INTEGRAL AUTOMORPHISMS OF AFFINE SPACES OVER FINITE FIELDS

ISTVÁN KOVÁCS, KLAVDIJA KUTNAR, JÁNOS RUFF, AND TAMÁS SZŐNYI

Abstract

A permutation of the point set of the affine space $\mathrm{AG}(n, q)$ is called an integral automorphism if it preserves the integral distance defined among the points. In this paper, we complete the classification of the integral automorphisms of $\operatorname{AG}(n, q)$ for $n \geq 3$.

1. Introduction

Throughout the paper p stands for an odd prime. Let \mathbb{F}_{q} be the finite field with $q=p^{h}$ elements and $\mathrm{AG}(n, q)$ be the n-dimensional affine space defined over \mathbb{F}_{q}. The Euclidean distance d is defined as

$$
d(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}
$$

for the points $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}_{q}^{n}$. Two points \mathbf{x} and \mathbf{y} are said to be at integral distance if $d(\mathbf{x}, \mathbf{y})$ is a square element in \mathbb{F}_{q}, and a set of points is called integral if any two of its points are at integral distance. Recently, the finite field analog of the classical probem about integral point sets in \mathbb{R}^{n} has attracted considerable attention. See, for example, [5] and the references therein. Besides integral point sets, permutations, preserving the integral distances, are also considered in [7, 8, 9, 10]. By an integral automorphism of $\operatorname{AG}(n, q)$ we mean any bijective mapping $\gamma: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$ satisfying

$$
d(\mathbf{x}, \mathbf{y}) \in \square_{q} \Longleftrightarrow d\left(\mathbf{x}^{\gamma}, \mathbf{y}^{\gamma}\right) \in \square_{q}
$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{F}_{q}^{n}$. Here and in what follows \square_{q} denotes the set of all square elements of \mathbb{F}_{q}. We adopt the notation used in [7] and denote the group of all integral automorphisms by $\operatorname{Aut}\left(\mathbb{F}_{q}^{n}\right)$.

Integral automorphisms of the plane $\mathrm{AG}(2, q)$ were determined in $[7,8,9]$. In particular, $\operatorname{Aut}\left(\mathbb{F}_{q}^{2}\right)$ was found by Kurz $[9]$ for $q \equiv 3(\bmod 4)$, and by Kovács and Ruff [8] for $q \equiv 1(\bmod 4)$. We remark that the special case $q=p$ was settled earlier by Kiermaier and Kurz [7]. It turns out that there exist integral automorphisms of $\operatorname{AG}(2, q)$ which are not semiaffine transformations, and this occurs exactly when $q \equiv 1(\bmod 4)$. As for higher dimensions, Kurz and Meyer [10] desrcibed the integral automorphisms which are also semiaffine transformations. In what follows we denote by \mathbb{F}_{q}^{\times}the multiplicative group of \mathbb{F}_{q}, by GL (n, q) the group of invertable n-times- n matricies with entries from \mathbb{F}_{q}, and by σ the semiaffine transformation defined by $\left(x_{1} \ldots, x_{n}\right) \mapsto\left(x_{1}^{p}, \ldots, x_{n}^{p}\right)$.

2010 Mathematics Subject Classification. 20B25.
Key words and phrases. finite field, affine space, integral automorphism.

Theorem 1 (Kurz and Meyer [10]). If $q=p^{h}$ and $n \geq 3$, then the semiaffine transformations contained $\operatorname{in} \operatorname{Aut}\left(\mathbb{F}_{q}^{n}\right)$ are given as

$$
\mathbf{x} \mapsto a \mathbf{x}^{\sigma^{i}} A+\mathbf{b}
$$

where $a \in \mathbb{F}_{q}^{\times}, i \in\{0, \ldots, h-1\}, A \in \operatorname{GL}(n, q)$ with $A A^{T}=I$ and $\mathbf{b} \in \mathbb{F}_{q}^{n}$.
Our goal in this paper is to show that, in contrast with the plane, all integral automorphisms of $\mathrm{AG}(n, q)$ are semiaffine transformations whenever $n \geq 3$. This together with Theorem 1 result in the following classification theorem.

Theorem 2. Let $q=p^{h}$ for an odd prime p and suppose that $n \geq 3$. Then the integral automorphisms of $\mathrm{AG}(n, q)$ are the mappings

$$
\mathbf{x} \mapsto a \mathbf{x}^{\sigma^{i}} A+\mathbf{b}
$$

where $a \in \mathbb{F}_{q}^{\times}, i \in\{0, \ldots, h-1\}, A \in \mathrm{GL}(n, q)$ with $A A^{T}=I$ and $\mathbf{b} \in \mathbb{F}_{q}^{n}$.

2. The proof of Theorem 2

The key part in the proof of Theorem 2 will be to show that every integral automorphism $\gamma \in \operatorname{Aut}\left(\mathbb{F}_{q}^{n}\right)$ satisfies

$$
\begin{equation*}
d(\mathbf{x}, \mathbf{y})=0 \Longleftrightarrow d\left(\mathbf{x}^{\gamma}, \mathbf{y}^{\gamma}\right)=0 \text { for all } \mathbf{x}, \mathbf{y} \in \mathbb{F}_{q}^{n} . \tag{1}
\end{equation*}
$$

This enables us to use the result of Lester [12] about cone preserving mappings. Let V be a nonsingular metric vector space over a field \mathbb{F} not of characteristic two, upon which is defined a nonsingular symmetric bilinear form $\langle.,$.$\rangle . The cone C(\mathbf{a})$ with vertex $\mathbf{a} \in V$ is defined to be the set $C(\mathbf{a}):=\{\mathbf{x} \in V:\langle\mathbf{x}-\mathbf{a}, \mathbf{x}-\mathbf{a}\rangle=0\}$, and a mapping $f: V \rightarrow V$ is said to preserve the cones if $(C(\mathbf{a}))^{f}=C\left(\mathbf{a}^{f}\right)$ for all $\mathbf{a} \in V$.

Theorem 3 (Lester [12]). Let V be a nonsingular metric vector space over the field \mathbb{F}, with bilinear form $\langle.,$.$\rangle ; assume that \operatorname{dim}(V) \geq 3$ and that V is not anisotropic (that is, $\langle\mathbf{x}, \mathbf{x}\rangle=0$ for some nonzero vecor $\mathbf{x})$. Let $f: V \rightarrow V$ be a bijection of V which preserves cones. Then f is in the form

$$
f: \mathbf{x} \mapsto L(\mathbf{x})+\mathbf{b}
$$

where $\mathbf{b} \in V$, and (L, ρ) is a semilinear transformation of V satisfying $\langle L(\mathbf{x}), L(\mathbf{y})\rangle=$ $a\langle\mathbf{x}, \mathbf{y}\rangle^{\rho}$ for some nonzero $a \in \mathbb{F}$ and for all $\mathbf{x}, \mathbf{y} \in V$.

Now, if $\gamma \in \operatorname{Aut}(\Gamma)$ satisfies (1), then it preserves the cones of the metric vector space $V:=\mathbb{F}_{q}^{n}$ endowed with the symmetric bilinear form $\langle.,$.$\rangle defined by \langle\mathbf{x}, \mathbf{y}\rangle:=\mathbf{x y}^{T}$ for all vectors $\mathbf{x}, \mathbf{y} \in V$. Therefore, by Theorem 3, γ is a semiaffine transformation, and Theorem 2 follows. In fact, we are going to derive (1) in the end of this section following two preparatory lemmas.

For the rest of the paper we let $G=\operatorname{Aut}\left(\mathbb{F}_{q}^{n}\right), n \geq 3$, and let $G_{\mathbf{0}}$ be the stabilizer of $\mathbf{0}$ in G where $\mathbf{0}=(0, \ldots, 0) \in \mathbb{F}_{q}^{n}$. We start by introducing two subgroups of G :

$$
\begin{aligned}
E & =\left\{\mathbf{x} \mapsto \mathbf{x}+\mathbf{b}: \mathbf{b} \in \mathbb{F}_{q}^{n}\right\} \\
M & =\left\{\mathbf{x} \mapsto a \mathbf{x} A: a \in \mathbb{F}_{q}^{\times}, A \in \operatorname{GL}(n, q) \text { and } A A^{T}=I\right\}
\end{aligned}
$$

Notice that, by Theorem 1, both E and M are subgroups of G. The elements of E are also called translations. Clearly, E is an elementary abelian group of order $p^{h n}$, and it is regular on \mathbb{F}_{q}^{n}. The group M normalizes E, hence $\langle E, M\rangle=E M$.

Define the subsets of \mathbb{F}_{q}^{n} as

$$
\begin{aligned}
& S_{0}=\left\{\mathrm{x} \in \mathrm{AG}(n, q): \sum_{i=1}^{n} x_{i}^{2}=0, \mathrm{x} \neq \mathbf{0}\right\} \\
& S_{+}=\left\{\mathrm{x} \in \mathrm{AG}(n, q): \sum_{i=1}^{n} x_{i}^{2} \in \square_{q} \backslash\{0\}\right\}, \\
& S_{-}=\left\{\mathrm{x} \in \mathrm{AG}(n, q): \sum_{i=1}^{n} x_{i}^{2} \notin \square_{q}\right\} .
\end{aligned}
$$

Lemma 1. With the above notation,
(i) The M-orbits are $\{\mathbf{0}\}, S_{0}, S_{+}$and S_{-}.
(ii) $E M$ is primitive on \mathbb{F}_{q}^{n}.

Proof. Part (i) is proved in [10, Lemma 3.17].
To settle (ii) we apply [2, Theorem 3.2A], that is, EM is primitive if and only if $\operatorname{Graph}(\Delta)$ is connected for each nondiagonal orbital Δ of $E M$. Observe that, a nondiagonal orbital Δ consists of the ordered pairs in the form ($\mathbf{x}, \mathbf{x}+\mathbf{y}$), where \mathbf{x} runs over \mathbb{F}_{q}^{n} and \mathbf{y} runs over S_{ε} for a fixed $\varepsilon \in\{0,+,-\}$. Now, the connectedness of $\operatorname{Graph}(\Delta)$ follows because each of S_{0}, S_{+}and S_{-}spans the vector space \mathbb{F}_{q}^{n}.

By Lemma 1(i), EM has nontrivial subdegrees $\left|S_{\varepsilon}\right|, \varepsilon \in\{0,+,-\}$. The exact values were computed in [10, Theorem 4.3]:

$$
\begin{align*}
& \left|S_{0}\right|= \begin{cases}q^{n-1}-1 & \text { if } n \text { is odd } \\
q^{n-1}+(-1)^{\frac{\varepsilon n}{2}} q^{\frac{n}{2}}-(-1)^{\frac{\varepsilon n}{2}} q^{\frac{n-2}{2}}-1 & \text { if } n \text { is even }\end{cases} \tag{2}\\
& \left|S_{+}\right|= \begin{cases}\frac{1}{2}\left(q^{n}-q^{n-1}+(-1)^{\frac{\varepsilon(n+3)}{2}} q^{\frac{n+1}{2}}-(-1)^{\frac{\varepsilon(n-1)}{2}} q^{\frac{n-1}{2}}\right) & \text { if } n \text { is odd } \\
\frac{1}{2}\left(q^{n}-q^{n-1}-(-1)^{\frac{\varepsilon n}{2}} q^{\frac{n}{2}}+(-1)^{\frac{\varepsilon n}{2}} q^{\frac{n-2}{2}}\right) & \text { if } n \text { is even }\end{cases} \tag{3}\\
& \left|S_{-}\right|= \begin{cases}\frac{1}{2}\left(q^{n}-q^{n-1}-(-1)^{\frac{\varepsilon(n+3)}{2}} q^{\frac{n+1}{2}}+(-1)^{\frac{\varepsilon(n-1)}{2}} q^{\frac{n-1}{2}}\right) & \text { if } n \text { is odd } \\
\frac{1}{2}\left(q^{n}-q^{n-1}-(-1)^{\frac{\varepsilon n}{2}} q^{\frac{n}{2}}+(-1)^{\frac{\varepsilon n}{2}} q^{\frac{n-2}{2}}\right) & \text { if } n \text { is even }\end{cases} \tag{4}
\end{align*}
$$

where $\varepsilon=0$ if $q \equiv 1(\bmod 4)$ and $\varepsilon=1$ otherwise.
The set $S_{0} \cup S_{+}$consists of the points being at integral distance from $\mathbf{0}$. Therefore, every $\gamma \in G_{0}$ maps $S_{0} \cup S_{+}$to itself, and this leaves us with two possibilities for the nontrivial G_{0}-orbits, namely, these are either S_{0}, S_{+}and S_{-}, or $S_{0} \cup S_{+}$and S_{-}. In particular, the group G has rank either 3 with nontrivial subdegrees $\left|S_{0}\right|+\left|S_{+}\right|$and $\left|S_{-}\right|$, or 4 with nontrivial subdegrees $\left|S_{0}\right|,\left|S_{+}\right|$and $\left|S_{-}\right|$.

As the next step, we find the socle $\operatorname{Soc}(G)$. Recall that $\operatorname{Soc}(G)$ is the subgroup of G generated by all its minimal normal subgroups.

Lemma 2. With the above notation, the socle $\operatorname{Soc}(G)=E$.

Proof. Let $H=\operatorname{Soc}(G)$. Since $E M \leq G$ is primitive, see Lemma 1(ii), G is primitive as well. Thus H is a direct product of isomorphic simple groups (see [2, Corollary 4.3B]), and we may write $H=T \times \cdots \times T=T^{k}$ for some simple group T and $k \geq 1$. By the O'Nan-Scott theorem, G and H are described by one of the following types (see, for example, [2, pp. 137]):
(T1) H is an elementary abelian p-group of order q^{n} which is regular on \mathbb{F}_{q}^{n}.
(T2) H is nonabelian and regular on \mathbb{F}_{q}^{n}.
(T3) $H=T$ is nonabelian, it is not regular on \mathbb{F}_{q}^{n}, and $G \leq \operatorname{Aut}(H)$.
(T4) H is nonabelian and G is a subgroup of a wreath product with the diagonal action. In this case $k \geq 2$ and $|T|^{k-1}=q^{n}$.
(T5) H is nonabelian, $k=k_{1} k_{2}$ and $k_{2}>1$. The group G is isomorphic to a subgroup of the wreath product U wr $S_{k_{2}}$ with the product action, where U is a primitive permutation group of degree d such that $q^{n}=d^{k_{2}}, U$ has socle $T^{k_{1}}$, and U is of type (T3) or (T4).
We show below that G is of type (T1). It is not hard to show that this yields $H=E$ (see, for example, [8]). Now, suppose to the contrary that G is one of types $(T 2)-(T 5)$. In either case T is a nonabelian simple group. This observation excludes at once types (T2) and (T4).

Suppose next that G is of type (T3). Then $T=H$, and since it is a normal subgroup of a primitive group, it acts transitively on \mathbb{F}_{q}^{n}. It was proved by Guralnick [4] that, if a finite nonabelian simple group L acts transitively on a set Ω such that $|\Omega|$ is a prime power, then L acts 2-transitively unless $L \cong \operatorname{PSU}(4,2)$ and $|\Omega|=27$ with nontrivial subdegrees 10 and 16 (see [4, Corollary 2]). Since G cannot be 2 -transitive, $q^{n}=27$ and the nontrivial subdegrees of G are 10 and 16 . This, however, contradicts that $\left|S_{-}\right|=12$ is a subdegree, see the remark before the lemma and (4).

We are left with the case that G is of type (T5). Denote by r_{G} and r_{U} the rank of G and U, respectively. Recall that $r_{G} \in\{3,4\}$. By [2, Exercise 4.8.1],

$$
\begin{equation*}
r_{G} \geq\binom{ r_{U}+k_{2}-1}{k_{2}} \tag{5}
\end{equation*}
$$

The group U is of type (T3) or (T4). In the latter case $|T|=p^{a}$ for some a, a contradiction. Thus U is of type (T3), $k_{1}=1, k=k_{2}$ and T is a transitive permutation group of a set X of size $|X|=q^{n / k_{2}}$. By the aforementioned result of Guralnick, U is 2 -transitive unless $T \cong \operatorname{PSU}(4,2), q^{n / k_{2}}=27$, and $r_{U}=3$. In the latter case, however, we find in (5) that $r_{G} \geq \frac{1}{2}\left(k_{2}+2\right)\left(k_{2}+1\right) \geq 6$ (recall that $k_{2}>1$), a contradiction. Thus $r_{U}=2$, implying in (5) that $k=k_{2}=2$ and $r_{G}=3$, or $k=k_{2}=3$ and $r_{G}=4$.

Case 1. $k_{2}=2, r_{G}=3$ and $G \leq U$ wr S_{2}.
The wreath product $U w r S_{2}$ acts by the product action. This means that \mathbb{F}_{q}^{n} can be written as $\mathbb{F}_{q}^{n}=X \times X,|X|=q^{n / 2}$, and U is a permutation group of X. We have U wr $S_{2}=\langle U \times U, \tau\rangle=\langle U \times U\rangle \rtimes\langle\tau\rangle$, where $U \times U$ acts on $X \times X$ naturally, and τ acts by switching the coordinates. The socle $H=T \times T \leq U \times U$, and since T is 2-transitive on $X, \Delta_{1}:=\left\{\left(x_{0}, x\right): x \in X \backslash\left\{x_{0}\right\}\right\}$ and $\Delta_{2}:=\left\{\left(x, x_{0}\right): x \in X \backslash\left\{x_{0}\right\}\right\}$ are orbits under the stabilizer $(U \times U)_{\left(x_{0}, x_{0}\right)}$, and any other orbit different from $\left\{\left(x_{0}, x_{0}\right)\right\}$ is contained in the set $\Delta_{3}:=\left\{(x, y): x, y \in X \backslash\left\{x_{0}\right\}\right\}$. Now, $G_{\left(x_{0}, x_{0}\right)}=(U \times U)_{\left(x_{0}, x_{0}\right)} \rtimes\langle\tau\rangle$,
and this gives that any $G_{\left(x_{0}, x_{0}\right)}$-orbit different from $\left\{\left(x_{0}, x_{0}\right)\right\}$ is contained in either $\Delta_{1} \cup \Delta_{2}$ or Δ_{3}. Since the rank $r_{G}=3$, we find that the nontrivial subdegrees of G are $\left|\Delta_{1} \cup \Delta_{2}\right|=2\left(q^{n / 2}-1\right)$ and $\left|\Delta_{3}\right|=\left(q^{n / 2}-1\right)^{2}$. On the other hand $\left|S_{-}\right|$is a subdegree which is divisible by q, see (4) (we use here that $n \geq 3$).
Case 2. $k_{2}=3, r_{G}=4$ and $G \leq U$ wr S_{3}.
In this case \mathbb{F}_{q}^{n} can be written as $\mathbb{F}_{q}^{n}=X \times X \times X,|X|=q^{n / 3}$, and U is a permutation group of X. The wreath product U wr $S_{3}=\langle U \times U \times U\rangle \rtimes K$, where $U \times U \times U$ acts on $X \times X \times X$ naturally, $K \cong S_{3}$, and K acts by permuting the coordinates. The socle $H=T \times T \times T \leq U \times U \times U$ and T is 2-transitive on X. Now, $G_{\left(x_{0}, x_{0}, x_{0}\right)} \leq(U \times U \times$ $U)_{\left(x_{0}, x_{0}, x_{0}\right)} \rtimes K$, and this gives that any $G_{\left(x_{0}, x_{0}, x_{0}\right) \text {-orbit different from }}\left\{\left(x_{0}, x_{0}, x_{0}\right)\right\}$ is contained in one of the sets $\left\{\left(x, x_{0}, x_{0}\right),\left(x_{0}, x, x_{0}\right),\left(x_{0}, x_{0}, x\right): x \in X \backslash\left\{\left(x_{0}, x_{0}, x_{0}\right)\right\}\right\}$, $\left\{\left(x, y, x_{0}\right),\left(x, x_{0}, y\right),\left(x_{0}, x, y\right): x, y \in X \backslash\left\{\left(x_{0}, x_{0}, x_{0}\right)\right\}\right\}$ and $\{(x, y, z): x, y, z \in X \backslash$ $\left.\left\{\left(x_{0}, x_{0}, x_{0}\right)\right\}\right\}$. Because of this and $r_{G}=4$ we find that the nontrivial subdegrees of G are $3\left(q^{n / 3}-1\right), 3\left(q^{n / 3}-1\right)^{2}$ and $\left(q^{n / 3}-1\right)^{3}$. On the other hand these subdegress are $\left|S_{\varepsilon}\right|, \varepsilon \in\{0,+,-\}$, and as $q^{\left\lceil\frac{n-2}{2}\right\rceil}$ divides both $\left|S_{+}\right|$and $\left|S_{-}\right|$and n is divisible by 3, we obtain that $(q, n)=(3,3)$, and therefore, $U \cong S_{3}$ and $T \cong \mathbb{Z}_{3}$, contradicting that T is nonabelian.

Finally, we are ready to settle (1).
Lemma 3. Let $\gamma \in \operatorname{Aut}\left(\mathbb{F}_{q}^{n}\right)$ be an arbitrary automorphism and let $n \geq 3$. Then γ satisfies (1).
Proof. Suppose for the moment that $q=p$. By Lemma $1, E=\operatorname{Soc}(G)$, in particular, E is normal in G. Now, since $q=p$, we obtain that γ is an affine transformation, and this implies that it satisfies (1).

From now it will be assumed that $q \neq p$. Assume to the contrary that there exist vectors \mathbf{a} and \mathbf{b} such that either $d(\mathbf{a}, \mathbf{b})=0$ and $d\left(\mathbf{a}^{\gamma}, \mathbf{b}^{\gamma}\right) \neq 0$, or $d(\mathbf{a}, \mathbf{b}) \neq 0$ and $d\left(\mathbf{a}^{\gamma}, \mathbf{b}^{\gamma}\right)=0$. Here we deal only with the first case because the second one can be treated in a very similar way. Consider the product $\gamma^{\prime}:=\gamma_{1} \gamma \gamma_{2}$ where γ_{1} and γ_{2} are the translations $\mathbf{x} \mapsto \mathbf{x}+\mathbf{a}$ and $\mathbf{x} \mapsto \mathbf{x}-\mathbf{a}^{\gamma}$, respectively. Then $\mathbf{0}^{\gamma^{\prime}}=\mathbf{0}, \mathbf{b}-\mathbf{a} \in S_{0}$, and $(\mathbf{b}-\mathbf{a})^{\gamma^{\prime}}=\mathbf{b}^{\gamma}-\mathbf{a}^{\gamma} \in S_{+}$. These imply that the $G_{\mathbf{0}^{-}}$-orbits are $\{\mathbf{0}\}, S_{0} \cup S_{+}$and S_{-}(see also the remark before Lemma 2), and thus G has nontrivial subdegress:

$$
\begin{equation*}
\left|S_{0}\right|+\left|S_{+}\right| \text {and }\left|S_{-}\right| . \tag{6}
\end{equation*}
$$

By Lemma 2, G is of type (T1). All possible nontrivial subdegress of a finite primitive affine permutation group of rank 3 were computed by Foulser [3] and Liebeck [11]. If L is such a group acting an a vector space V of cardinality p^{d}, and L_{0} denotes the stabilizer of the zero vector 0 , then one of the following holds:
Infinite classes (A): L is in one of 11 inifinite classes of permutation groups labeled by (A1)-(A11). If L is in class (A1), then L_{0} is isomorphic to a subgroup of $\Gamma \mathrm{L}\left(1, p^{d}\right)$; and if L is in class (A2)-(A11), then $d=2 r$ and L has nontrivial subdegrees listed in Table 2 (see [11, Table 12]).
'Extraspecial' classes (B): L is one of a finite set of permutation groups whose degree is equal to one of the following numbers ([11, Table 1]):

$$
\begin{equation*}
2^{6}, 3^{4}, 3^{6}, 3^{8}, 5^{4}, 7^{2}, 7^{4}, 13^{2}, 17^{2}, 19^{2}, 23^{2}, 29^{2}, 31^{2}, 47^{2} \tag{7}
\end{equation*}
$$

row	subdegrees	conditions
		$s=0$ or
1.	$\left(p^{s}+1\right)\left(p^{r}-1\right), \quad p^{s}\left(p^{r}-1\right)\left(p^{r-s}-1\right)$	$s \mid r$ or $s=2 r / 5$ and $5 \mid r$ or $s=3 r / 4$ and $4 \mid r$ or $s=3 r / 8$ and $8 \mid r$
2.	$\left(p^{r-s}+1\right)\left(p^{r}-1\right), \quad p^{r-s}\left(p^{r}-1\right)\left(p^{s}-1\right)$	$s \mid r$
3.	$\left(p^{r-s}-1\right)\left(p^{r}+1\right), \quad p^{r-s}\left(p^{r}+1\right)\left(p^{s}-1\right)$	$s \mid r$ and $s \neq r$

Table 1. Nontrivial subdegrees of affine groups of rank 3 in classes (A2)-(A11).
'Exceptional' classes (C): L is one of a finite set of permutation groups whose degree is equal to one of the following numbers ([11, Table 2]):

$$
\begin{equation*}
2^{6}, 2^{8}, 2^{11}, 2^{12}, 3^{4}, 3^{5}, 3^{6}, 3^{12}, 5^{4}, 5^{6}, 7^{4}, 31^{2}, 41^{2}, 71^{2}, 79^{2}, 89^{2} \tag{8}
\end{equation*}
$$

We are going to arrive at a contradiction after comparing the subdegress described in classes (A)-(C) with our subdegrees in (6).

Suppose that G is in class (A). If G is in class (A1), then $G_{\mathbf{0}}$ is isomorphic to a subgroup of $\Gamma \mathrm{L}\left(1, q^{n}\right)$, hence $\left|G_{\mathbf{0}}\right|$ divides $\left|\Gamma \mathrm{L}\left(1, q^{n}\right)\right|=h n\left(q^{n}-1\right)$. Each subdegree of G divides $\left|G_{\mathbf{0}}\right|$. In particular, $\left|S_{-}\right|\left|\left|G_{\mathbf{0}}\right|\right.$, and by (4), $\left.p^{h\left\lceil\frac{n-2}{2}\right\rceil}\right| h n\left(q^{n}-1\right)$. From this we obtain that $p^{m} \leq 4 m$ where p is an odd prime and $m=h\left\lceil\frac{n-2}{2}\right\rceil \geq 2$ (recall that $n \geq 3$ and $h \geq 2$ because of $q \neq p$). This, however, contradicts the inequality $p^{m}>4 m$, which can be easily settled by induction on m.

Let G be in class ($\mathrm{A} i$) for $i>1$. As before, let $m=h\left\lceil\frac{n-2}{2}\right\rceil$. By (4), p^{m} is the largest p-power dividing the subdegree $\left|S_{-}\right|$, and we get $2\left|S_{-}\right| / p^{m} \equiv \pm 1(\bmod q)$. Thus

$$
\begin{equation*}
2\left|S_{-}\right| / p^{m} \equiv \pm 1 \quad(\bmod p)^{2} . \tag{9}
\end{equation*}
$$

Let us compute the residue of $2\left|S_{-}\right| / p^{m}$ modulo p^{2} by the help of Table 1 . Since $q^{n}=p^{2 r}$, it follows that $2 r=h n$, and hence $r \geq 3$. Suppose that $\left|S_{-}\right|$occurs in the 1st row of Table 1. In this case $m=s$. It follows that if $r \neq 4$ and $s \neq 3$, then $r-s \geq 2$, and this implies that $2\left|S_{-}\right| / p^{m} \equiv 2\left(\bmod p^{2}\right)$, contradicting (9). Let $r=4$ and $s=3$. Then $h n=8$, thus m is even, which contradicts that $m=s=3$. Now, suppose that $\left|S_{-}\right|$ occurs in the 2 nd or the 3 rd row of Table 1. In this case $m=r-s$, and if $s \neq 1$, then $2\left|S_{-}\right| / p^{m} \equiv \pm 2\left(\bmod p^{2}\right)$, contradicting (9). Let $s=1$. Then $h \frac{n}{2}-1=r-1=m=$ $h\left\lceil\frac{n-2}{2}\right\rceil$. We obtain that $h=2$ and n is odd. Then $q=p^{2} \equiv 1(\bmod 4)$. If $\left|S_{-}\right|$is equal to number in the 2 nd row, then by (4), $p^{n+1}-p^{n-1}-p^{2}+1=2 p^{n+1}-2 p^{n}-2 p+2$, and if it is equal to number in the 3rd row, then $p^{n+1}-p^{n-1}-p^{2}+1=2 p^{n+1}-2 p^{n}+2 p-2$. It is easy to see that none of these equations holds for $n \geq 3$ and an odd prime p.

Suppose that the group G is in class (B). We obtain from (7) that $(q, n)=(9,3)$ or $(9,4)$. By [3, Theorem 1.1] in the first case and by [11, Table 13] in the second case, the corresponding subdegress are:

q^{n}	nontrivial subdegrees
9^{3}	104,624
9^{4}	1440,5120

However, none of these match the numbers given in (6).
Finally, suppose that G is in class (C). Then we obtain from (8) that $(q, n) \in$ $\{(9,3),(25,3),(81,3),(27,4),(9,6)\}$. By [11, Table 14], the corresponding nontrivial subdegrees are:

q^{n}	nontrivial subdegrees
3^{6}	224,504
5^{6}	7560,8064
3^{12}	65520,465920

However, none of these match the numbers in (6). The lemma is proved.
Remark 1. We would like to note that in our earlier approach we gave a proof of Theorem 2, which also relies on Lemmas 1-3, but instead of invoking Lester's result (Theorem 3), we used the results of Iosevich et al. [5] on maximum point sets with any two of its points being at distance 0 . Here we give an outline. Let $\gamma \in \operatorname{Aut}\left(\mathbb{F}_{q}^{n}\right)$ be an integral automorphism which fixes the zero vector $\mathbf{0}$. We need to prove that γ is a semilinear transformation. By the fundamental theorem of projective geometry we are done if we show that γ preserves both the point and the line set of the projective space $\operatorname{PG}(n-1, q)$. Let us consider the nonsingular quadric \mathcal{Q} of $\operatorname{PG}(n-1, q)$ induced by the quadratic form $x_{1}^{2}+\cdots+x_{n}^{2}$. A projective subspace of maximum dimension on \mathcal{Q} is called a generator (cf. [6, Chapter 22]). Observe that, any subspace U of \mathbb{F}_{q}^{n} corresponding to a generator has the property that any two of its points are at distance 0 . It follows from [5, Theorem 2 and Lemma 4] that U is a maximum point set with the latter property, and thus γ maps U to a subspace. The latter subspace is contained in S_{0}, see Lemma 3, and we conclude that γ permutes the generators among themselves. This observation and the fact that any point of \mathcal{Q} can be expressed as the intersection of some generators yield that γ preserves the set of points on \mathcal{Q}. Then, using Lemma 2, we find that any line of $\operatorname{PG}(n-1, q)$ through two points of \mathcal{Q} is mapped by γ to a line. If $(n, q) \neq(3,3)$, then any point of $\mathrm{PG}(n-1, q)$ can be expressed as the intersection of some lines connecting two points of \mathcal{Q}, and this with the previous observation yield that γ preserves the point set of $\operatorname{PG}(n-1, q)$. Finally, using again Lemma 2, we conclude that γ preserves the line set of $\operatorname{PG}(n-1, q)$ as well.

Acknowledgements

The authors are grateful to Marko Orel for drawing their attention to the work of Lester [12]. This research was supported in part by the bilateral Slovenian-Hungarian Joint Research Project, grant no. NN 114614 (in Hungary) and N1-0032 (in Slovenia). The first two authors also thank the Slovenian Research Agency ARRS (research program P1-0285 and research projects N1-0038, J1-5433, J1-6720 and J1-6743), and the second author was also supported in part by WoodWisdom-Net+, W^{3} B.

References

[1] W. Bosma, J. Cannon, and C. Playoust, The Magma Algebra System I: The User Language, J. Symbolic Comput. 24 (1997), 235-265.
[2] J. D. Dixon and B. Mortimer, Permutation groups, Graduate Texts in Mathematics 163, SpringerVerlag 1996.
[3] D. A. Foulser, Solvable primitive permutation groups of law rank, Trans. Amer. Math. Soc. 143 (1969), 1-54.
[4] R. M. Guralnick, Subgroups of prime power index in a simple group, J. Algebra 81 (1983), 304-311.
[5] A. Iosevich, I. E. Shparlinski, M. Xiong, Sets with integral distances in finite fields, Trans. Amer. Math. Soc. 362 (2010), 2189-2204.
[6] J. W. P. Hirschfeld, J. A. Thas, General Galois geometries, Clarendon Press, Oxford 1991.
[7] M. Kiermaier, S. Kurz, Maximal integral point sets in affine planes over finite fields, Discrete Math. 309 (2009), 4564-4575.
[8] I. Kovács, J. Ruff, Integral automorphisms of affine planes over finite fields, Finite Fields Appl. 27 (2014), 104-114.
[9] S. Kurz, Integral point sets over finite fields, Australas J. Combin 43 (2007), 3-29.
[10] S. Kurz, H. Meyer, Integral point sets in higher dimensional affine spaces over finite fields, J. Combin. Theory Ser. A 116 (2009), 1120-1139.
[11] M. W. Liebeck, The affine permutation groups of rank three, Proc. London Math. Soc. (3) 54 (1987), 477-516.
[12] J. A. Lester, Cone preserving mappings for quadratic cones over arbitrary fields, Canad. J. Math., 29 (6) (1977), 1247-1253.
I. Kovács, IAM and FAMNIT, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia

E-mail address: istvan.kovacs@upr.si
K. Kutnar, IAM and FAMNIT, University of Primorska, Glagoljaška 8, 6000 Koper, Slovenia

E-mail address: klavdija.kutnar@upr.si
Institute of Mathematics and Informatics, University of Pécs, Ifjúság útua 6, 7624 Pécs, Hungary

E-mail address: janosruff@gmail.com
Institute of Mathematics, Eötvös University, Pázmány P. s. 1/C, 1117 Budapest, Hungary \& MTA-ELTE Geometric and Algebraic Combinatorics Research Group

E-mail address: szonyi@cs.elte.hu

