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Abstract. Declarative model queries captured by graph patterns are
frequently used in model driven engineering tools for the validation of
well-formedness constraint or the calculation of various model metrics.
However, their high level nature might make it hard to understand all
corner cases of complex queries. When debugging erroneous patterns, a
common task is to identify which conditions or constraints of a query
caused some model elements to appear in the results. Slicing techniques
in traditional programming environments are used to calculate similar
dependencies between program statements. Here, we introduce a slicing
approach for model queries based on Rete networks, a cache structure
applied for the incremental evaluation of model queries. The proposed
method reuses the structural information encoded in the Rete networks
to calculate and present a trace of operations resulting in some model
elements to appear in the result set. The approach is illustrated on a
running example of validating well-formedness over UML state machine
models using graph patterns as a model query formalism.
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1 Introduction

Modern industrial and open source modeling tools frequently rely upon vari-
ous services built on top of incremental query evaluation techniques [1,2] for
efficient revalidation of well-formedness constraints, recalculation of view mod-
els, re-execution of code generators or maintenance of traceability links [3,4].
EMF-IncQuery [3] is an open source Eclipse project which offers a declarative
graph query language [5] for capturing queries and a scalable query engine for
incremental query evaluation using the Rete algorithm [6].

Industrial domain-specific languages and tools (e.g. in the automotive, avion-
ics or telecommunications domain) necessitate the development of large number
of complex, interrelated queries, which turns out to be an error prone task in
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industrial practice. Some constraints may accidentally be omitted, other con-
straints may be added to a query unintentionally, while patterns may be com-
posed using a wrong order of parameters. While the EMF-IncQuery framework
contains a type checker and various well-formedness constraints are also checked,
such static checks still do not guarantee that query specifications are free of flaws,
thus runtime debugging of queries need to be carried out in practice.

Unfortunately, the declarative nature of query languages makes debugging of
query specifications a challenging task. The order of clauses in a query specifi-
cation does not coincide with the actual evaluation order in case of local search
based query evaluation [7,8]. Furthermore, incremental evaluation techniques
further complicate the issue as all matches of all queries (and subqueries) are
readily available immediately at any time.

Model transformation slicing was introduced in [9] as a technique to assist
debugging of model transformations. As a conceptual difference with respect to
traditional program slicing, a transformation slice includes not only the relevant
instructions of the transformation program, but also those model elements that
can influence the slicing criterion. A dynamic backward slicing approach was
proposed for the transformation languages of VIATRA [9] and static backward
slicing approach for ATL [10,11].

In the current paper, we propose a slicing technique for incremental graph
patterns evaluated on top of Rete networks. Based upon an observed change in
the match set of a graph pattern (e.g. an extra match or a missing match) we
traverse the nodes of the Rete network in a bottom-up way to identify those
tuples in other Rete nodes which may contribute to the observed aggregate
change. We illustrate how this slicing information can be computed in the context
of statechart models. Our slicing approach may assist the debugging of model
queries by localizing suspicious spots in queries.

The rest of the paper is structured as follows. Sec. 2 gives a brief overview
of graph patterns, and presents why slicing can help to debug incorrect pattern
definitions. A formalization of incremental evaluation of model queries using
Rete networks is provided in Sec. 3. The slicing approach itself is presented in
Sec. 4 and is illustrated in the context of our running example. Related work is
discussed in Sec. 5 while Sec. 6 concludes our paper.

2 Motivating example and overview

Graph patterns are a declarative, graph-like formalism representing a condition
(or constraint) to be matched against instance model graphs. Graph patterns are
used for various purposes in model-driven development, such as defining model
transformation rules or defining general purpose model queries including model
validation constraints in various advanced tools (such as eMOFLON, Henshin,
EMF-IncQuery or VIATRA).

Informally, a graph pattern can be described as a set of structural constraints
prescribing the interconnection between nodes and edges of given types. Fur-
thermore, further constraint types, such as pattern composition constraints for
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1 // ’tr ’ represents a transition connecting two statemachines .
2 pattern DifferentStateMachine (tr : Transition ) {
3 State .out(src , tr );
4 Transition . target (tr , trg );
5 find StateofMachine (sm , src );
6 neg find StateOfMachine (sm , trg );
7 // find StateOfMachine (sm , trg );
8 }
9

10 // Variable ’st ’ represents a State of the StateMachine ’sm ’.
11 pattern StateOfMachine (sm : StateMachine , st : State ) {
12 StateMachine . states (sm , st );
13 }

(a) Textual Notation

NAC

src :
State

tr:
Transition

trg:
State

sm:
Machine

out

targetst
at
es

states

(b) Graph Notation

Fig. 1: Example graph patterns

the reuse of subpatterns, help the description of complex constraints. Finally,
a match in a model M of a pattern is the binding of all variables to elements
of M that satisfies all constraints expressed by the pattern. Efficient caching
techniques based on Rete networks [6] enumerate all matches of a pattern and
incrementally update the caches upon model changes.

Example 1 Fig. 1 describes a graph pattern using the textual syntax of EMF-
IncQuery [3] that identifies transitions whose source and target states are in
different states machines. It uses a subpattern called StateOfMachine (Line 11),
connecting two variables of type StateMachine and State with the edge type
of StateMachine.states. The main pattern DifferentStateMachine (Line 2) uses
four variables to represent a Transition, a source and a target State and a
StateMachine. The Transition and the two States are connected with two edge
constraints, while the states fr and to are connected to the statemachine by a
positive (Line 5) meaning that variable fr has to be connected via the called
pattern, and a negative pattern call (Line 6) which prevents to to be connected.

Fig. 1b depicts the same pattern using a graphical notation where nodes
are entity constraints, edges are relational constraints, positive pattern calls are
inlined (copied), and negative pattern call are marked by NAC areas.

During pattern development, engineers may accidentally make faults. For
instance, imagine that the neg keyword is omitted from Line 6, and thus the def-
inition of pattern DifferentStateMachine erroneously includes (the commented)
Line 7 instead of Line 6. It results in a positive pattern call instead of a nega-
tive pattern call making the pattern to represent transitions where both source
and target states are in the same state machine, thus completely replacing the
correct match set of the pattern with incorrect matches.

During debugging of queries and transformations, when the developer iden-
tifies that the match set of a pattern is different from what was expected, he
or she frequently wishes to learn what elementary model changes would result
in the appearance of new match or the disappearance of an existing match of
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Fig. 2: Overview of formalization

a pattern. The current paper will present a formal slicing technique for Rete
network based caches of graph patterns to answer such questions.

For that purpose, we present a chain of semantic mappings (see Fig. 2) by
(1) starting from a Σ-term algebra to formalize graphs and then (2) (a subset
of) the graph pattern language of EMF-IncQuery. (3) A relational algebraic
treatment is provided for Rete networks to cache matches of patterns and (4)
changes in the match sets are then handled by a change algebra. Finally, (5)
Rete slicing is defined as specific formulae over this change algebra. While the
main innovation of the paper is related to this final step, we briefly present the
entire chain to provide solid foundations.

3 Graph patterns and Rete networks

We present an algebraic formalization of incremental graph pattern matching
with Rete networks following the definitions of [12].

3.1 Graphs and graph patterns

Since Rete networks can be adapted to various graph formalisms, we omit the
handling of types and use directed labeled and attributed graphs to represent
models for the sake of generality and simplicity.

Definition 1 (Directed labeled attributed graph) A directed labeled and
attributed graph M = ⟨VM , EM , LM , DM , srcM , trgM , lblM , attrM ⟩ is a tuple,
where VM and EM denote nodes and edges of the graph, respectively. LM is a
set of labels, while DM represents a set of data nodes. The nodes, edges and
data nodes represent the universe of the graph model UM = VM ∪ EM ∪DM .

Functions srcM and trgM map edges to their source and target nodes, for-
mally srcM : EM ↦→ VM and trgM : EM ↦→ VM . The labeling function lbl as-
signs labels to edges, formally lblM : (VM ∪EM ) ↦→ LM , and the attribute func-
tion maps nodes to corresponding attribute values, formally attrM : VM ↦→ DM .
We may omit subscript M when graph M is unambiguous. □

Graphs will serve as the core underlying semantic domain to evaluate graph
patterns but we define an algebraic term representation (in the style of abstract
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state machines [13]) for a unified treatment of formalization. For that purpose, we
rely on some core definitions of terms, substitution, interpretation and formulas.

Definition 2 (Vocabulary and terms) A vocabulary Σ is a finite collection
of function names. Each function name f has an arity, a non-negative integer,
which is the number of arguments the function takes. Nullary function names
are often called constants.

The terms of Σ are syntactic expressions generated inductively was follows:
(1) Variables v0, v1, v2, . . . are terms; (2) constants c of Σ are terms; (3) if func-
tion f is an n-ary function name and t1, . . . , tn are terms, f⟨t1, . . . tn⟩ is a term.

Since terms are syntactic objects, they do not have a meaning. A term can
be evaluated, if elements of the model are assigned to the variables of the term.

Definition 3 (Substitution) Given a directed attribute graph model M , a
substitution for M is a function s which assigns an element s(vi) ∈ UM to each
variable vi. A partial substitution assigns a value to only certain variables vi.□

Definition 4 (Interpretation of terms) By induction on the length of term
t, given a substitution s, a value JtKM

s ∈ UM (the interpretation of term t in
model M) is defined as follows:

1. JviKM
s := s(vi) (interpretation of variables);

2. JcKM
s := cM (interpretation of constants);

3. Jf⟨t1, . . . , tn⟩KM
s := fM ⟨Jt1KM

s , . . . , JtnKM
s ⟩ (interpretation of functions).

A ground term is a term with a (full) substitution of variables. □

Definition 5 (Formulas) Formulas of Σ are generated inductively as follows:

1. Equality (and inequality) of two terms t1 = t2 is a formula f .
2. If f1 and f2 are formulas then f1 ∧ f2, f1 ∨ f2 are formulas.

A simplified notation is used for predicates (i.e. boolean terms) which may omit
= ⊤ and = ⊥ from equality formulas. □

We first define algebraic terms to represent graph patterns which are evalu-
ated over directed labeled attributed graphs as semantic models. A match of a
pattern is a binding of all variables to model elements or attribute values that
fulfill all the constraints of the graph pattern.

Definition 6 (Graph pattern and match set) A graph pattern P is a term
over a special vocabulary Σ with function symbols for constraints including
structural constraints (entity, relation), equality checks, pattern definitions with
a disjunction of pattern bodies containing conjunction of constraints and positive
and negative pattern calls and constants (representing model element identifiers
and data values). The semantics of P is defined as an interpretation of the term
over a graph M and along a substitution s as detailed in Table 1 for the key
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Name Interpretation

Entity Jent⟨l, v⟩KM
s = ⊤, if

{
lbl(JvKM

s′ ) = l, where
s′ ⊇ s ∧ v ∈ dom(s′)

Relation Jrel⟨l, v, vs, vt⟩KM
s = ⊤, if

⎧⎨⎩
lbl(JvKM

s′ ) = l∧
src(JvKM

s′ ) = JvsKM
s′ ∧

trg(JvKM
s′ ) = JvtKM

s′ , where
s′ ⊇ s ∧ {v, vs, vt} ⊆ dom(s′)

Equality check Jeq⟨v1, v2⟩KM
s = ⊤, if

{
Jv1KM

s′ = Jv2KM
s′ , where

s′ ⊇ s ∧ {v1, v2} ⊆ dom(s′)

Inequality check Jneq⟨v1, v2⟩KM
s = ⊤, if

{
Jv1KM

s′ ̸= Jv2KM
s′ , where

s′ ⊇ s ∧ {v1, v2} ⊆ dom(s′)

Pattern Body JP B⟨v1, . . . vk⟩ ← c1 ∧ . . . cnKM
s = ⊤, if

{⋀
i∈1..n

JciKM
s′ = ⊤, where

s′ ⊇ s ∧ {v1, . . . vk} ⊆ dom(s′)

Graph Pattern JP ⟨v1, . . . vk⟩ ← P B1 ∨ . . . P BnKM
s = ⊤, if

{⋁
i∈1..n

JP BiKM
s′ = ⊤, where

s′ ⊇ s ∧ {v1, . . . vk} ⊆ dom(s′)

Positive Call Jcall(P c⟨v1, . . . vn⟩)KM
s = ⊤, if

{
JP c⟨vc

1, . . . vc
n⟩K

M
s′ = ⊤, where

∀i∈1..n : s′(vc
i ) = s(vi)

Negative Call Jneg(P c⟨v1, . . . vn⟩)KM
s = ⊤, if

{
JP c⟨vc

1, . . . vc
n⟩K

M
s′ = ⊥, where

∀i∈1..n : s′(vc
i ) = s(vi)

Table 1: Algebraic definition of graph patterns

Different State Machines

Variables src, trg, tr, sm, r1, r2

Constraints

ent1⟨State, src⟩, ent2⟨T ransition, tr⟩
ent3⟨State, trg⟩, ent4⟨Machine, sm⟩

rel5⟨State.out, r1, src, tr⟩
rel6⟨T ransition.target, r2, tr, trg⟩

call7(SoM⟨src, sm⟩), neg8(SoM⟨trg, sm⟩)

State of Machine (SoM)

st, sm, r ∈ V rel

ent1⟨State, source⟩
ent2⟨Machine, sm⟩

rel3⟨Machine.States, r, sm, st⟩

Table 2: The Different State Machines pattern

elements of the EMF-IncQuery language [3]. For easier formulation, we use V k

as a shorthand to represent a vector of variables, formally f⟨V k⟩ = f⟨t1, . . . tk⟩.
A match of P in M is a substitution s which satisfies all constraints. The

match set is the set of all matches of a pattern in a graph model:

MSP
M = {s | JP ⟨V k⟩ ← PB1 ∨ . . . PBnKM

s = ⊤} □

Example 2 Table 2 provides the algebraic representation of graph pattern Dif-
ferent State Machines of Fig. 1 that identifies transitions which connect elements
between different state machines.
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Name Interpretation

Entity/0 JnE⟨v⟩KM ={⟨v⟩ | Jent⟨l, v⟩KM = ⊤}
Relation/0 JnR⟨v, vs, vt⟩KM ={⟨v, vs, vt⟩ | Jrel⟨l, v, vs, vt⟩KM = ⊤}

Projection/1 Jnπ⟨V k⟩KM =π
V k

Jn1⟨V n⟩KM , where V n ⊇ V k

Filter/1 Jnσ⟨V k⟩KM =σJn1⟨V k⟩KM

Join/2 Jn◃▹⟨V k⟩KM =

{
Jn1⟨V i⟩KM ◃▹ Jn2⟨V i⟩KM , where
V k = V i ∪ V j

Anti-join/2 Jn◃⟨V k⟩KM =Jn1⟨V k⟩KM ◃ Jn2⟨V j⟩KM

Disjunction/2 Jn∪⟨V k⟩KM =Jn1⟨V k⟩KM ∪ Jn2⟨V k⟩KM

Table 3: Relational algebraic operations of Rete networks

3.2 Graph pattern matching with Rete networks

The Rete algorithm [6] is a well-known and efficient technique of rule-based sys-
tems which has been adapted to several incremental pattern matchers [12,14,15].
The algorithm uses an incremental caching approach that indexes the basic
model elements as well as partial matches of a graph pattern that enumerate
all model element tuples which satisfy a subset of the graph pattern constraints.
These caches are organized in a graph structure called Rete network supporting
incremental updates upon model changes.

Definition 7 (Rete network) A Rete network is a directed acyclic graph R ≡
⟨N, E, L, Term, src , trg , lbl , attr ⟩, where N is a set of Rete nodes connected by
edges E (along src and trg), L = Kind∪Index defines node kinds (entity E and
relation input R, natural join ◃▹, filter σ, projection π, disjunction ∪ and anti-
join ◃) as node labels and indices as edge labels (along lbl), while data associated
to nodes are specific Terms of type nop⟨V k⟩.

Definition 8 (Memory of a Rete node) Each Rete node n ∈ N of the Rete
network RP stores all matches of an instance model M which satisfy certain
constraints which is denoted as Jn⟨V k⟩KM . Each Rete node n relies upon the
memory of its parents Jni⟨V k⟩KM to calculate its own content inductively by
relational algebraic operators which are specified in details in Table 3.

The memory of an input node nI lists entities and relations of the model
with a specific label. Positive pattern calls are always mapped to join node, while
negative pattern calls are expressed via anti-join nodes. A production (output)
node in a Rete network contains all matches of a graph pattern P by expressing
the complex constraints with a relational algebraic operations (e.g. projection,
filter, join, anti-join, disjunction). The compilation of the graph pattern language
of EMF-IncQuery into a corresponding Rete network is out of scope for the
current paper and it is studied in [12] in details. We only rely on the correctness
of a compilation comp : P ↦→ N to guarantee that a match set of a graph pattern
P (see Table 1) equals to the memory of the corresponding Rete node (as defined
in Table 3), i.e. MSP

M = Jn⟨V k⟩KM where n = comp(P ).
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Fig. 3: A Rete network for the Different State Machines pattern

Example 3 Fig. 3a depicts a Rete network for the Different State Machines
pattern. Its input nodes cache three references: states of Machines; out references
of States and target references of Transitions. The first join node of the network
connects the source and target states, while the second join node adds the
container machines of the source patterns by joining the production node of the
called pattern State of Machine. Finally, the anti-join node (depicted by the
red triangle) ensures that the target state is not connected to the same state
machine as the source node by filtering matches of its join parent node which
also correspond to matches of the states node along the called pattern State of
Machine (which is inlined during compilation).

We display the cached model elements of the instance model Fig. 3b in a
table for each Rete node, describing two state machines with a few states and
transitions (some of which cross the boundary of a statemachine). □

3.3 Incremental change-driven behavior of Rete networks

If the memory of a Rete nodes changes, the memory of all its children Rete nodes
needs to be updated in accordance with the relational algebraic operation of the
Rete node. For that purpose, we define a change algebra over terms n+ and n−
(jointly denoted as n∆) which represent tuples added and removed from a Rete
node n. We briefly revisit the semantics of such change terms in Table 4 while
the reader is referred to [12] for a detailed discussion.

Definition 9 (Change algebra for Rete nodes) Let M be a graph model
cached in a Rete network R and let ∆ be a set of elementary model changes
(represented by terms for creation and deletion of entities nE

+, nE
− or references

nE
+ and nE

−) over this graph. We define a term nop
∆ for each node nop of the Rete

network to represent matches that are changed by ∆ with respect to M .
The semantics of such terms are inductively defined by using (i) match in-

formation nop cached in R for M (i.e. the previous state of the model) and



Rete network slicing for model queries 9

Name Interpretation

Entity JnE
∆⟨v⟩K

M,∆=
{

(JnE⟨v⟩KM = ⊤ ∧ JnE
−⟨v⟩K

∆ = ⊤)∨
(JnE⟨v⟩KM = ⊥ ∧ JnE

+⟨v⟩K
∆ = ⊤)

Relation JnR
∆⟨v, vs, vt⟩KM,∆=

{
(JnR⟨v, vs, vt⟩KM = ⊤ ∧ JnR

−⟨v, vs, vt⟩K∆ = ⊤)∨
(JnR⟨v, vs, vt⟩KM = ⊥ ∧ JnR

+⟨v, vs, vt⟩K∆ = ⊤)

Projection Jnπ
∆⟨V k⟩KM,∆=π(Jn1⟨V n⟩KM ∪ Jn1

∆⟨V n⟩KM,∆) \ πJn1⟨V n⟩KM

Filter Jnσ
∆⟨V k⟩KM,∆=σJn1

∆⟨V k⟩KM,∆

Join Jn◃▹
∆⟨V k⟩KM,∆=

{
(Jn1⟨V i⟩KM ◃▹ Jn2

∆⟨V j⟩KM,∆
n )∪

(Jn1
∆⟨V i⟩KM,∆ ◃▹ Jn2⟨V j⟩KM )∪

(Jn1
∆⟨V i⟩KM,∆ ◃▹ Jn2

∆⟨V j⟩KM,∆)

Anti-
join

Jn◃
∆⟨V k⟩KM,∆=

{
Jn1⟨V k⟩KM ◃▹

(πJn2⟨V j⟩KM \ π(Jn2⟨V j⟩KM,∆ ∪ Jn2
∆⟨V j⟩KM,∆))∪

Jn1
∆⟨V k⟩KM,∆ ◃ (Jn2⟨V j⟩KM ∪ Jn2

∆⟨V j⟩KM,∆)

Disjunction Jn∪
∆⟨V k⟩KM,∆=

{
{Jn1

∆⟨V k⟩KM,∆ | (Jn2⟨V k⟩KM = ∅) ∧ (Jn2
∆⟨V k⟩KM,∆ = ∅)}∪

{Jn2
∆⟨V k⟩KM,∆ | (Jn1⟨V k⟩KM = ∅) ∧ (Jn1

∆⟨V k⟩KM,∆ = ∅)}∪
{Jn1

∆⟨V k⟩KM,∆ | Jn2
∆⟨V k⟩KM,∆}

Table 4: Change algebra for Rete nodes

(ii) change already computed at parent nodes n1
∆ and n2

∆ of nop
∆ split along

operations op as detailed in Table 4. □

A brief informal explanation of these cases is as follows:

Entity and relation change A model entity appears in the change set nE
∆ if

(1) it exists in M and it is removed by ∆ or (2) it does not exist in M and
it is created by ∆ (and same holds for model references).

Change in projection and filter nodes The change set of a projection node
is defined as the difference of the new n1⟨V n⟩ ∪ n1

∆⟨V n⟩ and old n1⟨V n⟩
memory of the parent nodes. In case of a filter node the change set is the
change set of its single parent n1

∆⟨V k⟩ filtered using the σ filter operator.
Change in join nodes The change set of a join node consists of the union of

three change sets: (1) the join of the the memory of the first parent node
n1⟨V i⟩ with the delta coming from the second parent n2

∆⟨V j⟩; (2) the join
of the second parent n2⟨Vi⟩ with the first parent delta n1

∆⟨V j⟩; and (3) the
join of the two parent deltas n1

∆⟨V i⟩ and n2
∆⟨V j⟩.

Change in anti-join nodes The change set of an anti-join node is the union
of two sets: (1) the elements in the second parent delta n2

∆⟨V j⟩ that are
filtering out pre-existing tuples from the first parent n1⟨V k⟩; and (2) the
changed elements of the first parent n1

∆⟨V k⟩ that are not filtered out by the
second parent or its changes.

Change in disjunction nodes The change set of a disjunction node is the
union of three sets: (1) the delta of the first parent n1

∆⟨V k⟩ that was not
present in the second parent n2⟨V k⟩; (2) the delta of the second parent
n2

∆⟨V k⟩ that was not present in the first parent n1⟨V k⟩ and (3) elements
that were added or removed by both parent changes.
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4 Slicing Rete networks of graph patterns

The change algebra of Table 4 precisely specifies how to propagate changes in
Rete networks from input nodes to production nodes corresponding to graph
patterns. However, an inverse direction of change propagation needs to be defined
for debugging purposes.

Slicing of Rete networks will systematically collect dependencies from a(n
aggregate) change at a production (pattern) node towards elementary changes
at input nodes. More specifically, based on an observed change of a match of a
pattern, we need to calculate how to change the caches of each parent node in
the Rete network so that those changes consistently imply the specific changes
of the match set of a production node. For instance, if a match is included in
nop

+ (nop
− , respectively) then it needs to be added to (removed from) the cache of

the corresponding Rete node nop to observe a specific change nP
∆ of a production

node. In a debugging context, if a specific match of pattern P is missed by the
engineer then he or she can ask the slicer to calculate possible model changes
that would add the corresponding match nP

+.
As a slice, we present complete dependency information from aggregate

changes to elementary changes by a logic formula over change terms which is
calculated by appending new clauses in the form of (ground) change terms along
specific matches s while traversing the Rete network from production nodes to
input nodes. This slice is informally calculated as follows:

– The input of slicing is the appearance of a new match s in M or the disap-
pearance of an existing match s in M at a production node P , which is a
ground term JnP

+⟨V k⟩KM,∆
s or JnP

−⟨V k⟩KM,∆
s appended to the slice.

– For each ground term appended to the slice, we calculate what changes are
necessitated at their parent Rete nodes, and append those potential changes
to the slices one by one. Formulas are calculated in correspondence with
Table 5 for the Rete nodes.
• For instance, when a match of a join node disappears (see Join in Ta-

ble 5b) then at least one of the corresponding partial matches of its
parent nodes need to be removed, captured in the slice by the change
terms Jn1

−⟨V i⟩KM,∆
s and Jn2

−⟨V j⟩KM,∆
s as disjunctive branches.

• When a new match of a join node appears (see Join in Table 5a) then we
add new matches to one or both parent nodes n1, n2 which is compliant
with the match of the join node.

– Special care needs to be taken for projection and anti-join nodes which
may need to fabricate new entities (identifiers) to create ground terms for
unbound variables.

– As a base case of this recursive definition, we stop when
• elementary changes of input nodes are reached (first two lines in Table 5a

and Table 5b), or
• a match already existing in the cache of a Rete node is to be added by

a change (see Table 5c), or
• when the deletion of a match is prescribed by a change which does not

exist in M (see Table 5c).
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∏	SoM

Machine	#
states

∏	DSM

JOIN

Transition#
source

Transition	#	
target

JOIN

sm fr

SM1 S11

SM1 S12

SM2 S21

SM2 FS

tr fr

TC1 S11

TI S11

TC2 S12

tr to

TC1 S21

TI S12

TC2 FS

tr fr to

TC1 S11 S21

TI S11 S12

TC2 S12 FS

sm tr fr to

SM1 TC1 S11 S21

SM1 TI S11 S12

SM1 TC2 S12 FS

sm tr fr to

SM1 TI S11 S12

JOIN

0

1

2

345
6

n1 n3n2

n4

n6

n5

(a) Slicing steps in a Rete network

n6
◃▹
− ⟨_, _, _, S12⟩

n6
◃▹
− ⟨SM1, T I, S11, S12⟩ (0)

n5
◃▹
− ⟨SM1, T I, S11, S12⟩ (1)

n4
◃▹
− ⟨T I, S11, S12⟩ (2)

n3
R
−⟨T I, S12⟩ (3)

n2
R
−⟨T I, S11⟩ (4)

n1
R
−⟨SM1, S12⟩ (5)

n1
R
−⟨SM1, S11⟩ (6)

(b) A Rete slice

Fig. 4: Sample Rete slice for faulty pattern

Definition 10 (Rete Slice) The slice of a change predicate n+(t) or n−(t)
starting from a node n in a Rete network R over model M and along substitution
s is a formula (derived in disjunctive normal form in our case) calculated in
accordance with Table 5. □

Example 4 Fig. 4 depicts the sliced Rete network of the faulty version of the
Different State Machines pattern. The only difference in its network (as opposed
to the Rete network of the correct pattern in Fig. 3a) uses a join node instead
of an anti-join node as a production node.

The slicing starts with noticing an undesired tuple where the variable to
equals to the state S12. At this point, we can ask the slicer how to remove this
undesired tuple by calculating the slice of the change predicate n6

◃▹
−⟨_, _, _, S12⟩.

0. The memory of node n6 is checked for tuples matching the input predicate; a
single tuple n6

◃▹
−⟨SM1, T I, S11, S12⟩ is found and added to the slice formula.

1. To remove the element from the output of the join node, following Table 5b
the corresponding input tuples are to be removed from one of its parents. In
this case, the node n5

◃▹
−⟨SM11, T I, S11, S12⟩ is added to the formula.

2. The first parent node n4
◃▹
−⟨TI, S11, S12⟩ is selected and added to the formula.

3. n3
R
−⟨TI, S12⟩ is selected as the dependency to remove, and added to the

formula. At this point, an input node is reached so the recursion terminates.
4. However, we have to backtrack to node n4, and evaluate the second case for

the join node by adding n2
R
−⟨TI, S11⟩ to a second branch of the formula.

5. Similarly, n1
R
−⟨SM1, S12⟩ and n1

R
−⟨SM1, S11⟩ are added to new branches.
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Different cases for the same node are handled as disjunctions in the formula.
Node Change Append to formula

Entity/0 JnE
+⟨v⟩K

M,∆
s : ⊤

Relation/0 JnR
+⟨v, vs, vt⟩KM,∆

s : ⊤

Projection/1 Jnπ
+⟨V k⟩KM,∆

s : Jn1
+⟨V j⟩KM,∆

s

Filter/1 Jnσ
+⟨V k⟩KM,∆

s : Jn1
+⟨V k⟩KM,∆

s ∧ σ⟨V k⟩

Join/2 Jn◃▹
+ ⟨V k⟩KM,∆

s : Jn1
+⟨V i⟩KM,∆

s ∧ Jn2
+⟨V j⟩KM,∆

s

Jn1⟨V i⟩KM
s ∧ Jn2

+⟨V j⟩KM,∆
s

Jn2⟨V j⟩KM
s ∧ Jn1

+⟨V i⟩KM,∆
s

Anti-join/2 Jn◃
+⟨V k⟩KM,∆

s : Jn1⟨V k⟩KM
s ∧ Jnc

−⟨V j⟩KM,∆
s

Jn1
+⟨V k⟩KM,∆

s ∧ Jn2⟨V j⟩KM
s = ∅

Disjunction/2 Jn∪
+⟨V k⟩KM,∆

s : Jn1
+⟨V k⟩KM,∆

s

Jn2
+⟨V k⟩KM,∆

s

(a) How to update inputs to add match m to output?

Node Change Append to formula

Entity/0 JnE
−⟨v⟩K

M,∆
s : ⊤

Relation/0 JnR
−⟨v, vs, vt⟩KM,∆

s : ⊤

Projection/1 Jnπ
−⟨V k⟩KM,∆

s : Jn1
−⟨V k, V n⟩KM,∆

s

Filter/1 Jnσ
−⟨V k⟩KM,∆

s : Jn1
−⟨V k⟩KM,∆

s

Join/2 Jn◃▹
− ⟨V k⟩KM,∆

s : Jn1
−⟨V i⟩KM,∆

s

Jn2
−⟨V j⟩KM,∆

s

Anti-join/2 Jn◃
−⟨V k⟩KM,∆

s : Jn1
−⟨V k⟩KM,∆

s

Jn1⟨V k⟩KM
s ∧ Jn2

−⟨V j⟩KM,∆
s

Disjunction/2 Jn∪
−⟨V k⟩KM,∆

s : Jn1⟨V k⟩KM
s ̸= ∅ ∧ Jn1

−⟨V k⟩KM,∆
s ∧

Jn2⟨V k⟩KM
s = ∅

Jn1⟨V k⟩KM
s = ∅

Jn2⟨V k⟩KM
s ̸= ∅ ∧ Jn2

−⟨V k⟩KM,∆
s

Jn1⟨V k⟩KM
s ̸= ∅ ∧ Jn1

−⟨V k⟩KM,∆
s ∧

Jn2⟨V k⟩KM
s ̸= ∅ ∧ Jn2

−⟨V k⟩KM,∆
s

(b) How to update inputs to remove match m from output?

Node Change Append to formula

Add existing tuple (Jn⟨V k⟩KM
s = ⊥) ∧ (Jn−⟨V k⟩KM,∆

s ) : ⊤

Remove missing tuple (Jn⟨V k⟩KM
s = ⊤) ∧ (Jn+⟨V k⟩KM,∆

s ) : ⊤

(c) Handling trivial cases

Table 5: Definition of slices for Rete networks of graph patterns
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The final formula looks as follows:

Jn6
◃▹
− ⟨v1, v2, v3, v4⟩KM

{v4 ↦→S12} =(
n3

R
−⟨T I, S12⟩ ∧ n4

◃▹
− ⟨T I, S11, S12⟩ ∧ n5

◃▹
− ⟨SM11, T I, S11, S12⟩ ∧ n6

◃▹
− ⟨SM1, T I, S11, S12⟩

)
∨(

n2
R
−⟨T I, S11⟩ ∧ n4

◃▹
− ⟨T I, S11, S12⟩ ∧ n5

◃▹
− ⟨SM11, T I, S11, S12⟩ ∧ n6

◃▹
− ⟨SM1, T I, S11, S12⟩

)
∨(

n1
R
−⟨SM1, S12⟩ ∧ n5

◃▹
− ⟨SM11, T I, S11, S12⟩ ∧ n6

◃▹
− ⟨SM1, T I, S11, S12⟩

)
∨(

n1
R
−⟨SM1, S11⟩ ∧ n6

◃▹
− ⟨SM1, T I, S11, S12⟩

)
□

Although the formula refers to all nodes of the Rete network, the slice de-
scribes a reduced model: (1) the model element tuples unrelated to the criteria
are not included, and (2) the tuples in a single disjunctive branch describe a
possible series of operations that would result in a tuple matching the input
predicate to appear or disappear.

5 Related work

Traditional program slicing techniques have been regularly and exhaustively sur-
veyed in the past in papers like [16,17]. The current paper focuses on model
transformation slicing [9,10,11], more specifically on incremental model queries.
The main difference with respect to traditional approaches is that query slicing
has to consider the specification and the model simultaneously.

Slicing of declarative programs The closest related work addresses the
slicing of logic programs as declarative graph patterns [5,18] share certain simi-
larities with logic programs. Forward slicing of Prolog programs are discussed in
[19] based on partial evaluation, while [20] executes static and dynamic slicing
of logic programs based on the procedural behaviour of the programs. [21] aug-
ments the data flow analysis with control-flow dependencies in order to identify
the source of a bug included in a logic program and was extended in [22] to the
slicing of constraint logic programs (with fixed domains). Program slicing for
the Alloy language was proposed in [23] as a novel optimization strategy to im-
prove the verification of Alloy specifications. Our conceptual extension to these
existing slicing techniques is the incorporation of model elements into the slices.

Slicing queries over databases In the context of databases and data ware-
housing, related approaches called data lineage tracing [24] or data provenance
problem [25] aim to explain why a selected record exists in a materialized view.
These approaches focus on identifying the records of the original tables that
contribute to a selected record, and expect the queries be correct. A further dif-
ference to our contribution is that storing partial results in a data warehousing
context can be impractical due to high (memory) costs while in case of the Rete
algorithm, these partial results are already cached to be available for slicing.

Model slicing Model slicing [26] techniques have already been successfully
applied in the context of MDD. Slicing was proposed for model reduction pur-
poses in [27,28] to make the following automated verification phase more efficient.
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Lano et. al. [29] exploits both declarative elements (like pre- and postcondi-
tions of methods) and imperative elements (state machines) to construct UML
model slices by using model transformations. The slicing of finite state machines
in a UML context was studied by Tratt [30], especially, to identify control de-
pendence. A similar study was also executed for extended finite state machines
in [31]. A dynamic slicing technique for UML architectural models is introduced
in [32] using model dependence graphs to compute dynamic slices based on the
structural and behavioral (interactions only) UML models.

Metamodel pruning [33] can also be interpreted as a slicing problem where the
effective metamodel is automatically derived as a view. Moreover, model slicing is
used in [34] to modularize the UML metamodel into a set of small metamodels
for each UML diagram type. Various model slicing techniques are merged by
Blouin et al. [35] into a single, generative framework, using different approaches
for different models. Still, none of the existing model slicing approaches address
the slicing of model queries, the main focus of our work.

Model transformation debugging Slicing can be beneficial for debugging
model transformations. The authors of [36] propose a dynamic tainting tech-
nique for debugging failures of model transformations, and propose automated
techniques to repair input model faults [37]. Colored Petri nets are used for un-
derlying formal support for debugging transformations in [38]. The debugging of
triple graph grammar transformations is discussed in [39], which envisions the
future use of slicing techniques in the context of model transformations.

6 Conclusion and future work

In this paper, we defined a dynamic slicing technique for Rete networks derived
from graph patterns. As a slicing criterion, the appearance of a new match or the
disappearance of an existing match is selected in a production node of the Rete
network. Since a Rete network also caches partial matches, it is possible to follow
match dependencies step by step back to the input nodes storing elementary
graph nodes and edges. Such dependencies constitute the slice is captured as
formulas over terms of a change algebra. As the main contribution, we provided a
formal slicing technique for Rete networks of graph patterns constituted from the
most frequently used language elements of the EMF-IncQuery framework. Our
slicing technique was illustrated on a running example of UML state machines.

In the future, we plan to integrate this slicing approach into EMF-IncQuery
[3] in order to use it for various tasks, such as presenting this slice together
with the Rete networks graphically, easing the debugging of erroneous model
queries. Furthermore, the approach seems promising for declarative bidirectional
view model synchronization well, as it enables calculating possible source model
changes for view model changes automatically.

Acknowledgements The authors would like to thank István Ráth for the valuable
discussions during the preparation of this paper.
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