. in chloroplasts
(Grosskinsky et al., 2012). In fact, symptomlessHiR-associated host resistance of barley to
its powdery mildew correlates with an earlier vatet Q° accumulation in mesophyll
chloroplasts beneath infection sites (Huckelhoved Kogel, 1998). In addition, we have
recently demonstrated that the graft-transmissiblenptomless host resistance of cherry
pepper Capsicum annuumar. cerasiforme to its powdery mildew L(eveillula tauricg is
coupled to constitutive, NADPH oxidase-associatgdg@cumulation (Albert et al., 2017).

To elucidate the possible role 0 On symptomless (type |) nonhost resistance, here
we assess the dynamics of superoxide accumulationngd several plant-pathogen
interactions (infections by [hemi]biotrophic patleog) that result either in susceptibility,
symptomless nonhost resistance or host resistamtean HR. We further focus on the
functional role of @ during symptomless nonhost and HR-type host asist of barley to
powdery mildews. Our results show that the timinfg neacroscopically detectable ,O
accumulation in inoculated tissues is always assediwith the speed of the defense response
(symptomless nonhost resistance vs. host resistaitbean HR). Importantly, the partial
suppression of symptomless nonhost resistancertdybi@ wheat powdery mildewB@t) by
heat shock and antioxidant treatments points tmational role of @ in symptomless (type

[) nonhost resistance.

2. Materials and methods
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2.1 Plants, pathogens and inoculation

The barleyHlordeum vulgargcv. Ingrid (wild type,Mlo), and near isogenic backcross
lines IngridMlal2, and Ingridmlo5 were kindly supplied by Ralph Hiickelhoven (Techhic
University of Munich, Germany). Their generationsaescribed previously (see e.g. Harrach
et al. 2008 and references herein). The barleyBotond, wheat Triticum aestivur cvs.
Buzogany and MV-Emma and potatdolanum tuberosuntvs. Hopehely and White Lady
are commercially available in Hungary. The grapev{ditis vinifergd cvs. Nimrang and
Kishmish vatkana were a kind gift of Pal Kozma (isity of Pécs, Hungary). Plants were
grown under greenhouse conditions (18-23 °C, 1&digperiod with a supplemental light of
160 pmol it s, 75-80 % relative humidity).

The barley powdery mildewB{umeria graminisf. sp.horde)) used in this study (race
A6) was kindly supplied by Ralph Hiickelhoven (TechhUniversity of Munich, Germany).
Race 77 of wheat leaf ru€®{ccinia triticina,syn.P. reconditaf. sp.tritici) (El-Zahaby et al.,
2004) and the K-39 isolate of the potato late lliggthogen RPhytophthora infestanga gift
of Jozsef Bakonyi, Plant Protection Institute, CARAS, Budapest, Hungary) were used.
Isolates of wheat powdery mildeBlumeria graminid. sp.tritici), barley leaf rustRuccinia
horde) and grapevine powdery mildeviErysiphe necatgr pathogens used in the present
study were collected and isolated in greenhouséiseoPlant Protection Institute, CAR, HAS,
Budapest, Hungary.

Barley and wheat powdery mildewB. (graminisf. sp.hordei, BghandB. graminisf.
sp. tritici, Bgt) were maintained on susceptible host plants (ane Ingrid Mlo and wheat
cv. Buzogany, respectively) in growth chambers () 60% relative humidity, 16 h
photoperiod of 100 pmol ths?). Barley and wheat leaf rust®.(hordeiandP. triticina) and

E. necatorwere maintained on their susceptible hosts (backeyIngrid Mlo, wheat cv.
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Buzogany and grapevine cv. Nimrang, respectivehden greenhouse conditions described
above.P. infestansvas maintained on a selective pea-broth agar (RBAD °C.

Barley and wheat powdery mildewBgh andBgt) were inoculated onto primary leaves
of 7 day-old barley and wheat plants to give arcitation density of ca. 50 conidia mfras
described by Harrach et al. (2008). In barley ihai@d withBgh andBgt fungal structures
were visualized for light microscopy with Pelikalu® staining by incubating leaves in 10%
(v/v) blue ink (Pelikan AG) dissolved in 25% (v/agetic acid for 1 min (Huckelhoven and
Kogel, 1998). For microscopic imaging of fungalustures and © accumulation in barley
leaf tissues an Olympus BX51 light microscope wsasdu Barley and wheat leaf rusi. (
hordei and P. triticina) were inoculated onto primary leaves of 5 day-mddley and wheat
plants by applying uredospore suspensions in 186 (starch (ca. 20-25 mg uredospores per
100 ml suspension). Grapevine powdery mild@&w rfecatoy was inoculated to susceptible
host plants by touching the adaxial epidermis dlyfexpanded leaves with sporulating
colonies on the surface of source leaves (Hoffmetred., 2008)P. infestansvas inoculated
onto potato leaves with a filtered sporangial sosjmn (50 000 sporangia Mlessentially as

described (Cohen and Reuveni, 1983).

2.2 Detection of superoxide (O,") and NADPH oxidase enzyme activity

Superoxide (@) accumulation in barley leaves inoculated wilgt or Bgh was
detected by histochemical staining with 0.1 % (wifityo blue tetrazolium chloride (NBT)
(Sigma Aldrich Co.) by vacuum infiltration accordito the procedure of Adam et al. (1989).
Infiltrated leaf samples were incubated under dgnglfor 20 min and subsequently cleared in
a solution containing 0.15 % (w/v) trichloroaceticid in ethanol: chloroform 4:1 (v/v) and

stored in 50 % (v/v) glycerol until photography @ké&lhoven and Kogel, 1998).,0
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accumulation (percentage of NBT-stained area (@) l@as quantified by using the ImageJ
program (https://imagej.nih.gov/ij/).

NADPH oxidase (EC 1.6.3.1) enzyme activity inlbgreaves either un-inoculated or
inoculated withBgt or Bghwas determined as described by Adam et al. (186@)Xia et al.
(2009) with modifications. Samples were homogeniretbur volumes of extraction buffer
(50 mM Tris—HCI, pH 7.5, 0.25 M sucrose, 1 mM asooracid, 1 mM EDTA, 0.6% [w/V]
PVP and 1 mM PMSF [phenylmethane sulfonyl fluor)dePellets obtained by
ultracentrifugation were resuspended in 0.5 mlastion buffer before immediate use in
photometric assays at 530 nm. 50 ul supernatantagded to 2 ml assay buffer (0.2 mM
NADPH, 0.3 mM NBT and 50 mM HEPES, pH 6.8). In arde detect NADPH oxidase
specific activity, horseradish superoxide dismu{@&@D, EC 1.15.1.1, 40 units MI(Sigma
Aldrich Co.) was added to the reaction mixture #reobtained activity was subtracted from

that measured without SOD.

2.3 Heat shock and treatments with antioxidants (super oxide dismutase and catalase)

Heat shock treatment of barley leaves was aclishagl essentially as described by
Barna et al. (2014). Leaves of 7 day-old intactdyaplants were immersed in 49 °C water for
45 sec 30 min before inoculation wilgt or Bgh to allow sufficient time for drying of leaf
surfaces.

Simultaneous infiltration of superoxide dismutasel catalase (SOD and CAT [EC
1.11.1.6], 2500 and 5000 units mlequivalent to 0.8 and 1.4 mg protein mtespectively)
(Sigma Aldrich Co.) into barley leaves was conddcienmediately after inoculation,

according to Hafez and Kiraly (2003).
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2.4 Gene expression analysis

Expression of genes that regulate superoxidenaglagion and cell death (superoxide
dismutaseHvSOD1and BAX inhibitor-1,HvBI-1) was monitored in barley leaves either un-
inoculated or inoculated witBgt or Bgh by reverse transcription (RT) and quantitativeal(re
time) PCR (QPCR). Total RNA extraction from un-intated and inoculated leaves was done
from 200 mg fresh leaves/sample homogenized inidiqutrogen with the aid of a
minicolumn kit according to instructions of the méarcturer (Viogene). Subsequent reverse
transcription (RT) was conducted by using a RevieftAH™ cDNA Synthesis Kit (Thermo
Fisher Scientific). gPCR reactions were run in MADEngine Opticon 2 thermocycler (MJ
Research) by employing the 2x SYBR FAST Readymiadeat (KAPA Biosystems) as
previously described (Hafezt al, 2012) except that expression of a barley ubiuwene
(HvUbi, GenBank accession M60175) was used as an intssnabl.

Oligonucleotide primers used in RT-qgPCR for afypig barley H. vulgare sequences
were the following: 5-ACCCTCGCCGACTACAACAT-3" (5 primer) and 5'-
CAGTAGTGGCGGTCGAAGTG-3" (3 primer) for a 240 bp ubiquitin cDNA fragment
(HvUDbi, GenBank M60175); 5-TCAAGGGCACCATCTTCTTC-3" '(rimer) and 5-
TTTCCGAGGTCACCAGCAT-3" (8 primer) for a 214 bp superoxide dismutase cDNA
fragment HvSOD1 or HvCSD]l GeneBank KU179438, TC109315); 5'-
ATGTTCTCGGTGCCAGTCT-3" (5primer) and 5'- GGGCGTGCTTGATGTAGTC -37(3
primer) for a 409 bp BAX inhibitor-1 cDNA fragmefiitivBI-1, GenBank AJ290421). All
oligonucleotide primers, except those FrUbi (Proelset al, 2010), were designed with the

aid of the Primer Premier 5 program (PREMIER Bioaternational).

2.5 Statistical analysis

11
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Three independent biological experiments weredaoted in each case with three
replicates per treatment. For NADPH oxidase enziattivity assays and gene expression
analysis by RT-gPCR, each biological sample coerthiat least six leaves collected from
different barley plants. Statistically significadifferences from un-inoculated control plants

were calculated by Student4est (at p< 0.05 and = 0.01).

3. Results

3.1 A relatively early accumulation of superoxide (O,") is a characteristic of

symptomless nonhost resistance of plantsto (hemi)biotr ophic pathogens

In initial experiments we have compared accumaitapatterns of superoxide {Q in
several plant-pathogen combinations that resudtitimer susceptibility, symptomless (type 1)
nonhost resistance or host resistance with a hgpsitsre response (HR, local necrotic
lesions). All of the investigated plant-pathogembinations involved biotrophic pathogens
(powdery mildews BlumeriaandErysiphespp.], rustsPucciniaspp.]) or the hemibiotrophic
potato late blight fungusPhytophthora infestans O,” accumulation was determined by
histochemical staining of inoculated leaves 1,2r 3l @lays after inoculation (DAI). Table 1
demonstrates that accumulation of ©ccurred during both symptomless nonhost resistance
and host resistance with HR but not in cases ot basceptibility with typical disease
symptoms, where superoxide was never detected. rtengly, accumulation of © always
occurred earlier during symptomless nonhost resistaas compared to HR-accompanied

host resistance.
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Fig.1la depicts the association of symptomless osintesistance of barley (cv. Ingrid
Mlal2) to wheat powdery mildewB{umeria graminid. sp.tritici, Bgt) with an early (1 DAI)
accumulation of @, as compared to barley displaying host resistamtie HR to barley
powdery mildew Blumeria graminisf. sp. hordei Bgh), where significant amounts of,O
were not detectable at 1 DAI. On the other han@, @Al massive @ accumulation in barley
leaves was evident both during symptomless nontessttance t@gt and HR-accompanied
host resistance Bgh In barley leaves cv. Ingrid (wild typ#]lo) that are susceptible gh
O," accumulation was not detected up to 2 DAI (Fig.. 1&he association of symptomless
nonhost resistance of barleyBgt and Q™ accumulation was demonstrated in three different
near isogenic lines of barley cv. Ingridil@12, Mlo andmlo5. In fact, in all of these plant-
pathogen interactions the simultaneous infiltrandiSOD and CAT (enzymes responsible for
dismutation of @ to H,O, and degradation of @, respectively) immediately after
inoculation with Bgt significantly reduced NBT staining, demonstratithg specificity of

NBT for O, detection inBgt-infected barley leaves (Fig. 1b).

3.2 Superoxide accumulation during symptomless nonhost resistance of barley to wheat

powdery mildew islocalized to mesophyll cells (chloroplasts) of inoculated leaves

In order to localize the sites of superoxide {Caccumulation during symptomless
nonhost resistance of barley By graminisf. sp. tritici (Bgt), NBT-staining (infiltration)
applied to infected leaves was investigated ondfléular level. Infiltration of the NBT
solution into leaf intercellular spaces (Adam et 4089; Hiickelhoven and Kogel, 1998), as
opposed to immersion of leaves (e.g. Grosskinshka).e2012), likely enables a more uniform
detection of @ in the entire leaf, including the mesophyll. Weudsed on mesophyll tissues

for two reasons 1) during HR-accompanied host taaste of barley (cv. Palladlal?) to

13
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Bgh superoxide accumulation has been shown to occwhloroplasts of mesophyll cells
adjacent to infection sites relatively late, at 21concomitant with HR-development) but
not at 1 DAI (Huckelhoven and Kogel, 1998), 2) dgreymptomless host resistance of barley
(cv. PallasMIg) to Bgh superoxide accumulation has been also shown twrom
chloroplasts of mesophyll cells adjacent to infactsites but already at 1 DAI (Hickelhoven
and Kogel, 1998). Importantly, the macroscopicalymptomless host resistance Ndig
barley toBgh is mechanistically similar to symptomless nonhesistance of barley tBgt
(Huckelhoven and Kogel, 1998; Truijillo et al., 2004Furthermore, we have demonstrated a
similar pattern of relatively early superoxide amedation on a macroscopic scale not only in
barley leaves displaying nonhost resistanc8do but also in several other plant-pathogen
interactions resulting in symptomless (type |) nostiresistance (see Table 1). Therefore, we
thought that the relatively early (1 DAI) accumidat of superoxide during symptomless
nonhost resistance of barleyBgt might also be localized to chloroplasts of mesdiptsils.
Indeed, at 1 DAI superoxide accumulation was cjeaisible in mesophyll chloroplasts
during symptomless nonhost resistance of barleylgrid Mlal12) to Bgt but not during HR-

accompanied host resistance of the same barleydidgh (Fig. 2).

3.3 Superoxide accumulation during symptomless nonhost resistance of barley to wheat
powdery mildew is accompanied by enhanced NADPH oxidase activity and distinct gene

expression changes

Previous observations indicate that superoxidesggimg NADPH oxidases contribute
to plant disease resistance responses, includsigtaace to powdery mildews Arabidopsis
thaliana and barley (Berrocal-Lobo et al., 2010; Proelsalet 2010). In order to test the

possible contribution of NADPH oxidases to the tietdy early, elevated superoxide {Q

14
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accumulation during symptomless nonhost resistafidearley toB. graminisf. sp. tritici
(Bgt), we assayed NADPH oxidase enzymatic activitynAnoculated and powdery mildew-
inoculated leaves of barley (cv. Ingidlal?) displaying symptomless nonhost resistance to
Bgtand HR-accompanied host resistancB.tgraminisf. sp.hordei (Bgh). We found that the
temporal pattern of NADPH oxidase activity mirrditsat of Q~ accumulation. NADPH
oxidase activity was several times higher at 1 @Ading symptomless nonhost resistance to
Bgt than during HR-accompanied host resistancBgb and in uninoculated control plants.
However, at 2 DAI, barley NADPH oxidase activity svaeimilarly high during both forms of
resistance, as compared to un-inoculated contrais 8).

In order to detect gene expression changes ieyagecific to NADPH oxidase-related
O," accumulation during symptomless nonhost resistamdggyt, we assayed expression of
genes that regulate (i.e. suppress) superoxidemadation and cell death (superoxide
dismutaseHvSOD1land BAX inhibitor-1,HvBI-1, respectively). With both genes a transient
increase in expression occurred 24 hours afterulation (HAI) in nonhost-resistant leaves,
the same time point when,Qaccumulation and elevated NADPH oxidase-activityenaso
apparent. In case of HR-accompanied host resistanBgh, elevatedHvSODlandHvBI-1
expression was evident from 12 HAI while at 24 H#¢ same high levels of gene expression
were detected as during symptomless nonhost resestto Bgt Interestingly, however,
elevated expression #fvSODlandHvBI-1 was largely retained at later time points (48 and
72 HAI) during HR-accompanied host resistanc8gt, as opposed to symptomless nonhost

resistance t@&gt (Fig. 4).

3.4 Inhibition of superoxide accumulation can suppress symptomless nonhost resistance

of barley to wheat powdery mildew
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If superoxide (@) indeed contributes to symptomless nonhost resistaf e.g. barley
to wheat powdery mildewB( graminisf. sp. tritici, Bgt), in planta inhibition of G~
accumulation should at least partially suppressfttim of resistance. We have shown earlier
that symptomless host resistance of barley tows powdery mildew B. graminisf. sp.
hordei Bgh) induced by treatments with another ROZ0} can be suppressed by superoxide
dismutase (SOD) and catalase (CAT) (Hafez and ¥ir2003). Therefore we thought that
application of the same experimental approach gimultaneous infiltration of SOD and
CAT into inoculated barley leaves) might supprdss symptomless nonhost resistance of
barley to wheat powdery mildewBgt) due, at least in part, to inhibition of superaxid
accumulation. However, SOD and CAT treatments cowtdsuppress symptomless nonhost
resistance of barley tBgt, as judged by the complete absence of macrossypiptoms of
susceptibility (i.e. colony growth of powdery milgde (data not shown), although the same
SOD and CAT treatments significantly reduced supdemaccumulation (Fig. 1b).

In order to demonstrate that inhibition of supélexaccumulation may indeed lead to
suppression of symptomless nonhost resistancerigyb@ Bgt, we considered application of
a short heat pre-treatment (heat shock) that has flgown to cause a slight decreaseJj@,H
and suppression of symptomless and HR-accompaw&drésistance of barley cv. Ingrid to
Bgh(Barna et al., 2014). We reasoned that such adheak might suppress the resistance of
barley toBgh at least in part, by reducing superoxide accutimraAccordingly, exposing
barley leaves to a heat shock (immersion in 49 @tewfor 45 seconds before inoculation
with Bgh) caused not only a partial suppression of symptembnd HR-accompanied host
resistance tdgh of two barley cv. Ingrid linesnflo5 and Mlal2, respectively) but also a
significant decline of superoxide accumulation befthe appearance of powdery mildew
disease symptoms (Fig. 5). Based on these resgkemed plausible that the same heat shock

could at least partially suppress symptomless nsintesistance of barley #8gt However,
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heat shock alone, just as SOD and CAT treatmeatsdbove), was not sufficient to cause a
suppression of this nonhost resistance on a magpasscale (i.e. powdery mildew symptoms
did not appear) (data not shown). On the other handombination of heat shock and
antioxidant (SOD and CAT) treatments seemed to kead suppression of symptomless
nonhost resistance of barleyBgt, as judged by the development of weak powdery ewild
symptoms (mycelial growth, fungal colonies) on teelband inoculated leaves (Fig. 6). The
appearance of HR-type local necrotic lesions withytelia-covered leaf parts is likely due to
limited pathogen spread in barley cells surroundi@gain sites oBgt penetration, indicating
that suppression of symptomless nonhost resistaincarley toBgt was only partial (Fig. 6).

In order to show that the appearance of weak powdeldew symptoms in barley was
indeed due to the growth &gt, we back-inoculated the mycelia and conidia isaldrom
barley leaves toBgtsusceptible wheat plants that developed visiblevdesy mildew
symptoms (data not shown). These results demoadtthat symptomless nonhost resistance
of barley toBgt can be suppressed (i.e. partially converted toeqitility), partly at least, by
inhibiting the accumulation of O.

Fig. 7a depicts the combined effect of heat sharak antioxidants (SOD and CAT) on
symptomless nonhost resistanceBtgt in three near isogenic lines of barley cv. Indiio,
Mlal2 and mlo5. Mycelial growth ofBgt was slightly but clearly enhanced in leaves of all
three barley lines exposed to heat shock, as cadpar untreated controls (full nonhost
resistance). Importantly, however, the simultandafikration of leaves with SOD and CAT
further enhanced fungal growth in heat shock prated barley, pointing to a possible
contribution of Q" to nonhost resistance. In fact, results presemédg. 7b demonstrate that
suppression of symptomless nonhost resistance deybdo Bgt by heat shock and

antioxidants (SOD and CAT) was always coupled tedaced accumulation of,0
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4. Discussion

We assessed the dynamics of accumulation ®f R®S superoxide ¢ during
interactions of plants with a range of biotrophitd ahemibiotrophic pathogens that result
either in susceptibility, symptomless (type 1) nostresistance or host resistance with an HR.
Accumulation of superoxide in infected leaves alsvagcurred earlier during symptomless
nonhost resistance, as compared to host resistititeHR, while it was never detected at
early stages of susceptibility. Therefore, our ltsssuggest that an earliepGaccumulation
might be a pivotal factor governing the developmensymptomless nonhost resistance vs.
the slower HR-type host resistance. This is suggoty previous data showing that during
several cases of nonhost vs. host resistance avem glant species (see plant-pathogen
combinations in Table 1) the timing of pathogentrieson is correlated with @
accumulation assayed in this study (Niks, 1983;Kdlioven et al., 1999; Vleeshouwers et
al., 2000; Neu et al., 2003; Trujillo et al., 2008alton et al., 2008; Hoffmann et al., 2008).
However, in case of symptomless nonhost resistaricevheat toPuccinia hordei the
correlation between pathogen restriction and&cumulation may be less tight, as resistance
has been shown to develop already by 2 DAI (Nik&33), while we could detect ;O
accumulation only at 3 DAI. It might be possiblattisuperoxide production in this particular
nonhost-pathogen combination is a secondary efédtrnatively, the nonhost resistance of
the wheat cultivar used in our experiments ("MV-Ea)rdevelops at a slower rate but in
concert with @ accumulation.

Q" was the first ROS implicated in orchestrating HReyhost resistance to oomycete,
bacterial and viral pathogens (Doke, 1983; Doke @idhshi, 1988; Adam et al., 1989).
Furthermore, we have shown previously that sympgsmhost resistance to (hemi)biotrophic

pathogens (powdery mildews, rusts, bacteria) carnbeced by externally generated O
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relatively early, 1 to 3 DAI, while the same treatmns applied later induce host resistance
with HR (El-Zahaby et al., 2004). In similar expeents, symptomless host resistance to
Tobacco mosaic virusould be induced if susceptible tobacco planteverated with a ©-
generating riboflavin-methionine solution early,tab hours after inoculation (Bacso et al.,
2011). The functional role of Oin symptomless host resistance is suggested eipebyork
of Shang et al. (2010) demonstrating that abseh€uoumber mosaic virus “dark green
islands” of systemically infected leaf tissuesretates with @ accumulation. Furthermore,
we have recently demonstrated that the graft-trésshie, symptomless host resistance of
cherry pepperGapsicum annuumar. cerasiformé to powdery mildewl(eveillula tauricg is
coupled to constitutive © accumulation even in uninfected plants (Albettal, 2017).
Taken together, the above-mentioned data and @sept results, linking a relatively early
O, accumulation to symptomless nonhost resistancef poia role of @ in inducing fast,
efficient and symptomless plant disease resistaesponses probably by inhibiting/killing
pathogens and/or participating in defense signaling

Our results showed that the relatively early AI) O, accumulation during
symptomless nonhost resistance of barley to whaatery mildew B. graminisf. sp.tritici,
Bgt) is localized to chloroplasts of mesophyll celisinoculated leaves, while at the same
time point Q~ was not detected in mesophyll chloroplasts during-associated host
resistance to barley powdery mildevB. (graminis f. sp. hordei Bgh). Interestingly,
symptomless host resistance of barle¢ih also correlates with a similar early (1 DA O
accumulation in mesophyll chloroplasts close tcecdtibn sites (Hickelhoven and Kogel,
1998). Although an antimicrobial effect of this"Gaccumulation is possible, it seems also
likely that a relatively early ROS ¢ signaling associated with chloroplasts might be a
characteristic of symptomless resistance respoofséarley to powdery mildew infections.

The central role of chloroplast-associated ROStbursearly (basal) resistance responses to
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pathogenic infections is suggested by localizedadd HO, accumulation detectable already
before HR development during bacteria-induced hesistance and accompanied by elevated
antioxidant capacity e.g. in chloroplasts (Grosskynet al., 2012). In contrast, susceptibility
to the necrotropBotrytis cinerean advanced stages of infection is coupled to mads,0,
accumulation in host cells and a severe degenaratiachloroplasts (Simon et al., 2013).
Importantly, Zabala et al. (2015) has shown thatindu PAMP-triggered immunity to
Pseudomonas syringgm. tomatoDC3000 an early chloroplastic ROS burst occursiwifh
6 HAI. However, in case of susceptibility chlorogttdargeted bacterial effectors inhibit
photosynthetic electron transport leading to desgdd&ROS production at this early stage. The
ROS signal (@ and HO,) could spread from chloroplasts to the apoplastudh activation
of O,"-generating NADPH oxidases, and from there to ajacells, leading to pathogen
resistance and/or programmed cell death (see erfpriggen et al., 2010). Interestingly, in
barley and wheat exhibiting nonhost resistance tovdery mildews Bgt and Bgh
respectively) @ can be detected in plasma membranes/cell walls fefvaepidermal cells
distal from attacked cells, suggesting a role for @ the signaling process leading to
macroscopically symptomless (type I) nonhost rass (Trujillo et al., 2004a). It is possible
that the strong © accumulation in mesophyll chloroplasts that we detd in barley
displaying nonhost resistance Byt is responsible for amplifying the weaker epidermis
derived signals described by Trujillo et al. (2004a

We found that the temporal pattern of NADPHdase enzymatic activity mirrors that
of the relatively early vs. late Oaccumulation in barley displaying symptomless rasth
resistance t@gtand HR-accompanied host resistancBdb respectively. This implies that a
substantial amount of Oformed during these resistance responses is defigen NADPH
oxidases, enzymes that are mainly responsible forpBoduction during successful plant

defenses to (hemi)biotrophic pathogens (e.g.neeet al., 1994; Berrocal-Lobo et al., 2010;
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Proels et al., 2010; Xiao et al., 2017). As regalasrole of NADPH oxidases in nonhost
resistance, silencing of two NADPH oxidase gemMsRBOHAandNbRBOHB in Nicotiana
benthamiandead to a reduction of ROS {Oand HO,) and weakening of HR-associated
nonhost resistance t@hytophthora infestang§yoshioka et al., 2003). Similar results were
obtained in tobacco where NADPH oxidase regulatias impaired by overexpression of a
dominant negative form of the ric@sRaclgene; HR-associated nonhost resistance to
Pseudomonas syringapv. maculicola ES4326 was suppressed (Moeder et al.,, 2005).
Furthermore, An et al. (2017) recently demonstréted histone acetyltransferase (Elongator)
genes control the symptomless nonhost resistancAralbidopsis thalianato bacterial
infections in part by conferring expression of a DI®H oxidase geneA(RBOHD and
accumulation of ROS. In barley, the only NADPH aage gene so far with a documented
role in disease resistance HvRBOHF2which is required for host resistance to powdery
mildew Bgh), inhibiting pathogen penetration at the epider{Ri®els et al., 2010). We found
that expression oHYRBOHF2does not change significantly during symptomlesshost
resistance t@gtand HR-accompanied host resistancBgb (data not shown) confirming the
earlier results onHVRBOHF2 transcript accumulation in barl&gh interactions
(Huckelhoven et al., 2001b). It is possible thatNA] oxidase activity is not regulated on
the transcriptional level. Alternatively, one or ra®f the five additionaHvRBOH(NADPH
oxidase) genes described in barley (Lightfoot et 2008) could be responsible for the
elevated NADPH oxidase activity during symptomlessnhost resistance and HR-
accompanied host resistance to powdery mildews.

Our experiments demonstrated gene expresdiamges in barley specific to the
NADPH oxidase-associated, relatively early”@iccumulation and symptomless nonhost
resistance t@gt We found a transient increase in expression negencoding superoxide

dismutase and the cell death regulator BAX inhibitqHvSOD1and HvBI-1) in nonhost-
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resistant leaves 24 hours after inoculation (HAYhen Q° accumulation and elevated
NADPH oxidase-activity were also detectable. Thekjuransient increases in expression of
genes that down-regulate ROS and cell death déyngptomless nonhost resistanceBgt
are a clear indication of fast, efficient defenesponses that may rapidly inhibit (kill) the
pathogen, consequently, no further expression egelgenes would be needed. On the other
hand, during HR-type host resistanc8th elevated expression BivSODlandHvBI-1 was
retained at later time points (24, 48 and 72 HARely mirroring the slower defense
responses characteristic of an HR, allowing limiteathogen spread before the final
development of resistance. In caseHvBI-1 the above-mentioned gene expression changes
have been previously described in different badelfivars by using anotheBgt race and
semiquantitative assays (Huckelhoven et al., 20&ldhmann et al., 2004). Here we could
confirm these results in cv. Ingrid by the moressare RT-gPCR. On the other hand, our
study is the first to describe the transiently ioell expression of a SOD gertévGOD)
during symptomless nonhost resistance of barlegio Although silencing oHvSOD1had
no significant influence on infection of barley Bgh (Lightfoot et al., 2017), it enabled more
intensive leaf necrotization following ROS-geneargtiherbicide stress. This suggests a role
for the CuzZn-SOD protein encoded BwSOD1in maintaining cytosolic redox status, a
possible reason for sustaining elevatddSOD1 expression during HR-associated host
resistance t@8gh as opposed to symptomless nonhost resistariggtto

Importantly, our investigations have showntt@ ™ may have a functional role in
symptomless (type I) nonhost resistance. Firstdemonstrated that a heat shock (49 C° for
45 seconds) partially suppresses symptomless anrddd&mpanied host resistance of barley
to Bgh (Barna et al., 2014) parallel to a concomitantlidecof O,” accumulation. Next we
showed that the same heat shock can partially sspmymptomless nonhost resistandggo

in three near isogenic lines of barley cv. Ingitlq, Mlal2 andmlo5. A combination of heat
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shock and antioxidant (SOD and CAT) treatmentsh&rrtenhanced fungal growth Bgt-
inoculated barley, while © levels declined. Our results also imply that hglabck may
suppress ROS, e.g.,Qby inducing antioxidant (ROS-scavenging) processe fact, Barna
et al. (2014) showed that heat shock-exposed batisglays a slight decline in B,
concomitant with an increase in CAT activity. Whegllants are exposed to heat, excessive
ROS production activates heat shock factors whialy mduce the expression of antioxidant
(ROS-scavenging) genes, a process associated wedthslress tolerance (Driedonks et al.,
2015 and references herein). Importantly, theceid heat exposure on suppressing disease
resistance of e.g. tobacco T@bacco mosaic virubas been shown to be due in part to a
stimulation of antioxidant enzymes like dehydroabate reductase and down-regulation of
O," accumulation (Kiraly et al., 2008). Taken togethierseems that heat exposure (heat
shock) of plants may suppress disease resistamdading symptomless nonhost resistance,
by mechanisms including a simultaneous down-regulabf ROS (Q°) production and
suppression of ROS accumulation (antioxidant indagt

However, besides ROS,({) other factors may also contribute to symptom(égse 1)
nonhost resistance. For example, overexpressi@ncell death suppressor geiievBI-1) in
barley epidermal cells could partially suppress pymless nonhost resistanceBgt at the
penetration stage (Eichmann et al., 2004jabidopsis mutants deficient in synthesis of
glucosinolates also display a partially suppressedhost resistance to different powdery
mildew pathogens (Bednarek et al., 2009). Recetitly central role of a transmembrane
receptor-like kinase (HvVLEMK1) in mediating symptess nonhost resistance of barley to
Bgt has been demonstrated (Rajaraman et al., 201épcsig of HYLEMK1 led to limited
colonization and sporulation of the pathogen taralar extent as shown in the present study

by exposingBgt-inoculated barley to heat shock and antioxida@&nd CAT) treatments.
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In conclusion, our results suggest a relagiedrly vs. late @ accumulation to be a
pivotal factor governing the development of symptsa (type 1) nonhost resistance vs. the
slower HR-type host resistance in various planhpaén interactions (infections by
[hemi]biotrophic pathogens). In barley, the relatwearly (1 DAI) Q™ accumulation during
symptomless nonhost resistance to wheat powdergiemil®. graminisf. sp. tritici) is
localized to mesophyll chloroplasts of inoculatedes and coupled to enhanced NADPH
oxidase activity and transient increases in exprassf genes regulating Olevels and cell
death. Finally, the suppression of symptomlesshash resistance of barley to wheat
powdery mildew Bgt) by heat shock and antioxidant treatments (i.diexing partial

susceptibility) points to a functional role op0n symptomless (type I) nonhost resistance.
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Figurelegends

Figure 1 (a) Symptomless nonhost resistance of barlégrdeum vulgarecv. Ingrid Mlal?2)

to wheat powdery mildewBlumeria graminid. sp.tritici, Bgt) is associated with a relatively
early accumulation of superoxide AQin inoculated leaves. s visualized by nitro blue
tetrazolium chloride (NBT) staining.Bgh host resistance (HR)” = host resistance with a
hypersensitive response (HR, local necrotic legiaisbarley cv. IngridMlal2 to barley
powdery mildew Blumeria graminidf. sp.hordei, Bgh). “Bgh susceptibility” = susceptibility
of barley cv. Ingrid (wild typeMlo) to Bgh DAI = days after inoculation. Repeated
experiments lead to similar resul{®) Symptomless nonhost resistanceBgt in different
near isogenic lines of barley cv. Ingrill@12, Mlo and mloH is associated with O
accumulation, as visualized by NBT staining. Simoéous infiltration of superoxide
dismutase and catalase (SOD and CAT, 2500 and &0iB9 mI*, respectively) immediately
after inoculation withBgt suppresses £accumulation, indicating the specificity of NBT for
O,". Percentage of NBT-stained leaf area was quadhtlfie the ImageJ program. Numbers

represent means + SD from three independent bidbgkperiments.

Figure 2 Symptomless nonhost resistance of barldgrdeum vulgarecv. Ingrid Mlal2) to
wheat powdery mildew Blumeria graminisf. sp. tritici, Bgt) (a) is associated with a
relatively early accumulation of superoxide (0 in mesophyll cells (chloroplasts) of
inoculated leaves(l)) and(c)]. O,is visualized by nitro blue tetrazolium chlorideising.
“Bgh host resistance (HR)” = host resistance with aehggnsitive response (HR, local
necrotic lesions) of barley cv. Ingrilal2 to barley powdery mildewBlumeria graminisf.
sp. hordei Bgh). DAI = days after inoculation. Bar ifb) = 40 um; Bar in (c) = 20 pm.

Repeated experiments lead to similar results.
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Figure 3 A relatively early elevation of the activity of NAPH oxidase, an enzyme
responsible for pathogenesis-related superoxideluyotmn, as a marker of symptomless
nonhost resistance of barlefidrdeum vulgarecv. Ingrid Mlal2) to wheat powdery mildew
(Blumeria graminisf. sp. tritici). “host resistance” = host resistance with a hypesitive
response (HR, local necrotic lesions) of barleylogrid Mlal2 to barley powdery mildew
(Blumeria graminisf. sp.horde)). DAI = days after inoculation. Columns represemans *
SD from three independent biological experimentantl ** indicate statistically significant
differences from un-inoculated control plants a @.05 and g 0.01, respectively (Student’s

t-test).

Figure 4 A relatively early, transient increase in expressid genes (assayed by RT-gPCR)
that regulate superoxide £Q accumulation and cell death (superoxide dismutdsS&0OD1
and BAX inhibitor-1,HvBI-1, respectively) during symptomless nonhost restgtarf barley
(Hordeum vulgarecv. Ingrid Mlal2) to wheat powdery mildewB{umeria graminisf. sp.
tritici ). “host resistance” = host resistance with a hypesitive response (HR, local necrotic
lesions) of barley cv. IngridMlal2 to barley powdery mildewBlumeria graminisf. sp.
horde). HAI = hours after inoculation. A relative valoé 1 represents gene expression in un-
inoculated control plants at 0 HAI. Columns represeeans = SD from three independent
biological experiments. * indicate statisticallygsificant differences from un-inoculated

controls at px 0.05 (Student’'s-test).

Figure 5 Heat shock-conferred partial suppression of bafldgrdeum vulgarecv. Ingrid)
host resistance to barley powdery mild&lugneria graminid. sp.hordei Bgh) is coupled to

reduced accumulation of superoxide;jQ(visualized by nitro blue tetrazolium chloride
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staining of inoculated leavedllo = wild type barley cv. Ingrid, susceptibleBgh mlo5and
Mlal2 = two near isogenic barley cv. Ingrid lines normakhibiting symptomlessr{lo5) or
hypersensitive-typeMlal2) host resistance tBgh DAI = days after inoculation. “heat” =
heat shock (immersing leaves in 49 °C water for s#6), 30 min before inoculation.
Percentage of NBT-stained leaf area was quantiigdthe Imaged program. Numbers

represent means + SD from three independent bidbgkperiments.

Figure 6 Partial suppression of symptomless nonhost resistah barley KHlordeum vulgare
cv. Ingrid Mlal2) to wheat powdery mildewB{umeria graminisf. sp. tritici, Bgt) by a
combination of heat shock and infiltration of artatant enzymes (superoxide dismutase and
catalase, SOD and CAT). Development of weak powdelyew symptoms (fungal colonies)
and HR-type local necrotic lesions 7 days aftercudation (DAI). The area marked by a
rectangle in the left panel is shown as a microscmpage on the right. Bar = 100 um. Heat
shock (immersing leaves in 49 °C water for 45 sea3 applied 30 min before inoculation.
Simultaneous infiltration of SOD and CAT (2500 ab@00 units mt, respectively) was

conducted immediately after inoculation. Repeatgueaments lead to similar results.

Figure 7 (a) Heat shock-conferred suppression of symptomlestasiiresistance of barley
(Hordeum vulgareev. Ingrid) to wheat powdery mildevBlumeria graminid. sp.tritici, Bgt)

is enhanced by infiltration of antioxidant enzynfssperoxide dismutase and catalase, SOD
and CAT). Growth ofBgt in infected and treated leaves 3 days after iratimnl (DAI) in
different near isogenic lines of barley cv. Ing(Mlo, Mlal2, mlo3. In the upper left panel,
growth of barley powdery mildewB{umeria graminisf. sp.hordei Bgh) in wild type barley

cv. Ingrid Mlo) is shown as a positive control of host susceiibRepeated experiments

lead to similar results(b) Suppression of symptomless nonhost resistandggtdoy heat
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shock and antioxidants in different near isogeimed of barley cv. IngridMlo, Mlal12, mlo$

is coupled to a reduced accumulation of superofdg (visualized by nitro blue tetrazolium
chloride staining of inoculated leaves). Percent#d¥BT-stained leaf area was quantified by
the ImageJ program. Numbers represent means = &bD fthree independent biological
experiments. Heat shock (immersing leaves in 4vater for 45 sec) was applied 30 min
before inoculation. Simultaneous infiltration of BGnd CAT (2500 and 5000 units Tl
respectively) was conducted immediately after imatoon. Fungal structures were visualized

by Pelikan blue staining as described in Mateiaald Methods.
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Table 1 Differential patterns of superoxide {paccumulation in infected leaf tissues during plan
pathogen interactions that result in susceptibiktR-type host resistance or symptomless (no \sibl

HR) nonhost resistance

Plant — pathogen interaction

Plant response

Superoxide (@)*

Hordeumvulgare —Blumeriagraminisf.sp.hordei, A6
cv. IngridMlo (wt)

susceptibility

- (up to 48 HAI)

H. vulgare —B. graminisf. sp.hordel, A6 host resistance (HR)?  + (44-48 HAI)
cv. IngridMlal2

H. vulgare — Blumeria graminisf. sp.tritici, nonhost resistance® + (22-24 HAI)
cv. IngridMlal2 Hungarian isolate

H. wulgare, — Puccinia hordei, Hungarian isolate  susceptibility - (up to 48 HAI)
cv. IngridMlo (wt)

H. wulgare —Puccinia hordei, Hungarian isolate  host resistance (HR)  + (44-48 HAI)
cv. Botond

H. vulgare — Puccinia triticina, race77 nonhost resistance + (22-24 HAI)
cv. Botond

Triticum aestivum —Puccinia triticina, race77
cv. Buzogany

T. aestivum —Pucciniatriticina, race77
cv. MV-Emma
T. aestivum —Puccinia hordei, Hungarian isolate

cv. MV-Emma

susceptibility
host resistance (HR)

nonhost resistance

- (up to 96 HAI)
+ (92-96 HAI)

+ (68-72 HAI)

Vitisvinifera — Erysiphe necator
cv. Nimrang Hungarian isolate
V. vinifera — Erysiphe necator

cv. Kishmish vatkana Hungarian isolate

V. vinifera —B. graminisf. sp.hordei, A6
cv. Kishmish vatkana

susceptibility

host resistance’

nonhost resistance

- (up to 48 HAI)

+ (44-48 HAI)

+ (22-24 HAI)

Solanum tuberosum
cv. Hopehely
Solanum tuberosum
cv. White Lady
Solanum tuberosum —B. graminisf.sp.hordei, A6
cv. White Lady

—Phytophthora infestans, K-39

—Phytophthora infestans, K-39

susceptibility
host resistance (HR)

nonhost resistance

- (up to 48 HAI)
+ (44-48 HAI)

+ (22-24 HAI)

'Detection of superoxide ¢O in infected leaves by nitro blue tetrazolium efde (NBT) staining at
indicated time points (HAI = hours after inoculatjoSamples are considered positive (“+”) for @hen the
percentage of NBT-stained area per leaf is mone 5 (ImageJ quantification, see Materials andndes).
Repeated experiments led to similar result8dR= hypersensitive response, localized tissue séxro

3u

nonhost resistance” = Type |, without visible HRvgptoms “‘without a macroscopically visible HR.



ACCEPTED MANUSCRIPT

1 DAI

Bgh Bgt
host resistance nonhost susceptibility
(HR) resistance



(b) Bgt
nonhost resistance

2 DA
Formazan 30.6 £4 %
e AR Mla12
Formazan 11.1£0.5%
o & Mla12 + SOD-CAT

Formazan 23.7 0.6 %

e = Mo

Formazan 1.3+04 %

Mlo + SOD-CAT

Formazan 30+ 1.3 %
e —— mlo5
o . - . > >

Formazan 8.6 0.8 %

> == mlo5 + SOD-CAT

-



ACCEPTED MANUSCRIPT

(a) I I 7 DAI I I
Bgh

Bgt
host resistance nonhost
(HR) resistance

1 DAI




pmol superoxidef g fresh leaf / min

NADPH oxidase activity | “U""ociae

1DAI

mhost resistance

mnonhost resistance

ok

2 DAl 3 DAI




Relative gene expression

Relative gene expression

0 HAI

0 HAI

6 HAI

6 HAI

HvSOD1 o un-inoculated
* % %  mhost resistance

m nonhost resistance

*
*
12 HAI 24 HAI 48 HAI 72 HAI
HvBI-1 Oun-inoculated
* )
*xXx mhost resistance
mnonhost resistance

*

12 HAI 24 HAI 48 HAI 72 HAI



Bgh - host resistance, partially suppressed

7 DAI

% €0 +S'T uezewliof

3 DAI

o -
iv.'t :

% 6'T ¥+6'0T uezewlo4

% L0 +§°C uezewliof

o

2 DAI

% T'TF T8 uezewlod

% €0 +T'T uezewiof

1 DAI

% 6'0 F6' UBZRWIO

7 DAI

Bgh - susceptibility
1 DAI

I

...‘..n.‘rl-t& L.
bl

mlo5+ heat

mlo5 mlo5+ heat mlo5 mlo.5+ heat

mlo5 mlo5+ heat

% 8'0 + '€ uezewliof

. of«f e i -

¢ _“ﬁiﬁ 4

% €T + '8 uezewliof

%60 F6'T UBZRWIo

- - o -
% S'T ¥86 uezew.lof

% 10 +'0 uezewliof

% 1'0 + €0 uezewliof

Mio

Mla12 Mla12 + heat

Mla12 + heat

Mla12 Mla12 + heat

Mla12 Mla12 + heat



ACCEPTED MANUSCRIPT

Bgt - nonhost resistance, partially suppressed

7 DAI



ACCEPTED MANUSCRIPT

(a)
Bgh - susceptibility Bgt - nonhostresistance, partially suppressed

Mia12 mlo5

mlo5+ heat

Mio + heat + SOD-CAT Mla12+ heat + SOD -CAT mlo5+ heat + SD-CAT



(b)
Bgh - susceptibility

Mio
Formazan 22.9+2.2%

Mio
Formazan 0.7+0.2%

2 DAI N— g

Mio + heat
Formazan 11.1+1.7%

Mio + heat + SOD-CAT

Formazan 1.6+0.5%

- ——
Yt —

Mia12
Formazan 31.3+4.1%

e—

Mla12 + heat
Formazan 11.7+£2.1%

Mla12+ heat + SOD -CAT

Formazan 1.2+0.4%

Bgt - nonhost resistance, partially suppressed

mlo5
Formazan 28.1+3.4%

mlo5+ heat
Formazan 13.5+1.6%

mlo5+ heat + SOD-CAT

Formazan 0.8+0.2%



PPB Kunstler et al. 2018

Superoxide (O27) accumulation contributes to symptomless (type |) nonhost resistance of
plantsto biotrophic pathogens

HIGHLIGHTS

- Early superoxide (O,7) accumulation in symptomless (type 1) nonhost resistance

- Barley-powdery mildew type | nonhost resistance: O, in mesophyll chloroplasts

- Typel nonhost resistance: NADPH oxidase activity, related gene expression changes
- Heat shock/antioxidants suppress barley-powdery mildew type | nonhost resistance

- O may have afunctional role in symptomless (type I) nonhost resistance
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