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1. INTRODUCTION 

 

The heat exchanger is a heat transfer device that exchanges heat between two or 

more process fluids. These devices used in the chemical and energy industry and 

also in the households. Heat exchangers have lots of types, such as double pipe, 

shell-and-tube or plate heat exchangers, air coolers, graphite block heat exchanger 

for example. We can group them according to the structural material: steel, stainless 

steel, copper, aluminium, graphite, rarer titanium, zirconium or nickel alloys. 

According to the flow arrangement we class parallel flow, counter-flow or cross-

flow. As an engineer, our objective is choosing the construction that able to transfer 

the necessary heat and has the lowest cost all of.  

 

2. DRIVING FORCES 

 

2.1. FUNDAMENTAL EQUATION OF SURFACE HEAT EXCHANGERS 

 

The heat transfer performance of a surface heat exchanger depends on three factors: 

the mean temperature difference, the heat transfer area and the heat transfer 

coefficient. 

 𝑄 = 𝑘 ∙ 𝐴 ∙ ∆𝑇𝐿𝑂𝐺  (1) 

where: 

 Q: necessary heat [W], 

 k: heat transfer coefficient [W/m
2
·°C], 

 A: heat transfer area [m
2
], 

 ΔTLOG: mean temperature difference [°C]. 

  

2.2. MEAN TEMPERATURE DIFFERENCE 

 

The process fluids in shell-and-tube heat exchanger are entering in the ends of the 

device. The driving force of heat transfer depends on the inlet and outlet 

temperatures. In case of counter-flow, the mean difference is higher than parallel 

flow. The calculation: 

 

 ∆𝑇𝐿𝑂𝐺 =
∆𝑁−∆𝐾

𝑙𝑛
∆𝑁

∆𝐾

 (2) 

 

where: 

 ΔN: the bigger temperature difference, 

 ΔK: the less temperature difference. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/163097503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2.3. HEAT TRANSFER AREA 

 

The heat transfer between the process fluids realize across the tubes. The surface 

depends on the medium diameter, length and number of the tubes. Bigger the 

surface, bigger the performance, but mean bigger material cost too, what is not 

acceptable. We can use ribbed or finned tubes that also mean a higher cost.  

 

 𝐴 = 𝐿 ∙ 𝑧 ∙ 𝜋 ∙ 𝑑𝑚𝑒𝑑 (3) 

where: 

 L: length of the tubes [m], 

 z: number of the tubes [-], 

 dmed: medium diameter of the tubes (arithmetic mean of the internal and 

external diameter) [m]. 

 

2.4. HEAT TRANSFER COEFFICIENT 

 

The heat transfer coefficient is the third factor, and this calculation is the hardest. 

The coefficient depends on the internal and external convection heat transfer 

coefficient and the conductivity in the wall of the tube.  
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1
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 (4) 

where: 

 αi (hi): individual convection heat transfer coefficients [W/m
2
·K], 

 swall (dxwall): thickness of the wall [m], 

 λwall (kwall): heat conductivity of the wall [W/m·K], 

 note: the sign in the brackets is the English notation. 

 

The conductivity depends on the material of the tube. The copper and graphite have 

the highest conductivities (~400W/m·K), and the stainless steel has the lowest 

(~15W/m·K). The heat transfer coefficient is less, than the least value of these three 

items. In the engineering practice, one of the convection heat transfer coefficients 

will be the least, so we would like to improve these factors. 

Typical values of convection heat transfer coefficients: 

 

Conditions of heat transfer Value of coefficients [W/m
2
·K] 

gases in free convection 5-37 

water in free convection 100-1200 

water flowing in the tubes 1000-4000 

water boiling 4000-8000 

Condensation of water vapor 5000-12000 

 

1. Table: Typical values of convection 



3. INDIVIDUAL CONVECTION HEAT TRANSFER COEFFICIENTS 

 

We must know the type of the flow to calculate the convection heat transfer 

coefficient. The connection depends on the phase change (yes or no), type of the 

flow (laminar, tubular or transient flow), inside or outside the tube. We use 

experimental and constraint equations.  

 

3.1. CONDENSATION 

 

In case of condensation, we could calculate the convection heat transfer coefficient 

directly. We use Nusselt’s equation: 

 

 𝛼 = 0,943 ∙ √
𝜆3∙𝜌2∙𝑟∙𝑔

𝜂∙∆𝑡𝑐𝑜𝑛𝑑∙𝐻

4
, (5) 

 

where: 

 ρ: density of process material [kg/m
3
], 

 λ: heat conductivity of process material [W/m·K], 

 r: latent heat of process material [J/kg], 

 g: acceleration of gravity [9,81 m/s
2
], 

 η: dynamic viscosity of process material [Pa·s], 

 Δtcond: difference between the wall and the condensation temperature [°C], 

 H: the specific geometry. In case of vertical wall or tube H is the height of 

the wall. In case of horizontal pipelines: 

 

 𝐻 = 𝑍
2

3⁄ ∙ 𝑑𝑚𝑒𝑑 , (6) 

 

 where Z means the number of tubes under each other. 

 

3.2. BOILING 

 

If we boil a mixture, we can calculate also directly the convection heat transfer 

coefficient. The empirical formula by György Fábry is: 

 

 𝛼 = 88 ∙ ∆𝑡𝑏𝑜𝑖𝑙
2 ∙ 𝑝0,6 ∙ 𝐶𝑓 , (7) 

 

where: 

Δtboil: difference between the wall and the boiling point [°C], 

p: pressure [bar], 

Cf: correction factor in case of substances other than water [-]. 

 

 𝐶𝑓 =
𝜌

𝜌𝑤
∙ (

𝑐∙𝜆∙𝑟𝑤∙𝜎𝑤

𝑐𝑤∙𝜆𝑤∙𝑟∙𝜎
)

1
2⁄

∙ (
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)
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 (8) 

 



where: 

 c: specific heat of process material[J/kg·K], 

 σ: surface tension of process material [N/m], 

 ρ”: vapor density of process material [kg/m
3
], 

 note1: the index w concern to the water, measures without index concern to 

the boiling substance, 

 note2: material properties replaced in the formula at the boiling point, 

 note3: if the process substance is a mixture, the material properties shall be 

weighted with the mole fractions. 

 

3.3. WITHOUT PHASE CHANGE 

 

Without phase change we use constraints and empirical formulas. The type of the 

flow must be investigated; the formulas depend on the flow type. If the flow is 

laminar, the Nusselt number depends on the Pèclet number, in case of transient or 

tubular flow this depends on the Prandtl and Reynolds numbers. The material 

properties must be calculated on the average temperature. If we have calculated the 

Nusselt number, then we calculate the individual heat transfer coefficient. 

In case of tubular flow, the value of the convection heat transfer coefficient is much 

larger, than the value in laminar flow, so we have to create tubular flow. The 

numbers of tubes, the form of the tubes, values of cooling substance have modified.  

The formula in the case of tubular flow is as follows: 

 

 𝑁𝑢 = 0,023 ∙ 𝑅𝑒0,8 ∙ 𝑃𝑟
1

3⁄  (9) 

 

where: 

 Nu: Nusselt number [-], 

 Re: Reynolds number [-], 

 Pr: Prandtl number [-]. 

 

If the value of Nusselt number is known, the convectional heat transfer coefficient 

can be calculated: 

 

 𝑁𝑢 =
𝛼∙𝐿

𝜆
 (10) 

 

where: 

 L: specific geometric [m]. 

 

4. OPTIMUM DESIGN 

 

During optimization, we search the construction, that able to transfer the necessary 

heat and it has the lowest cost. We can consider material, production, maintenance 

and operational cost.  

 Material costs: 

o tubes 



o shell 

o tube sheet 

o horizontal and vertical baffles 

o rear and front ends 

 Production costs: 

o cutting of tubes 

o welding and welding preparation 

o sheet rolling 

o tube sheet drilling 

 Maintenance costs: 

o periodical maintenance 

o mounting 

o cleaning 

 Operational costs: 

o cost of electricity 

First of all we have calculated the optimum for the minimum weight.  

 

4.1. CONSTRAINTS 

 

When we have specified the conditions, we have taken care on fluid mechanics, 

producing and practice viewpoints.  

 

4.1.1. Length of the tube 

In the trade turnover, we can purchase 6m long tubes. If we do not want to get a lot 

of waste, we must design 6, 3, 2, 1.5, 1.2, 1 or 0.5 m long heat exchanger.  

 

4.1.2. Tubes 

Just like the previous section, we could not purchase tubes with whatever size. We 

should create a table with the available sizes. Furthermore, the number of the tubes 

must be an integer.  

 

4.1.3. Fluid mechanics 

First of all, we must maximize the value of the fluid speed. In case of liquid flow, 

this value is 1.5-2 m/s (in gas of gas, this is about 8-10 m/s). This is necessary, 

because if the speed is too high, the friction and erosion could make leaks in the 

wall of the tubes. Secondly, we must create a condition about the turbulence too. In 

case of tubular flow, the convection is higher than other flow types and the formula 

changes too. So, the Reynolds number must be more than 10000. (In the future, we 

would like to investigate tube with special geometry, how changes the tubular 

condition.) 

 

4.1.4. Thermal conditions 

Least but not last, the heat flow must be constant between the internal and external 

heat convection and the conductivity.  

 

𝑞 = 𝛼𝑏 ∙ (𝑡𝑖,𝑚𝑒𝑑 − 𝑡𝑖,𝑤𝑎𝑙𝑙) =
𝜆𝑤𝑎𝑙𝑙

𝑠𝑤𝑎𝑙𝑙
∙ (𝑡𝑖,𝑤𝑎𝑙𝑙 − 𝑡𝑒,𝑤𝑎𝑙𝑙) = 𝛼𝑒 ∙ (𝑡𝑒,𝑤𝑎𝑙𝑙 − 𝑡𝑒,𝑚𝑒𝑑)  (11) 



4.2. OBJECTIVE FUNCTION 

 

In case of optimal design, we look for the minimum of the next function next to the 

conditions in the previous paragraph: 

 

   𝑉 = [(
𝑑𝑒

2∙𝜋

4
−

(𝑑𝑒−2∙𝑠𝑡)2

4
) ∙ 𝑁 ∙ 𝐿] + [(

𝐷𝑠ℎ𝑒𝑙𝑙
2 ∙𝜋

4
−

(𝐷𝑠ℎ𝑒𝑙𝑙−0,01)2

4
) ∙ 𝑁 ∙ 𝐿]  (12) 

 
5. SOLUTION 

 

If we would like to optimize a heat exchanger, we must put it in a technology. In 

my exercise, the specifications are: 

 technology fluid: 

o material: water, 

o mass flow: 10 kg/s, 

o inlet temperature: 60°C, 

o outlet temperature: 30°C. 

 cooling fluid: 

o material: water, 

o inlet temperature: 10°C. 

The optimization is calculated with the help of the Excel Solver. A spreadsheet has 

been created, then the setup of the constraints, unknowns and the objective function.  

 

5.1. ONE-PASS HEAT EXCHANGER 

 

In the first step, we have calculated with the easiest construction. The objective was 

the minimum weight, the changing parameters was the number, the length and the 

external diameter of the tubes, outlet temperature of the cooling fluid and the 

internal temperature of the wall. 

 

 
Figure 1: The spreadsheet of the optimization of one-pass heat exchanger 



Result: 32 pieces, 20x2 mm, 12.9 m long tubes, 170 mm diameter shell and 943.5 

kg minimum weight. The length of the tubes is too long (Figure 1). 

 

5.2. MORE-PASS HEAT EXCHANGER 

 

In this calculation we have used the previous table, but we modified a little bit. If 

we use a two-pass construction, the flow section will be the half of the original 

section. (In case of four-pass, the section will be the quarter of the original.) I do not 

manipulate the original conditions. 

Result: 114 pieces, 21x2.1 mm, 3.49 m long tubes, 303.5 mm diameter shell 

diameter and 670 kg minimum weight (Figure 2). All of the conditions are satisfied, 

and the needed cooling water is increased from 20.22 kg/s to 52.7 kg/s (operational 

cost decreasing). 

 

 
Figure 2: The spreadsheet of the optimization of more-pass heat exchanger 
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