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Heterogeneity effects in power grid network models
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We have compared the phase synchronization transition of the second-order Kuramoto model on two-
dimensional (2D) lattices and on large, synthetic power grid networks, generated from real data. The latter
are weighted, hierarchical modular networks. Due to the inertia the synchronization transitions are of first-order
type, characterized by fast relaxation and hysteresis by varying the global coupling parameter K . Finite-size
scaling analysis shows that there is no real phase transition in the thermodynamic limit, unlike in the mean-field
model. The order parameter and its fluctuations depend on the network size without any real singular behavior. In
case of power grids the phase synchronization breaks down at lower global couplings, than in case of 2D lattices
of the same sizes, but the hysteresis is much narrower or negligible due to the low connectivity of the graphs. The
temporal behavior of desynchronization avalanches after a sudden quench to low K values has been followed and
duration distributions with power-law tails have been detected. This suggests rare region effects, caused by frozen
disorder, resulting in heavy-tailed distributions, even without a self-organization mechanism as a consequence of
a catastrophic drop event in the couplings.
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I. INTRODUCTION

Power grids are large complex, heterogeneous dynamical
system, built up from nodes of energy suppliers and con-
sumers. These units are interconnected by a network that
enables energy distribution in a sustainable way. However,
unexpected changes may cause failure that can be described
by synchronization events, which may propagate through the
whole system as an avalanche, causing blackouts of various
sizes. As the worst case these can lead to full system
desynchronization, lasting for a long time [1]. To avoid these
events power grid systems should be designed to be resilient
to local instabilities, failures, and disturbances. Studies have
shown that valuable insights into the dynamical behavior of
power grids can be obtained by theoretical studies that consider
models of electrical generators, coupled in network structures,
reproducing the topological and electrical interactions of real
power grids [2,3].

The so-called second-order Kuramoto model was proposed
to describe power grids [4] and a number of studies exists,
which focus on the synchronization and stability issues, such
as in Refs. [5–14]. This is the generalization of the Kuramoto
model [15] with inertia. One of the main consequences of
this inertia is that the second-order phase synchronization
transition, observed in the mean-field models, turns into a
first-order one [16]. However, according to our knowledge,
the transition type, if any, in lower dimensions has not been
studied. It is well known that discontinuous mean-field phase
transitions can turn into continuous one as the consequence
of fluctuation effects [17]. Fluctuation effects are enhanced
in lower spatial dimensions, so it is an open question what
happens on a homogeneous, two-dimensional system. There-
fore power grids may become critical, exemplified especially
by the scale-free distributions measured on them [18]. This
criticality has been attributed to some self-organization (SOC)
mechanism [19].

On the other hand, highly heterogeneous, also called disor-
dered with respect to the homogeneous, system can experience
rare region effects that smear phase transitions [20]. Rare
regions, which are locally in another state than the whole,
evolve slowly and contribute to the global order parameter
and can generate various effects, depending on their relevancy.
They can change a discontinuous transition to a continuous
one [21], can generate so-called Griffiths phases (GP) [22] or
completely smear the singularity of a critical phase transition.
In case of GP-s critical-like power-law (PL) dynamics appears
over an extended control parameter region around the critical
point, causing slowly decaying autocorrelations and burstiness
[23]. Furthermore, in the GP the susceptibility diverges with the
system size. Therefore, we decided to investigate if topological
and coupling strength heterogeneities of power grids are strong
enough to generate critical dynamics or a GP.

We generated weighted graphs of power grids, which are
similar to the real ones and large enough to allow reliable
statistical physics analysis, including finite-size scaling. We
created networks from N � 106 to N � 2.3 × 107 nodes and
compared the phase synchronization transition results of the
second-order Kuramoto model with those of two-dimensional
(2D) lattices of similar sizes.

II. MODELS AND METHODS

We have studied the second-order Kuramoto model pro-
posed by Ref. [4] to describe network of oscillators with phase
θi (t ):

θ̇i (t ) = ωi (t )

ω̇i (t ) = ωi,0 − aθ̇i (t ) + K

Ni

∑

j

Aij sin[θi (t ) − θj (t )], (1)

where Ni is the number of incoming edges of node i, a is
the damping parameter describing the power dissipation, and
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K is the global coupling related to the maximum transmitted
power between nodes and Aij , which is the weighted adjacency
matrix of the network, containing admittance elements.

The (quenched) heterogeneity comes into the model in two
ways: via ωi,0s, as intrinsic frequencies of the nodes and via
Aij , which describes both the topology and the admittances
of the power grid. As for the intrinsic frequencies, we used
uncorrelated Gaussian random variables, with the distribution
centered around the mean 〈ωi〉 = 50 and unit variances to
model real AC system, although the results have been found
to be invariant for this value. For the damping parameter we
assumed: a = 1, 3.

We have studied three different types of networks:
(i) fully connected to recover mean-field results
(ii) 2D lattices, with periodic boundary conditions simu-

lating homogeneous electric power grids
(iii) synthetic hierarchical modular ones, generated ran-

domly, following the characteristics of real electric power
grids.

A. Description of the synthetic power grids

Analysis of the electric power system often requires the use
of network models to a certain extent; however, the specific
examinations largely affect the nature and the quantity of
networks that are necessary to produce authentic results. In
certain cases, it is sufficient to perform analysis on one or only
a few networks. These usually represent either high-voltage
(HV) transmission and subtransmission systems or medium-
and low-voltage (MV and LV) distribution systems; the mixed
use of these networks for the same scope is rare. In case of HV
networks, analysis can be based on network data acquired from
utilities and system operators, since the volume of the data is
limited in this case, and most of this information is also openly
available. This is partly the reason for the over-representation
of HV networks in the field of power grid network analysis [24].
In case of MV and LV networks, however, another solution is
necessary to perform extensive analysis.

One possible solution is to acquire data of so-called rep-
resentative or reference network models (RNM). RNMs are
often used tools, when future grid expansion scenarios have
to be compared from the perspective of infrastructural needs,
maintenance costs, or power losses. Two common methods are
used to create such RNMs. The first approach is based on real
network data of the utilities; by applying clustering techniques
the most typical topological configurations are identified. The
literature discusses several methods to create RNMs; a deep
and thorough review is presented in Ref. [25]. The disadvan-
tage of this method is that it results only a limited number
actual networks, which do not provide sufficient variability
for our examinations. The second approach is used in case no
real network data is available, and synthetic networks are built.
Widely used and known examples for such synthetic networks
are the IEEE Bus systems, which are long-time cornerstones
of network-related studies in the power engineering field.
The necessity of synthetic networks has been highlighted by
several publications during the last couple of years. Reference
[26] emphasized in their work that future power engineering
problems are in the need of appropriate randomly generated
grid networks that have plausible topology and electrical

parameters. They have also concluded that the admittance
matrix has peculiar features that follow statistical trends. The
generalized random graph model is used to generate synthetic
networks in Ref. [27], but the node count of the introduced
networks are by magnitudes smaller than it is necessary for
our studies. Similar problems are faced with the dual-stage
method in Ref. [28], where node count is in the range of
thousands. For the examinations shown in present paper, the
authors have developed a new power grid network generator
algorithm, which has significant differences compared to the
existing ones. As these differences are related to the aim of
providing a realistic recreation of real power-grid networks,
main modeling assumptions and goals are discussed in the
following.

The task of the power system is to provide cooperation
between power plants, create interconnection on the national
and international levels, and to transmit and distribute the
produced electricity. To achieve these goals at minimum
ecological and economic costs, the structure of power systems
has evolved so that transmission and distribution networks
have significantly different characteristics. When designing the
sample networks for current work, the aim of the authors was
to replicate functionality of real power systems, thus those
two levels were handled differently. While admittance matrix
of the transmission network is based on a real-life example
(the Hungarian power system), the matrix of the distribution
network is the result of synthetic grid modeling.

The transmission level of a power system has to handle the
largest blocks of power, while interconnecting major genera-
tors stations and loads of the system. To achieve best overall
operating economy or to serve technical objectives best, energy
flows in the transmission system can be routed, generally, in
any desired direction. The topology of the transmission system
tends to obtain a loop structure, which not just provides more
path combinations, as no designated flow directions are found,
but ensures an increased level of security. Each node of the
network can receive power through multiple connections, thus
the system is tolerant to single failures [so-called (N − 1)
criterion].

Considering its current functionality and structure, former
subtransmission networks have to be handled similarly to
transmission networks, although certain differences are to
be noticed. Subtransmission networks are usually designed
to have a designated power flow direction from source to
sink and have a mixed loop-radial topology. In Hungary,
the transmission network mainly consists of 750-, 400-, and
220-kV lines and substations, while the nominal voltage of
the former subtransmission level is 120 kV. The security of
delivery is increased such that both the 220- to 400-kV and the
120-kV network is meshed and many parallel (double) lines
are also operated.

The distribution level of a power system constitutes the
finest meshes in the overall network. The circuits are fed
from subtransmission level (120 kV) and supply electricity
to the small (residential) and medium-sized (small industrial
and commercial) customers. The topology of this network is
dominantly radial, thus nodes have fewer connections com-
pared to the transmission networks. The primary distribution
level (20 and 104 kV) is fed directly from the 120-kV or -MV
substations. The MV feeders cover wider supply areas and
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each feeder supplies multiple distribution transformers. These
transformers provide connection between the primary and the
secondary distribution level. The latter on is operated at 0.4-kV
nominal voltage.

Due to the functional and topological characteristics, the
node number of distribution networks is by magnitudes bigger
than transmission networks. On one hand, this characteristic
makes distribution grids a suitable choice for the examination
of synchronization transition of networks. On the other hand,
examination of real topologies would require a large collection
of electrical and topological data, which is usually not openly
available from utility companies, thus synthetic grid modeling
is favored to recreate this part of the power system.

As it was shown previously, a number or publications
discuss the possibilities of both clustering power grids and
creating synthetic topologies for analysis. One of the common
weaknesses of these methods is that they dominantly focus on
HV and MV networks, which have limited number of nodes,
insufficient for our studies. To present a rough comparison, the
proportion of the number of HV, MV, and LV nodes in a power
system is in the range of 1:100:10000, respectively. The only
field, where LV networks are extensively studied, is the area
of reference networks models, which are used to determine
power losses of the network, but in this case usually only a
set of representative networks are created, which is limiting
the number of topologies to be examined. In contrast for
present paper the authors have generated random power system
topologies consisting of a few million nodes. The other main
difference between the processed literature and our method
is that the present work uses solely weighted graphs, while
the cited ones rely mostly on unweighted ones, which ignore
valuable information on the behavior of the power system.
Another significant extension of the authors’ model is that
transformers are represented as weighted binode connections,
instead of the typical choice of handling the two terminals of
the transformer as a single node. With this extension the node
and connection number of the admittance matrix is increased
and the node degree distribution is also affected.

To generate the random topologies, the authors have used an
iterative process in MATLAB. The initial step of the process it
to set up the transmission and subtransmission levels (lines and
transformers) and to mark all 120-kV substations. In the second
step a random number is generated to determine the nature
of the connected MV network; in Hungary approximately
one-third of all MV networks are cable lines (operated on
10 kV) and two-thirds are overhead lines (operated on 20 kV).
It is important to distinguish these voltage levels not only
because of different admittance values but also because of their
different topological characteristics (line length, transformer
nominal power, number of feeders, etc.). After the voltage
level is determined, the 120-kV or -MV transformer is created.
Nominal power (and thus admittance) of the unit is selected
using the empirical distribution of such units’ nominal powers.
As the next step, length of the MV feeder main and branch lines
is calculated, and the position of MV and LV transformers is
selected along the lines. Electrical parameters of the lines are
also based on empirical distributions and actual per-length line
admittances. As the last process of the topology generation,
binode connections representing MV/LV transformers are
created, and the LV radial network is generated in a similar

FIG. 1. Structural representation of the synthetic networks. Left
side: HV; right side: a radial cabinetwork. The highlighted red node
connects the two “layers.” The network on the picture has 68 850
nodes and 68 849 edges.

way as it was shown with the MV. In the final step, individual
LV consumers are added; this step largely increases the number
of nodes with single connection in the network, affecting thus
the node degree distribution of the graph representation as well.

B. Analysis of the synthetic power grids

The number of nodes in networks that are generated
with the previously described process is approximately N =
23 million, which is already sufficient to use for modeling
synchronization processes, but computation times are also
slowed down significantly. To find the golden mean of network
size and computation times, the authors have decided to reduce
these networks, while preserving its typical characteristics. As
a result, networks with few (1–3) million nodes were generated,
using the same iterative process as described before. Network
analysis was performed on these networks, the result of which
is presented in the following, using three example networks
with approximately N = 1, 1.5, and 2.5 million nodes. To
represent the structure of these networks, Fig. 1 is used an
example. The left side of the figure shows the looped HV
network, while on the right side the radial network of a HV
node is plotted. It can be seen, that the structure of the radial
network is similar to a tree, with relatively low node degrees
and practically zero clustering coefficient.
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FIG. 2. Node degree distributions of the synthetic power grids
generated for 2.5M, 1.5M, and 1M networks (right to left curves).
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FIG. 3. Admittance distribution of the power grids generated for
2.5M, 1.5M, and 1M networks (right to left curves).

The degree distribution of the networks on Fig. 2 shows that
only a limited number of nodes have high degrees. This is again
due to the radial structure of the system, where only looped
subnetworks are considered central parts of the network. The
high number of nodes with k = 5 and k = 6 degrees represent
LV feeders, where three or four end-users are connected to the
same nodes of a radial network. The admittance distribution on
Fig. 3 is composed of a low- and a high-value region, the latter
exhibits a tail, which can be fitted linearly for 17.1001/� <

Yij < 93.0001/�. To compare our results with those of the
weightless networks we used the normalized admittances as
weights:

Aij = Yij /〈Yij 〉, (2)

by averaging over the directed edges of the networks.
Further graph measures for four example networks is shown

in Table I, including the most important metrics. The average
shortest path length is

L = 1

N (N − 1)

∑

j �=i

d(i, j ), (3)

where d(i, j ) is the graph (topological) distance between
vertices i and j . Considering the clustering coefficient, as it was
shown previously, as vast majority of the network (including
more than 99.995% of the nodes) has a tree structure, the value
of the coefficient is near zero and the small differences are
caused by the structure of the central looped subnetworks. Thus
clustering coefficients of these subnetworks are included in the
table. The subnetworks consist of 37, 49, 60, and 539 edges,
respectively. The different graph measures are calculated, the
first one is based on triangle motifs count and the second
is based on local clustering. The Watts-Strogatz clustering
coefficient [29] of a network of N nodes is

CW = 1

N

∑

i

2ni/ki (ki − 1), (4)

TABLE I. Power-grids generated and studied.

Network N Edge no. L C� CW

1M 1 098 583 1 098 601 1.7440 × 106 0 0
1.5M 1 455 343 1 455 367 1.0457 × 106 0.0594 0.0486
2.5M 2 356 331 2 356 360 1.6162 × 106 0.0851 0.0586
23M 23 551 140 23 551 254 2.1129 × 106 0.0626 0.0741
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FIG. 4. Average number of nodes within topological distance r

in the 23M graph. Dashed line shows a PL fit for 4 < r < 20. Inset:
Local slopes defined in Eq. (7).

where ni denotes the number of direct links interconnecting the
ki nearest neighbors of node i. An alternative is the “global”
clustering coefficient [30] also called “fraction of transitive
triplets,”

C� = number of closed triplets

number of connected triplets
. (5)

An important measure is the topological (graph) dimension
D. It is defined by

〈Nr〉 ∼ rD, (6)

where Nr is the number of node pairs that are at a topological
(also called “chemical”) distance r from each other (i.e., a
signal must traverse at least r edges to travel from one node
to the other). The topological dimension characterizes how
quickly the whole network can be accessed from any of its
nodes: The larger D, the more rapidly the number of rth nearest
neighbors expands as r increases. To measure the dimension of
the network we first computed the distances from a seed node
to all other nodes by running the breadth-first search algorithm.
Iterating over every possible seed, we counted the number of
nodes Nr with graph distance r or less from the seeds and
calculated the averages over the trials in case of the largest, 23M
network. As Fig. 4 shows, an initial power law breaks down
due to the finite network size. The small 〈Nr〉 values are due
to the sparsity and directedness of the graph. We determined
the dimension of the network, as defined by the scaling law (6)
by attempting a PL fit to the data 〈Nr〉 for the initial ascent.
This suggests a slightly superlinear behavior, increasing with
the presence of central nodes.

To see the corrections to scaling we determined the effective
exponents of D as the discretized, logarithmic derivative of (6)

Deff (D + 1/2) = ln〈Nr〉 − ln〈Nr+1〉
ln(r ) − ln(r + 1)

. (7)

These local slopes are shown in the inset of Fig. 4 as the
function of 1/r and provide an increasing effective dimension
due to the HV nodes, before the finite-size breakdown. A
similar analysis for the undirected U.S. HV power grid with
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N = 4941 nodes [31] results in D > 2. That means that this
power grid has higher graph dimension than the embedding
space due to some extra links. In our case the small number
of HV links do not provide such contribution but the other,
directed ones, which occur in the distribution subnetworks,
dominate the whole topology.

C. Comparison with other synthetic power grids

The synthetic networks generated by the authors model is
significantly different to other synthetic networks, published in
the literature. Such network generation methods are introduced
in Refs. [28,32–34]. The model proposed in Ref. [32] was
created in order to model HV transmission networks. The
topology and the electrical parameters of the network are
created using specific random distribution functions, avoiding
both topological self-loops and islanded parts. The three-step
process uses a predetermined number of nodes, with randomly
distributed locations, selects neighboring links of each bus and
finally checks whether all nodes are connected. The resulting
networks have an average node degree between 2.66 and 3.32,
which is in range with real HV topologies with low node
number.

Ma et al. [28] presents “dual-stage constructed random
graph,” generated by an algorithm in two steps. First a random
graph with one connected component is created, then addi-
tional edges are added to the spanning tree. The algorithm is
tested on four networks; resulting average node degrees are
between 2.42 and 2.774.

A random growth model is proposed in Ref. [33] to
create synthetic network topologies. A heuristic target func-
tion is used for redundancy and cost optimization during
the initialization, and an attachment rule during the growth
phase. The resulting networks have an average node degree
of approximately 2.67, and the degree distribution shows an
exponential tail; both are characteristics of HV transmission
networks. Schultz et al. write that “Despite this formally low
level of topological connectedness, most links of a power
grid are typically redundant minimum cost, redundancy,”
which statement is true for high-voltage transmission networks
but not valid for distribution networks, which have a radial
topology.

A different synthetic network generation process is intro-
duced in Ref. [34], which connects nodes based on a local
rule and is based on the epsilon-disk model. The three-step
process consist of the assignment of nodal locations, types, and
attributes, a deterministic placement of the edges. The network
generation method is tested on the Spanish power system, and
resulting average node degrees are above 3. Distribution of
local clustering coefficients is also shown.

As it can be seen from the examples cited above, literature
almost exclusively focuses on HV transmission networks
when using synthetic network generation algorithms, creating
undirected, unweighted, and simple topologies with relatively
low number of nodes, and average node degrees in the range of
2.4–2.8. In comparison the network generation algorithm of the
authors is able to create networks including HV transmission
and MV and LV distribution parts as well. Such networks
have significantly lower average node degrees due to the
radial topology of distribution networks. Connectivity of the

networks is also different, as the authors algorithm considers
transformers of the substations as well (as an edges between
two nodes, representing primary and secondary voltage levels).
From a complex network analysis perspective, the generated
graphs are undirected, but weighted, which is an important
difference.

III. PHASE TRANSITION STUDY

We applied fourth-order Runge-Kutta method (RK4 from
Numerical Recipes) [35] to solve Eq. (1) on various net-
works. Step sizes: � = 0.1, 0.01, 0.001 as in Ref. [16] and
the convergence criterion ε = 10−12 were used in the RK4
algorithm. Generally the � = 0.001 precision did not improve
the stability of the solutions except at large Ks, while � = 0.1
was insufficient, so most of the results presented here are
obtained using � = 0.01. The initial state was either fully
synchronized: θi (t ) = 0 or uniform random distribution of
phases: θi (t ) ∈ (0, 2π ). We measured the Kuramoto order
parameter:

z(tk ) = r (tk ) exp iθ (tk ) = 1/N
∑

j

exp [iθj (tk )], (8)

in a quenching process with a fixed K by increasing the
sampling time steps exponentially:

tk = 1 + 1.08k, (9)

where 0 � r (tk ) � 1 gauges the overall coherence and θ (tk )
is the average phase. We solved (1) numerically for 50 inde-
pendent initial conditions, with different ωi,0s and determined
the sample average: R(tk ) = 〈r (tk )〉. In the steady state, which
occurred after t > 100, we measured the standard deviation:
σR of R(tk ) measured at 50 sampling times.

It is expected that for an infinitely large population of
oscillators the model exhibits a phase transition at some
control parameter value K , separating a coherent steady state,
with order parameter: R(t → ∞) > 0 from an incoherent one
R(t → ∞) = 0 with 1/

√
(N ) finite-size corrections.

For the fully coupled network we recovered the first-order
transition, known from the literature [16], as can be seen on
Fig. 5. The synchronization transition occurs around Kc �
2.25 for N = 500 and N = 1000 both and large hysteresis
curves emerge as the consequence of different (fully ordered
vs. randomized) initial conditions. At this resolution only
weak size dependence of the transition point is observable in
agreement with the results in Ref. [11]. The σR (K ) peak seems
to be slightly higher in case of the larger lattice, as the inset of
Fig. 5 shows, as opposed to the lower-dimensional cases to be
discussed later.

In case of 2D lattices, with nearest-neighbor interactions
and periodic boundary conditions, we found signatures of first-
order phase transitions with wide hysteresis loops (see Fig. 6).
The synchronization emerges very slowly by increasing K .
The finite-size scaling study showed that the order parameter
curves become smoother for larger N and the transition point
increases from K � 100 (L = 500) to K � 170 (L = 1000).
Changing a = 3 to a = 1 did not cause visible differences. The
time dependence of the phase synchronization order parameter
can also be seen on the inset of Fig. 6 for a lattice of linear size
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FIG. 5. Hysteresis in the steady-state order parameter in fully
coupled networks of sizes N = 1000 (black boxes) and N = 500 (red
diamonds). Error bars show standard error of the mean. Inset: σR (K )
peaks for the two different network sizes investigated.

L = 500. There are no signs of PLs, instead the R(t ) curves
converge quickly to their steady-state values at all K values.

To investigate the hysteresis in more detail we also applied
an adiabatic procedure, in which following a start from the
asynchronous state K was increased gradually by �K = 0.02
steps, separated by �tK = 1000 intervals, containing �tt =
900 thermalization and �tm = 100 measurement regions. In
this protocol the measurements were done by linear �t = 1
time steps and averaging was performed over 48 independent
realizations of the quenched disorder. As the lower (red) curve
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FIG. 6. Phase synchronization transition in the steady state in 2D
networks of sizes N = 500 × 500 (red bullets), L = 1000 × 1000
(blue boxes) using a = 3, and N = 500 × 500 (green stars) using a =
1. The red lines show the results using the adiabatic protocol, started
from asynchronous (bottom) or synchronous (top) states in case of
N = 500 × 500 and a = 3. Error bars show standard deviation of the
mean. Inset: Time dependence or R(t ), in case of the N = 500 × 500
lattice, for control parameters: K = 700, 350, 200, 150, 100, 80, 60,
50 in case of synchronized initial condition (top to bottom curves)
and for K = 700, 100 desynchronized initial condition (top to bottom
curves).
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FIG. 7. Steady-state order parameter for different power grid
networks, using a = 3 for 1M, 1.5M, and 2.5M power grids (top to
bottom curves), obtained by the adiabatic protocol. Error bars show
standard errors of the mean. Pink stars correspond to the U.S. HV
power grid of size N = 4941 for comparison. We can see a vanishing
synchronization and hysteresis by increasing the size.

of Fig. 6 for N = 500 × 500 and a = 3 shows, the synchro-
nization remained very small up to K = 500, in agreement
with the steady-state values of the quench with desynchronized
initial condition (see inset of Fig. 6), but we could not reach
the high branch of the solutions. When we started the adiabatic
procedure from a synchronized initial condition (K = 500,
R = 1) and decreased the coupling in the same way as in the
up-sweep process, we found agreement with the high branch
of solutions, obtained with the quench procedure (see top red
line vs. red bullets of Fig. 6).

The size of the hysteresis increased slightly by decreasing
a from 3 to 1, similarly as reported in Ref. [11]. The former
value was used in our subsequent, more-detailed analyses in
the hope of finding critical phase transitions as the consequence
of network heterogeneities.

However, we did not achieve this goal is case of the power
grids we generated. Figure 7 shows that the transition in case
of our power grids is smooth, but a critical point with PL time
dependencies could not been located. Instead, fast relaxation to
steady-state values was observed using the quench dynamics.
The numerical solutions exhibited large fluctuations in the
time dependencies and for large Ks the solutions become
unstable, even with � = 0.001 precision. Possible hysteresis
curves now proved to be much narrower than in case of the
2D lattices. We have applied the adiabatic protocol, described
in case of the 2D lattice, to provide more numerical evidence
for this. Following up-sweeps, we turned back when reaching
maxima at K = 37 for 1M, at K = 27 for 1.5M, and at
K = 30 for 2.5M networks. The hysteresis curves look very
narrow and in case of the 1M grid a looped “hysteresis”
emerged for all random realizations of the quenched disorder.
This strange behavior remained there even for �tK = 2000
intervals, containing �tt = 1900 thermalization and �tm =
100 measurement regions. We suspect this the consequence
of the loopless topology of the 1M grid, different from the
others. In case of the 2.5M grid we could not see hysteresis
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FIG. 8. Fluctuation of the steady-state order parameter for differ-
ent networks with a = 3. Symbols: Red bullets and blue boxes are for
2D lattices of linear sizes: L = 500, 1000, respectively; up triangles
are for 1M grids; down triangles are for 2.5M grids; stars correspond
to the U.S. HV grid.

within our error margins (standard error of the mean). So we
find agreement with Ref. [11] for the Italian HV power grid,
where “the transition is largely non-hysteretic, probably due to
the low value of the average connectivity in such a network.”

Note that without the weight normalization (2) the transition
results would have appeared at much smaller K values if we
had used the pure admittances as weights. In case of the 1M
grid we had the average, 〈Yij 〉 = 854.13/�, while for the 2.5M
network, 〈Yij 〉 = 763.05/�. We have also considered the U.S.
HV network, in which case the results are similar to those of
our synthetic networks.

Figure 8 shows that the steady-state order parameter fluc-
tuations (σR) remained bounded and the maxima of the curves
decreased when we increased the size of a given network
system. Thus, we do not see signatures of a singularity, a
real phase transition in the thermodynamic limit, like in case
of the Kuramoto model in low (D < 4) dimensions [36].
Figure 8 also shows the results obtained for the U.S. HV power
grid, containing N = 4941 nodes, using a = 3. On this small
network the fluctuations are higher than those of the 2D lattices
and our power grid graphs.

IV. POWER FAILURE DISTRIBUTIONS

Power failure size dependence has been studied in dif-
ferent countries and heavy-tailed distributions were found,
modelled by SOC models at the critical point of the their
phase transitions [18,37]. Since there is no real phase transition
to synchronization in the second-order Kuramoto model, we
can investigate this issue in the desynchronized state only.
Following an electrical disturbance local couplings can break
down and the system is indeed in the nonsynchronized state,
where the effective K is below the transition value of the finite
system. Thus measuring the behavior of the desynchronization
cascade can provide information about the seriousness of the
power outage. We have investigated the avalanche duration
distributions by starting the system from a fully synchronous
state, quenching K to a small value and measuring the time

103 104 105 106
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10−1

100

p(
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t−0.83(2)

t−1.10(2)

t−1.2(1)

t−1.75(2)

t−2.26(4)

t−3.3(9)

FIG. 9. Avalanche duration distribution for 1000 × 1000 lattices
for a = 3 at different coupling values: K = 10, 5, 4, 3, 2, 1 (top to
bottom solid curves). Dashed lines: PL fits for the distribution tails.

until R(tk ) fell below the threshold RT = 1/
√

N , related to
the order parameter value of the incoherent phase. In this
measurement, we averaged over �104 runs, using independent
random ωi,0 intrinsic frequencies. As we can see in Figs. 9 and
10, the incoherent phase K-dependent PL decay tails emerge,
similarly to GPs in other heterogeneous network models [38],
very differently from an exponential decay of a random system.
Even with this large sample number the results exhibit os-
cillations, especially approaching the transition region, where
reaching RT requires long times. Thus we limited the range of
Ks, where the decay was faster than linear. The range of the PL
region can be estimated by the K values, where linear behavior
can be fitted on the p(t ) tails. This provides K <� 5 for the
2D lattice with N = 106, K <� 1 for the 1M power grid and
K <� 7 for the U.S. HV network. In the latter cases the PL
region is enhanced by the quenched topological heterogeneity.
In the case of a 2D lattice, without any quenched disorder, i.e.,
ωi,0 = 0, but with an additive, annealed Gaussian frequency
noise of unit variance in (1) we could not find PL tails but fast
decaying p(t ) distributions only.
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t−1.42(2)

t−1.85(2)

t−2.50(3)

t−3.9(2)

FIG. 10. Avalanche duration distribution in the 1M power grid for
a = 3 and different coupling values K = 0.7, 0.6, 0.5, 0.4, 0.2 (top
to bottom solid curves). Dashed lines: PL fits for the tails.
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V. FURTHER EXTENSIONS

Recently, it has been shown that a large number of decen-
tralized generators, rather than a small number of large power
plants, provide enhanced synchronization together with greater
robustness against structural failures [39–42]. Here we studied
effects of additional time-dependent stochastic noise to Eq. (1).
We added the same time-dependent random variable to ωi,0

following the probability distribution

p(ω) ∼ ±e−0.06ω, (10)

which is similar to what can be read off from the MAVIR
frequency fluctuation data [43].

Another attempt was the addition of a space- and time-
independent, uncorrelated Gaussian noise with σ = 3 vari-
ance, describing a stochastic Kuramoto model. Neither of these
modifications gave relevant changes in the dynamical behavior.
The annealed noise decreased the order parameter as well as
its fluctuations slightly.

We have also performed preliminary calculations for bi-
modal Gaussian ωi,0 distributions, modeling a coupled con-
sumer or motor system [11]. Following the initial, large
fluctuations the order parameter relaxes in a similar way as
before but to smaller synchronization values. More detailed
study of this scenario will be published later.

VI. CONCLUSIONS

We compared the phase synchronization of the second-
order Kuramoto model on fully coupled, 2D lattices and real
power grid networks. For this purpose we generated large
synthetic networks in order to extrapolate to infinite sizes,
with characteristics or real power grids. These contain millions
of nodes and directed, weighted edges. Our networks exhibit
hierarchical modular structure, low clustering and topological
dimensions.

A real phase transition could be observed on the fully
coupled graph, showing hysteresis and first-order transition.
On lower graph dimensional systems, like in the power grids
or in 2D lattices smooth crossover occurs at higher global
coupling values. The transition peak locations, obtained by the
maximum of the fluctuations of R are lower for the power grids:
K � 20–30 than in case of the 2D lattices: K � 100–170 of

similar sizes. The magnitudes of the fluctuations are also lower
on the power grids than in the corresponding 2D lattices, albeit
a decreasing tendency can be found by increasing the inertia.

The addition of a stochastic noise to Eq. (1), modeling
random frequencies of distributed energy sources does not
affect the synchronization too much. Even a strong Gaussian
noise with σ = 3 variance decreases the order parameter by
20% few percentages at most. These results point out better
electrical performances in the heterogeneous networks than
what simple homogeneous approximations could predict.

Scale-free tails of the avalanche duration can be observed
below the transition point with K-dependent slopes. The size of
this scale-free region increases with the amount of quenched
disorder. For pure 2D lattices we could not found PL tails
but quick decays only. This is similar to the Griffiths effects,
which can occur in disordered phases of magnets in the
presence of slowly decaying, rare, but large ordered regions.
However, in the lack of a real critical phase transition in the
continuum limit we cannot call this a Griffiths phase. Our
results are probably related to the “frustrated synchronization”
phenomena, reported recently in the case of the Kuramoto
model, where modules, as rare regions, synchronize to different
phases [44,45]. Understanding rare region effects in more
detail in power grid models should be a subject of further
studies.

We emphasize that the mechanism that would create self-
organized criticality has not been assumed in our model, and
still we see PL tails of event duration with similar exponents
as those of the reported blackout sizes in various electrical
failure data [37]. It is an open question how such additional,
competing forces would modify our results.
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