
MoDeS3: Model-based Demonstrator for
Smart and Safe Cyber-Physical Systems

András Vörös1,2, Márton Búr1,4, István Ráth2,3, Ákos Horváth2,3, Zoltán
Micskei2, László Balogh2, Bálint Hegyi2, Benedek Horváth2, Zsolt Mázló2,3,

and Dániel Varró1,2,4

1 MTA-BME Lendület Cyber-Physical Systems Research Group, Budapest, Hungary
2 Department of Measurement and Information Systems

Budapest University of Technology and Economics, Budapest, Hungary
3 IncQuery Labs Ltd., Budapest, Hungary

4 Department of Electrical and Computer Engineering
McGill University, Montreal, Canada

{vori,bur,ahorvath,micskei,varro}@mit.bme.hu, rath@incquerylabs.com

Abstract. We present MoDeS3, a complex research demonstrator illus-
trating the combined use of model-driven development, formal verifica-
tion, safety engineering and IoT technologies for smart and safe cyber-
physical systems. MoDeS3 represents a smart transportation system-of-
systems composed of a model railway and a crane which may automati-
cally load and unload cargo from trains where both subsystems need to
fulfill functional and safety requirements. The demonstrator is built by
using the model-based software engineering principle, while the system
level safety is ensured by the combined use of design-time and runtime
verification and validation techniques.

Keywords: smart cyber-physical systems, model-driven engineering, for-
mal methods, education, demonstrator

1 Introduction

Motivation. A smart and safe cyber-physical system (CPS) autonomously per-
ceives its operational context and adapts to changes over an open, heterogeneous
and distributed platform with a massive number of nodes, dynamically acquires
available resources and aggregates services to make real-time decisions, and re-
siliently provides critical services in a trustworthy way [9, 12].

These challenges and the multidisciplinary nature of CPS make the engineer-
ing of such systems very complex. On the one hand, traditional techniques used
for developing safety-critical systems may have limited applicability for CPS [8].
Moreover, both research and education of CPSs necessitate well-documented
open-source demonstrator platforms which capture and reflect the essence of
problems and challenges, yet it is reasonably complex to highlight the key char-
acteristics of CPSs and present them in the context of modern technologies.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/163097056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1: Physical layout

P
h

ysicalw
o

rld

Railway system Crane system

Control loop

Hierarchical monitoring

Safety logic
Safe

Sm
artData processing

Control loop

Data processing

Sensing

Safety logic

Fig. 2: Architectural overview

Objectives. We introduce MoDeS3: the Model-based Demonstrator for Smart
and Safe Cyber-Physical Systems5, which aims to illustrate the combined use
of model-driven development, intelligent data processing, safety engineering and
IoT technologies in the context of safety-critical system of systems with emerging
safety hazards. This open source project simultaneously serves as (1) a research
platform used for experimental evaluation of CPS-related research, (2) a complex
educational platform used for graduate and undergraduate teaching, and (3) an
IoT technology demonstrator used by industrial partners and collaborators.

The MoDeS3 demonstrator as a smart and safe CPS. The physical layout
of MoDeS3 is depicted in Figure 1. As its core is a model railway transportation
system, guarantees for the safe operation of trains, switches, and semaphores
are required. Connected to a specific segment of the track, an automated crane
system loads cargo on and off the trains. As such, it is a critical system in itself
since the cargo cannot be dropped by the crane.

Additionally, the MoDeS3 demonstrator represents a system-of-systems, since
the railway and the crane system are physically located next to each other. In
this case, new kind of hazardous situations may emerge which are not incorpo-
rated in any of the constituent systems. For instance, a rotating movement of
the crane may physically hit a train passing by along the track.

To make the demonstrator more realistic, we adopted various safety assurance
techniques ranging across design-time formal verification and validation (V&V),
runtime monitoring or testing on various levels of abstraction (see Section 2).
A conceptual overview is provided in Figure 2. Multiple levels of safety are
applied: a distributed safety logic is responsible for the accident-free operation
of the trains. Hierarchical monitoring is used to ensure the safe cooperation of the
subsystems. The details are given in Section 2. A wide range of sensors serves
as a rich information source for smart control and data analytics (see details
in Section 3). Educational use of MoDeS3 is covered in Section 4. The project
timeline and conclusions are drawn in Section 5.

5 http://modes3.inf.mit.bme.hu/

Intermediate model

Formal model

Requirements

Transform

Transform

Implement

Back-
annotate

Live model
Safety property

VIATRA-
CEPIntervene

System

Safety rule

Statechart

UPPAAL

Component
1

Component
2

Observe
Design-time

Runtime

Runtime

Design-time

Legend:

Fig. 3: Overview of design-time and runtime verification in MoDeS3

2 Design- and runtime assurance

The development of safety-critical systems has a long history with well-established
methodologies to ensure safe operation. The MoDeS3 demonstrator was built
using Model-based Systems Engineering (MBSE) where models are first-class
citizens of the engineering process. SysML models are used to define the func-
tional and the platform architecture of the system, while the Gamma Statechart
Composition Framework6 is used for the precise definition of the component
level behaviour. Gamma supports the design, verification and code generation
for component-based reactive systems.

The MoDeS3 demonstrator incorporates various V&V approaches (such as
model checking, structural completeness and consistency analysis) as well as
fault-tolerance techniques — all of which are widely used in real systems. How-
ever, due to its complex and multidisciplinary nature, design-time assurance
cannot guarantee in itself the safe operation of inherently dynamic smart CPSs.
Therefore, runtime certification [13] using techniques like runtime monitoring [10]
or runtime verification [7] complement design-time assurance. Therefore, MoDeS3
integrates runtime monitoring and verification techniques on both component
and system-level to flag violations of safety properties during the operation of
the system and trigger appropriate counter-measures such as immediately stop-
ping or slowing down trains. Our emphasis is on the combined use of design-time
and runtime V&V techniques when building MoDeS3 to address its safety re-
quirements. A high-level overview of V&V techniques is illustrated in Figure 3.

2.1 Design-time formal V&V of timing properties

As a primary design-time verification task, we carried out a formal analysis of
logical and timing properties of the distributed safety logic of the accident pre-
vention subsystem. We used the Gamma Statechart Composition Framework [11]
to form the composite behavior of Yakindu statechart models. This composite
model serves as the engineering input for the design-time analysis. Gamma intro-
duces an intermediate state machine language with some high-level constructs
and precisely defined semantics [14] to serve as a bridge between engineering and
formal models. This intermediate language also helps in the back-annotation of
analysis results to statechart models. Formal verification is performed using UP-
PAAL model checker [2], which is widely used for analyzing timing properties.

6 http://gamma.inf.mit.bme.hu/

The generated formal models address the verification of a single component
against local properties as well as their interaction against global properties.
However, these models are insufficient to reason about the correctness of the
system in themselves. For that purpose, one needs to ensure the interaction
between the physical world and the cyber world.

For this purpose, formal models are built to capture the (logical and phys-
ical) behavior of trains. Then a combined design-time verification can reveal
potentially unsafe situations, e.g. if trains move too fast, some accidents cannot
be prevented. Investigating the counterexample retrieved by Gamma highlights
that the situation could only happen if the trains are faster than the messages
transmitted between the components. Unless there is a denial-of-service attack
with flooding of messages, this is hardly the case in practice, but it is still a
potential security threat. After extending the statechart models with timing as-
sumptions on communication speed, we can formally prove that the safety logic
prevents multiple trains from entering the same section of the track.

2.2 System-level runtime monitoring

As smart and safe CPSs have complex interactions with an evolving environment
and the physical world, we complement design-time verification in MoDeS3 with
runtime monitoring techniques on both component and system level. For space
considerations, here we only provide a summary of the hierarchical system-level
runtime monitoring technique using graph reasoning with live models and com-
plex event processing techniques (see right part of Figure 3).

As traditional monitoring techniques consume events but do not cover data-
dependent behavior or structural properties, runtime knowledge about the op-
erational system is captured by a runtime (live) model [4]. A runtime model
captures the current abstract snapshot of the system and its operational con-
text, and changes in the underlying running system are constantly incorporated.
Unlike a detailed design model, a runtime model only captures those aspects of
the system, which are relevant for runtime monitoring and intervention.

System-level safety monitoring is carried out using graph queries and com-
plex event processing (CEP) [5], which detect runtime violations of safety rules
(by the identification of changes in the match sets of graph queries) and trigger
appropriate reactions. While graph models and queries are widely used in design
tools of CPS and CEP is a key technique in stream processing for web applica-
tions, their use in the context of smart and safe CPS is an innovative aspect of
the MoDeS3 demonstrator.

Graph-based runtime techniques nicely complement traditional, component-
level, automaton-based monitors deployed to embedded computers since critical
signals raised by low-level monitors can be further propagated to the system-
level as a hierarchy of events. As a consequence, we obtain a technique for the
runtime monitoring of system-of-systems [15] where emerging and ad hoc haz-
ardous situations can be incorporated and detected automatically also in the
presence of complex structural (graph) constraints.

3 Smart IoT technologies

Intelligent services and technologies are integrated into MoDeS3 at various lev-
els. First, distributed autonomous intelligent control is used both for driving the
trains and also to load and unload cargo on trains by the robot crane. More-
over, multiple sensors and surveillance cameras are used, and initial processing
of the data stream is carried out close to the information source in accordance
with fog and edge computing [6,9] principles. Such sensor data can be consumed
by multiple data processing services and different subsystems by offering gen-
eralized sensing services. This way, reusable smart sensing services may initiate
actuation and control according to the collected environmental and operational
information. The software stack is based on open-source Eclipse IoT solutions.

System-level runtime verification exploits events obtained from track sen-
sors and general-purpose surveillance cameras. The visual information is pro-
cessed using state-of-the-art computer vision (OpenCV) and neural network
(TensorFlow) technologies. Distributed components are using state-of-the-art
IoT communication protocols with open connectivity to share sensor data with
different data processing services (and different subsystems). MQTT7 provides
a lightweight protocol for exchanging messages in a publish/subscribe model,
which is widely used in communication between embedded devices and sensors.

Open-source microcontrollers (Arduino) and industrial embedded computers
(Raspberry Pi, BeagleBone Black) provide the hardware elements of the plat-
form. Cloud computing technologies are used for integrating hardware devices,
service APIs and real-time data analytics.

4 MoDeS3 in education

One of the goals of MoDeS3 is to support education with realistic examples and
case studies. The demonstrator currently fulfills this purpose at the Budapest
University of Technology and Economics at various stages of education.

Undergraduate level.At the first year introductory System Modeling course,
the demonstrator is used for illustration purposes: students are introduced to
modeling by the simplified models of the platform. Third year undergraduate
students of the Systems Engineering course face the problem of designing the
railway system by going through the development process. All phases of the de-
velopment process result in a model which is then evaluated by the instructors.
Undergraduate students choose thesis project after completing the Systems En-
gineering course which may include developments of the MoDeS3 platform itself.

Graduate level. At the master’s level, three courses actively use the demon-
strator platform. The course on Model-Driven Software Development introduces
domain specific languages and development of model transformations for the
students. The Cyber-Physical Systems course integrates the knowledge from the
previous courses and introduces the modeling and controlling of hybrid systems.

7 http://mqtt.org/

Beside the theoretical foundations, practical skills for integrating IoT technolo-
gies and cloud computing is also part of the curriculum. CPS course also covers
fault-tolerance and other extra-functional aspects of cloud-based CPS. Software
and Systems Verification is a course for further enhancing the knowledge of the
students on testing with a specific focus on model-based testing or hardware-
in-the-loop and model-in-the-loop testing. The course also summarizes runtime
verification with a special focus on the hierarchical composition of the verifica-
tion tasks according to the specification. At this part of the course, the advanced
verification approaches are illustrated to the students on the MoDeS3 platform.

5 Project timeline and conclusion

Since its inception in 2014, the project has been proceeding by major milestones
which have been organized along public demonstrations and presentations. At
each milestone, some new features have been introduced, and critical mainte-
nance tasks have been completed. These milestones are illustrated in Fig. 4
together with the new features.

2014 2015 2016

Hardware prototype
and accident

prevention system

System runtime
verification

2017

Component
runtime

verification

SoS and runtime
verification
integration

Design time
verification

Future

Verification/testing of
the smart techniques

Gamma-based
system design

Safety features

Smart features

CV-based routing
prototype

Web-based
user interface

Deep neural network-based train
detection and collision avoidance system

Robot crane
control

M6

M0 M5

M4M3

M2M1 M7

Fig. 4: Project timeline and milestones. M0: Project kickoff, M1: Researchers’
Night 2014, M2: Ericsson University Day 2015, M3: Researchers’ Night 2015,
M4: 2016 Eclipse IoT Challenge and Ericsson University Day 2016, M5: Re-
searchers’ Night 2016 and EclipseCon France 2016, M6: EclipseCon Europe
2016 Demo, M7: EclipseCon Europe 2017 Demo

MoDeS3 demonstrates the innovative use of model-driven engineering ap-
proaches, formal methods and intelligent technologies for smart CPS. MoDeS3
proved its innovation at many industrial events: the team won a third prize at
the Eclipse Open IoT Challenge 2.0 and MoDeS3 was exhibited twice at the
industrial EclipseCon Europe conference and another workshop [1].

As a future work, we plan to further extend the demonstrator with smart
technologies, such as a neural network based collision avoidance system and
intelligent data analysis. Smart techniques used in for accident prevention have
to be extensively tested/verified, where we will exploit the recent advances of
the field. In addition, a novel distributed graph-based monitoring approach [3]
will be integrated to provide an additional level of safety.

Acknowledgment

MoDeS3 is a joint effort of many participants. It was partially supported by
MTA-BME Lendület Research Group on Cyber-Physical Systems the ARTEMIS
JU R5-COP project and the NSERC RGPIN-04573-16 project. MoDeS3 also
received financial and technical support from our industrial partners: IncQuery
Labs Ltd., Quanopt Ltd., Ericsson Hungary and Miniversum. The TITAN Xp
used for this research was donated by the NVIDIA Corporation. Colleagues at
Dept. of Measurement and Information Systems (BME) worked on the project
beside the authors: István Majzik, Gábor Szárnyas, and Oszkár Semeráth. We
also thank the hard work of our students: Flórán Deé, Márton Elekes, Anna Guj-
giczer, Bence Graics, Raimund Konnerth, Gergő Somos, and Sámuel Várallyay.

References

1. Balogh, L., et al.: Distributed and Heterogeneous Event-based Monitoring in Smart
Cyber-Physical Systems. MT CPS workshop (CPS Week 2016)

2. Behrmann, G., et al.: UPPAAL 4.0. In: Third International Conference on the
Quantitative Evaluation of Systems. pp. 125–126. IEEE (2006)

3. Búr, M., et al.: Distributed graph queries for runtime monitoring of cyber-physical
systems. In: International Conference on Fundamental Approaches to Software
Engineering (2018), Accepted

4. Cheng, B.H., et al.: Using models at runtime to address assurance for self-adaptive
systems. In: Models@run.time: Foundations, Applications, and Roadmaps (2014)

5. Dávid, I., Ráth, I., Varró, D.: Foundations for streaming model transformations
by complex event processing. Software & Systems Modeling pp. 1–28 (2016)

6. Dubey, A., et al.: Resilience at the edge in cyber-physical systems. In: FMEC. pp.
139–146 (May 2017)

7. Havelund, K.: Rule-based runtime verification revisited. STTT 17(2) (2015)
8. Lee, E.A.: Cyber physical systems: Design challenges. 11th IEEE International

Symposium on Object Oriented Real-Time Distributed Computing pp. 363–369
9. Lee, E.A., et al.: The Swarm at the Edge of the Cloud. IEEE Design & Test 31(3)

10. Medhat, R., et al.: Runtime monitoring of cyber-physical systems under timing
and memory constraints. ACM T. Embed. Comput. S. 14(4), 1–29 (2015)

11. Molnár, V., et al.: The Gamma Statechart Composition Framework. ICSE 2018:
Demonstrations (2018), Accepted

12. Nielsen, C.B., et al.: Systems of systems engineering: Basic concepts, model-based
techniques, and research directions. ACM Comput. Surv. 48(2), 18 (2015)

13. Rushby, J.: Runtime certification. In: RV. pp. 21–35. Springer (2008)
14. Tóth, T., et al.: Verification of a Real-Time Safety-Critical Protocol Using a Mod-

elling Language with Formal Data and Behaviour Semantics, pp. 207–218 (2014)
15. Vierhauser, M., et al.: Reminds: A flexible runtime monitoring framework for sys-

tems of systems. Journal of Systems and Software 112, 123–136 (2016)

	MoDeS3: Model-based Demonstrator for Smart and Safe Cyber-Physical Systems

