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Fungal toxins are secondary metabolites, in which many of them were
mycotoxins, affecting eukaryotic cells with a broad range of structural and functional
variety contributing to the multitude of their classification. This refers to the harmful
genotoxic (mutagenic, teratogenic, and carcinogenic) effects of mycotoxins on the one
hand, and their cytocidic and antineoplastic properties on the other hand. This “double
edged sword” effect could be utilized against the spread of tumors in older patients
when the survival is much more important than the mutagenic side effects. To decide
which fungal toxins could be used as combined cytotoxic and antimetastatic agents,
mycotoxins were divided into three categories: (a) highly genotoxic (mutagenic,
teratogenic, and carcinogenic), (b) adversely toxic, and (c) antitumorigenic agents.
Highly cytotoxic mycotoxins with tolerable side effects, combined with an antineo-
plastic character, could be potential candidates against metastasis. From the structure–
function relationship of antimetastatic mycotoxins, only general conclusions have
been drawn. The presence of ring structures containing heteroatoms, functional
groups, and the cumulative presence of oxygen atoms contributed to the oxidative
stress and cytotoxicity of mycotoxins. The preselection of mycotoxins excluded
category (a), and only the categories (b) and (c) were considered to be potential
agents against the metastatic spread of abdominal tumors in rodent metastatic tumor
experiments.

Keywords: carcinogens, antitumor agents, structure–function relationship,
metastatic connection

Introduction

Physicians distinguish among mycotoxins either depending on the affected
organ (nephro-, hepato-, immunotoxins, etc.) or by the type of illness known as
fungal toxicosis [1, 2]. Cell biologists try to separate the cytotoxic, mutagenic,
teratogenic, and carcinogenic effects of mycotoxins [3, 4]. Chemists classify
mycotoxins either on the basis of chemical structures (lactone, coumarin,
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sesquiterpene, ergot, and difuran) or on the biosynthetic origin (polyketide,
peptide-like, etc.) [1, 5, 6]. Toxicological considerations suggested the selection
of mycotoxins based on their (a) genotoxic, (b) cytotoxic, and (c) anticancer
properties.

As the function of mycotoxins has not been clearly defined, it was assumed
that the chemistry or biology could explain their adverse health effects [7]. This
review is selecting among those mycotoxins that possess strong toxic effects
against tumor cells with tolerable side effects. In conformity with this strategy in
mind, the focus is placed on those mycotoxins or their precursors that besides
being highly cytotoxic, attest antitumor properties and as potential basic com-
pounds could be considered as antimetastatic agents in future animal experiments.
Based on their adverse effects, mycotoxins were divided into three categories:
(a) highly genotoxic (mutagenic, teratogenic, and carcinogenic), (b) adversely
toxic (highly toxic, low, beneficially toxic, apoptotic, and necrotic), and
(c) antitumorigenic agents. Carcinogenic compounds have been excluded from
the selection, and only those compounds will be considered for future antimeta-
static animal experiments that show combined cytotoxic and antineoplastic
properties.

Genotoxic Mycotoxins

Almost certainly, the main human and veterinary health burden of myco-
toxin harm is related to its chronic exposure leading among others to cancer
induction, tissue toxicity, and immunosuppression [8]. Those mycotoxins that
cause severe carcinogenic, mutagenic, teratogenic, and immunosuppressive
effects are ab ovo excluded from the race of becoming antineoplastic agents.
Figure 1 shows only structures of mycotoxins with strong toxic and anticancer
potential to be considered for selection. Tumorigenic mycotoxins are not included
in Figure 1 and will be given less attention in the section devoted to “tumorigenic
mycotoxins.” Selection criteria eliminated several mycotoxins that were found in
animal experiments as carcinogenic [1, 9–11].

Over 60% of the anticancer agents have been obtained from natural sources
[12, 13]. Mycotoxins with antitumor activities have been found in different cell
lines [13, 14]. Without striving for completeness, the most important antitumor
mycotoxins are:

– mycophenolic acid, penicillic acid, and 5-methoxysterigmatocystin (5-MS)
[15],

– anguidine analog scirpenol, di-, and triacetoxyscirpenols [16–18],
– T-2 toxin and related trichothecenes [18],
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– cytocholasin B [19],
– patulin [20],
– hydromytoxin B and 16-hydroxyroridin E [21],
– tenuazoic acid [22],
– betaacetoxyscirpendiol [23],
– gliotoxin [24],
– fluorinated pseurotin A [25],
– synerazol [26],
– rubratoxin B [27],
– beauvericin [28],

Figure 1. Chemical structures of selected mycotoxins with strong toxic effect and anticancer
potential. (a) Ergotamine, (b) cyclopiazonic acid, (c) T-2 toxin, (d) satratoxin H, (e) alternariol,
(f) pseurotin, (g) synerazol, (h) rubratoxin, (i) beauvericin, (j) enniatin, (k) tenuazonic acid,

(l) cytochalasin B, (m) cytochalasin C, (n) MT81, and (o) roquefortine of beneficial low toxicity
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– the macrocyclic trichothecenes verrucarin A and roridin A [29],
– leuteoskyrin, a hydroxyanthraquinone derivative related to MT81 [30].

Adverse effects of mycotoxins

Mycotoxins act like “double-edged swords,” and are regarded as “Janus-faced”
molecules due to their adverse effects. This definition refers to the harmful genotoxic
(mutagenic, teratogenic, and carcinogenic) effect of mycotoxins on the one hand
[3, 10] and cytocidal and antineoplastic effects of mycotoxins on the other hand
[31–33]. The potential pharmacological application of molecules behaving as
“double-edged swords” was tested in at least 300 identified mycotoxins, but only
around 30 of them were investigated for their toxicity [34]. This number has been
increased since, but only the trivial and IUPAC names of highly toxic and best-
known mycotoxins are summarized in Table 1. Many of the mycotoxins display
significant in vitro inhibition against human cancer cell lines [35]. The clinical
aspects of fungal cancer drugs and their synthetic derivatives have also been reviewed
[14], despite the tremendous amount of research aimed at the identification of fungal
metabolites with potential anticancer activities, the number of fungi-derived agents
that have been approved as cancer drugs remained limited [14, 35]. Correspondingly,
an even lower number of secondary metabolites have been investigated due to the
typical fermentation scale-up challenges in bioreactors [36].

The quantity of metabolites produced by fungi and the cost of their
production cause a further constraint against the advancement to clinical stages
[14]. As a result of these obstacles, no fungi-derived agent has been approved as an
anticancer drug to date in spite of the research in the field aimed at the utilization of
fungal metabolites with promising antitumor activities.

The toxic effects of mycotoxins not only question their use but also raise
ethical problems that have not been addressed earlier. The question emerged
whether or not the antitumorigenic effect of toxic mycotoxins could be utilized
against cancer in spite of their DNA damaging, genotoxic “side effects.”
Regarding ethical considerations related to the medical use of mycotoxins,
only limited information is available. In the first BIOMYCO study that raised
ethical questions, a multitoxin approach was applied. The mycotoxin exposure
in adults and children on a large scale was approved by the ethical committee of
the Ghent University Hospital. Within this study, only the design and methods
were restricted [37]. The question was whether the combined intake of myco-
toxins would lead to a possible higher risk for adverse health effects than the
intake of one of these mycotoxins alone [38]. Ethical obstacles against the
clinical use of mycotoxins can be overridden only by the permission of ethical
committees of hospitals and subsequent recruitment of voluntary participants to
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test antitumor mycotoxins being at least in Clinical Trial Phase II upon the
approval of patient(s). To shortcut the viewpoint of patients with incurable
cancers, it is predicted that patients do not care too much about future con-
sequences of toxic side effects of a drug when it provides an immediate relief of
pain and/or significantly extends the lifespan. Reliable anticancer drugs have
been found more than 50 years ago to prolong the lifespan of animals [39] and
by analogy, this can be expected for their human use, but in this regard, not much
progress has been made. Without further discussion of mycotoxins as antitumor
agents, the opinion of terminally ill patients is acceptable only for elder patients,
who would not represent a serious risk to the reproductive cycle by spreading
mycotoxin-affected mutations to their children. Considering this attitude of
metastatic patients, the review primarily focuses on neoplastic, cytotoxic,
anticancer aspects of mycotoxins, and other tolerable side effects.

Tumorigenic Mycotoxins

The common and IUPAC systematic names of mycotoxins are summa-
rized in Table 1. As systematic names can be convoluted and are difficult to
remember, the use of their trivial names is preferred. The exclusion of
mycotoxins that have genotoxic (mutagenic, teratogenic, and carcinogenic)
and immunosuppressive properties will affect several compounds in conformity
with earlier animal experiments suggesting that most of the mycotoxins are
carcinogens [1, 8, 9, 40]. Table 1 contains the most important tumorigenic
mycotoxins, such as aflatoxins, patulin, penicillic acid (not to be confused with
penicillin G or V), gliotoxin, citrinin, fumonisin, and ochratoxin. However,
these frequently occurring mycotoxins also exert antitumor activities in differ-
ent cell lines and in in vivo experiments, including aflatoxin, patulin, penicillic
acid, gliotoxin, roquefortine C, trichothecenes, trichothecene analogs of
anguidine, cytochalasins, 14-hydromytoxin B and 16-hydroxyroridin E, tenua-
zonic acid, pseurotin A, synerazol, rubratoxin B, beauvericin, 5-methoxy-
sterigmatocystin, and mycophenolic acid. Corresponding to this “double sword
effect,” often the same compounds can be found in the listing of both the
tumorigenic and antitumorigenic groups. In such cases, the tumorigenic effect
should be a slow process and by no means an acute one, whereas the
antitumorigenic cytotoxic effect is expected to be instant without serious side
effects.

Mycotoxins with serious tumorigenic effects (aflatoxin, patulin, penicillic
acid, and gliotoxin) are thus automatically excluded from the potential list of
antimetastatic agents (Table 2).
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276 PÓCSI ET AL.

Acta Microbiologica et Immunologica Hungarica 65, 2018



The nephrotoxic, hepatotoxic, and cancer-promoting effects expel citrinin
from using it as an antineoplastic agent. Similarly, the strong carcinogenic,
teratogenic, nephrotoxic character of ochratoxin, and other foodborne mycotoxins
disqualify themselves from being considered as cytotoxic agents against tumor
growth (Table 2). Fumonisin is excluded because of the probable link between
fumonisin toxicity and esophageal cancer [41].

Although satratoxins are extremely toxic, satratoxin H (Figure 1d) will be
given more attention among type D trichothecenes.

On the contrary, it would be a futile effort to turn mild or beneficially toxic
mycotoxins into antitumor agents (e.g., roquefortin C). Tumorigenic mycotoxins
are not discussed in detail, but their detrimental effects deserve mention. A viable
strategy could be the reduction or minimization of the extreme toxicity of
antitumorigenic mycotoxins by:

(1) modification of mycotoxins through chemical, physical, and biological
methods;

(2) inhibiting mutagenesis and carcinogenesis by applying antimutagenic
agents and to prevent the interaction of mycotoxins with DNA [42];

(3) agents, which bind mycotoxins and prevent absorption by the animals’
digestive tract [43–49]. Agents binding to mycotoxins are expected to be
approved by the FDA for the prevention or treatment of mycotoxicoses.

Antitumor Mycotoxins

Ergot alkaloids

Ergot alkaloids are produced by Claviceps, Epichloë, Penicillium, and
Aspergillus spp. [50] and cover a wide range of biological activities with effects
on blood circulation and neurotransmission to mention just the most important ones
[51]. Chemically, the ergot alkaloids are characterized by the presence of a
tetracyclic ergoline ring (Figure 1a). Genotoxicity studies have been carried out
only in ergotamine (Figure 1a) but not in other naturally occurring ergot alkaloids.
Although ergotamine did not initiate bacterial or mammalian cell mutation, earlier
studies showed some weak and inconsistent chromosome damaging effects in vitro
and in vivo. Mutagenicity testing of ergot alkaloids has shown that these compounds
have no mutagenic potential [52–55]. In spite of these claims, chromosomal
damages were reported by Roberts and Rand [56, 57], whereas others concluded
that the genotoxicity and carcinogenicity of ergot alkaloids showed a non-genotoxic
mode of action [58]. Considering the cytotoxicity of clavines as the preferred
mycotoxic effect, they could be potential antitumor agents [59].
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Cyclopiazonic acid

Another fungal secondary metabolite, structurally related to clavines, is the
indole alkaloid cyclopiazonic acid (Figure 1b) [60]. The antimalarial drug
cyclopiazonic acid was first isolated from Penicillium species (P. cyclopium,
P. griseofulvum, P. camemberti, and P. commune) and subsequently from
Aspergillus flavus, Aspergillus versicolor. This cell permeable ergot-like alkaloid
is a reversible inhibitor of the sarcoendoplasmic (SERCA) reticulum and sarco-
plasmic Ca2+ ATPases [61] and could be utilized in combination with other agents
against tumor and metastatic developments.

Trichothecenes

Trichothecenes are generally formed via the mevalonate pathway. These are
sesquiterpene analogs and constitute one of the major groups of mycotoxins, if not
the largest one. Correspondingly, these compounds will be given more attention.
The macrocyclic and non-macrocyclic trichothecenes constitute a family of more
than 60 metabolites produced by species from a number of fungal genera,
including Fusarium, Myrothecium, Phomopsis, Stachybotrys, Trichoderma, Tri-
chothecium, and others [62–64]. The basic structure of sesquiterpenoid trichothe-
cenes has been subdivided into types A, B, C, and D groups [65].

The chemical structures of major derivatives of types A and B trichothe-
cenes are shown in Figure 2. The type A group includes diacetoxyscirpenol, T-2
toxin, and neosolaniol. The type B group contains a ketone at the C-8 position and
includes nivalenol, fusarenon-X, and diacetylnivalenol. Diacetonivalenol is the
natural acetylated derivative of deoxynivalenol [66].

T-2 Mycotoxin. The best-known representative of type A trichothecenes is T-2
mycotoxin (Fusariotoxin T2) [67] (Figure 1c) a widespread contaminant of grain
and grain products. T-2 toxin is produced by species of Fusarium, Myrothecium,
Trichoderma, Trichothecium, Cephalosporium, Verticimonosporium, and Stachy-
botrys. Besides deoxynivalenol, T-2 is the most toxic trichothecene. These two
toxins cause the most concern due to their wide distribution. T-2 toxin is a potent
mycotoxin produced primarily by the species of the genus Fusarium and elicits
inflammatory and genotoxic effects. The toxicity of T-2 toxin is related to its
12,13-epoxy ring [67] that could be connected to its oxidative stress-mediated
cytotoxicity [11]. The structure–activity relationship revealed that the free hy-
droxy in the C-3 position present in type A and type B trichothecenes contributed
to cytotoxicity. Free hydroxy groups at the 4th, 8th, and 15th positions probably
interfered with the cytotoxicity, as their esterification resulted in improved
cytotoxicity [68]. Cell cycle analysis proved the apoptotic effect of T-2 toxin
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and its metabolites (HT-2 and adenosolaniol) in micromolar concentrations [69].
The metabolic network of trichothecene mycotoxins is quite diverse. Related
studies would require significant efforts to understand their fate and modify their
toxicity in animals and humans [70].

T-2 mycotoxin was suspected to have been used as a chemical warfare agent
from the 1970s till the 1990s and delivered by low-flying aircraft releasing a
yellow oily liquid causing a phenomenon named “yellow rain.” Others proposed
that the “yellow rain” found in Southeast Asia was originated from the excrement
of jungle bees [71]. T-2 mycotoxins that can be absorbed through the skin have
been officially classified and stigmatized as chemical weapons. Nevertheless, the
trichothecene cytotoxicity of type A (T-2 and HT-2), type B (deoxynivalenol and
nivalenol), and type D (satratoxin G and H) toward different cell lines was within a
narrow limit between 4 nM and 5 μM IC50 concentration range, suggesting that
the potential of trichothecenes as antitumor agents has been underestimated [72].

Satratoxin H. This trichothecene mycotoxin (Figure 1d) is a naturally occurring
byproduct of the mold Stachybotrys chartarum that is toxic to both humans and
animals causing a clinical condition known as Stachybotrotoxicosis. The six-
membered rings of satratoxin H are related to mycotoxin T-2, but unlike T-2, it has
not been reported to have been used as a biological weapon. Although the
apoptotic effects of satratoxin H mediated through double-stranded DNA
breaks could be exploited, the induction of genotoxicity suggests a considerable

Figure 2. Chemical structures of trichothecene analogs
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genotoxic risk [73]. Satratoxin H is about five times more toxic than the T-2 toxin.
The extreme toxicity of satratoxin H was explained by the generation of reactive
oxygen species (ROS) and lipid peroxides leading to apoptosis in PC12 cells [74].

Anguidine analogs. The mycotoxin anguidine (4,15-diacetoxyscirpenol,4,
15-DAS) is a highly oxygenated trichothecene that was first isolated from
Fusarium equiseti [75]. This trichothecene has been transformed to several closely
related derivatives through the combination of microbial and chemical modifica-
tions [16, 17] (Figure 3). Anguidines have been subjected to microbial transfor-
mations by Mucor mucedo, Streptomyces griseus, Acinetobacter calcoaceticus,
and Fusarium oxysporum strains. The antitumor activity of anguidine observed in
leukemic mice [76] was tested in human phase I clinical trial, but anguidine caused
an unexpected pain syndrome [77, 78]. Moreover, the antitumor activity of the
trichothecenes was minimal or absent in patients treated with anguidine [17].
Because of their painful toxicity, the life-threatening hypotensive effects, and the
poor tolerance by patients, the use of trichothecenes as chemotherapeutic drugs
was discontinued.

Due to the disappointing results in clinical trials, the lethal and cytokinetic
effects of anguidine were tested on cultured human colon cancer cells, but its
tumoricidal activity was poor even after prolonged exposure [79]. The National
Cancer Institute has determined that the trichothecene mycotoxin anguidine is a
potent teratogen (http://www.cancer.gov/publications/dictionaries/cancer-drug?
cdrid=39148). This did not completely eliminate anguidine as a potential
antitumor–antimetastatic agent from the race, as teratogenicity causes congenital

Figure 3. Anguidine analogs of trichothecenes
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malformation, whereas metastatic transformations of tumors more frequently
occur in elder patients. To find the active chemical group(s) responsible for
teratogenicity, approximately 60 derivatives of anguidine were tested to select
them for antitumor activities. Structural positions 3, 4, 8–10, and 15 were
modified, and the resultant derivatives were screened against leukemia cells.
It was found that the introduction of C3-keto, C3, and C8-diketo groups markedly
improved the antileukemic activity, whereas epoxidation of the C9–C10 double
bond or oxidation of the C15 position diminished the antileukemic activity [18].

Anguidines are “Janus-faced” compounds representing a group of tricho-
thecene mycotoxins exerting both antitumor and teratogenic effects. Nevertheless,
the concentration- and time-dependent universal cell cycle arrest of anguidine
could be improved in combination with other antimetabolites to reduce the toxicity
of a variety of subsequently administered agents, including ara-C, adriamycin,
5-fluorouracil, and hydroxyurea [80, 81].

Relations of chemical structures of other trichothecene toxins to their
biological activities were also investigated. In verrucarol (scirpendiol), scirpentriol
and other hydroxylated verrucarin analogs, the esters significantly showed higher
cytotoxicity. Apoptosis was induced by 4-beta-acetoscirpendiol produced by
Paecilomyces tenuipes in human leukemia cell lines in vitro [23].

Minor trichothecenes. Type C minor trichothecenes have a C-7/C-8 epoxide
(e.g., crotocin). Similar to satratoxin H, type D minor trichothecenes have an
additional ring bridging the C-4 and C-15 positions (e.g., roridin A and verrucarin
A) [63]. Verrucarin, a type D trichothecene, is highly toxic due to the basic
trichothecene structure and the presence of olefin, epoxide, keto groups, and R
substituted hydroxy groups. Types C and D trichothecenes are less well known
(structures not shown).

Among additional trichothecenes 14′-hydroxymytoxin B and 16-hydroxyr-
oridin E were isolated from Myrothecium roridum and showed potent cytotoxic
activity against soft-tissue sarcoma cells [21]. The controversy surrounding the use
of trichothecenes [82] is illustrated by the various effects of trichothecenes causing
digestive symptoms (diarrhea and emesis), weight loss, nervous disorders, bone
marrow damage, cardiovascular alterations, hemostatic changes, and immune
suppression [83, 84]. More importantly, liver damages, hepatotoxicity, carcino-
genic, and teratogenic effects were not among these disorders. The analogs of
trichothecenes that have been synthesized [62] carry the promise that the fine-
tuning of modifications could result in antitumor candidates. Elimination by
detoxification could be achieved by extensive and rapid biotransformation in the
kidney/liver (3:1), but other cells also actively metabolize these trichothecene
toxins normally by deacylation, deepoxidylation, and oxidation at the C-12 and
C-13 position in the basic structure [85–87]. By the removal of oxygen from the
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epoxide groups, trichothecene mycotoxin deepoxy metabolites could be formed
that are essentially non-toxic [86].

Although the use of warfare trichothecenes has drastically been reduced,
subacute doses of trichothecene mycotoxins could still serve biological war-
fare. Chronic toxicity has iatrogenically been induced by repeated subacute
doses of trichothecene mycotoxins administered intravenously to cancer
patients as a chemotherapy for colon adenocarcinoma. No conclusive reports
were published. Nevertheless, low doses of non-toxic trichothecenes in com-
bination with other synergistic mycotoxins could be beneficial against meta-
static tumor spread, particularly by the selection of right doses and proper
administration. As far as trichothecenes are concerned, by ignoring anecdotal
evidence, one can conclude that these mycotoxin analogs remain potential
candidates as antineoplastic agents after matching the functional demand with
the structural design.

Deoxynivalenol and zearalenone. Mycotoxins of Fusarium graminearium pro-
duce among other mycotoxins deoxynivalenol and zearalenone. Deoxynivalenol is
one of the most prevalent cereal contaminants with major public health concerns
[88]. Poultry and swine are among the most sensitive species for deoxynivalenol
and zearalenone mycotoxins [88–90] (http://www.trilogylab.com/uploads/
Mycotoxin_CAST_Report.pdf). Deoxynivalenol, a type B trichothecene deriva-
tive interferes with cell growth, alters brain neurotransmitter production, immu-
nity, and causes organ damage. On the other hand, zearalenone, a phenolic
resorcylic acid lactone, resembling the structure of estradiol-17β, results in
embryonic death, smaller litters, and smaller offspring of pigs [89, 91, 92].

The treatment of pigs with the oxidative stress inductor deoxynivalenol
and zearalenone mycotoxins increased the level of the 8-OHdG carcinogenic risk
factor, whereas yeast-based feed additives tended to compensate the effect of
8-OHdG upon mycotoxin treatment [93]. Deoxynivalenol is known to cause
oxidative stress [11, 94] and a spectrum of diseases in animals and humans by
affecting the signaling pathways in cells [95]. Emerging evidence suggested that
deoxynivalenol produced its toxicity primarily via activation of the mitogen-
activated protein kinase signaling pathway and altering the expression of
genes responsible for key physiological and immunological functions of the
intestinal tissues of chickens and pigs. These findings highlighted the cyto-
toxic risks associated with the intake of even low levels of deoxynivalenol
and also indicated the gap of knowledge that needs to be addressed in future
research [88].

Zearalenone is undoubtedly implicated in reproductive disorders of
swine and other domestic animals. Experiments in vivo and in vitro indicate
that type B zearalenone and its metabolites exert estrogenic effects resulting in
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functional and morphological alterations in reproductive organs [96]. Conse-
quently, those trichothecenes (deoxynivalenol, T-2, and zearalenone) and
fumonisin toxins that affect ovarian and testicular function, placenta and fetus,
puberty and sexual maturity of domestic animals are unlikely to be used as
antimetastatic agents.

Alternariol

The toxic secondary fungal metabolite alternariol (Figure 1e) is produced by
Alternaria molds. It is cytotoxic, fetotoxic, teratogenic, mutagenic, and genotoxic
[97]. Alternariol was reported to induce apoptosis in mouse hepatoma cells [98].
Insufficient knowledge regarding the cellular effects of alternariol requires caution
before its anticancer and antimetastasis potential can be realistically judged and
taken into consideration.

Spirocyclic γ-lactams

Pseurotin A. The expression of pseurotin A (Figure 1f) as a secondary metabolite
of Aspergillus and other fungi [99] is induced in response to hypoxia [100]. The
spirocyclic γ-lactam pseurotin A showed a moderate effect against phytopatho-
genic bacteria and presented low cytotoxicity toward human lung fibroblasts
[101]. Pseurotin and its analog synerazol are inhibitors of immunoglobulin E
[102].

Synerazol. This mycotoxin (Figure 1g) is active against Candida albicans and
other fungi synergistically activated with azole-type antifungal agents [26]. Its
activity was potentiated by the co-presence of azole compounds, such as the
antifungal clotrimazole (chlortrityl imidazole) applied topically [103].

Rubratoxin A (Figure 1h) is a pyrano-cycloclonal-furan derivative and a
potent, selective, competitive inhibitor of protein phosphatase 2A, inducing a
caspase-dependent decrease in cell viability and in vivo antitumor effect
[104–106]. As a cytostatin analog, rubratoxin A could be a basic compound for
chemical modifications leading to the development of antitumor–antimetastasis
drugs based on the strategy that is targeting protein phosphatase 2A [105].

Beauvericin (Figure 1i) is a cyclic peptide, toxic to human cell lines
[107, 108], induces apoptosis and DNA fragmentation [108, 109]. Beauvericin
causes cytotoxic effects in human acute lymphoblastic leukemia cells [28].
Unfortunately, it also exerts a strong negative inotropic effect, i.e., decreases the
cardiac contraction strength [110]. Beauvericin inhibited the migration of the
metastatic prostate cancer (PC-3M) and breast cancer (MDA-MB-231) cells and
showed antiangiogenic activity in HUVEC-2 cells at sublethal concentrations
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[111]. Beauvericin also inhibited the growth of KB and KBv200 cells, induced
apoptosis through the intrinsic mitochondrial pathway by the generation of the
ROS, loss of mitochondrial membrane potential, the release of cytochrome c,
activation of caspase-9 and -3, and cleavage of PARP [112]. The channel form-
ing ability of beauvericin and enniatin selectively directs a flux of cations –

particularly calcium – into the cell. The increased intracellular calcium levels
might be at least in part responsible for their cytotoxicity [33]. The cytotoxic
effects of beauvericin leading to apoptosis could be utilized against tumor growth,
but to avoid its strong negative inotropic effect, a lower dose in combination
with other anticancer drugs is recommended.

Enniatin. The circular arrangement of the cyclic depsipeptide enniatin A
(Figure 1j) structure and other major enniatins (Enn A1, B, B1), as well as minor
enniatins resemble beauvericin. As expectable from the circular form and empty
hole inside their structures, enniatins act as ionophores [113]. Profound p53-
dependent cytostatic and p53-independent cytotoxic activities, especially against
human cancer cells, suggested a potential of enniatin as an anticancer drug [31]. It
was confirmed that enniatins A1 and B1, and to a lesser extent, enniatin B may
possess anticarcinogenic properties by the induction of apoptosis and disruption of
extracellular signal-regulated kinase signaling pathway [114]. The combination of
Enn B with the clinically approved multikinase inhibitor sorafenib displayed
profound synergistic in vitro and in vivo anticancer effects against cervical cancer.
This finding drew attention to the novel combination strategy particularly for the
treatment of cervical cancer [115].

Tenuazonic acid. The mycotoxin tenuazonic acid (Figure 1k) is a dihydropyrrole
derivative, produced by Alternaria species [116]. It was found to be a powerful
eukaryotic protein synthesis inhibitor [117] that significantly delayed the onset of
tumorigenesis and also reduced the cumulative number of tumors per tumor-
bearing animals. The antitumor and protective potential of tenuazonic acid was
utilized against polycyclic aromatic hydrocarbon-induced skin carcinogenesis in
mice [22]. The diketo and enol groups bound to the pyrroline ring seem to be
crucial for its antitumor activity.

Cytochalasins. These are macrocyclic tetramic acid derivatives. These mycogenic
toxins bind filamentous F-actin, thereby block the polymerization and microfilament
formation, which in turn affects cellular morphology, inhibits cellular processes such
as cell division, and induces apoptosis [118, 119]. Similar to the antibiotic effect of
penicillic acid, it was observed that the toxic mold metabolite cytochalasin isolated
from Helminthosporium species generated binucleate cells, at higher doses caused
nuclear extrusion and even total enucleation due to the inhibition of cell division
[120]. The Helminthosporium genus of fungi belongs to the order of Pleosporales
(phylum Ascomycota) of the kingdom Fungi [121].
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The best studied among cytochalasin alkaloids is the cell permeable
cytochalasin B (Figure 1l), isolated from the fungus Helminthosporium dema-
tioideum. The phytotoxic effect of cytochalasin B deserves mention because of its
additive effect with another phytotoxic compound known as pyrenophoric acid
that is structurally closely related to abscisic acid, demonstrating the combined
action of multiple toxic compounds [122]. From a pharmacological perspective,
cytochalasin B strongly inhibits the synthesis of actin filaments, blocking the
formation of microfilaments and cytoplasmic division of cells. The inhibition of
cell movement and inherent nuclear extrusion has been exploited for cloning
through nuclear transfer. Cytochalasin D was more effective than cytochalasin B
as a cytoskeletal inhibitor for the production of somatic cell nuclear transfer of
embryos in miniature pigs [123]. In the nuclear transfer, the oocytes are aspirated
into a micro-needle without rupturing the plasma membrane. However, there is no
information regarding the damage to the nucleus upon cytochalasin B treatment,
since another cytochalasin, namely cytochalasin C (Figure 1m) is known to cause
nuclear damages and binucleate cell formation. More importantly, cytochalasin B
was used in vivo against murine lymphoma and sarcoma as a single agent or in
combination with other chemotherapeutical drugs to amplify the antitumor activity
[19, 119]. Due to its unique chemotherapeutic mechanisms, cytochalasin B could
be exploited as a promising antineoplastic agent. Based on preclinical murine
models [124], cytochalasin B possesses substantial synergistic potential with
microtubule- and nucleic acid-directed agents [125]. Murine models showed that
the antineoplastic activities of cytochalasin B and D can substantially potentiate
chemotherapeutic agents, improve the efficacy of antitumor therapy, and increase
the life expectancy of mice [126].

The major effects of cytochalasin D include the inhibition of formation of
contractile microfilaments of actin, prevent the separation of the dividing
nucleus, and result in multinucleated, primarily binucleated cell formation,
inhibition of cellular movement, and induction of nuclear extrusion and enucle-
ation. Additional effects of cytochalasin D are the inhibition of DNA synthesis,
increased motility of sperm, glucose transport, and the release of thyroid and
growth hormones. Cytochalasin D was reported to inhibit CT26 tumor growth
and angiogenesis [127] but promoted pulmonary metastasis of B16 melanoma
cells [128]. This controversial observation may indicate that the anticancer and
antitumor properties of the same compound may not only depend on its chemical
structure but also on its acceptor acting on opposite molecular mechanism of
cells.

Recent investigations revealed that new cytotoxic cytochalasans named
periconiasins after the fungus Periconia sp. F-31 showed cytotoxicity against
human HCT-8 cancer cells [129]. Trichodermone, the first spiro-cytochalasan

ANTICANCER MYCOTOXINS 285

Acta Microbiologica et Immunologica Hungarica 65, 2018



isolated from the endophytic fungus Trichoderma gamsii, displayed moderate
(IC50 5.7 μM) inhibitory activity against HeLa cells [130]. Cytochalasins from the
medicinal macrofungus Cordyceps taii exerted potent antitumor activities against
the lung cancer cell 95-D [131]. Other new aspochalasins A–D and aspochalasin Z
were regarded as cytochalasan antibiotics. The antibacterial activity of these
cytochalasins was weak and showed strong cytostatic effects toward various tumor
cells [132], which allowed to categorize them as mycotoxins. Investigations
related to the cytotoxic activities of cytochalasins isolated from terrestrial and
marine fungi indicated that scientists regarded them the most prospective antitu-
mor agents. Computer-assisted phase-contrast microscopy revealed two groups of
cytochalasins, cytotoxic versus cytostatic ones. These data opened new vistas for
tuning cytochalasin targets and to develop non-toxic, cytostatic cytochalasins to
combat cancers and metastases associated with poor prognoses [119].

Cytochalasin C (Figure 1m) is another example how chemical changes
characterized by the fusion of a macrocyclic ring to a highly substituted isoindole
ring drastically reduce the toxicity of other cytochalasins without losing effec-
tiveness against cell growth and potentially against metastasis.

MT81. The furo-pyran-anthraquinone derivative mycotoxin MT81 (Figure 1n)
was isolated, purified, and identified from a fungal strain of Penicillium nigricans
[30]. As expected from the highly toxic mycotoxin, it exerted a bone marrow
depressive effect [133] and caused liver, brain, and kidney dysfunctions [134].

More importantly, MT81 has shown in vitro and in vivo antitumor activities
against Ehrlich ascites tumor cells [135]. The Ehrlich ascites carcinoma is a
spontaneous murine mammary adenocarcinoma [136] that was treated in inbred
mice by serial intraperitoneal (i.p.) administration. In Ehrlich ascites cell-bearing
mice, the increased volume of ascites fluid in the peritoneum is the nutritional
basis and a necessary factor for tumor cell growth. MT81 and its acetylated analog
(Aa-MT81) turned out to decrease the ascites fluid volume and viable cell count
and increased the percentage of the lifespan of Ehrlich ascites cell-bearing mice.
Aa-MT81 was more potent and less toxic than its parent MT81 compound.
Abdominal tumors generate often ascites, thus the antineoplastic and antioxidant
activities of mycotoxins were tested against Ehrlich ascites carcinoma in mice. As
expected MT81 and its structural hydroxyanthraquinone analog, luteoskyrin
proved to be potent inhibitor against Ehrlich ascites tumor cells [30, 137].
Luteoskyrin is a hepatotoxic mycotoxin produced by Penicillium islandicum that
has been found frequently in rice [138].

Roquefortine C (Figure 1o) is known for its beneficial toxicity at low
concentration (~0.5 mg/kg) present in carbonated beverages, alcoholic drinks, blue
cheese [139], and other domestic cheeses [140] but highly toxic at higher
(>1.5 mg/kg) concentrations [141].
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Xanthene derivatives – Sterigmatocystins. Among the xanthene-derivative ster-
igmatocystin (Figure 4), the mycotoxin 5-5-MS was isolated from an Aspergillus
sp. strain. Subsequent purification revealed that the active substance 5-MS
possessed strong antitumor effects [142]. The antileukemic effect of 5-MS was
similar to that of O-acetyl-5-MS (Figure 4b) in tests on leukemia cells, by
prolonging their survival over a fourfold dose range. The potency and toxicity
of sterigmatocystin (Figure 4c) was about one-half of those of 5-MS and O-acetyl-
5-MS. The toxicity and antileukemic effects were low in other 5-MS derivatives,
such as O-methyl-5-MS and dihydro-5-MS and absent in 4-3′-furyl-3,8-dihy-
droxy-1,5-dimethoxyxanthone (iso-5-MS) [142]. The antineoplastic effects of
several sterigmatocystins were presented by Bradner’s group [15]. This team
also revealed that the antitumor activity of the 5-MS parent compound has been
associated with the intact bisfurano ring system and with the double bond in the
terminal furan ring. The “Janus-faced” bisfurano rings are also present in the
carcinogenic aflatoxin.

Mycophenolic acid derivatives. Mycophenolic acid was the first antibiotic
synthesized in pure form in 1896 [143], and also the first being resynthesized
in 1913 [144]. Mycophenolic acid (NSC-129185) was reported as an antineoplas-
tic agent [145] and subjected to clinical trials in 1972 [146, 147]. Its broad-
spectrum antiviral, antifungal, antipsoriasis, and anticancer effects were
rediscovered in 1997 [148]. Mycophenolic acid was equally effective when
administered by either the oral or i.p. route. The LD50 in mice of mycophenolic
acid was high and found to be >1,000 mg/kg after oral and i.p. administration
[149]. Mycophenolic acid delayed-release tablets are used as immunosuppres-
sants. FDA prescribing information warns of its embryofetal toxicity during
pregnancy associated with increased risks of pregnancy loss and congenital
malformations. Nevertheless, the broad-spectrum mycophenolic acid tablets serve
as a precedent that toxic mycotoxins with severe side effects could be applied
among others against cancer and metastasis. The experimental antineoplastic

Figure 4. The chemical structure of antileukemic 5-methoxysterigmatocystin (5-MS) derivatives.
(a) 5-MS, (b) O-acetyl-5-MS, (c) sterigmatocystin. The ring structure consists of 2 five-membered

bisfurano rings and 3 six-membered rings forming the xanthone skeleton
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activity and preclinical toxicology of mycophenolic acid in combination with
either radiation or cyclophosphamide showed a synergistic antitumor response
against experimental tumors [150].

Correlation was found between the antitumor and immunosuppressive
activities of mycophenolic acid derivatives [151]. A few derivatives that possessed
potent antineoplastic activities with less or no immunosuppressive activity turned
out to be good candidates for cancer chemotherapy [152]. The antineoplastic
properties of 65 analogs and derivatives of mycophenolic acid have shown that
none of these compounds were as effective as mycophenolic acid itself [153].
Others who have also studied the anticancer potential of derivatives of myco-
phenolic acid have found three chemical modifications that deserve mention:
TM-1Z03, TM-1Z04, and TM-1Z13 mycophenolic acids (Figure 5). These
compounds were recommended as potential candidates for cancer chemotherapy
[153]. As the molecular mechanisms of the antineoplastic effects of mycophenolic
acid were not completely understood, in vitro assays showed that this compound
inhibited endothelial cell and fibroblast proliferation, invasion/migration, and
endothelial cell tube formation. The involvement of antiangiogenic signaling of
mycophenolic acid contributed to its antineoplastic effect, further stimulated
clinical investigations [154] and is expected to initiate further antimetastatic
animal studies.

Mycophenolate mofetil (morpholinoethylester of mycophenolic acid), the
prodrug of mycophenolic acid, has been widely used not only for the prevention
of acute graft rejection but also for the growth inhibition of many tumors. Due to
its inhibition of cancer cell proliferation, induction of apoptosis, mycophenolate

Figure 5. Mycophenolic acid derivatives. (a) Mycophenolic acid, (b) derivatives of mycophenolic
acid with antitumor activities
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derivatives remained potential candidates for cancer therapy, noting that the
underlying molecular mechanisms remained unknown [155]. Besides the im-
munosuppressive effect of mycophenolate mofetil, it has a strong antineoplastic
effect against pancreatic cancer via the inhibition of the inosine monophosphate
dehydrogenase activity in vitro and in vivo [156, 157]. Mycophenolate [158] and
mycophenolate mofetil [159–161] are useful for the treatment of sarcoidosis and
granulomatosis. The inhibition of inosine monophosphate dehydrogenase by
mycophenolic adenine dinucleotide analogs and by other mycophenolic acid
derivatives as well as their antiproliferative potential was confirmed [162, 163].
However, the immunosuppressive and antitumor effects of mycophenolate and
its derivatives based on the inhibition of the pathway of purine nucleotide
biosynthesis could impose difficulty in its therapeutic application. Many options
for a specific regimen for individual cancer patients could minimize the risk of
mycotoxin side effects while enhancing benefits.

Equisetin. This small group of antibiotics produced by Streptomyces includes
equisetin, an N-methylserine-derived acyl tetramic acid produced by a number of
Fusarium species with antibiotic and cytotoxic activities [164]. Equisetin also
isolated from the fungus Fusarium heterosporum and an enantiomeric homolog of
equisetin from Phoma sp. were effective inhibitors of the HIV-1 integrase in vitro.
Two additional analogs, the decalin derivative, integric acid, and oteromycin were
reported to inhibit HIV-1 integrase [165]. As antineoplastic and antiviral activities
of antibiotics are often associated [166], the antitumor potential of equisetin should
not be neglected.

Marine-derived mycotoxins

Cytotoxic agents were defined as poisonous compounds that may become
potential anticancer drugs when they display: (a) selectivity for cancer cells,
(b) activity against multidrug-resistant cancer cells, and (c) preferential non-apoptotic
cell death mechanisms against cancer cells [167]. This general distinction concerns
not only fungal toxins but also anticancer agents of different origin.

In the past 50 years, several compounds of marine origin led to drugs
mainly in the area of cancer therapy [168]. More than 1,000 marine fungal-
derived metabolites have been reported. Despite their absence in the current
clinical application, dozens of them have been classified as potential chemo-
therapy candidates because of their anticancer activity [167]. Toxins are derived
from the marine fungus Aspergillus terreus and grown under various culture
conditions generate environmentally induced changes in metabolite expression.
Differences can be used to guide the discovery of new bioactive molecules [169].
There is no doubt that some of the marine-derived fungal metabolites could
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become actual anticancer agents, suggesting that marine-derived metabolites
have a bright future.

Aurantosides. These are cytotoxic tetramic acid glycosides isolated from marine
Theonella species. Aurantosides exhibit antifungal activity against Aspergillus
fumigatus and C. albicans [170, 171] but are not regarded as potential antitumor
agents.

Phenyl-cytochalasins. New cytochalasins derived from the marine fungus
Arthrinium arundinis showed cytotoxicity against several cell lines with IC50
values ranging between 1 and 50 μM [172]. Z7, Z8, Z9, cytochalasin E and K are
phenyl derivatives isolated from the marine-derived fungus Spicaria elegans
[173]. Phomopchalasins with polycyclic-fused rings exert cytotoxic, anti-
inflammatory, and anti-migratory activities [174].

Structure and function relationship of mycotoxins

The three-dimensional (3D) structure is expected to define not only the size
and shape but also the function of mycotoxins. Unfortunately, mycotoxins have
too many functions and in spite of functional similarities, their structures may be
quite different.

For exact 3D structural measurement in silico models could be used, but
these calculations should consider covalent, electrostatic, van der Waals, and steric
interactions of structural elements of mycotoxins. Due to the complexity of these
interactions, the use of such computer models remained limited. We have
compared 2D structures with particular attention to ring structures and to the
most often occurring functional groups in anticancer mycotoxins.

From the data contained in the figures and tables, the structure–toxicity
relationship led to the following general conclusions:

1. Heteroatoms in ring structures. Most of the mycotoxins contain oxygen
heteroatoms in saturated, unsaturated, or aromatic rings. The distribution of
oxygen heteroatoms in the rings of mycotoxin structures is summarized in
Table 2. The majority of compounds (78%) contained oxygen. In oxygen-
bearing mycotoxins, one oxygen was present with 35%, two oxygens with
42%, three oxygens with 19%, and four oxygen with 4% frequency.
Nitrogen was half as frequently present in 19% of the mycotoxins with
1–5 N atoms. Sulfur as heteroatom was present only in gliotoxin. Fumonisin
B1 and the enolic form of penicillic acid were the only aliphatic compounds
without ring structures. It was realized only in the late 1990s that hundreds
of thousands of compounds that were synthesized lacked “complexity”
associated with bioactive native natural compounds including chiral centers,
heterocyclic substituents, and polycyclic structures. After this recognition,
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the combinatorial chemistry was favored that has revolutionized the devel-
opment of active compounds [175]. In agreement with these recognitions,
those mycotoxins were selected and used jointly, which possessed the
attributes of complexity. The application of new techniques and methodol-
ogies helped to develop compounds into active antitumor agents [176].

2. Presence of reactive oxygen atoms. All mycotoxins summarized in Table 2
contain oxygen. The cumulative presence of oxygen atoms (213 oxygens in
32 mycotoxins), especially the highly reactive three atom ring epoxide could
be responsible for generating oxidative stress. However, the generation of
extremely aggressive ROS should be avoided [177], exemplified by tri-
chothecenes, where these ROS-generating species did not improve the
antineoplastic activity of mycotoxins [18].

3. Functional groups. Among the oxygen-containing functional groups, the
ratio of keto (40%) and hydroxy (47%) groups was the highest; carboxy
groups represented only 13% of the oxygen-containing functional groups.
The extremely high number (21) of hydroxy groups in aflastatin relative to
the two keto moieties could be accounted for by the inhibitory effect of
aflatoxins. These groups could be responsible for the cytotoxic and anti-
neoplastic effects of mycotoxins in general. The frequency of amino and
imino groups together was only about 5% relative to other oxygen-containing
functional groups (Table 2).
As far as their carcinogenicity to humans is concerned, only aflatoxins

belong to the most carcinogenic IARC 1 category (Figure 6a). Based on the partial
structural similarity of aflatoxin B1 and 5-MS (boxed in Figure 6a and 6b) and
similarities in the rest of their structures, 5-MS appears to be the second most
dangerous mycotoxin belonging to the possibly carcinogenic IARC 2B category.
The cytotoxicity in other IARC 2B carcinogens such as ochratoxins and fumo-
nisins is definitely contributed by keto, hydroxy, and the cumulative presence of
carboxy groups (Figure 6c and 6d). Mycotoxins belonging to higher IARC
numbers are not classifiable as to their carcinogenicity to humans. Major myco-
toxins belonging to the non-carcinogenic IARC 3 category are nivalenol, deox-
ynivalenol, patulin, T-2/HT-2 toxins, zearalenone [4].

The structure–toxicity relationship of the best studied and one of the largest
group of mycotoxins known as trichothecenes [178] allowed the following
generalization:

– Epoxy ring. The 12,13-epoxy ring is the most important structural feature
providing high toxicity to trichothecenes.

– Ring structure of trichothecenes. The double bond between C9–C10 and the
12,13-epoxide ring are essential structural features for the trichothecene
toxicity. Removal of these groups results in the complete loss of toxicity.
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Nitrogen is absent, but as referred to above, it significantly does not affect
toxicity.

– Hydroxy group at C3 enhances trichothecene toxicity, while this activity
decreases gradually when C3 is substituted with either hydrogen or an
acetoxy group. The presence of a hydroxy group at C4 promotes slightly
lower toxicity than an acetoxy group at the same position. The presence of
hydroxy and hydrogen groups on C15 decreases the trichothecene toxicity in
comparison with an acetoxy group attached to this carbon. The substitutions
point to the importance of a high number of oxygen atoms and to the defined
positions of hydroxylations.

– Frequency of functional groups. The most frequently occurring substituent in
both type A and type B trichothecenes is the hydroxy group followed by
acetyl and keto groups.
The large number and the general structural features of trichothecenes allow

postulating that the chemical structure of trichothecenes has the molecular capability
to be tailored for optimal antitumor and antimetastatic purposes. In antimetastatic
rodent tumor models, trichothecenes are not to be ignored but recommended.

Relationship of Mycotoxins to Metastatic Studies

Transportation of tumor cells from the primary tumor to another part of
the body may take place through the bloodstream (hematogenous metastasis) or

Figure 6. Structure and IARC classification of major mycotoxins. (a) aflatoxin B1 – IARC I
category, (b) 5-methoxysterigmatocystin (5-MS) – IARC 2B category, (c) ochratoxin A – IARC 2B,

(d) fumonisin B1 – IARC 2B. Identical parts of aflatoxin B1 and 5-MS are boxed
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through the lymphatic system (lymphoid metastasis). Earlier views favored the
hematogenous tumor spread of metastasis. A great number of circulating tumor
cells are quickly killed by the immune system, by hemodynamic forces and
apoptosis, whereas only a small fraction of cells turns to metastasis [179] or,
if extravasated, capable of forming micrometastases. The current view implies
that tumor growth and metastasis are generated by a complex molecular
mechanism. We have described the metastatic spread of tumor cells from
abdominal primary tumors of rats to parathymic lymph nodes (PTNs) [180]
that involve:

1. Delayed angiogenesis. The primary tumor necrosis develops in the inner
part of the primary tumor, and limited angiogenesis drives the blood and the
tumor cells to the outer part of the tumor and to interstitial fluid [181].

2. Vascular disruption at the periphery aggressively promotes the release of
tumor cells from the primary tumor [182].

3. The spread of tumor cells (solid and leukemic) released by abdominal
tumors of rats is directed toward the PTNs, which turned out to be the
sentinel lymph nodes [183].

4. Our rat metastatic tumor model has shown that delayed angiogenesis in the
primary tumor necrotized its inner part and the increased blood pressure
channeled through the interstitial fluid of the outer part of the tumor causing
disruptions and the release of blood and tumor cells into the neighboring
tissues or cavities. In turn, the broken away blood cells along with the
released tumor cells were either engulfed by the tissue macrophages, drained
to the lymphatics, to the nearest sentinel lymph node, and lymph node chain
[180, 184] or could spread through the interstitial and tissue fluids to other
thoracal tissues and lymph nodes.
The metastatic spread from the abdominal primary tumor to thoracal and

mammary lymph nodes is summarized in Figure 7. Hemangiogenesis and
ruptures at the outer part of the primary tumors are opposed by the necrotization
of the inner part of the abdominal tumor. Ruptures of hemorrhagic regions in the
primary tumor release tumor cells to the peritoneum. Tumor cells cross the
diaphragm and metastasize to the thoracal lymph node chain. Human internal
mammary lymph nodes (IMNs) harbored inside the thymic capsule correspond
to rodent PTNs, located outside the thymic sheath. Tumor cells generate
peritoneal (liver) or retroperitoneal (kidney) primary solid tumors and the
presence of abdominal leukemia cells may initiate leukemia. Migration of
tumor cells from the disrupted surface of the abdominal primary tumors of liver,
spleen, and kidney takes place through the lymphatic anastomoses of the
diaphragm to PTNs (IMNs) or directly from the subdiaphragmatic lymphatics
to the breast [184].

ANTICANCER MYCOTOXINS 293

Acta Microbiologica et Immunologica Hungarica 65, 2018



Strategy of Using Mycotoxins Against Metastasis

Metastatic rat model

Similar to the murine model [126], the metastatic rat tumor model is suitable
for the early detection of primary tumors and metastasis [180] and could be used to
test antineoplastic mycotoxins. The review has compared those mycotoxins that
could be potential candidates against the metastatic spread of tumor cells released
by abdominal primary tumors. Oxidative stress-induced cell death via a mito-
chondrial-dependent burst of ROS [185] will be generated by mycotoxins and
tested in animal tumor experiments. Broad-spectrum mycotoxins with strong
antitumor and immune suppressive control, along with the trichothecene analogs
[83, 84] will be first tested to compare their efficacy in an in vivo rodent model.
The benefits of analogs will have to be balanced against their potential negative
side effects.

In vivo effect of mycotoxins against rat tumors

Selected mycotoxins will first be tested in vitro on cells released by the
primary tumor, then at the level of cytomics cell system (cytome) at the single-cell
level followed by time-lapse microphotography [186]. Furthermore, in vivo
studies will clarify whether or not i.p. administered mycotoxins will be able to
prevent the metastatic spread of abdominal primary tumor cells by killing them
before they would reach their metastatic target in the rodent PTNs. These results

Figure 7. Tumor cells released by abdominal tumors metastasizing to thoracal lymph nodes. The
metastatic spread of tumor cells released by abdominal primary tumors (e.g., liver and kidney).
Lymphatic passage of tumor cells through the diaphragm to thoracal and mammary lymph nodes.
Human IMN, internal mammary lymph node= rodent PTN. Modified with permission [184]
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will provide critical data related to the spread of tumor cells to gain time for
therapy and prevention of metastasis.

This antimetastatic strategy aims to utilize a mycotoxin-based suicide
therapy via the oxidative stress-induced cell death by initiating a mitochondrial-
dependent burst of ROS [187]. For this purpose, not only mycotoxins could be
utilized as single agents, but also antineoplastic responses combined with other
chemotherapeutical drugs as potential amplifiers of the antineoplastic activity
against experimental tumors. Transformations to closely related derivatives of
mycotoxin structures indicate that chemical tailoring may lead to optimal solutions
or at least to a modus vivendi regarding the cytotoxicity and reduction from
undesirable to tolerable side effects of mycotoxins. Of particular importance are
potential synergisms between mycotoxins with regard to both their anticarcino-
genic efficiency and carcinogenic attributable risk, pointing to the importance of
future studies of mycotoxins [188].

Conclusions

After matching the functional demand with the structural design, for
animal experiments against metastatic growth, none of the mycotoxins have
been found to be directly applicable. However, more potent mycotoxin analogs
with fewer side effects could result in efficient antineoplastic, immunosuppres-
sant combinations. This necessitates the selection of few compounds or a
diverse group of mycotoxins that possess the ability of high cytotoxicity
combined with antineoplastic, immunosuppressive potential. Trichothecenes
have been preselected as they represent one of the most diverse and controver-
sial groups due to the wide variety of biological activities depending on the
functional groups present in the tricyclic skeletons. Among the varieties of
sesquiterpenoid trichothecenes, the structure–activity relationship of each ring
of synthetic deserves further exploration. Anguidines widen the group of
trichothecene mycotoxins also exerting antitumor effects. The best-known
teratogenic trichothecene anguidine with its hypotensive effect was tested but
poorly tolerated by patients, leading to its unfavorable reputation. Ethical
consideration speaks against the use of mutagenic agents, which may cause
birth defects or long-term benign tumors, but are unlikely to threaten seriously
old metastatic patients. Other trichothecenes and fumonisins that affect testic-
ular and ovarian functions are probably not worth to be improved and used as
antitumor agents. Similarly, before clarifying the cytotoxicity and in vivo side
effects, it would be too early to test other less known mycotoxins for their
antitumor potential in animal models.
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The improvement of other potential antileukemic derivatives of 5-MS and
mycophenolic acid derivatives deserve to be mentioned. Of the recently described
127 mycotoxin combinations, aflatoxin–fumonisin, deoxynivalenol–zearalenone,
aflatoxin–ochratoxin, and fumonisin–zearalenone are the best-known ones [189].
These and related combinations could be tested as antitumor agents in animal
models. It is expected that further studies help to reveal structure–toxicity
relationship of mycotoxins and will contribute to the better understanding of
mycotoxins, risk assessment, and antitumorigenic potential and used for the
therapy of metastasis.

As part of this strategy, the immunosuppressant properties of mycotoxins
could also be used to prevent tumor growth and metastasis [190], but the major
focus of our future in vivo rodent experiments remains directed toward the in vivo
effect of antineoplastic mycotoxins.
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306 PÓCSI ET AL.

Acta Microbiologica et Immunologica Hungarica 65, 2018



174. Yan, B.-C., Wang, W.-G., Hu, D.-B., Sun, X., Kong, L.-M., Li, X.-N., Du, X., Luo, S.-H.,
Liu, Y., Li, Y., Sun, H.-D., Pu, J.-X.: Phomopchalasins A and B, two cytochalasans with
polycyclic-fused skeletons from the endophytic ungus Phomopsis sp. shj2. Org Lett 18,
1108–1111 (2016).

175. Newman, D. J.: Natural products as leads to potential drugs: An old process or the new
hope for drug discovery? J Med Chem 51, 2589–2599 (2008).

176. Cragg, G. M., Grothaus, P. G., Newman, D. J.: New horizons for old drugs and drug leads.
J Nat Prod 77, 703–723 (2014).

177. Omar, H. E.: Mycotoxins-induced oxidative stress and disease. In Makun, H. A. (ed):
Mycotoxin and food safety in developing countries. Intech Open Science, Rijeka, Croatia,
2013.

178. Wu, Q., Dohnal, V., Kuca, K., Yuan, Z.: Trichothecenes: Structure-toxic activity relation-
ships. Curr Drug Metab 14, 641–660 (2013).

179. Paterlini-Brechot, P., Benali, N. L.: Circulating tumor cells (CTC) detection: Clinical
impact and future directions. Cancer Lett 253, 180–204 (2007).

180. Banfalvi, G.: Role of parathymic lymph nodes in metastatic tumor development. Cancer
Metast Rev 31, 89–97 (2012a).

181. Rozsa, D., Trencsenyi, G., Kertai, P., Marian, T., Nagy, G., Banfalvi, G.: Lymphatic
spread of mesenchymal renal tumor to metastatic parathymic lymph nodes. Histol
Histopathol 24, 1367–1379 (2009).

182. Trencsenyi, G., Kertai, P., Bako, F., Hunyadi, J., Marian, T., Hargitai, Z., Pocsi, I.,
Muranyi, E., Hornyak, L., Banfalvi, G.: Renal capsule-Parathymic lymph node complex:
A new in vivo metastatic model in rats. Anticancer Res 29, 2121–2126 (2009).

183. Trencsenyi, G., Juhasz, T., Bako, F., Marian, T., Pocsi, I., Kertai, K., Hunyadi, J.,
Banfalvi, G.: Comparison of the tumorigenic potential of liver and kidney tumors induced
by N-nitrosodimethylamine. Histol Histopathol 25, 309–320 (2010).

184. Banfalvi, G.: Metastatic view of breast cancer. Cancer Metast Rev 31, 815–822
(2012b).

185. Choi, K., Kim, J., Kim, G. W., Choi, C.: Oxidative stress-induced necrotic cell death via
mitochondira-dependent burst of reactive oxygen species. Curr Neurovasc Res 6, 213–222
(2009).

186. Nagy, G., Hennig, G. W., Petrenyi, K., Kovacs, L., Pocsi, I., Dombradi, V., Banfalvi, G.:
Time-lapse video microscopy and image analysis of adherence and growth patterns of
Candida albicans strains. Appl Microbiol Biotechnol 98, 5185–5194 (2014).

187. Shapira, A., Benhar, I.: Toxin-based therapeutic approaches. Toxins 2, 2519–2583 (2010).
188. De Ruyck, K., De Boevre, M., Huybrechts, I., De Saeger, S.: Dietary mycotoxins,

co-exposure, and carcinogenesis in humans: Short review. Mutat Res Rev Mutat Res 766,
32–41 (2015).

189. Smith, M. C., Madec, S., Coton, E., Hymery, N.: Natural co-occurrence of mycotoxins in
foods and feeds and their in vitro combined toxicological effects. Toxins (Basel) 8, 94
(2016).

190. Azuma, H., Takahara, S., Ichimaru, N., Wang, J. D., Itoh, Y., Otsuki, Y., Morimoto, J.,
Fukui, R., Hoshiga, M., Ishihara, T., Nonomura, N., Suzuki, S., Okuyama, A., Katsuoka, Y.:
Marked prevention of tumor growth and metastasis by a novel immunosuppressive agent,
FTY720, in mouse breast cancer models. Cancer Res 62, 1410–1419 (2002).

ANTICANCER MYCOTOXINS 307

Acta Microbiologica et Immunologica Hungarica 65, 2018


