

1

Please refer to the following:
Kota László, Jármai Károly
Mathematical modeling of multiple tour multiple traveling salesman problem using evolutionary programming
APPLIED MATHEMATICAL MODELLING 39:(12) pp. 3410-3433. (2015)

MATHEMATICAL MODELING OF MULTIPLE TOUR

MULTIPLE TRAVELING SALESMAN PROBLEM
WITH EVOLUTIONARY PROGRAMMING

KOTA, L., JARMAI K.

Abstract: This study describes a single phase algorithm for the fixed destination
multi-depot multiple traveling salesman problem with multiple tours (mmTSP). This
problem widely appears in the field of logistics mostly in connection with
maintenance networks. In the first part we show the general model of the technical
inspection and maintenance systems, where this problem usually emerges. We
propose a mathematical model of the system’s object expert assignment with the
constraints like experts minimum and maximum capacity, constraints on experts’
maximum and daily tours. In the second part we describe the developed evolutionary
programming algorithm which solves the assignment, regarding the constraints
introducing penalty functions in the algorithm. In the last part of the paper the
convergence of the algorithm and the run times are presented.

Key words: evolutionary programming, heuristics, logistics, maintenance networks

Laszlo Kota
University of Miskolc, Department of Material Handling and Logistics, Miskolc-
Egyetemvaros, H-3515, Miskolc, Hungary, altkota@uni-miskolc.hu

Prof. Dr. Karoly Jarmai
University of Miskolc, Department of Material Handling and Logistics, Miskolc-
Egyetemvaros, H-3515, Miskolc, Hungary, altjar@uni-miskolc.hu

b r o u g h t t o y o u b y C O R EV i e w m e t a d a t a , c i t a t i o n a n d s i m i l a r p a p e r s a t c o r e . a c . u k

p r o v i d e d b y R e p o s i t o r y o f t h e A c a d e m y ' s L i b r a r y

https://core.ac.uk/display/163097508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

1. Introduction

Nowadays in the field of globalized production and service industry the
significance of the tightly integrated logistic systems are increasing. While in the
beginning mostly the production industry gets globalized, nowadays there are
multinational companies which offer even worldwide service solutions.

In the service industry the technical inspection and maintenance systems has a
great importance, because they provide safety and reliable operation of production
and service facilities. The most significant facilities are the communal services, water
supply, electricity, district heating, fuel supply, telecommunication services or even
elevators found in residential areas in large numbers.

The reliable, accident free, and economic operation require periodic technical
inspections and maintenances. In these systems the inspection generally require
specialized knowledge, sometimes it even requires special certificate. At elevators,
which inspection and maintenance are very important from the aspect of life
protection, there are governmental regulations available.

There are devices which requires periodic inspection and maintenance, for
example the safety and control devices of the electricity, gas, heat, water supply
networks, monitoring devices, critical network control devices which require on site
supervision and maintenance.

In these networks the following tasks emerges:
 an maintainer person (called as expert hereafter) have to go the site

several times in a year and to do the inspection and/or maintenance duties
there,

 the maintenance and inspection tasks requires different tools and parts
which has to transport to the site and/or back to the warehouse on time,

 the experts have to reside near the objects to reach lesser time expenditure
and cost,

 the required materials stored in several warehouses scattered in the
system,

 when an onsite non-repairable part emerge, the part has to transfer to a
repair/refurbishment facility

The main problem in these type of systems is to assign the experts to the
objects what they inspect and control them on everyday route while the expert have
to inspect the objects and have to return to his home location at the end of the day
beside with optimal number of expert to reduce the costs. This paper gives or tries to
give a solution – even if some details not mentioned here due to the lack of space - a
heuristic optimization of this problem, even usable in large scale systems.

3

2. System model of the network like inspection and maintenance systems

The network like technical inspection and maintenance systems can extend a
city, a region, a country, continent wide, or even worldwide. The duties of these
systems are a regular supervision of the objects on a given time period and
maintenance and/or repair the parts of the objects. The effective realizations of the
maintenance tasks is ensure by one or more scattered raw material and tool
warehouses and repair facilities.

The role of the logistic system is to ensure the availability of the resources -
experts, raw materials, tools- required by the technical inspection and maintenance
tasks

Virtual logistic
centre

E

O

W
R

O

O

Logistic
service
provider

E

O

S

E

O

W
R

O

O

Logistic
service
provider

E

O

S

Logistic
centre

EO

W

R

O

O

E

O

S Logistic
centre

E

O

W

R

O

O

E

O

S

Fig. 1. General structure of a technical inspection and maintenance system
(Legend: dashed lines: Information flow, normal line: material flow, E: expert, S:
supplier, O: object, R: repair facility, W: warehouse)

Regarding the geographical scatter of the required resources - experts, materials,
tools - and demands - technical inspection and maintenance -, the optimal operation
of the system have to ensure by a virtual logistic center or a company with a logistics
center where all the material and information flow centered and where the whole
system controlled.

The system is controlled by a virtual logistic center (Fig. 1.), but in smaller scale
– regional or country wide systems – the core of the system, the controller facility
could be a logistic center where the information processing and the material flow is
simultaneously present. The virtual logistic center is in an information link with all of
the system components, namely the:

4

 experts,
 warehouses,
 repair facilities,
 suppliers,
 logistic service providers, which provide the handling of transfer tasks in

the system.
The virtual logistic center is not involved in the physical material flow, it only

controls it and allocates the resources. The tasks of the virtual logistic center:
 decides which expert is chosen to the system, chooses its location,
 assigns the experts to the objects,
 schedule and register the required technical inspections and maintenances,
 chooses the location of the warehouses, repair facilities,
 chooses the suppliers,
 disposes and schedule transports to the warehouses and repair facilities,
 allocates the vehicles for transportations.
The virtual logistic center which controls the system uses complex

mathematical models and optimization processes, where it minds the operational
requirements, governmental regulations and many other conditions as constrains.

3. Mathematical model of the technical inspection and maintenance systems

 In this article only the part of the complex model of maintenance system is
shown, because the optimization covers only the object – expert assignment.
The system main parameter is the path matrix L, which shows the distances between
the system elements. In our case the path matrix is a integrated matrix, built up from
several sub-matrixes, the sub-matrices defined by the number of elements in the
system.

ܮ ൌ ൣ݈௜௝ ൧, (1)

The assignment matrix Y is one of the main output parameter of the model. The
assignment matrix:

 ܻ ൌ ௜௝ݕൣ ൧, (2)

where

 ݕ ൌ ቄ1
0

 according to the system elements are assigned together (1) or not (0),

Defining the ݕ௜௝ is the assignment task which have to be solved in this complex
system.

3.1 Objects

5

 The main parameters of the objects are:

 ݌: is the number of the objects, it is constant in this model,
 L matrix defines the location of the objects, and the distance from the other

system elements,
 ߢ௜ ሺ௜ୀଵ..௣ሻ is the mandatory inspection number per object,

The number of the technical inspections and maintenances could be prescribed by

the maintenance plan or even law or governmental regulations in some cases where
human life is endangered, like at elevators. The maintenances can’t happen in an
arbitrary period, there is a time period which has to be defined to every object when
the next maintenance task could perform.

 ߬௠ ൌ ሾ߬௜
௠ሿ௜ୀଵ..௣. (3)

The interval of the inspections fulfill the constraint

 ߬௜
௠ כ ሺߝ௜ െ 1ሻ ൑ (4) ,ߴ

where:

 ߝ௜ : is the number of the maintenance tasks of object i,
 ߴ: is the examination period.

In real life of these systems the inspection and maintenance tasks are performed
usually by the same expert so the special knowledge collected at the previous
inspections is well utilized, so the maintenance times could be shortened.

3.1 Experts

The parameters for the mathematical description of the experts are the following:
 ݏ: is the number of the experts, constant in most cases and in this model, but it

could change for example at the case of:
 expert leaving the job,
 expert employment in case of system expansion,

 expert’s number decreasing in case of system reduction it could be dynamic.,

The time required to travel between object i and j:

 ߬௜,௝ ൌ
݈௜,௝
ҧݒ
;

݅ ൌ 1. . ݌
݆ ൌ 1. . ,݌

(5)

where:
 ݈௜,௝: is the distance between the object i and j,
 ݌ : is the number of the objects,

6

 ݒҧ: the average speed of the expert.
 ܲ: is the performance of the experts, it show how much maintenance task is

performed by the expert.

Constraints:
The performance of the expert has to be between the defined minimum and

maximum values:
 ௜ܲ ௠௜௡ ൏ ௜ܲ ൏ ௜ܲ ௠௔௫, (6)

where:

 ܲ௜ ൌ ෍ቀ ଵܻଶ௜,௝ כ ௝ߝ ቁ

௣

௝ୀଵ

. (7)

The cycle time (߬௠௔௫) - generally one day – is also a constraint, in one cycle the
expert visit the objects do the inspection and return to his base location:

 ߬௧ ൌ ߬଴,ଵ
௙ ൅ ߬ଵ

௞ ൅෍൫߬௜
௞ ൅ ߬௜ିଵ,௜൯ ൅

௖೟

௜ୀଶ

߬௤,଴
௙ ൏ ߬௠௔௫, (8)

where:
 ߬௧: is the interval when the expert start from his base location, visits the objects

and return, it is generally one day at the regional or countrywide maintenance
systems and:

 ෍߬௜
௧

்

௜ୀଵ

ൌ (9) ,ߴ

where:
 ܶ: is the number of cycles in the ߴ interval,
 ߬௠௔௫ time interval of a cycle,
 ܿ௧ : the number of objects has to visit in the cycle t,

 ߬଴,ଵ
௙ : the travel time to the first object from the start location,

 ߬௤,଴
௙ : the travel time from the last object (q) to the experts base location,

 ߬௜
௞: the average inspection time of the object i.

The set of objects can be defined which have to inspect by the expert c:

 ௖ܱ ؔ ቄ݋௜ | ଵܻଶ௦,௜ ൌ 1; ݅ ൌ 1. . ݌ ቅ, (10)

7

 ห ௖ܱ ห ൌ ௖ܲ , (11)

and the subsets, the objects have to be inspected in one cycle:

 ௖ܱ

௧ ك ௦ܱ , (12)

where:
 ௦ܱ : is an ordered set, the objects assigned to the given expert, the ordering

function is:

௣݋ א ௜ܱ; ௤݋ א ௜ܱ; ௣݋ ൏ ௤݋ ݁ݎ݄݁ݓ ௢೛ݐ ൏ ௢೜, (13)ݐ

where:
 ݐ௢೛ is the inspection time of ݋௣,

 ݐ௢೜ is the inspection time of ݋௤,

so the set is ordered by the visiting time.

 | ௖ܱ

௧ | ൌ ܿ௖௧ ൑ ௖ܲ, (14)

ራ ௖ܱ

௧

்

௧ୀଵ

ൌ ௦ܱ ,
(15)

and

 ራ ௦ܱ
௧

௣

௦ୀଵ

ൌ ܱ . (16)

However the expert performs more than one inspection on an object so the

object is counted in the sets defined at (12) as many times as the number of
inspection has to be performed (Fig.2, Fig.3).

8

Fig. 2. A simple example of multiple routes with only one inspection at any object

Fig. 3. A simple example of multiple routes with two inspections at the objects

To determine the interval of the inspections the following distance functions

can be applied:

 ݀൫݋௜; ௜݋௝ห݋ א ௣ܱ
௧; ௝݋ א ௤ܱ

௧൯ ൌ ݌ െ (17) ,ݍ

so based on the constraint in eq. (4):

 ݉݅݊൛݀൫݋௜; ௜݋௝ห݋ א ௣ܱ

௧; ௝݋ א ௤ܱ
௧൯ൟ ൒ ߬௜

௠. (18)

So the path travelled by the expert i in a cycle t can be describe as:

9

 ݈௜
௧ ൌ ݈଴,ை೔೟ሺଵሻ ൅ ෍ ቀ݈ை೔೟ሺ௖ሻ,ை೔೟ሺ௖ାଵሻቁ ൅

หை೔
೟หିଵ

௖ୀଵ

݈ை೔೟ሺหை೔೟หሻ,଴,
(19)

and the total path travelled by the expert i can be described as:

 ݈௜
் ൌ෍൦݈଴,ை೔೟ሺଵሻ ൅ ෍ ቀ݈ை೔೟ሺ௖ሻ,ை೔೟ሺ௖ାଵሻቁ ൅

หை೔
೟หିଵ

௖ୀଵ

݈ை೔೟൫หை೔೟ห൯,଴൪

்

௧ୀଵ

ൌ෍݈௣௧
்

௧ୀଵ

. (20)

The expenditures (C) of the experts (S) in a given period (T) can described as:

ௌܥ ൌ ቎෍൭෍ ௝݈
௧

்

௧ୀଵ

൱

௦

௝ୀଵ

቏ כ ܿ௨ ൅ ቎෍ ௝ܲ

௦

௝ୀଵ

቏ כ ܿ௩ (21)

where:
 ܿ௨: is the specific cost for one kilometer,
 ܿ௩: the specific cost for an object.

Further in the article the specific cost is calculated with the multiplier 1, so only the
distance is considered.
The target of the optimization is:

ௌܥ ՜݉݅݊, (22)

the expenditures has to be minimal.
Constraints are described in the following equations: (6), (7), (8), (9)

4 Literature on the multi-depot multiple travelling salesman problem

The problem area of the technical inspection and maintenance systems
discussed here is closest to the multiple travelling salesman problems (mTSP).
Within the mTSP it is the fixed destination multiple depot multiple travelling
salesman problem (MDmTSP), but the solutions in the literature did not mention the
additional sub-tour construction. This area is poorly researched compared to the
general TSP or mTSP problems. Only the newest researches dealing with this field,
and they utilize such heuristic techniques as:

 agent based modeling with probability collectives: [1] developed a multiagent
model to solve the mTSP problem where they used collective memory,
probability collectives, and stochastic methods, the algorithm use simple
inserting, swap and elimination heuristics. They test the algorithm in two
simple cases with fifteen nodes and three agents,

10

 genetic algorithm: [6]: They solve the problem with a two phase algorithm. In
the first phase the problem was reduced from a multi-center problem into more
single center problems. In the second phase the problems solved individually
with a genetic algorithm. The algorithm was tested up to 99 nodes and 4
agents,

 ant colony algorithm, [5]: They used the ant colony algorithm developed by
Marco Dorigo [4] and solve the general mTSP model, where artificial ants
search the solution in a problem tree modeled the foraging behavior of real
ants. The algorithm is compared by the solution of the Lingo 8 software and it
can be seen that the ant colony heuristic algorithm is far faster and sometimes
gives better solution. The algorithm was tested only up to 40 nodes and 5
agents.

The studies of optimization of complex logistics systems can be categorized into
two main streams. The first stream addressed the application of meta-heuristic
optimization and the second stream focuses on the application of simulation.
However simulation is a useful tool to optimize systems [2], but the complexity of the
system can be extremely increased the required execution time, especially in the case
of global, virtual systems [3].

It can be seen that the developed methods was tested only a few nodes and they do
not include the special constraints what emerge in technical inspection and
maintenance system. In the field of real life logistic there are systems with over 1000
nodes or rarely but systems with over 10000 nodes exist.

5 Optimization of the complex expert object assignment of a technical inspection
and maintenance system with evolutionary programming

5.1 Evolutionary programming

 The problem-solving algorithms, which are a known mechanism of evolution
based on evolutionary algorithms are called. The most known algorithms are the:

 genetic algorithm,
 evolutionary programming,
 evolution strategic,
 neuro-evolution.
All these algorithms have a common part: they handle a population. The

population consists of individuals. One individual is one possible solution of the
problem. The target is to get the best solution to the given problem. But in most of the
problems the algorithms didn’t have a chance the find the optimal solution and one
has to be satisfied with a quasi-optimal or a “good enough” solution.

The evolutionary programming is mainly used on heavily constrained problems.
This method is also handling a population but there are no limitations on the problem
representation like at the genetic algorithm where bit vectors describe the individuals.
Here the problem described as the problem allows, or is it the best for computer
algorithm. The pseudo code of the evolutionary programming is the following:

11

1. generate the first population, in most cases it is random generated,
2. calculate the population fitness values,
3. while not done

3.1. copy the population into a temporary population,
3.2. run the mutation operators on the temporary population,
3.3. select the survivors for the next population,

4. end while.
In the computer solution first initialize the data, random generator, etc. Then

initialize the first population. In heavily constrained problems there are two cases:
 the randomly generated population individual is invalid: it violates the

constraints,
 the individual is in the feasible region: but this is a very rare case.

There are several methods to get valid individual from simply dispose invalid
individuals to create special operators which retain the individual’s integrity. But the
simplest solution is using penalty function. In the penalty function one can regulate
the algorithm which solutions are preferred.
 After the creation of the initial population it has to be copied into a temporary
population then the mutation operators run on the temporary population. In most
cases the high impact mutations have less chance to run and the low impact operators
have a bigger chance. After the mutation we have to compute the mutated
individuals’ fitness value and then choose the survivor individuals to the descendant
population which happens with a tournament. One simple way to perform the
torunament is choose two random individuals one from the original and one from the
mutated population and that will survive which has less (or bigger if the fitness not
normalized) fitness value, we have to repeat this until the new population not filled.
 At the evolutionary programming in majority of the cases there is no crossover.
In some solutions there is no meaning of this, and mostly it creates invalid
individuals. So in the biological point of view this is not an evolution of one species
but the evolution of many so called “population” is not valid but for the integrity of
evolutionary method this naming convention is common.

5.2 The problem representation in the proposed evolutionary programming
algorithm

The developed algorithm solves the fixed destination multiple depot multiple
route multiple travelling salesman problem and optimize the number of salesman in
one phase and can be used for large or very large problems. As there are multiple
salesmen: the experts, multiple depot: all the experts have different locations, fixed
destination: all the expert start and return to their initial location, and all the experts
do the travel (generally) in one day cycles.

The developed solution method based on a multi chromosome technique which
is not widely used in genetic algorithm but it could simply implement in the
evolutionary programming.

12

 The data structure of the optimization is built as describe in Chapter 4.1. The
biggest container is the population which consists of defined constant number of
individuals, which is an input parameter of the optimization.
 First the algorithm initializes the optimization constants, like penalty constants,
maximum tour length, maximum number of cycles, expert performance values and
number of the individuals in a population, load the data files of the experts, that’s
define the number of the experts and their location, the objects which define the
number of the objects and its location, and initialize maintenances data. Then it
creates the first population with random generated individuals. It is a top down
algorithm:

 first generate individuals container class,
 then generate experts container and insert it into the individuals,
 then generate chromosome and insert it into the experts so that fill the

chromosome with maintenances in a random generated order.
So every expert is a chromosome that’s why the algorithm named as multi
chromosome algorithm. Then it calculates the fitness values of the experts and
applies the penalty functions for the experts, finally applies the global penalty
functions for the individual.

Population 1

 Individual 1

 Expert 1

 Maintenance 1 Maintenance 2 … Maintenance n

 Expert 2

 Maintenance 1 Maintenance 2 … Maintenance n

 …

 Expert n

 Maintenance 1 Maintenance 2 … Maintenance n

 Individual 2

 Expert 1

 Maintenance 1 Maintenance 2 … Maintenance n

 Expert 2

 Maintenance 1 Maintenance 2 … Maintenance n

 …

 Expert n

 Maintenance 1 Maintenance 2 … Maintenance n

 .

 .

 .

Fig. 4. The cascaded data structure of the optimization

13

5.1 Penalty functions

 The penalty function is one of the simplest and fastest way to rate the
individual, so the goodness of the actual solution. In this algorithm there are two
different levels of penalty functions:

 local: the penalty function is applied to the expert,
 global: the penalty function is applied to the whole individual

penalty functions applied.

5.1.1 Local penalties

There are four different local penalty functions:
 Number of cycles penalty: when the expert do more route cycles than

allowed (Eq. 5),
 Few penalty : the expert has to get a minimal number of maintenances (Eq.

8),
 More penalty: the expert cannot get more maintenances than his maximum

capacity (Eq. 8),
 Near penalty: the maintenances of one object cannot be arbitrarily close to

each other. (Eq. 4).
Number of cycle penalty function of the expert i:

 ஼ܲ

ூ ൌ ஼ܲ஼ כ ܿ௜ (23)

where:
 ஼ܲ஼: constant, the penalty value of the cycle count violation
 ܿ௜: the actual number of the expert’s cycles.

Few penalty functions of the expert i:

 ிܲ

ூ ൌ ிܲ௉ כ ሺ ௠ܲ௜௡ െ ௜ܲሻ (24)

where:
 ிܲ௉: constant, the penalty value of the few maintenances violation
 ௜ܲ: the actual performance of the expert i, the number of the maintenances

The more penalty function of the expert i:

 ெܲ

ூ ൌ ெܲ௉ כ ሺ ௜ܲ െ ௠ܲ௔௫ሻ (25)

where:
 ெܲ௉: constant, the penalty value of the more maintenances violation
 ௜ܲ: the actual performance of the expert i, the number of the maintenances

14

The near penalty function is the following:

݂݅ ሾܯ௜
௫ሿ െ ሾܯ௜ାଵ

௫ ሿ ൏ ߬௠ ݄݊݁ݐ ܿே ൌ ܿே+1

ேܲ
ூ ൌ ෍ ேܲ௉ כ ܿே

௦

ଵ

(26)

where:
 ܯ௜

௫: the maintenance i of the object x,
 ேܲ௉: constant, the penalty value of the near maintenances violation,
 ሾ ሿ: index of operator, show the index of the given maintenance,
 ܿே: the number of the maintenance near violations.

5.1.2 Global penalties

There are two different global penalty functions, which calculated after the
local penalties:

 Scatter penalty: which applied when an object’s maintenances are scattered
among several experts (Chapter 3.1) ,

 Number of expert penalty: The experts employment have a fixed cost in this
model. Due to this penalty functions the algorithm tries to minimize the
number of employed experts.

Scatter penalty function is the following:

௜ܯሺݐ݊ݑ݋ܿ ݂݅
௫ሻ ൏ ௜ܯ൫݀݁ݎ݅ݑݍ݁ݎ ൯ ݄݊݁ݐ ܿ௉ ൌ ܿ௉ ൅ 1

ௌܲ ൌ ෍ ௌܲ஼ כ ܿ௉

௦

ଵ

(27)

where:
 ܿݐ݊ݑ݋ሺܯ௜

௫ሻ: is the number of the maintenances of the object i at the expert x
 ݀݁ݎ݅ݑݍ݁ݎ൫ܯ௜ ൯: the required maintenances of the object i
 ௌܲ஼: constant, the penalty value of scattered maintenances.

If the scatter penalty switched off the algorithm is not forced to assign every
maintenance of one single object to one expert but is distributes between experts.

15

Fig. 5. An example of multiple routes with two inspections at any object without
scatter penalty

Number of expert penalty function:

 ாܲ ൌ ாܲ஼ s (28)כ

where:
 ாܲ஼: constant, the cost of one experts’ employment,
 ݏ: the number of the experts.

Then the algorithm enters into the optimizations’ main loop and copies the

population individuals into a temporary population in order of their fitness so the best
fitness value individual is copied into the first position of the temporary population.
The applied operators in the algorithm are simple and more or less common to the
genetic algorithm, because simpler operators results in faster algorithm.

5.2 Mutation operators

 In this phase the algorithm mutates the individuals in the temporary population.
There are two types of mutation operators due to the multi chromosome characteristic
of the algorithm:

 inner expert mutation operators,
 cross expert mutation operators.

5.2.1 Inner expert mutation

 There are three types of inner expert mutation operators:

 Gene swap: where two random genes are swapped:

16

Fig. 6. Gene swap operator

 Gene sequence reversion: where the gene sequence is reversed between two
random indexes

Fig. 7. Gene reversion operator

 Gene insertion operator: where a randomly chosen gene inserted into a
randomly chosen position

Fig. 8. Gene insertion operator

5.2.2 Cross expert mutation

 Like at the inner expert mutation operators there are also three types of
mutation operators exists for the mutation between experts. These are the followings:

 Cross expert gene swap: which swaps two genes between experts. The second
expert and the position of the other gene are chosen randomly.

Fig. 9. Cross expert gene swap operator

 Cross expert gene sequence change: where the algorithm swapping a randomly
chosen but continuous gene sequence with a randomly chosen expert also
randomly chosen gene sequence:

17

Fig. 10. Cross expert gene sequence swap operator

 Cross expert gene contraction: where random amount of genes inserted to a
randomly chosen expert from the end of the chromosome. There are two types
of chromosome contraction operators:

o The first type contracts a randomly chosen chromosome (expert n) by
displacing random amount genes from the end of the chromosome. It
chooses a random length gene sequence from the end of the
chromosome and inserts it at the end of another randomly chosen
chromosome.

Fig. 11. Cross expert chromosome contraction Type 1

o The second type of contraction operator displacing random amount of

genes from the end of a randomly chosen chromosome like the first
operator but it spread the genes between randomly chosen chromosomes
one by one type

18

Fig. 12. Cross expert chromosome contraction Type 2

 The mutations are chosen randomly for every expert with parameterized
probability and the algorithm allows a probabilistic value for the no mutation also.

5.3 Survivor selection

First the algorithm searches for the best individual and copy it to the descendant
population. It is called elitism; the best individual (elitist) always survives. The
evolutionary programming typically uses stochastic tournament survivor selection.
The simplest of the tournament selection is when randomly choose two individuals
(1+1 strategy), one from the original and one from the mutated population and the
fittest wins, that individual will be copied into the next generation of the individual.
This process is repeated until the next population is filled.

Avoiding the local optimums all of the genetic methods try to maintain the
diversity among the individuals. In this algorithm one can parameterize how much
individual in the descendant population will be filled with random generated
individuals

The tournament process:

- randomly choose an individual from the original and another from the mutated
population,

- the individual with the best fitness value is inserted into the descendant
population,

- repeat the process until the population is filled up to the required count.
The selection process fills the descendant population up to a parameterized value, the
rest is filled with random generated individuals, which helps to avoid local optimum.

19

Fig. 13. Algorithm of the tournament process

5.4 Examination of the two contraction operators

All the examination in this chapter is based on the “ring” instance presented in
Chapter 7.
The examination of the two contraction operators gives contradictory results. So we
had analyzed the operators through several runs with the same parameters.
First examination: 3 experts 48 nodes number of examination 2-4.

20

Fig. 14. First examination of contraction operators

First examination: 3 experts, 48 nodes, number of examination is 5-10 (Fig .14)

Fig. 15. Second examination of contraction operators

Second examination: 3 experts, 48 nodes, number of examination is 10-15 (Fig. 15)

0

500000

1000000

1500000

2000000

2500000

Ta
rg
et
 f
u
n
ct
io
n

Examination of contraction operators

30800000

31000000

31200000

31400000

31600000

31800000

32000000

32200000

32400000

Ta
rg
et
 f
u
n
ct
io
n

Examination of contraction operators

21

Fig. 16. Second examination of contraction operators

The examination shows that in some cases when the second contraction operator is
also used with 40 percent probability gives better results. So another examination was
performed with the 40 percent probability of the second operator with increasing
problem size (Fig. 16.)

Fig. 17. Examination of contraction operators, with 40% second operator probability

0

1000000

2000000

3000000

4000000

5000000

6000000

Ta
rg
et
 f
u
n
ct
io
n

Examination of contraction operators

‐4,00%

‐2,00%

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

12,00%

14,00%

16,00%

18,00%

1 2 3 4
5

6
7

8

R
el
at
iv
e
d
if
fe
re
n
ce

Examinations

Examination of contraction operators

22

The examination shows that the usage of the second operator with 40% probability is
gives better result just in some random cases and the improvement only about 1% so
the usage of a second contraction operator is not justified

6. Parallelization of the fitness calculation

Testing the algorithm with large scale systems it can be seen the running times grows
exponentially so the parallelization of the algorithm or the parts of the algorithm is
obvious to run on multiprocessor computers or even computing clouds.

The algorithm analysis shows that the mutation and the fitness calculation are
the two most used and most time consuming procedures. The mutation process due to
the multi-chromosome design isn’t suitable for parallelization, because the global
mutation operators process the entire individual so the locks of the individuals’
memory area could slow the whole process, so the benefits can hardly estimate. But
the fitness calculation can easily parallelize because it does not do any data
modification.
The gain of the parallelization isn’t obvious, because the operating system assign the
threads to the available processor cores and schedule them , but the administration of
the threads costs time and resources so at smaller tasks the administration cost can
easily exceed the gains.
The fitness calculation can be divided into two parts. First part is the calculation of
the multiple routes. This routine uses only one chromosome but it uses the path
matrix which has to be copied into every computing node on a multicomputer system
or it can be accessed thru shared memory in a single computer with multiple
processors. In large scale systems the path matrix can be very large and it requires
large memory at every computing node.

23

Fig. 18. Parallelization of the fitness calculation (a, serial execution, b, parallel
execution)

6.1 Examination of the parallelization

The examination of the parallelization needs large scale problems so I choose the
TSPLIB library for testing instances [7]. The examination methodology was:

- random generator initialized with the same value,
- same tsplib data,
- equal number of iterations.

The examination was run on a four core computer with hyperthreading technology
(Table 1.).

The results:

No. of
iterations

Instance
(tsplib)

Number of
nodes

Paralellized
algorithm

Run time
[mm:ss]

Speed increase
[%]

100 dsj1000 1000 no 00:38
100 dsj1000 1000 yes 01:04 -40,63
100 pr2392 2392 no 01:32
100 pr2392 2392 yes 01:45 -12,38
100 pcb3038 3038 no 02:03
100 pcb3038 3038 yes 02:08 -3,91

24

100 fl3795 3795 no 02:43
100 fl3795 3795 yes 02:41 1,24
100 fnl4461 4461 no 03:15
100 fnl4461 4461 yes 03:05 2,63
100 rl5934 5934 no 04:32
100 rl5934 5934 yes 04:04 11,48
100 pla7397 7397 no 05:55
100 pla7397 7397 yes 05:19 11,29
100 rl11849 11849 no 12:01
100 rl11849 11849 yes 10:03 19,57
100 usa13509 13509 no 13:56
100 usa13509 13509 yes 11:49 17,91

Table 1. Examination of parallelization with small number of individuals

The diagram (Fig 19.) clearly shows that the administration cost of the threads at
small problem sizes is exceeding the obtainable gain of the parallelization process. So
the parallelization on the test computer is economical above 3500 nodes with these
input parameters and settings. The results also show that the gain with four processor
cores is not exceed 20 percent.

Fig 19. Speed increase in the function of number of nodes

Increasing the problem size with increasing the number of individuals up to 5 times
the thread administration costs increase more (Table 2.).

‐40,63

‐12,38

‐3,91

1,24 2,63

11,48 11,29

19,57
17,91

‐50,00

‐40,00

‐30,00

‐20,00

‐10,00

0,00

10,00

20,00

30,00

1000 2392 3038 3795 4461 5934 7397 11849 13509

Speed increase [%]

25

No. of
iterations

Instance
(tsplib)

Number of
nodes

Parallelized
algorithm

Run time
[mm:ss]

Speed increase
[%]

50 dsj1000 1000 no 01:20
50 dsj1000 1000 yes 03:32 -62,26
50 pr2392 2392 no 03:25
50 pr2392 2392 yes 06:02 -43,37
50 pcb3038 3038 no 04:23
50 pcb3038 3038 yes 06:55 -36,63
50 fl3795 3795 no 06:10
50 fl3795 3795 yes 08:22 -26,29
50 fnl4461 4461 no 07:18
50 fnl4461 4461 yes 08:29 -13,95
50 rl5934 5934 no 09:54
50 rl5934 5934 yes 08:35 15,34
50 pla7397 7397 no 12:52
50 pla7397 7397 yes 11:02 16,62
50 rl11849 11849 no 24:02
50 rl11849 11849 yes 19:15 24,85
50 usa13509 13509 no 28:18
50 usa13509 13509 yes 22:30 25,78

Table 2. Examination of parallelization with large number of individuals

The examination with increased number of individuals shows that the administration
cost of the threads is increased due to the larger thread number so the speed gain
value in the diagram shifted to the right. The speed gain threshold limit is doubled
compared to the first test, it is about 5200 nodes. So it is obvious solving large or
very large scale problems often requires multiprocessor machines or computing
clouds or specialized GPU farms depending of the tasks to solve.

26

Fig 20. Speed increase in the function of node at larger problems

7 Results

The main target of the algorithm was to optimize logistic costs of large scale
maintenance systems with multiple routes. So it was obvious that a computer
program was needed not just test and refine the algorithm, but for further
improvements and for solving real life problems also.

7.1 Test instance with three experts

This test instance uses three experts and 48 nodes, all nodes must inspect only once
so the results can easily prove by naked eye.

‐62,26

‐43,37

‐36,63

‐26,29

‐13,95

15,34 16,62

24,85 25,78

‐70,00

‐60,00

‐50,00

‐40,00

‐30,00

‐20,00

‐10,00

0,00

10,00

20,00

30,00

40,00

1000 2392 3038 3795 4461 5934 7397 11849 13509

Speed increase [%]

27

Iteration number 35457
Run time 48 min 33 sec
Penalty 0
Cost 4484,47

Fig 21. Test instance with three experts

Fig 22. Convergence of the solution

7.2 Complex test instance with three experts

This test instance uses three experts and 48 nodes, but in this case all nodes must inspect 2-4 times
(randomly).

28

Iteration number 50000
Run time 1 h 11 min 9

sec
Penalty 5
Cost 760731,64

Fig 23. Test instance with three experts

Fig 24. Convergence of the solution

8. Sensitivity analysis

8.1 Examine the population size

The first examination is the population size. The question is: how the solution
changes if the population size is increased and changes the ratio of the randomly
generated individuals. How the algorithm is escapes from local optimum when the
ratio of the randomly generated individuals changed. The test was performed on an
instance with 48 nodes, and 3 experts, 1000 iterations and with 16-18 maintenances
(Table 3-4.).

29

The results of the sensitivity analysis, the best target function value marked with
green color

 Population size
 10 20 25 50 100 200 300

R
an

do
m

 in
di

vi
du

al
s

nu
m

be
r

0 262147,41 160300,48 158774,1 158330,53 158421,46 158033 158219,08
5 367630,06 262188,85 261761,12 210446,86 160049,98 107682,99 158103,69

10 - 365443,7 314261,95 211049,09 158930,41 158805,26 158249,05
20 - - 470334,75 263240,72 159747,81 209857,65 158833,65
50 - - - - 314076,62 262342,62 210368,71

100 - - - - - 315404,74 313768,66
200 - - - - - - 366780,29
300 - - - - - - -
400 - - - - - - -
500 - - - - - - -
600 - - - - - - -
700 - - - - - - -
800 - - - - - - -
900 - - - - - - -

Table 3. Changes of the target function in the function of the population size and the
number of random individuals (part 1)

 Population size
 400 500 600 700 800 900 1000

R
an

do
m

 in
di

vi
du

al
s

nu
m

be
r

0 157955,21 107545,32 107215,26 158309,14 157414,73 107832,6 106779,7
5 158538,91 157945,82 108574,83 107437,69 107556,71 157603,09 56174,49

10 158907,74 158227,07 158565,84 158039,39 107418,38 157906,86 106265,12
20 159237,94 158423,14 158033,83 158684,29 106752,63 107745,62 157781,22
50 159222,57 210896,47 159411,16 158886,62 158843,58 158450,84 158429,52

100 261921,75 261951,37 211042,73 211105,01 158283,73 261510,72 158332,04
200 366377,61 315208,69 314279,49 364707,29 211106,92 210566,73 261773,05
300 416787,63 316873,58 313776,11 314413,83 313991,51 212120,57 261151,58
400 - 468406,88 415795,6 365993,76 315628,49 314367,26 261779,57
500 - - 417931,19 417772,18 367165,7 313930,85 315149,76
600 - - - 470131,99 469421,26 366624,13 366926,91
700 - - - - 469115,21 418974,4 417495,43
800 - - - - - 521295,51 520073,15
900 - - - - - - 469285,56

Table 4. Changes of the target function in the function of the population size and the
number of random individuals (part 2)

30

Fig 25. Changes of the target function in the function of the population size and the
number of random individuals

The results show that the increases of the number of the randomly generated
individuals worsen the target function because the random individuals lower the
discovered search space at this small example. At greater problems the effect of the
random individuals are more reasonable, at the examinations showed the number of
random individuals is about 2% of the problem size.

If the problem is examined in equal size of the search space:

Iteration
number

Population
size

Examined
number of
individuals

10000 10 100000
5000 20 100000
4000 25 100000
2000 50 100000
1000 100 100000

500 200 100000
333 300 99900
250 400 100000
200 500 100000
166 600 99600
142 700 99400

0

10

50

200

400
600
800

0

100000

200000

300000

400000

500000

600000
1
0

2
0

2
5

5
0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

Ta
rg
e
t
fu
n
ct
io
n

Size of population

31

125 800 100000
111 900 99900
100 1000 100000

Table 5. Calculating the number of iterations

The results are the following: (the best value marked in every column)
 Population size
 10 20 25 50 100 200 300

N
um

be
r

of
 r

an
do

m
 in

di
vi

du
al

s

0 55951,46 158334,55 158008,94 157770,09 158421,46 209782,38 210728,87
5 210556,4 158660,78 158357,34 159260,35 160049,98 262039,25 211126,09

10 - 210818,29 211100,73 159313,42 158930,41 160241,57 263370,5
20 - - 315210,41 262172,15 159747,81 262550,83 211108,47
50 - - - - 314076,62 314856,48 262600,5

100 - - - - - 366792,2 366268,57
200 - - - - - - 468790,58
300 - - - - - - -
400 - - - - - - -
500 - - - - - - -
600 - - - - - - -
700 - - - - - - -
800 - - - - - - -
900 - - - - - - -

 10000 5000 4000 2000 1000 500 333
 Number of iterations

Table 6. Changes of the target function in the function of the population size and the
number of random individuals (part 1)

 Population size
 400 500 600 700 800 900 1000

N
um

be
r

of
 r

an
do

m
 in

di
vi

du
al

s

0 212248,01 262190,95 313917,48 264179,11 314288,39 315548,66 366054,69
5 211217,26 212174,58 263090,52 263758,78 212794,85 314842,36 314462,27

10 212798,04 263654,66 315512,02 263160,72 264119,96 366713,93 315107,07
20 264379,08 313330,9 263381,38 313940,42 314754,14 265100,54 315326,35
50 314916,29 314182,9 315912,94 315163,88 263890,49 315607,6 365578,87

100 365307,11 315883,01 314519,21 314939,88 365646,09 367097,56 314419,16
200 419323,32 418746,37 417607,54 366973,62 366634,96 365900,83 418172,79
300 520380,75 469494,91 417193,98 366382,58 418090,33 366859,98 470574,46
400 - 521841,86 520747,43 520786,31 418626,89 471016,59 469912,09
500 - - 573818,67 470332,43 522793,76 521398,17 521406,94
600 - - - 573804,97 521275,66 471914,58 571301,22
700 - - - - 572568,34 521201,2 522919,64
800 - - - - - 522945,92 572292,19
900 - - - - - - 522050,56

 250 200 166 142 125 111 100
 Number of iterations

Table 7. Changes of the target function in the function of the population size and the
number of random individuals (part 2)

32

Fig 26. Changes of the target function in the function of the population size and the

number of random individuals

These results (Table 6-7.) show the effect of the randomly generated individuals. The
optimal ratio is in the 0-3% area. The test shows some unconventional results also but
these are random perturbations. The test run shows that it is not worth to give higher
the number of individuals than the number of nodes because in that case the runtime
could grow considerably. And if the number of iterations are decreased the effect of
the selection isn’t prevail which sorts the inadequate individuals out of the
population.

9 Conclusions

The algorithm described in this paper is very well applicable in the field of technical
inspection and maintenance systems, because it regards the special constraints of this
area like the one object one expert or one object more experts assignment constraint.
However the complexity of the problem, which well described by the multitude of
constraints, requires a general evolution method, which can integrate several
constraint functions with relative easily. As the analysis of the test examples shows at
large scale problems the usage of a computer cloud with high computation capability
is highly recommended.

0

10

50

200
400
600
800

0

100000

200000

300000

400000

500000

600000

1
0

2
0

2
5

5
0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

Ta
rg
e
t
fu
n
ct
io
n

Population size

33

10 Further improvements

 The optimization method has great potentials toward the further improvements.
First some improvements in the method himself:

 try new mutation methods,
 try new survivor tournament selection methods.

Second some improvements which have a great impact on speed:
 massive parallelization in a computing cloud,
 examine the implementation possibilities on a fast graphics processing units

(GPU) or a GPU cluster

10. Acknowledgements

The research was supported by the TÁMOP 4.2.1.B-10/2/KONV-2010-0001
entitled: Increasing the quality of higher education through the development of
research - development and innovation program at the University of Miskolc.

11. References

[1.] Anand J. Kulkarni, K. Tai (2010): Probability Collectives: A multi-agent

approach for solving combinatorial optimization problems, Applied Soft
Computing 10, pp.: 759–771, doi:10.1016/j.asoc.2009.09.006

[2.] Bányai, Á. (1999) Das virtuelle Logistikzentrum als Koordinator der
logistischen Aufgaben. In: Modelling and optimization of logistic systems –
Theory and practice, Bányai, T. & Cselényi, J. (Eds.), pp. 42-50, ISBN 963 661
402 4, Published by the University Miskolc.

[3.] Bányai, T. (2009): Optimisation of U-shaped flexible manufacturing cells. In:
Annals of DAAAM for 2009 & Proceedings of the 20th International DAAAM
Symposium "Intelligent Manufacturing & Automation: Focus on Theory, Practice
and Education", Katalinic, B. (Ed.), pp. 761-762, ISSN 1726-9679, ISBN 978-3-
901509-70-4, Vienna, Austria, November 2009, Published by DAAAM
International Vienna

[4.] Dorigo M., Stützle T. (2004): Ant Colony Optimization, MIT Press., ISBN 0-
262-04219-3

[5.] Soheil Ghafurian, Nikbakhsh Javadian (2011): An ant colony algorithm for
solving fixed destination multi-depot multiple traveling salesmen problems,
Applied Soft Computing 11, pp.: 1256–1262

[6.] Suk-Tae Baea, Heung Suk Hwanga, Gyu-Sung Choa and Meng-Jong Goan
(2007): Integrated GA-VRP solver for multi-depot system, Computers &
Industrial Engineering Volume 53, Issue 2, Pages 233-240,
doi:10.1016/j.cie.2007.06.014

34

[7.] University of Heidelberg, Institut für Informatik: Library of sample instances
for the TSP (and related problems) from various sources and of various types,
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

