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Abstract

In this paper we introduce the generalized multi-parameter martingale BM O
spaces. The atomic decomposition of the multi-parameter martingale Hardy-
Lorentz space H, , is given. With the help of this, the dual space of H, , is
characterized as the generalized BM O space. Finally, as an application, John-
Nirenberg inequality is generalized for multi-parameters.
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1 Introduction

Martingale Hardy-Lorentz spaces HI‘Z o and Hj  defined by the quadratic and condi-
tional quadratic variation are considered. The atomic decomposition is a useful char-
acterization of martingale Hardy spaces by the help of which some duality theorems,
interpolation results and martingale inequalities can be proved. The atomic decom-
positions of five different martingale Hardy spaces (amongst others the one of H})
were given in [10]. More recently, using an idea of Abu-Shammala and Torchinsky
[1], Jiao, Xie and Zhou [7] have extended the atomic decomposition to the martingale
Hardy-Lorentz spaces H  (see also Jiao, Peng and Liu [6] and Ho [5]).
Multi-parameter martingales were investigated in several papers, see [10] and the
references therein and they can be well applied in Fourier analysis (see [11]). The
proofs for multi-parameter martingales are usually not simple adaptations of that of
the one-parameter proofs. They need new ideas. The atomic decomposition for multi-
parameter martingale Hardy space H, is more complicated and is due to the author
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[10]. In this paper we generalize the preceding result of Jiao, Xie and Zhou [7] and
characterize the atomic decomposition of the multi-parameter H;

A very classical result in harmonic analysis is that the dual of H 1 1s B MO (Fefferman
and Stein [2]). For martingale Hardy spaces see Garsia [3], Long [8] and Weisz [10].
In [10] we proved that the dual of H; is BMOs(a) if 0 < p < 1, = 1/p — 1 and
the dual of Hy is Hy if 1 < p < o00,1/p+1/p’ = 1. The same holds also for multi-
parameter Hardy spaces (see [10]). Note that the situation is very different from the
duals of the L, spaces if 0 < p < 1, because the dual of L, is trivial. More recently, in
the one-parameter case, Ho [5] characterized the dual of H; , as the space BMO;(a)
when 0 < p < 1,0 < ¢ < p,a = 1/p— 1. Later Jiao, Xie and Zhou [7] and Ren [9]
have generalized this result for all 0 < p < 2,0 < ¢ < 1. They [7] have introduced
generalized BM O, ,(a) spaces and have proved that the dual of H is BMO4(«) if
0<p<2,1<qg<oo,a=1/p—1. Asaconsequence, they [7] obtamed a generalization
of John-Nirenberg inequality, more exactly, BMOy(«) is equivalent to BMO,(«) and
BM O, 4(«) is equivalent to BM O, ,(a) (1 <r < 00). In this paper we generalize these
results to multi-parameter Hardy-Lorentz spaces and generalized BM O spaces.

2 DMartingales and dyadic Hardy spaces

For a set X # () let X¢ be its Cartesian product X x ... x X taken with itself d-times.
Let d > 1 be a fixed integer and let us introduce the following partial ordering on N¢.
For n = (ny,...,nq), m = (my,...,my) € N¥set n <mifn; <m;forall j=1,...,d.
We say that n < m if n < m and n # m. Moreover, n < m means that the inequalities
n; <mj hold forall j =1,...,d. Forn=(ny,...,ng) letn—1=(ny —1,...,ng—1).

For two arbitrary sets H,G C N? consisting of incomparable number pairs (i.e. if
n,m € H (or G) then neither of the inequalities n < m and m < n hold) we write
H < G (resp. H < @) if for all n € G there exists m € H, such that m < n (resp.
m < n). Denote by inf H the set of the number pairs m € H for which there does not
exist any n € H, n # m such that n < m. We shall use the convention inf () = co.

Let (92, A, P) be a probability space and let F = (F,,n € N%) be a non-decreasing
sequence of o-algebras with respect to the partial ordering on N?. The expectation
operator and the conditional expectation operator relative to JF,, are denoted by E and
FE,,. We suppose that

E.(fg) = E.fEng  (neN)

for all bounded U, ey izxFrn-measurable functions f and all U,,ecn iz Fn-measurable
functions g (k #1).

An integrable sequence f = (f,,n € N9) is said to be a martingale if f, is F,
measurable (n € N?) and E, f,, = f, for all n < m. For simplicity, we always suppose
that for a martingale f we have f,, = 0 if ny ---ng = 0. The stochastic basis F is said
to be regular if there exists a number R > 0 such that

fn S anl—el ..... ng—eq (n € Nd)

holds for all non-negative martingales (f,,n € N¢) and all numbers ¢; € {0,1} with
€1+ -+¢€,=1.



We briefly write L, instead of the L,(€2, A, P) space while the norm (or quasinorm)
of this space is defined by || f||, := (E|f[?)}/? (0 < p < 00). For a measurable function
f, the non-increasing rearrangement is defined by

ft) = int{p: P(SI > p) < 11
A measurable function is in the Lorentz space L,, = L, ,(2, A, P) (0 < p < 00,0 <
q < o0) if

00 _ 1/q
s o= (2 [Torfer ) 0<q=o0)

[ fllpoo = il;g)tl/pf(t) (g = 00).

It is known (see Grafakos [4]) that

00 d 1/q
e = (o [ oPun=m )" 0<qso)

[fllpoo = iugtp(lfbt)”p (g = o0).
>

We recall that L,, = L, and L,, increase as the second exponent ¢ increases, and
decrease as the first exponent p increases.

The quadratic variation and the conditional quadratic variation of a martingale
f = (fa,n € N%) are defined by

1/2 1/2
S(f) = (Z |dnf|2> ) s(f) = (Z En—l’dnflg) )

neNd neNd

respectively, where the martingale differences are given with

61‘6{071}

For 0 < p,q < oo the martingale Hardy-Lorentz spaces Hl‘iq and H; = consist of all
d-parameter martingales for which

1Lz, == 1S(F)llpg <00, [If]

respectively. It is known that ng ~ Lpgforl <p<ooand0<qg<oo.
In this paper the constants C' and C}, may vary from line to line and the constants
C, are depending only on p.

13, = [[8(f)llp.g < 00,

3 Atomic decomposition of multi-parameter Hardy
spaces

Lemma 1 Let 0 < p < o0, 0 < g < oo, (2%n) € €y, me > 0 and f > 0. Suppose that
there exists 0 < § < 1 < € < oo such that for all N € Z, f < gy + hy,
N
P(gy >2"V) < 27N Y okeryp (1)

k=—o00



and

P(hy >2V) < C27 VoY "ok (2)
k=N

Then f € L,, and
1£1l,q < ClIE )], -

Proof. It is enough to prove that
12" P(f > 2-2)7)]], < C @), -
It is easy to see that

@ P(r > 22, < €[ Play > 27, +C | Pl > 2]

The inequality
@ Py > 29, < a0l

was proved in [1] and [7]. If ¢ = oo, then

k=—o00

N 1/p
2V P(gy > 2V)P < 02NN ( > 2’“(“”2”772’) <Gy [|@*m),._

which proves the result. If 0 < ¢ < oo and p < ¢, then apply Hoélder’s inequality with
the exponent r = ¢/p and its conjugate 7’ to obtain

N 1/p
QNP(QN > 2N)1/p < Cp2N7N6 ( Z 2k'yp2k(e'y)p77£)

k=—00

N 1/pr! N 1/q
CPQN(lfe) < Z kapr’> ( Z Qk(ew)qng>

k=—o00 k=—o00

N 1/q
OpgN(1—6+7) ( Z Qk(f—v)qng> ’

IN

IN

1/p
2NP(9N >2N)l/p < 2N(1 e+7) (Z le Y)p,,P )

N 1/q
< Op2N(1—e+'y) ( Z Qk(e—v)qng> '



Hence

N
c, Z oN(1—ct+7)q Z Qk(efv)qng

1Y P(gn > 2%)7);, <
Nez k=—c0
< G, Z 2k(€—w)qng i N (1—et+7)g
keZ N=k
< Gy 2
keZ

whenever we choose 7 such that 0 < v < e — 1. The lemma is proved. =

The atomic decomposition for H,  is much more complicated in the multi-parameter
setting. In this case, instead of the co-norm of the atoms, we have to use the 2-norm.
The next theorem generalizes the atomic decomposition of H (see Weisz [10]). We [10]
generalized the stopping times for the multi-parameter setting as follows. A function
7 which maps Q into the set of subspaces of N U {oco} is said to be a stopping time
relative to (F,,n € N9) if the elements of 7(w) are incomparable for all w €  and

{ner}erF, (n € N9).

The set of stopping times will be denoted by 7. A function a € Ly is called a p-atom
if there exists a stopping time 7 such that

(i) ap:=FE,a=0if 7 &Ln
(i) lla*lly < P(r # 00)2717 (0 <p < 2).

Theorem 1 A d-parameter martingale f is in Hy (0 < p < 2,0 < ¢ < 00) if and

only if there exists a sequence (a*,k € Z) of p-atoms with associated stopping times
(1, k € Z) such that

1/q
(Z \,uk|q> < 00 and Z,ukaﬁ =f, ae (n€N, (3)

kEZ kEZ

where py, = /2 - 2571 P(7;, # 00)YP. Moreover,

1/q
et (S

kEZ

/]

where the infimum is taken over all decompositions of f of the form (3).

Proof. Assume that f € H; . Here we have to use finer stopping times than in the
one-parameter case. Let

Ty = inf {TL e N Enl{s(f)>2k} > 1/2} .



It is easy to see that

fo=Y (=)= may ae.  (neNY),

kEZ kEZ
where _
P R I
a, = ————.
Fk
For a fixed k, (a¥) is a martingale. In [10] we have shown that a* is a p-atom. For the

sake of completeness, we give a short proof here. If 7, 4 n, then obviously f,*™" = fT*,

thus (i) holds. Since Lo is isometric to HS, for (ii) we get that

E(f;kﬂ - frtk)z <E <Z E”—1|dnf|21{7'k<<n>>7'k+1}) - (A) + (B),

neNd
where
<A> = Z E(‘E’n*l|dnf|21{7—k<<n>7'k+1}1{8(f)§2k+1}>
neNd
and
(B) = Z E<En—1|dnf|21{Tk<<n>>7k+1}1{S(f)>2k+1}>-
neNd
Clearly,

(A) < 41 P(1, # 0).
It follows from the definition of 7, that if 7,y <« n, then
En—l]-{s(f)>2k+1} < 1/2

Hence

(B) = ZE(Enfl|dnf|21{fk<<n>>m1}En711{s(f>>2k+1}>

neNd

1
§E <Z En_1|dnf‘21{m<<n>>ﬂc+1}> )

neNd

IN

which implies
E(fp = i) <247 P(n, # 00).

Thus
E ((ak)?) < P(, # 00)' 727 (n € N%).

Hence there exists a function a* € Ly such that E,a* = a* (n € N?) and (ii) holds.
Next we obtain

P(ry £00) = P <sup Enligpysory > 1/2)

neNd

< 4F (sup (Enl{s(f)>2k})2) < OP(S(f) > Qk) < CP(S(f) > U),

neNd



where 2871 < < 28, If 0 < ¢ < o0, then

waz/ £ >u ) < s

Hpq-
k€EeZ keZ

If g = oo, then

sup ] < Csup28P(s(f) > 257 < C| flly -
kez poee

Conversely, if the martingale f has the above decomposition, then for an arbitrary
integer N let

= Z prak = gn + hy, (n € N%),
k=—o00
where
N-1 00
= Z ukaﬁ and h,, = Z ,ukafl.
k=—o00 k=N

Obviously, s(f) < s(g) + s(h). Since for a fixed m the sets {vy, < m % vpy1} are
disjoint and

Iu/kafl — Z(dmf>1{l/k<<m>>yk+l}’

m<n

we obtain

Pislo) >2%) < 2 s(g)lf =2 |

Z Mka

k;f

= Mok 2 Tk 7 00
22NZ/} a*|* dP = CZNZQQ’“P £ 00).

k=—o00 k=—o00

Choosing € = 2/p > 1, we obtain (1). Moreover,

o0

P(s(h) > 2N) < P(s( ZP )>0) <> P # 00),

k=N

which proves (2). By Lemma 1 we conclude that
Is(F)ll,q < C (2" P # 00) ) ||, = Cll(1i)l, -
The proof of the theorem is complete. =

If F is regular, then the previous theorem can be shown for the Hg 4 Sbaces as well.



Theorem 2 Suppose that the stochastic basis F is reqular. A d-parameter martingale
f is in H]iq (0 <p<2,0<q<o0) if and only if there exists a sequence (a*, k € Z)
of p-atoms with associated stopping times (1, k € Z) such that

1/q
<Z \uqu> < 00 and Z,ukafl =f, a.e. (neN9, (4)

keZ keZ

where g, = /2 - 2571 P(73, # 00)YP. Moreover,

1/q
L, ~ inf (Z w)

keZ
where the infimum is taken over all decompositions of f of the form (4).
Corollary 1 If F is regular, then H,  ~ Hﬁq forall0 <p<2,0<q<o0.

Note that this corollary was already proved in [10] with another method.

4 Duality theorems

In [10] we have introduced the BMO,(«) space (there it was denoted by A,(«)) and
proved that the dual of H} is BMOs(a) with 0 < p <1, @ = 1/p — 1. BMO,(«)
(1 <r < oo,a>—1/r) denotes the space of those functions f € L, for which

||f||BMOT(a) = SEFI;P(T # 00) T f - [, < oc.

We generalize these spaces as follows. A functions f € L, is in BMO, (o) (1 <r <
oo, > —1/r,0 < g < o0) if

||f” = sup ZkEZ QkP(Tk 7é 00)171/74 ||.f - kaH'r < 00
BMOy ¢(a) 1
R (S (22P(m # 00) ) !

where the supremum is taken over all stopping times 7, for which (28 P (7, # 00)!™®) €
¢,. If we take only one stopping time in the supremum of the BMO, ,(«)-norm, then
we get back the BM O, (a)-norm, i.e., || fllgr0,0) < [/l 5rr0,., () On the other hand,
if 0 < ¢ <1, then

171 o o e 2P # 20 [ fllparo, o
BMOy 4(a) = .
ET (ZkEZ (Qkp(’]—k. ;é Oo)1+a)Q) /q

so in this case BMO,(a) ~ BMO, ,(a). In case a = 0, we denote the spaces by BMO,
and BMO,,.

These spaces were first introduced and investigated in the one-parameter case by
Jiao, Xie and Zhou [7] (see also Ho [5]). They proved the one-parameter version of
Theorems 3-6. Since the following theorems can be shown similarly as in the one-
parameter case (see [7]), we omit the proofs.

)
< a0, -

8



Theorem 3 The dual space of Hy is BMOy(a), (0 <p<2,0<qg<l,a=1/p-1).
Theorem 4 The dual space of H; , is BMOy4(a), (0 < p < 2,1 < ¢ < 00,0 =
1/p—1).

Theorem 5 If F is reqular, then the dual space of H,  is BMO,(a), (0 <p <1 <
20<qg<l,a=1/p—1).

Theorem 6 If F is regular, then the dual space of H;  is BMO,4(a), (0 <p <71’ <
2, 1<g<oo,a=1/p—1).

Corollary 2 Suppose that F is reqular, 2 <r < 00,1 < ¢ < oo and a > —1/r. Then
BMOy(«v) is equivalent to BMO,(«) and BMOs4(a) is equivalent to BMO, ().

Note that the first half of Corollary 2 was proved in [10] for a = 0, i.e., BM Oy ~
BMO, (2 <r < ).
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