On a reaction-diffusion-advection system: fixed boundary or free boundary

Ying Xu, Dandan Zhu and Jingli Ren ${ }^{\boxtimes}$
School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China

Received 15 January 2018, appeared 14 May 2018
Communicated by Maria Alessandra Ragusa

Abstract

This paper is devoted to the asymptotic behaviors of the solution to a reaction-diffusion-advection system in a homogeneous environment with fixed boundary or free boundary. For the fixed boundary problem, the global asymptotic stability of nonconstant semi-trivial states is obtained. It is also shown that there exists a stable nonconstant co-existence state under some appropriate conditions. Numerical simulations are given not only to illustrate the theoretical results, but also to exhibit the advection-induced difference between the left and right boundaries as time proceeds. For the free boundary problem, the spreading-vanishing dichotomy is proved, i.e., the solution either spreads or vanishes finally. Besides, the criteria for spreading and vanishing are further established.

Keywords: reaction-diffusion-advection, fixed boundary, free boundary, nonconstant steady states, spreading-vanishing.
2010 Mathematics Subject Classification: 35Q92, 35K57, 35R35, 93D20.

1 Introduction

Consider

$$
\begin{cases}u_{t}=d_{1} u_{x x}-\beta_{1} u_{x}+u\left(r_{1}-a_{1} u-b_{1} v\right), & (x, t) \in(0, L) \times(0, \infty), \tag{1.1}\\ v_{t}=d_{2} v_{x x}-\beta_{2} v_{x}+v\left(r_{2}-a_{2} v-b_{2} u\right), & (x, t) \in(0, L) \times(0, \infty), \\ u(x, 0)=u_{0}(x)>0, & x \in(0, L), \\ v(x, 0)=v_{0}(x)>0, & x \in(0, L) .\end{cases}
$$

Here, $d_{i}, \beta_{i}, r_{i}, a_{i}, b_{i}$ are given constants, which implies in a homogeneous environment. For convenience, $i=1,2$ in the whole text whenever it is mentioned.

Particularly, for $d_{i}=0$ and $\beta_{i}=0,(1.1)$ is a classical ordinary differential system, and massive outstanding researches have been proposed, see [1-4,14,20-22] and references therein; for $d_{i} \in \mathbb{R}^{+}$and $\beta_{i} \in \mathbb{R},(1.1)$ is a reaction-diffusion-advection (RDA) system. Such RDA problems were extensively used to understand the spatial behavior of populations, the dynamics of information diffusion, and so on. Up to now, many remarkable results have been achieved, see [5-10, 12, 13, 15-17, 24-27, 29], etc.

[^0]For a population growth model, $u(x, t), v(x, t)$ in (1.1) respectively represent the densities of two species at location x and time $t . d_{i}>0$ denotes the random dispersal rate of the species; advection rate $\beta_{i} \in \mathbb{R}$ is the moving speed of individuals towards their more favorable habitats. As noted in [12], $\beta_{i}>0$ means advection points towards larger x, while $\beta_{i}<0$ implies advection points towards smaller $x . r_{i}>0$ accounts for intrinsic growth rate; $a_{i}>0$ is intra-specific interaction rate; $b_{i} \in \mathbb{R}$ is interspecific interaction rate. What described above means that system (1.1) is a competition model with $b_{i}>0$, see [$16,17,29$], and a predator-prey problem for $b_{1}>0, b_{2}<0$, see [24,26,27,30]. For a information diffusion model, the meaning of $u(x, t), v(x, t), d_{i}, \beta_{i}, r_{i}, a_{i}, b_{i}$ can refer to [22,25].

The way to formulate boundary conditions for reaction-diffusion models is based on how the flux of individuals crosses a boundary. As mentioned in [5], the flux $\vec{J}=-d \nabla u+$ $\vec{\beta} u$ across the boundary at any given point is proportional to the density with constant of proportionality, that is

$$
\begin{equation*}
(-d \nabla u+\vec{\beta} u) \cdot \vec{n}=\alpha u, \tag{1.2}
\end{equation*}
$$

where $d>0$ is the diffusion rate, $\vec{\beta}$ is the advection velocity, \vec{n} is the outward pointing normal vector, α is the proportionality coefficient. If $\alpha \rightarrow \infty$, then the boundary condition (1.2) becomes $u=0$, which is a Dirichlet condition; if $\vec{\beta}=0$ and $\alpha=0$, we have $(-d \nabla u) \cdot \vec{n}=0$, i.e., $\frac{\partial u}{\partial \vec{n}}=0$, which is known as a Neumann condition; if $\vec{\beta}=0$ and $\alpha<0$, then (1.2) is in the form of $d \frac{\partial u}{\partial \vec{n}}-\alpha u=0$, which is referred to a Robin condition; if $\alpha=0$, then (1.2) becomes $d \frac{\partial u}{\partial \vec{n}}-\vec{\beta} \cdot \vec{n} u=0$, which is called a no-flux or reflecting boundary condition, since it means that individuals encountering the boundary are always reflected back so they do not leave the domain, that is, no individual crosses the boundary.

Here we focus on the no-flux boundary conditions

$$
\begin{cases}d_{1} u_{x}(0, t)-\beta_{1} u(0, t)=d_{1} u_{x}(L, t)-\beta_{1} u(L, t)=0, & t \in(0, \infty), \tag{1.3}\\ d_{2} v_{x}(0, t)-\beta_{2} v(0, t)=d_{2} v_{x}(L, t)-\beta_{2} v(L, t)=0, & t \in(0, \infty) .\end{cases}
$$

In fact, Lou et al. in [16] first qualitatively analyzed (1.1) with no-flux boundary (1.3) under $d_{1}=d_{2}$ and

$$
\begin{equation*}
r_{1}=r_{2}, \quad a_{1}=a_{2}=b_{1}=b_{2}=1 . \tag{1.4}
\end{equation*}
$$

It is shown that the movement with either smaller advection or no advection is eventually stable. Afterwards, based on the assumptions of (1.4), Zhou in [29] further investigated (1.1) with the addition of (1.3) to understand the joint effects of diffusion and advection on the outcome of competition. Overcoming the mathematical difficulties arising out of $d_{1} \neq d_{2}$, Zhou in [29] obtained much richer observations: the movement with smaller diffusion, smaller advection and smaller ratio of advection to diffusion, or with larger diffusion and smaller advection, wins the competition.

However, for a more general model with $d_{i}, r_{i}, a_{i} \in \mathbb{R}^{+}, \beta_{i}, b_{i} \in \mathbb{R}$ and without assumption (1.4), there have been no results so far. Due to this reason, in this paper, we study (1.1) with fixed boundary (1.3) and present a thorough understanding: for $b_{i}>0$, problem (1.1) and (1.3) may finally stabilize to a nonconstant semi-trivial steady state if $\beta_{i}>0$, but admit a stable coexistence state if $\beta_{1} \cdot \beta_{2}<0$; for $b_{1}>0, b_{2}<0$, the two semi-trivial steady semi-trivial steady states of (1.1) with the addition of (1.3) are both unstable. Furthermore, we give numerical simulations to find out that advection can induce great difference between the left and right boundaries as time goes on; and the problem with $b_{1}>0, b_{2}<0$ may have a co-existence state.

On the other hand, influenced by human activity, the habitat of some species often changes with time, which can be described by a free boundary. In this case, we go one step further and discuss the corresponding free boundary problem

$$
\begin{cases}u_{t}=d_{1} u_{x x}-\beta_{1} u_{x}+u\left(r_{1}-a_{1} u-b_{1} v\right), & 0<x<h(t), t>0, \tag{1.5}\\ v_{t}=d_{2} v_{x x}-\beta_{2} v_{x}+v\left(r_{2}-a_{2} v-b_{2} u\right), & 0<x<h(t), t>0, \\ u(0, t)=v(0, t)=u(h(t), t)=v(h(t), t)=0, & t>0, \\ h^{\prime}(t)=-\mu\left[u_{x}(h(t), t)+\rho v_{x}(h(t), t)\right], & t>0, \\ u(x, 0)=u_{0}(x), v(x, 0)=v_{0}(x), h(0)=h_{0}, & 0<x<h_{0} .\end{cases}
$$

Here μ, ρ and h_{0} are given positive constants. $x=h(t)$ is the free boundary, and the initial function $u_{0}(x), v_{0}(x) \in \Sigma\left(h_{0}\right)$ for some $h_{0}>0$, where

$$
\begin{equation*}
\Sigma\left(h_{0}\right)=\left\{\phi \in \mathrm{C}^{2}\left(\left[0, h_{0}\right]\right): \phi(0)=\phi\left(h_{0}\right)=0, \phi(x)>0 \text { in }\left(0, h_{0}\right)\right\} . \tag{1.6}
\end{equation*}
$$

Wang et al. in [26] studied system (1.5) with $\beta_{i}=0$ and $b_{i}>0$ and obtained the long time behavior of two competing species spreading via a free boundary. Based on the assumptions of $\beta_{i}=0, b_{1}>0$, and $b_{2}<0$, Wang in [24] investigated system (1.5) to get a spreadingvanishing dichotomy and set the criteria for spreading and vanishing, moreover, Wang in [24] gave the estimation of asymptotic spreading speed when spreading successfully.

Motivated by the works in [24,26], we study system (1.5) with $d_{i}>0, \beta_{i} \geq 0, a_{i}>0, b_{1}>0$ and $b_{2} \in \mathbb{R}$. We prove that the spreading-vanishing dichotomy still holds, i.e. the solution to problem (1.5) is vanishing if $h_{\infty}<+\infty$, on the other hand, it is spreading if $h_{\infty}=+\infty$ under some proper conditions. Furthermore, we determine the criteria for spreading and vanishing.

The rest of this paper is organized as follows. In Section 2, the fixed boundary problem is analyzed, including the global asymptotic stability of nonconstant semi-trivial steady states, and the existence of a stable nonconstant co-existence state. Numerical simulations are presented to illustrate the results. Section 3 is devoted to the free boundary problem. The spreading-vanishing dichotomy is obtained and the criteria for spreading and vanishing are determined.

2 The fixed boundary problem

2.1 Existence of semi-trivial steady states

First, we consider the problem

$$
\left\{\begin{array}{l}
d_{1} u_{x x}-\beta_{1} u_{x}+u\left(r_{1}-a_{1} u\right)=0, \quad x \in(0, L) \tag{2.1}\\
d_{1} u_{x}(0)-\beta_{1} u(0)=0 \\
d_{1} u_{x}(L)-\beta_{1} u(L)=0
\end{array}\right.
$$

and the following statement is valid.
Lemma 2.1. For any $\beta_{1} \in \mathbb{R}$, and $d_{1}, r_{1}, a_{1} \in \mathbb{R}^{+}$, problem (2.1) admits a unique positive solution \tilde{u}.
Proof. For $\beta_{1} \geq 0$, we rewrite problem (2.1) as

$$
\left\{\begin{array}{l}
d_{1} u_{x x}-\beta_{1} u_{x}+u\left(r_{1}-a_{1} u\right)=0, \quad x \in(0, L), \tag{2.2}\\
d_{1} u_{x}(0)-\beta_{1} u(0)=0 \\
d_{1} u_{x}(L)+\beta_{1} u(L)=2 \beta_{1} u(L) .
\end{array}\right.
$$

Let

$$
\bar{u}=\frac{M_{1}}{a_{1}} e^{\frac{\beta_{1}}{1_{1}} x}, \quad \underline{u}=\frac{M_{2}}{a_{1}} e^{\frac{\beta_{1}}{d_{1}} x},
$$

where $M_{1}>r_{1} e^{\frac{\left|\beta_{1}\right|}{d_{1}} L}, 0<M_{2}<r_{1} e^{\frac{-\left|p_{1}\right|}{d_{1}} L}$. After some simple computations, we have

$$
\left\{\begin{array}{l}
d_{1} \bar{u}_{x x}-\beta_{1} \bar{u}_{x}+\bar{u}\left(r_{1}-a_{1} \bar{u}\right)<0, \quad x \in(0, L) \tag{2.3}\\
d_{1} \bar{u}_{x}(0)-\beta_{1} \bar{u}(0)=0 \\
d_{1} \bar{u}_{x}(L)+\beta_{1} \bar{u}(L)=2 \beta_{1} \bar{u}(L)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
d_{1} \underline{u}_{x x}-\beta_{1} \underline{u}_{x}+\underline{u}\left(r_{1}-a_{1} \underline{u}\right)>0, \quad x \in(0, L), \tag{2.4}\\
d_{1} \underline{u}_{x}(0)-\beta_{1} \underline{u}(0)=0, \\
d_{1} \underline{u}_{x}(L)+\beta_{1} \underline{u}(L)=2 \beta_{1} \underline{u}(L) .
\end{array}\right.
$$

According to the definition of upper and lower solutions in [19], one can see that \bar{u} and \underline{u} are upper and lower solutions to problem (2.2).

Set

$$
F(u):=u\left(r_{1}-a_{1} u\right), \quad x \in(0, L),
$$

and

$$
G(u):= \begin{cases}0, & x=0, \\ 2 \beta_{1} u, & x=L .\end{cases}
$$

For $\underline{u} \leq u_{2}<u_{1} \leq \bar{u}$, one can see that there are constants $K_{1}>0, K_{2}>0$ such that

$$
F\left(u_{1}\right)-F\left(u_{2}\right) \geq-K_{1}\left(u_{1}-u_{2}\right), \quad x \in(0, L),
$$

and

$$
G\left(u_{1}\right)-G\left(u_{2}\right) \geq-K_{2}\left(u_{1}-u_{2}\right), \quad x=0, L .
$$

Thanks to Theorem 4.4.1 and Corollary 4.4.1 in [19], problem (2.2) has a positive solution $\tilde{u} \in$ $C^{2}([0, L])$, satisfying

$$
\underline{u} \leq \tilde{u} \leq \bar{u} .
$$

The proof of uniqueness is similar to [16, Lemma 2.1]. For the readers' convenience, we outline the main ideas. Suppose \tilde{u}_{1} and \tilde{u}_{2} are two different positive solutions to (2.2). We may assume $\tilde{u}_{1}>\tilde{u}_{2}>0 . \tilde{u}_{1}$ and \tilde{u}_{2} satisfy

$$
\left\{\begin{array}{l}
d_{1} \tilde{u}_{1 x x}-\beta_{1} \tilde{u}_{1 x}+\tilde{u}_{1}\left(r_{1}-a_{1} \tilde{u}_{1}\right)=0, \quad x \in(0, L), \tag{2.5}\\
d_{1} \tilde{u}_{1 x}(0)-\beta_{1} \tilde{u}_{1}(0)=0 \\
d_{1} \tilde{u}_{1 x}(L)-\beta_{1} \tilde{u}_{1}(L)=0,
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
d_{1} \tilde{u}_{2 x x}-\beta_{1} \tilde{u}_{2 x}+\tilde{u}_{2}\left(r_{1}-a_{1} \tilde{u}_{2}\right)=0, \quad x \in(0, L) \tag{2.6}\\
d_{1} \tilde{u}_{2 x}(0)-\beta_{1} \tilde{u}_{2}(0)=0 \\
d_{1} \tilde{u}_{2 x}(L)-\beta_{1} \tilde{u}_{2}(L)=0
\end{array}\right.
$$

respectively. Multiplying the first equation of (2.5) by $e^{-\frac{\beta_{1}}{d_{1}} x} \tilde{u}_{2}$ and the first equation of (2.6) by $e^{-\frac{\beta_{1}}{d_{1}} x} \tilde{u}_{1}$, subtract the resulting equations and integrate over $[0, L]$, and then we get

$$
\int_{0}^{L} a_{1} \tilde{u}_{1} \tilde{u}_{2} e^{-\frac{\beta_{1}}{d_{1}} x}\left(\tilde{u}_{2}-\tilde{u}_{1}\right)=0
$$

which contradicts $\tilde{u}_{1}>\tilde{u}_{2}>0$. Therefore, we obtain the positive solution to (2.1) is unique.
For $\beta_{1}<0$, we can make some minor modifications to get the existence and uniqueness of the positive solution to problem (2.1), so we omit the details.

Similarly, the problem

$$
\left\{\begin{array}{l}
d_{2} v_{x x}-\beta_{2} v_{x}+v\left(r_{2}-a_{2} v\right)=0, \quad x \in(0, L) \tag{2.7}\\
d_{2} v_{x}(0)-\beta_{2} v(0)=0 \\
d_{2} v_{x}(L)-\beta_{2} v(L)=0
\end{array}\right.
$$

also has a unique positive solution \tilde{v}.
Thus, the following result follows from Lemma 2.1 directly.
Lemma 2.2. For any $\beta_{i}, b_{i} \in \mathbb{R}$ and $d_{i}, r_{i}, a_{i} \in \mathbb{R}^{+}, i=1,2$, system (1.1) with the addition of (1.3) has two semi-trivial steady states, denoted by $(\tilde{u}, 0)$ and $(0, \tilde{v})$ respectively.

Furthermore, as for \tilde{u} and \tilde{v}, we have the following result, which is vital to our later analysis.

Lemma 2.3. Suppose $0<d_{1}<d_{2}, a_{i} \in \mathbb{R}^{+}$, then
(i) $0<\frac{\tilde{u}_{x}}{\tilde{u}}<\frac{\beta_{1}}{d_{1}} \leq \frac{\beta_{2}-\beta_{1}}{d_{2}-d_{1}}$, if $0<\beta_{1}<\beta_{2}$ and $\frac{\beta_{1}}{d_{1}} \leq \frac{\beta_{2}}{d_{2}}, x \in(0, L)$;
$\frac{\beta_{1}}{d_{1}}<\frac{\tilde{u}_{x}}{\tilde{u}}<0$, if $\beta_{1}<0, x \in(0, L)$;
(ii) $0<\frac{\tilde{\tilde{v}}_{x}}{\tilde{\tilde{v}}}<\frac{\beta_{2}}{d_{2}} \leq \frac{\beta_{2}-\beta_{1}}{d_{2}-d_{1}}$, if $0<\beta_{1}<\beta_{2}$ and $\frac{\beta_{1}}{d_{1}} \leq \frac{\beta_{2}}{d_{2}}, x \in(0, L)$;
$\frac{\beta_{2}}{d_{2}}<\frac{\tilde{v}_{x}}{\tilde{\tilde{v}}}<0$, if $\beta_{2}<0, x \in(0, L)$.
Proof. For part (i), note that ($\tilde{u}, 0)$ satisfies

$$
\left\{\begin{array}{l}
d_{1} \tilde{u}_{x x}-\beta_{1} \tilde{u}_{x}+\tilde{u}\left(r_{1}-a_{1} \tilde{u}\right)=0, \quad x \in(0, L), \tag{2.8}\\
d_{1} \tilde{u}_{x}(0)-\beta_{1} \tilde{u}(0)=0 \\
d_{1} \tilde{u}_{x}(L)-\beta_{1} \tilde{u}(L)=0
\end{array}\right.
$$

Set $p:=\frac{\tilde{u}_{x}}{\tilde{u}}$. Then some straightforward computations yield

$$
\left\{\begin{array}{l}
-d_{1} p_{x x}+\left(\beta_{1}-2 d_{1} p\right) p_{x}+a_{1} \tilde{u} p=0, \quad x \in(0, L) \tag{2.9}\\
p(0)=p(L)=\frac{\beta_{1}}{d_{1}} .
\end{array}\right.
$$

By using maximum principle [18, Theorem 3.6], it is clear that

$$
\begin{cases}0<p<\frac{\beta_{1}}{d_{1}}, & \text { if } \beta_{1}>0, x \in(0, L) ; \tag{2.10}\\ \frac{\beta_{1}}{d_{1}}<p<0, & \text { if } \beta_{1}<0, x \in(0, L) .\end{cases}
$$

According to [29, Lemma 2.4], the conditions of $0<d_{1}<d_{2}, 0<\beta_{1}<\beta_{2}$ and $\frac{\beta_{1}}{d_{1}} \leq \frac{\beta_{2}}{d_{2}}$ imply that

$$
\begin{equation*}
\frac{\beta_{1}}{d_{1}} \leq \frac{\beta_{2}-\beta_{1}}{d_{2}-d_{1}} \tag{2.11}
\end{equation*}
$$

Then part (i) of Lemma 2.3 follows from (2.10) and (2.11).
Similarly, we can prove part (ii).

2.2 Local stability of semi-trivial steady states

In this subsection, assume $d_{i}, r_{i}, a_{i}, \in \mathbb{R}^{+}$and $\beta_{i}, b_{i} \in \mathbb{R}$, we focus on the local stability of the semi-trivial steady states of problem (1.1) with the addition of (1.3). Beginning with ($\tilde{u}, 0)$, and its stability is governed by the equations

$$
\begin{cases}u_{t}=d_{1} u_{x x}-\beta_{1} u_{x}+u\left(r_{1}-2 a_{1} \tilde{u}\right)-v b_{1} \tilde{u}, & (x, t) \in(0, L) \times(0, \infty) \tag{2.12}\\ v_{t}=d_{2} v_{x x}-\beta_{2} v_{x}+v\left(r_{2}-b_{2} \tilde{u}\right), & (x, t) \in(0, L) \times(0, \infty) \\ d_{1} u_{x}(0, t)-\beta_{1} u(0, t)=d_{1} u_{x}(L, t)-\beta_{1} u(L, t)=0, & t>0 \\ d_{2} v_{x}(0, t)-\beta_{2} v(0, t)=d_{2} v_{x}(L, t)-\beta_{2} v(L, t)=0, & t>0\end{cases}
$$

The corresponding eigenvalue problem is

$$
\begin{cases}d_{1} \Phi_{x x}-\beta_{1} \Phi_{x}+\Phi\left(r_{1}-2 a_{1} \tilde{u}\right)-\omega b_{2} \tilde{u}+\lambda \Phi=0, & x \in(0, L) \tag{2.13}\\ d_{2} \omega_{x x}-\beta_{2} \omega_{x}+\omega\left(r_{2}-b_{2} \tilde{u}\right)+\lambda \omega=0, & x \in(0, L) \\ d_{1} \Phi_{x}(0)-\beta_{1} \Phi(0)=d_{1} \Phi_{x}(L)-\beta_{1} \Phi(L)=0 \\ d_{2} \omega_{x}(0)-\beta_{2} \omega(0)=d_{2} \omega_{x}(L)-\beta_{2} \omega(L)=0 & \end{cases}
$$

One can find that the second equation in (2.13) is decoupled from the first. As a result, we only consider the eigenvalue problem

$$
\left\{\begin{array}{l}
d_{2} \omega_{x x}-\beta_{2} \omega_{x}+\omega\left(r_{2}-b_{2} \tilde{u}\right)+\lambda \omega=0, \quad x \in(0, L) \tag{2.14}\\
d_{2} \omega_{x}(0)-\beta_{2} \omega(0)=0 \\
d_{2} \omega_{x}(L)-\beta_{2} \omega(L)=0
\end{array}\right.
$$

Similarly, in order to investigate the stability of $(0, \tilde{v})$, we consider the eigenvalue problem

$$
\left\{\begin{array}{l}
d_{1} \varphi_{x x}-\beta_{1} \varphi_{x}+\varphi\left(r_{1}-b_{1} \tilde{v}\right)+\mu \varphi=0, \quad x \in(0, L) \tag{2.15}\\
d_{1} \varphi_{x}(0)-\beta_{1} \varphi(0)=0 \\
d_{1} \varphi_{x}(L)-\beta_{1} \varphi(L)=0
\end{array}\right.
$$

For convenience, the general formula of eigenvalue problems (2.14) and (2.15) is given as follows

$$
\left\{\begin{array}{l}
d \delta_{x x}-\gamma \delta_{x}+\delta m(x)+\sigma \delta=0, \quad x \in(0, L) \tag{2.16}\\
d \delta_{x}(0)-\gamma \delta(0)=0 \\
d \delta_{x}(L)-\gamma \delta(L)=0
\end{array}\right.
$$

Then we have the following statements.
Lemma 2.4. Suppose $d \in \mathbb{R}^{+}, \gamma \in \mathbb{R}, m(x) \in C^{1}([0, L])$, then the eigenvalue problem (2.16) has a simple principle eigenvalue σ_{0}, and the corresponding eigenfunction $\delta_{0}(x)$ can be chosen as $\delta_{0}(x) \gg 0$.

Proof. Consider

$$
\left\{\begin{array}{l}
L u=d u_{x x}-\gamma u_{x}+u m(x), \quad x \in(0, L) \tag{2.17}\\
d u_{x}(0)-\gamma u(0)=0 \\
d u_{x}(L)-\gamma u(L)=0
\end{array}\right.
$$

where $d \in \mathbb{R}^{+}, \gamma \in \mathbb{R}, m(x) \in \mathbb{C}^{1}([0, L])$. Let $w=e^{-\frac{\gamma}{d} x} u$, then (2.17) becomes

$$
\left\{\begin{array}{l}
L u=e^{\frac{\gamma}{d} x}\left[d w_{x x}+\gamma w_{x}+w m(x)\right], \quad x \in(0, L), \tag{2.18}\\
w_{x}(0)=w_{x}(L)=0 .
\end{array}\right.
$$

Denote

$$
\begin{equation*}
L^{*} w=d w_{x x}+\gamma w_{x}+w m(x), \quad x \in(0, L), \tag{2.19}
\end{equation*}
$$

and then

$$
\begin{equation*}
\int_{0}^{L} w L u d x=\int_{0}^{L} u L^{*} w d x \tag{2.20}
\end{equation*}
$$

So L^{*} can be seen the adjoint operator of L.
By [23, Theorem 7.6.1], problem

$$
\left\{\begin{array}{l}
L^{*} \delta+\sigma \delta=0, \tag{2.21}\\
\delta_{x}(0)=\delta_{x}(L)=0,
\end{array}\right.
$$

has a simple principle eigenvalue σ_{0}, and the corresponding eigenfunction $\delta_{0}(x)$ can be chosen as $\delta_{0}(x) \gg 0$.

Thanks to [5, Corollary 2.13], we get that σ_{0} is also the principle eigenvalue of

$$
\left\{\begin{array}{l}
L \delta+\sigma \delta=0, \quad x \in(0, L) \tag{2.22}\\
d \delta_{x}(0)-\gamma \delta(0)=0, \\
d \delta_{x}(L)-\gamma \delta(L)=0
\end{array}\right.
$$

Accordingly, Lemma 2.4 is established.
Let λ_{0} (resp. μ_{0}) be the principal eigenvalues of (2.14) (resp. (2.15)), and $\omega_{0}(x)$ (resp. $\left.\varphi_{0}(x)\right)$ be the corresponding eigenfunction satisfying $\omega_{0}(x)$ (resp. $\left.\varphi_{0}(x)\right) \gg 0$. By Lemma 2.4, $\left(\lambda_{0}, \omega_{0}(x)\right)$ and $\left(\mu_{0}, \varphi_{0}(x)\right)$ must exist, moreover, λ_{0} and μ_{0} are simple.

For simplicity, in the following, we denote $\omega_{0}(x), \varphi_{0}(x), \delta_{0}(x), \frac{\partial \omega_{0}(x)}{\partial x}, \frac{\partial \varphi_{0}(x)}{\partial x}$ and $\frac{\partial \delta_{0}(x)}{\partial x}$ by $\omega_{0}, \varphi_{0}, \delta_{0}, \omega_{0 x}, \varphi_{0 x}$ and $\delta_{0 x}$ respectively.
Lemma 2.5. Suppose $d \in\left(R^{+}\right), \gamma \in \mathbb{R}, m(x) \in C^{1}([0, L])$, then we have
(i) $\frac{\delta_{0 x}}{\delta_{0}}<\frac{\gamma}{d}$ in $(0, L)$, if $m_{x} \leq, \not \equiv 0$ in $[0, L]$;
(ii) $\frac{\delta_{0 x}}{\delta_{0}}>\frac{\gamma}{d}$ in $(0, L)$, if $m_{x} \geq, \not \equiv 0$ in $[0, L]$.

Proof. Let $h:=\frac{\delta_{0 x}}{\delta_{0}}$, then $h(0)=h(L)=\frac{\gamma}{d}$. Taking derivative of h, we derive

$$
\begin{equation*}
h_{x}=\frac{\delta_{0 x x}}{\delta_{0}}-h^{2} . \tag{2.23}
\end{equation*}
$$

Note that $\left(\sigma_{0}, \delta_{0}\right)$ satisfies (2.16), thanks to (2.23), then some direct computations yield

$$
\begin{equation*}
-d h_{x}-d h^{2}+\gamma h-m(x)=\sigma_{0} . \tag{2.24}
\end{equation*}
$$

Taking derivative of (2.24) in view of x, we obtain

$$
\left\{\begin{array}{l}
-d h_{x x}+(\gamma-2 d h) h_{x}=m_{x}, \quad x \in(0, L), \tag{2.25}\\
h(0)=h(L)=\frac{\gamma}{d} .
\end{array}\right.
$$

It follows from the maximum principle that $h<\gamma / d$ if $m_{x} \leq, \not \equiv 0 ; h>\gamma / d$ if $m_{x} \geq, \not \equiv 0$ in $[0, L]$.

As for the stability of semi-trivial steady states of system (1.1) with the addition of (1.3), the following result in [23] is of great concern in our subsequent analysis.

Lemma 2.6. Suppose $d_{i}, r_{i}, a_{i} \in \mathbb{R}^{+}$, and $\beta_{i}, b_{i} \in \mathbb{R}$, then the semi-trivial steady state $(\tilde{u}, 0)$ is linearly stable (resp. unstable) if λ_{0} is positive (resp. negative); the semi-trivial steady state $(0, \tilde{v})$ is linearly stable (resp. unstable) if μ_{0} is positive (resp. negative).

For clarity, we first state two propositions, which are vital to judge the stability of $(\tilde{u}, 0)$ and $(0, \tilde{v})$.

Proposition 2.7. $\lambda_{0}>0\left(\right.$ resp. $\left.\lambda_{0}<0\right)$ if and only if

$$
\lambda^{*}\left(d_{1}, d_{2}, \beta_{1}, \beta_{2}, r_{1}, r_{2}, a_{1}, b_{2}\right)>0 \quad\left(\operatorname{resp} . \lambda^{*}\left(d_{1}, d_{2}, \beta_{1}, \beta_{2}, r_{1}, r_{2}, a_{1}, b_{2}\right)<0\right)
$$

where

$$
\begin{align*}
\lambda^{*}\left(d_{1}, d_{2}, \beta_{1}, \beta_{2}, r_{1}, r_{2}, a_{1}, b_{2}\right)= & \int_{0}^{L} e^{-\frac{\beta_{2}}{d_{2}} x} \tilde{u} \omega_{0}\left[\left(r_{1}-r_{2}\right)+\left(b_{2}-a_{1}\right) \tilde{u}\right] d x \\
& +\int_{0}^{L} e^{-\frac{\beta_{2}}{d_{2}} x}\left(\omega_{0 x}-\frac{\beta_{2}}{d_{2}} \omega_{0}\right)\left[\left(d_{2}-d_{1}\right) \tilde{u}_{x}+\left(\beta_{1}-\beta_{2}\right) \tilde{u}\right] d x \tag{2.26}
\end{align*}
$$

Proof. Rewrite (2.8) as

$$
\left\{\begin{array}{l}
d_{2} \tilde{u}_{x x}-\beta_{2} \tilde{u}_{x}+\tilde{u}\left(r_{1}-a_{1} \tilde{u}\right)=\left(d_{2}-d_{1}\right) \tilde{u}_{x x}+\left(\beta_{1}-\beta_{2}\right) \tilde{u}_{x}, \quad x \in(0, L) \tag{2.27}\\
d_{2} \tilde{u}_{x}(0)-\beta_{2} \tilde{u}(0)=\left(d_{2}-d_{1}\right) \tilde{u}_{x}(0)+\left(\beta_{1}-\beta_{2}\right) \tilde{u}(0) \\
d_{2} \tilde{u}_{x}(L)-\beta_{2} \tilde{u}(L)=\left(d_{2}-d_{1}\right) \tilde{u}_{x}(L)+\left(\beta_{1}-\beta_{2}\right) \tilde{u}(L)
\end{array}\right.
$$

Note that $\left(\lambda_{0}, w_{0}\right)$ satisfies

$$
\left\{\begin{array}{l}
d_{2} \omega_{0 x x}-\beta_{2} \omega_{0 x}+\omega_{0}\left(r_{2}-b_{2} \tilde{u}\right)=-\lambda_{0} \omega_{0}, \quad x \in(0, L) \tag{2.28}\\
d_{2} \omega_{0 x}(0)-\beta_{2} \omega_{0}(0)=0 \\
d_{2} \omega_{0 x}(L)-\beta_{2} \omega_{0}(L)=0
\end{array}\right.
$$

Multiplying the first equation of (2.27) by $e^{-\frac{\beta_{2}}{d_{2}} x} \omega_{0}$, and integrating the resulting equation over $[0, L]$, we get

$$
\begin{align*}
\left(d_{2} \tilde{u}_{x}-\right. & \left.\beta_{2} \tilde{u}\right)\left.e^{-\frac{\beta_{2}}{d_{2}} x} \omega_{0}\right|_{0} ^{L}-\int_{0}^{L}\left(d_{2} \tilde{u}_{x}-\beta_{2} \tilde{u}\right) e^{-\frac{\beta_{2}}{d_{2}} x}\left(\omega_{0 x}-\frac{\beta_{2}}{d_{2}} \omega_{0}\right) d x \\
& +\int_{0}^{L} e^{-\frac{\beta_{2}}{d_{2}} x} \omega_{0} \tilde{u}\left(r_{1}-a_{1} \tilde{u}\right) d x \tag{2.29}\\
= & {\left.\left[\left(d_{2}-d_{1}\right) \tilde{u}_{x}+\left(\beta_{1}-\beta_{2}\right) \tilde{u}\right] e^{-\frac{\beta_{2}}{d_{2}} x} \omega_{0}\right|_{0} ^{L} } \\
& -\int_{0}^{L}\left[\left(d_{2}-d_{1}\right) \tilde{u}_{x}+\left(\beta_{1}-\beta_{2}\right) \tilde{u}\right] e^{-\frac{\beta_{2}}{d_{2}} x}\left(\omega_{0 x}-\frac{\beta_{2}}{d_{2}} \omega_{0}\right) d x .
\end{align*}
$$

By the boundary conditions of (2.27), (2.29) can be simplified to

$$
\begin{align*}
& \int_{0}^{L} e^{-\frac{\beta_{2}}{d_{2}} x} \omega_{0} \tilde{u}\left(r_{1}-a_{1} \tilde{u}\right) d x+\int_{0}^{L}\left[\left(d_{2}-d_{1}\right) \tilde{u}_{x}+\left(\beta_{1}-\beta_{2}\right) \tilde{u}\right] e^{-\frac{\beta_{2}}{d_{2}} x}\left(\omega_{0 x}-\frac{\beta_{2}}{d_{2}} \omega_{0}\right) d x \tag{2.30}\\
& \quad=\int_{0}^{L}\left(d_{2} \tilde{u}_{x}-\beta_{2} \tilde{u}\right) e^{-\frac{\beta_{2}}{d_{2}} x}\left(\omega_{0 x}-\frac{\beta_{2}}{d_{2}} \omega_{0}\right) d x
\end{align*}
$$

Multiplying the first equation of (2.28) by $e^{-\frac{\beta_{2}}{\beta_{2}} x} \tilde{u}$, and integrating the resulting equation over $[0, L]$, according to boundary conditions, we have

$$
\begin{align*}
& \lambda_{0} \int_{0}^{L} \tilde{u} \omega_{0} e^{-\frac{\beta_{2}}{d_{2}} x} d x \tag{2.31}\\
& \quad=\int_{0}^{L}\left(d_{2} \omega_{0 x}-\beta_{2} \omega_{0}\right) e^{-\frac{\beta_{2}}{d_{2}} x}\left(\tilde{u}_{x}-\frac{\beta_{2}}{d_{2}} \tilde{u}\right) d x-\int_{0}^{L}\left(r_{2}-b_{2} \tilde{u}\right) \omega_{0} e^{-\frac{\beta_{2}}{d_{2}} x} \tilde{u} d x .
\end{align*}
$$

Combining (2.30) and (2.31), one can find

$$
\begin{align*}
\lambda_{0} \int_{0}^{L} \tilde{u} \omega_{0} e^{-\frac{\beta_{2}}{d_{2}} x} d x= & \int_{0}^{L} e^{-\frac{\beta_{2}}{d_{2}} x} \tilde{u} \omega_{0}\left[\left(r_{1}-r_{2}\right)+\left(b_{2}-a_{1}\right) \tilde{u}\right] d x \\
& +\int_{0}^{L} e^{-\frac{\beta_{2}}{d_{2}} x}\left(\omega_{0 x}-\frac{\beta_{2}}{d_{2}} \omega_{0}\right)\left[\left(d_{2}-d_{1}\right) \tilde{u}_{x}+\left(\beta_{1}-\beta_{2}\right) \tilde{u}\right] d x . \tag{2.32}
\end{align*}
$$

By the definition of $\lambda^{*}\left(d_{1}, d_{2}, \beta_{1}, \beta_{2}, r_{1}, r_{2}, a_{1}, b_{2}\right),(2.32)$ can be rewritten as

$$
\begin{equation*}
\lambda_{0} \int_{0}^{L} \tilde{u} \omega_{0} e^{-\frac{\beta_{2}}{d_{2}} x} d x=\lambda^{*}\left(d_{1}, d_{2}, \beta_{1}, \beta_{2}, r_{1}, r_{2}, a_{1}, b_{2}\right) \tag{2.33}
\end{equation*}
$$

Clearly, the sign of λ_{0} is the same as that of λ^{*}, which completes the proof of Proposition 2.7.

Similarly, we have the following proposition concerning μ_{0}.
Proposition 2.8. $\mu_{0}>0\left(\right.$ resp. $\left.\mu_{0}<0\right)$ if and only if

$$
\mu^{*}\left(d_{1}, d_{2}, \beta_{1}, \beta_{2}, r_{1}, r_{2}, b_{1}, a_{2}\right)>0 \quad\left(\text { resp. } \mu^{*}\left(d_{1}, d_{2}, \beta_{1}, \beta_{2}, r_{1}, r_{2}, b_{1}, a_{2}\right)<0\right)
$$

where

$$
\begin{align*}
& \mu^{*}\left(d_{1}, d_{2}, \beta_{1}, \beta_{2}, r_{1}, r_{2}, b_{1}, a_{2}\right) \\
& =\int_{0}^{L} e^{-\frac{\beta_{1}}{d_{1}} x} \tilde{v} \varphi_{0}\left[\left(r_{2}-r_{1}\right)+\left(b_{1}-a_{2}\right) \tilde{v}\right] d x \tag{2.34}\\
& \quad+\int_{0}^{L} e^{-\frac{\beta_{1}}{d_{1}} x}\left(\varphi_{0 x}-\frac{\beta_{1}}{d_{1}} \varphi_{0}\right)\left[\left(d_{1}-d_{2}\right) \tilde{v}_{x}+\left(\beta_{2}-\beta_{1}\right) \tilde{v}\right] d x .
\end{align*}
$$

Proof. By a similar method noted in the proof of Proposition 2.7, we can find

$$
\begin{align*}
\mu_{0} \int_{0}^{L} \tilde{v} \varphi_{0} e^{-\frac{\beta_{1}}{d_{1}} x} d x= & \int_{0}^{L} e^{-\frac{\beta_{1}}{d_{1}} x} \tilde{v} \varphi_{0}\left[\left(r_{2}-r_{1}\right)+\left(b_{1}-a_{2}\right) \tilde{v}\right] d x \\
& +\int_{0}^{L} e^{-\frac{\beta_{1}}{d_{1}} x}\left(\varphi_{0 x}-\frac{\beta_{1}}{d_{1}} \varphi_{0}\right)\left[\left(d_{1}-d_{2}\right) \tilde{v}_{x}+\left(\beta_{2}-\beta_{1}\right) \tilde{v}\right] d x . \tag{2.35}
\end{align*}
$$

According to the definition of $\mu^{*}\left(d_{1}, d_{2}, \beta_{1}, \beta_{2}, r_{1}, r_{2}, b_{1}, a_{2}\right)$, (2.35) can be simplified as

$$
\begin{equation*}
\mu_{0} \int_{0}^{L} \tilde{v} \varphi_{0} e^{-\frac{\beta_{1}}{d_{1}} x} d x=\mu^{*}\left(d_{1}, d_{2}, \beta_{1}, \beta_{2}, r_{1}, r_{2}, b_{1}, a_{2}\right) \tag{2.36}
\end{equation*}
$$

which indicates that μ_{0} and μ^{*} have the same sign.
Now, we can establish the local stability of $(\tilde{u}, 0)$ and $(0, \tilde{v})$ respectively.

Lemma 2.9. Assume $d_{i}, r_{i}, a_{1} \in \mathbb{R}^{+}, \beta_{i}, b_{2} \in \mathbb{R}$, then
(i) if $d_{1}<d_{2}, 0<\beta_{1}<\beta_{2}, \frac{\beta_{1}}{d_{1}} \leq \frac{\beta_{2}}{d_{2}}, r_{2} \leq r_{1}$ and $0<a_{1} \leq b_{2},(\tilde{u}, 0)$ is stable locally;
(ii) if $d_{1}<d_{2}, 0<\beta_{2}<\beta_{1}, r_{1} \leq r_{2}$ and $0 \leq b_{2} \leq a_{1},(\tilde{u}, 0)$ is unstable;
(iii) if $d_{1} \leq d_{2}, \beta_{1} \cdot \beta_{2}<0, r_{1} \leq r_{2}$ and $0 \leq b_{2} \leq a_{1},(\tilde{u}, 0)$ is unstable;
(iv) if $d_{1}<d_{2}, 0<\beta_{1}<\beta_{2}, \frac{\beta_{1}}{d_{1}} \leq \frac{\beta_{2}}{d_{2}}, r_{1} \leq r_{2}$ and $b_{2}<0,(\tilde{u}, 0)$ is unstable.

Proof. For part (i), according to part (i) of Lemma 2.3,

$$
\begin{equation*}
0<\frac{\tilde{u}_{x}}{\tilde{u}}<\frac{\beta_{1}}{d_{1}} \leq \frac{\beta_{2}-\beta_{1}}{d_{2}-d_{1}} \tag{2.37}
\end{equation*}
$$

Here, $0<\frac{\tilde{u}_{x}}{\tilde{u}}<\frac{\beta_{1}}{d_{1}}$ implies $\tilde{u}_{x}>0$, which indicates that

$$
m_{x}=\left[r_{2}-b_{2} \tilde{u}\right]_{x}=-b_{2} \tilde{u}_{x}<0
$$

and then

$$
\begin{equation*}
\frac{\omega_{0 x}}{\omega_{0}}<\frac{\beta_{2}}{d_{2}} \tag{2.38}
\end{equation*}
$$

from Lemma 2.5.
Moreover, it directly follows that from $0<r_{2} \leq r_{1}$ and $0<a_{1} \leq b_{2}$

$$
\begin{equation*}
\left(r_{1}-r_{2}\right)+\left(b_{2}-a_{1}\right) \tilde{u} \geq 0 \tag{2.39}
\end{equation*}
$$

Therefore, thanks to (2.37), (2.38) and (2.39), we get $\lambda^{*}\left(d_{1}, d_{2}, \beta_{1}, \beta_{2}, r_{1}, r_{2}, a_{1}, b_{2}\right)>0$ if $0<$ $d_{1}<d_{2}, 0<\beta_{1}<\beta_{2}, \frac{\beta_{1}}{d_{1}} \leq \frac{\beta_{2}}{d_{2}}, 0<r_{2} \leq r_{1}, 0<a_{1} \leq b_{2}$. By Lemma 2.6 and Proposition 2.7, the proof of part (i) is finished.

Actually, $\lambda^{*}\left(d_{1}, d_{2}, \beta_{1}, \beta_{2}, r_{1}, r_{2}, a_{1}, b_{2}\right)<0$ directly follows from the conditions of $0<d_{1}<$ $d_{2}, 0<\beta_{2}<\beta_{1}, 0<r_{1} \leq r_{2}$ and $0<b_{2} \leq a_{1}$. Thus, we can get $(\tilde{u}, 0)$ is unstable.

For part (iii), the case of $d_{1}=d_{2}>0$ is easy to check, so we only verify the case of $0<d_{1}<d_{2}$.
$\beta_{1} \cdot \beta_{2}<0$ implies $\beta_{1}>0>\beta_{2}$ or $\beta_{2}>0>\beta_{1}$. We first consider $\beta_{1}>0>\beta_{2}$. By the similar argument to part (i), it is easy to find

$$
\left\{\begin{array}{l}
\left(d_{2}-d_{1}\right) \tilde{u}_{x}+\left(\beta_{1}-\beta_{2}\right) \tilde{u}>0 \tag{2.40}\\
\omega_{0 x}-\frac{\beta_{2}}{d_{2}} \omega_{0}<0
\end{array}\right.
$$

Combining (2.40) with the conditions of $0<r_{1}<r_{2}$ and $0<b_{2}<a_{1}$, we deduce

$$
\lambda^{*}\left(d_{1}, d_{2}, \beta_{1}, \beta_{2}, r_{1}, r_{2}, a_{1}, b_{2}\right)<0
$$

which shows that $(\tilde{u}, 0)$ is unstable by Proposition 2.7 and Lemma 2.6.
For $\beta_{2}>0>\beta_{1}$, combining this condition with part (i) of Lemma 2.3 and part (ii) of Lemma 2.5, we have

$$
\left\{\begin{array}{l}
\left(d_{2}-d_{1}\right) \tilde{u}_{x}+\left(\beta_{1}-\beta_{2}\right) \tilde{u}<0 \tag{2.41}\\
\omega_{0 x}-\frac{\beta_{2}}{d_{2}} \omega_{0}>0
\end{array}\right.
$$

which yields

$$
\lambda^{*}\left(d_{1}, d_{2}, \beta_{1}, \beta_{2}, r_{1}, r_{2}, a_{1}, b_{2}\right)<0
$$

if $0<r_{1} \leq r_{2}$ and $0<b_{2} \leq a_{1}$. Therefore, $(\tilde{u}, 0)$ is unstable.
For part (iv), in the case of $b_{2}<0$, again by part (i) of Lemma 2.3 and part (ii) of Lemma 2.5, we get

$$
\begin{cases}0<\frac{\tilde{u}_{x}}{\tilde{u}}<\frac{\beta_{2}-\beta_{1}}{d_{2}-d_{1}}, & x \in(0, L), \tag{2.42}\\ 0<\frac{\beta_{2}}{d_{2}}<\frac{w_{0}}{w_{0}}, & x \in(0, L) .\end{cases}
$$

Since $0<r_{1} \leq r_{2}$ and $b_{2}<0<a_{1}$, we derive $\lambda^{*}\left(d_{1}, d_{2}, \beta_{1}, \beta_{2}, r_{1}, r_{2}, a_{1}, b_{2}\right)<0$. Then the proof of part (iii) is completed by Proposition 2.7 and Lemma 2.6.

Lemma 2.10. Suppose that $d_{i}, r_{i}, a_{2}, b_{1} \in \mathbb{R}^{+}, \beta_{i} \in \mathbb{R}$, then
(i) if $d_{1}<d_{2}, 0<\beta_{1}<\beta_{2}, \frac{\beta_{1}}{d_{1}} \leq \frac{\beta_{2}}{d_{2}}, r_{2} \leq r_{1}$ and $b_{1} \leq a_{2},(0, \tilde{v})$ is unstable;
(ii) if $d_{1}<d_{2}, 0<\beta_{2}<\beta_{1}, r_{1} \leq r_{2}$ and $a_{2} \leq b_{1},(0, \tilde{v})$ is stable locally;
(iii) if $d_{1} \leq d_{2}, \beta_{1} \cdot \beta_{2}<0, r_{2} \leq r_{1}$ and $b_{1} \leq a_{2},(0, \tilde{v})$ is unstable.

Proof. By using the similar argument to the one applied in the proof of Lemma 2.9, one can prove that $\mu^{*}\left(d_{1}, d_{2}, \beta_{1}, \beta_{2}, r_{1}, r_{2}, b_{1}, a_{2}\right)<0$ for $d_{1}<d_{2}, 0<\beta_{1}<\beta_{2}, \frac{\beta_{1}}{d_{1}} \leq \frac{\beta_{2}}{d_{2}}, r_{2} \leq r_{1}, b_{1} \leq a_{2}$; $\mu^{*}\left(d_{1}, d_{2}, \beta_{1}, \beta_{2}, r_{1}, r_{2}, b_{1}, a_{2}\right)>0$ for $d_{1}<d_{2}, 0<\beta_{2}<\beta_{1}, r_{1} \leq r_{2}$ and $a_{2} \leq b_{1}$. Thus, part (i) and part (ii) directly follows from Proposition 2.7 and Lemma 2.6.

Part (iii), we only consider $d_{1}<d_{2}$, because the case of $d_{1}=d_{2}>0$ can be verified in a similar argument.

For $\beta_{1}>0>\beta_{2}$, it follows from part (ii) of Lemma 2.3 that

$$
0<-\frac{\tilde{v}_{x}}{\tilde{v}}<-\frac{\beta_{2}}{d_{2}}<\frac{\beta_{1}-\beta_{2}}{d_{2}-d_{1}}
$$

that is,

$$
\begin{equation*}
\left(d_{1}-d_{2}\right) \tilde{v}_{x}+\left(\beta_{2}-\beta_{1}\right) \tilde{v}<0 \tag{2.43}
\end{equation*}
$$

Moreover, due to part (i) of Lemma 2.5, we deduce

$$
\begin{equation*}
\frac{\varphi_{0 x}}{\varphi_{0}}>\frac{\beta_{1}}{d_{1}} \tag{2.44}
\end{equation*}
$$

since $m_{x}=\left(r_{1}-b_{1} \tilde{v}\right)_{x}=-b_{1} \tilde{v}_{x}>0$ if $\beta_{2}<0$. So $(0, \tilde{v})$ is unstable under the conditions of $r_{2} \leq r_{1}$ and $b_{1} \leq a_{2}$.

For $\beta_{2}>0>\beta_{1}$, we can use a similar argument to show $(0, \tilde{v})$ is unstable.

2.3 The non-existence of coexistence steady state

In this subsection, we show the nonexistence of coexistence steady states under some proper conditions.

Lemma 2.11. Suppose that $0<d_{1}<d_{2}$, then
(i) if $0<\beta_{1}<\beta_{2}, \frac{\beta_{1}}{d_{1}} \leq \frac{\beta_{2}}{d_{2}}, 0<r_{2} \leq r_{1}, 0<a_{1} \leq b_{2}$ and $0<b_{1} \leq a_{2}$, system (1.1) with the addition of (1.3) has no coexistence steady state;
(ii) if $0<\beta_{2}<\beta_{1}, 0<r_{1} \leq r_{2}, 0<b_{2} \leq a_{1}$ and $0<a_{2} \leq b_{1}$, system (1.1) with the addition of (1.3) has no coexistence steady state.

Proof. For part (i), arguing indirectly, we assume that system (1.1) with the addition of (1.3) has a coexistence steady state (U, V), then

$$
\begin{cases}d_{1} U_{x x}-\beta_{1} U_{x}+U\left(r_{1}-a_{1} U-b_{1} V\right)=0, & x \in(0, L), \tag{2.45}\\ d_{2} V_{x x}-\beta_{2} V_{x}+V\left(r_{2}-a_{2} V-b_{2} U\right)=0, & x \in(0, L), \\ d_{1} U_{x}(0)-\beta_{1} U(0)=d_{1} U_{x}(L)-\beta_{1} U(L)=0, & \\ d_{2} V_{x}(0)-\beta_{2} V(0)=d_{2} V_{x}(L)-\beta_{2} V(L)=0 . & \end{cases}
$$

Define

$$
\begin{equation*}
f(x):=d_{1} U_{x}-\beta_{1} U, \quad x \in[0, L] ; \tag{2.46}
\end{equation*}
$$

and

$$
\begin{equation*}
g(x):=d_{2} V_{x}-\beta_{2} V, \quad x \in[0, L] . \tag{2.47}
\end{equation*}
$$

By the boundary conditions of (2.45), we have

$$
\begin{equation*}
f(0)=f(L)=g(0)=g(L)=0 . \tag{2.48}
\end{equation*}
$$

In the following, we show 8 claims to finish the proof.

Claim 1.

(i) If $f^{\prime}(x) \geq 0$ (resp. >0), $g^{\prime}(x) \geq 0$ (resp. >0);
(ii) If $g^{\prime}(x) \leq 0($ resp. $<0), f^{\prime}(x) \leq 0($ resp. $<0)$.

Combining (2.45) with the definition of $f(x)$ and $g(x)$, we find

$$
f^{\prime}(x)=d_{1} U_{x x}-\beta_{1} U_{x}=U\left(a_{1} U+b_{1} V-r_{1}\right),
$$

and

$$
g^{\prime}(x)=d_{2} V_{x x}-\beta_{2} V_{x}=V\left(a_{2} V+b_{2} U-r_{2}\right) .
$$

It follows that from $f^{\prime}(x) \geq 0$ (resp. >0)

$$
a_{1} U+b_{1} V-r_{1} \geq 0 \quad(\text { resp. }>0)
$$

Therefore, $0<r_{2} \leq r_{1}, 0<a_{1} \leq b_{2}$ and $0<b_{1} \leq a_{2}$ directly yield

$$
a_{2} V+b_{2} U-r_{2} \geq a_{1} U+b_{1} V-r_{1} \geq 0 \quad(\text { resp. }>0) .
$$

Hence, $g^{\prime}(x) \geq 0$ (resp. >0).
Part (ii) can be proved similarly.

Claim 2.

(i) There is small $\varepsilon>0$ such that $f(x)<0$ in $(0, \varepsilon]$;
(ii) There is small $\delta>0$ such that $g(x)<0$ in $[L-\delta, L)$.

Part (i), if not, there exists some small ε_{0} such that $f(x)>0$ or $f(x) \equiv 0$ in $\left(0, \varepsilon_{0}\right]$. Next, we show contradictions respectively. Define

$$
\begin{equation*}
T:=\frac{U_{x}}{U}, \quad x \in[0, L] ; \tag{2.49}
\end{equation*}
$$

and

$$
\begin{equation*}
S:=\frac{V_{x}}{V}, \quad x \in[0, L] . \tag{2.50}
\end{equation*}
$$

Due to (2.45), some straightforward calculations yield

$$
\begin{cases}-d_{1} T_{x x}+\left(\beta_{1}-2 d_{1} T\right) T_{x}+a_{1} T U+b_{1} S V=0, & x \in(0, L), \tag{2.51}\\ -d_{2} S_{x x}+\left(\beta_{2}-2 d_{2} S\right) S_{x}+a_{2} S V+b_{2} T U=0, & x \in(0, L), \\ T(0)=T(L)=\frac{\beta_{1}}{d_{1}}>0, & \\ S(0)=S(L)=\frac{\beta_{2}}{d_{2}}>0 . & \end{cases}
$$

When $f(x)>0$ in $\left(0, \varepsilon_{0}\right]$, there must be $\varepsilon_{1} \in\left(0, \varepsilon_{0}\right]$ such that

$$
f^{\prime}(x)>0, \quad x \in\left(0, \varepsilon_{1}\right] .
$$

According to Claim 1, we have

$$
g^{\prime}(x)>0, \quad x \in\left(0, \varepsilon_{1}\right] .
$$

Due to $g(0)=0$, we get

$$
g(x)>0, \quad x \in\left(0, \varepsilon_{1}\right] .
$$

Denote the first zero point of $f(x)$ in $(0, L]$ by y_{1}, and the first zero of $g(x)$ by x_{1}. For brevity, we let $y_{1} \leq x_{1}$. Actually, the following expression is similar when $y_{1} \geq x_{1}$.

Thus, we have

$$
\begin{equation*}
f(0)=f\left(y_{1}\right)=0, \quad f(x)>0, \quad x \in\left(0, y_{1}\right) ; \tag{2.52}
\end{equation*}
$$

and

$$
\begin{equation*}
g(0)=0, \quad g\left(y_{1}\right) \geq 0, \quad g(x)>0, \quad x \in\left(0, y_{1}\right) . \tag{2.53}
\end{equation*}
$$

Thanks to (2.46), (2.47), (2.49), (2.50), (2.52) and (2.53), we find

$$
\begin{equation*}
T(0)=T\left(y_{1}\right)=\frac{\beta_{1}}{d_{1}}, \quad T(x)>\frac{\beta_{1}}{d_{1}}>0, \quad x \in\left(0, y_{1}\right) \tag{2.54}
\end{equation*}
$$

and

$$
\begin{equation*}
S(0)=\frac{\beta_{1}}{d_{2}}, \quad S\left(y_{1}\right) \geq \frac{\beta_{2}}{d_{2}}>0, \quad S(x)>\frac{\beta_{2}}{d_{2}}>0, \quad x \in\left(0, y_{1}\right) . \tag{2.55}
\end{equation*}
$$

From (2.54), T must attain a positive local maximum at some point denoted by $z_{1}, z_{1} \in$ $\left(0, y_{1}\right)$. By the first equation of (2.51), we get $S\left(z_{1}\right)<0$, which contradicts (2.55). Consequently, the statement $f(x)>0$ in $\left(0, \varepsilon_{0}\right.$] does not hold.

Actually, if $f(x) \equiv 0$ in $\left(0, \varepsilon_{0}\right], f^{\prime}(x) \equiv 0$. By Claim $1, g^{\prime}(x) \geq 0$, together with $g(0)=0$, there must exist $\varepsilon_{2} \in\left(0, \varepsilon_{0}\right]$ such that $\left.g(x) \geq 0, x \in\left(0, \varepsilon_{2}\right)\right]$, deducing that

$$
S \geq \frac{\beta_{2}}{d_{2}}, \quad x \in\left(0, \varepsilon_{2}\right] .
$$

On the other hand, by (2.46) and (2.49), $f(x) \equiv 0$ in $\left(0, \varepsilon_{0}\right]$ guarantees $T \equiv \frac{\beta_{1}}{d_{1}}$. According to the first equation of (2.51), we derive $S<0$ in $\left(0, \varepsilon_{0}\right)$, a contradiction to $S \geq \frac{\beta_{2}}{d_{2}}$ in $\left(0, \varepsilon_{2}\right)$.

Consequently, part (i) of Claim 2 is set up. Part (ii) can be verified by the similar method, so we omit the details.

Claim 2 implies that f and g can not be identically zero in $[0, L]$. Besides, f and g are real analytic. Therefore, all zero points of f and g are isolated.

Claim 3. f and g must change sign in $[0, L]$.
If g cannot change sign in $[0, L]$, then $g \leq, \not \equiv 0$ in $[0, L]$ by using Claim 2. Thus

$$
\begin{cases}f(x)=d_{1} U_{x}-\beta_{1} U<0, & x \in\left(0, y_{1}\right), \tag{2.56}\\ g(x)=d_{2} V_{x}-\beta_{2} V \leq, \not \equiv 0, & x \in\left(0, y_{1}\right), \\ f(0)=f\left(y_{1}\right)=0, & \\ g(0)=0, g\left(y_{1}\right) \geq 0 . & \end{cases}
$$

Combining (2.45) with (2.56), we have

$$
\begin{cases}d_{1} U_{x x}-\beta_{1} U_{x}+U\left(r_{1}-a_{1} U-b_{1} V\right)=0, & x \in\left(0, y_{1}\right) \tag{2.57}\\ d_{1} V_{x x}-\beta_{1} V_{x}+V\left(r_{2}-a_{2} V-b_{2} U\right)=\left(d_{1}-d_{2}\right) V_{x x}+\left(\beta_{2}-\beta_{1}\right) V_{x}, & x \in\left(0, y_{1}\right) \\ d_{1} U_{x}(0)-\beta_{1} U(0)=d_{1} U_{x}\left(y_{1}\right)-\beta_{1} U\left(y_{1}\right)=0, & \\ d_{2} V_{x}(0)-\beta_{2} V(0)=0, & \\ d_{2} V_{x}\left(y_{1}\right)-\beta_{2} V\left(y_{1}\right) \leq 0 & \end{cases}
$$

Multiplying the first equation of (2.57) by $e^{-\frac{\beta_{1}}{d_{1}} x} V$ and the second one by $e^{-\frac{\beta_{1}}{d_{1}} x} U$, subtracting the resulting equations and then integrating over $\left[0, y_{1}\right]$, we get

$$
\begin{align*}
\left.\left(d_{2} V_{x}-\beta_{2} V\right) e^{-\frac{\beta_{1}}{d_{1}} x}\right|_{x=y_{1}}= & \int_{0}^{y_{1}} e^{-\frac{\beta_{1}}{d_{1}} x} U V\left[\left(r_{1}-r_{2}\right)+\left(b_{2}-a_{1}\right) U+\left(a_{2}-b_{1}\right) V\right] \\
& +\left[\left(d_{2}-d_{1}\right) V_{x}-\left(\beta_{2}-\beta_{1}\right) V\right] e^{-\frac{\beta_{1}}{d_{1}} x}\left(U_{x}-\frac{\beta_{1}}{d_{1}} U\right) d x \tag{2.58}
\end{align*}
$$

Thanks to our assumptions, we have

$$
\begin{equation*}
e^{-\frac{\beta_{1}}{d_{1}} x} U V\left[\left(r_{1}-r_{2}\right)+\left(b_{2}-a_{1}\right) U+\left(a_{2}-b_{1}\right) V\right] \geq 0 \tag{2.59}
\end{equation*}
$$

From (2.56), it follows that

$$
\begin{equation*}
\left(U_{x}-\frac{\beta_{1}}{d_{1}} U\right)<0, \quad x \in\left(0, y_{1}\right) \tag{2.60}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{V_{x}}{V} \leq \frac{\beta_{2}}{d_{2}}, \quad x \in\left(0, y_{1}\right) \tag{2.61}
\end{equation*}
$$

By part (ii) of Lemma 2.3, we get

$$
\begin{equation*}
\frac{V_{x}}{V} \leq \frac{\beta_{2}-\beta_{1}}{d_{2}-d_{1}}, \quad x \in\left(0, y_{1}\right) \tag{2.62}
\end{equation*}
$$

Accordingly, it follows from (2.59), (2.60) and (2.62) that

$$
\begin{align*}
& \int_{0}^{y_{1}} e^{-\frac{\beta_{1}}{d_{1}} x} U V\left[\left(r_{1}-r_{2}\right)+\left(b_{2}-a_{1}\right) U+\left(a_{2}-b_{1}\right) V\right] \\
& \quad+\left[\left(d_{2}-d_{1}\right) V_{x}-\left(\beta_{2}-\beta_{1}\right) V\right] e^{-\frac{\beta_{1}}{d_{1}} x}\left(U_{x}-\frac{\beta_{1}}{d_{1}} U\right) d x \tag{2.63}
\end{align*}
$$

$$
\geq 0 .
$$

On the other hand, due to the last equation of (2.57), one can find

$$
\begin{equation*}
\left.\left(d_{2} V_{x}-\beta_{2} V\right) e^{-\frac{\beta_{1}}{d_{1}} x}\right|_{x=y_{1}} \leq 0 \tag{2.64}
\end{equation*}
$$

(2.63) and (2.64) cause a contradiction to (2.58), which indicates that g must change sign in $\left[0, y_{1}\right]$. In addition, g changes sign before f.

Now, it's turn to show f also changes sign in $[0, L]$. If not, we have $f \leq, \not \equiv 0$ in $[0, L]$ by Claim 2. Denote the last zero point of g in $(0, L)$ by x_{m-1}. Here x_{m-1} must exist because g changes sign in $(0, L)$. Then

$$
\left\{\begin{array}{l}
f(x)=d_{1} U_{x}-\beta_{1} U \leq 0, \quad x \in\left(x_{m-1}, L\right), \tag{2.65}\\
g(x)=d_{2} V_{x}-\beta_{2} V<0, \quad x \in\left(x_{m-1}, L\right), \\
f\left(x_{m-1}\right) \leq 0, f(L)=0, \\
g\left(x_{m-1}\right)=g(L)=0 .
\end{array}\right.
$$

By some direct calculation, it follows from (2.45) and (2.65) that

$$
\begin{align*}
\left.\left(d_{1} U_{x}-\beta_{1} U\right) e^{-\frac{\beta_{2}}{d_{2}} x}\right|_{x=x_{m-1}}= & \int_{x_{m-1}}^{L} e^{-\frac{\beta_{2}}{d_{2}} x} U V\left[\left(r_{1}-r_{2}\right)+\left(b_{2}-a_{1}\right) U+\left(a_{2}-b_{1}\right) V\right] \\
& +\left[\left(d_{2}-d_{1}\right) U_{x}-\left(\beta_{2}-\beta_{1}\right) U\right] e^{-\frac{\beta_{2}}{d_{2}} x}\left(V_{x}-\frac{\beta_{2}}{d_{2}} V\right) d x \tag{2.66}
\end{align*}
$$

According to (2.65) and our assumptions, one can see that the left side of (2.66) is nonpositive but the right is positive, which gives rise to a contradiction. Therefore, f also changes sign in [0,L].

Based on Claim 2 and Claim 3, g has at least one zero point in $(0, L)$ such that the sign of g must change at each side of the point. Let x_{2} be the first one. Obviously, either $g \leq 0$ or $g \geq 0$ in ($0, x_{2}$), so we consider these two cases:

Case i: $g \leq, \not \equiv 0$ in ($0, x_{2}$); Case ii: $g \geq, \not \equiv 0$ in $\left(0, x_{2}\right)$.
In the following analysis, we show that $f \leq 0$ in $[0, L]$ in both cases. First, we consider Case i: $g \leq, \not \equiv 0$ in $\left(0, x_{2}\right)$. By Claim 2 and Claim 3, there exists $x_{3}\left(x_{2}<x_{3}<L\right)$ such that

$$
\begin{cases}g(x) \leq 0, & x \in\left(0, x_{2}\right) \tag{2.67}\\ g(x) \geq 0, & x \in\left(x_{2}, x_{3}\right) \\ g(0)=g\left(x_{2}\right)=g\left(x_{3}\right)=0 . & \end{cases}
$$

Claim 4. $f \leq 0$ in $\left(0, x_{2}\right]$ for Case i: $g \leq, \not \equiv 0$ in $\left(0, x_{2}\right)$.
If not, f has at least one zero point in $(0, L)$ such that the sign of f must change at each side of the point. Let y_{2} be the first one. Thus,

$$
\begin{cases}f(x)=d_{1} U_{x}-\beta_{1} U \leq 0, & x \in\left(0, y_{2}\right) \tag{2.68}\\ g(x)=d_{2} V_{x}-\beta_{2} V \leq 0, & x \in\left(0, y_{2}\right) \\ f(0)=f\left(y_{2}\right)=0 \\ g(0)=0, g\left(y_{2}\right) \leq 0\end{cases}
$$

Combining (2.45) with (2.68), some direct calculations yield

$$
\begin{align*}
\left.\left(d_{2} V_{x}-\beta_{2} V\right) e^{-\frac{\beta_{1}}{d_{1}} x}\right|_{x=y_{2}}= & \int_{0}^{y_{2}} e^{-\frac{\beta_{1}}{d_{1}} x} U V\left[\left(r_{1}-r_{2}\right)+\left(b_{2}-a_{1}\right) U+\left(a_{2}-b_{1}\right) V\right] \\
& +\left[\left(d_{2}-d_{1}\right) V_{x}-\left(\beta_{2}-\beta_{1}\right) V\right] e^{-\frac{\beta_{1}}{d_{1}} x}\left(U_{x}-\frac{\beta_{1}}{d_{1}} U\right) d x \tag{2.69}
\end{align*}
$$

By our assumptions and the last equation of (2.68), we have

$$
\begin{equation*}
\left.\left(d_{2} V_{x}-\beta_{2} V\right) e^{-\frac{\beta_{1}}{d_{1}} x}\right|_{x=y_{2}} \leq 0 \tag{2.70}
\end{equation*}
$$

and

$$
\begin{align*}
& \int_{0}^{y_{2}} e^{-\frac{\beta_{1}}{d_{1}} x} U V\left[\left(r_{1}-r_{2}\right)+\left(b_{2}-a_{1}\right) U+\left(a_{2}-b_{1}\right) V\right] \\
& \quad+\left[\left(d_{2}-d_{1}\right) V_{x}-\left(\beta_{2}-\beta_{1}\right) V\right] e^{-\frac{\beta_{1}}{d_{1}} x}\left(U_{x}-\frac{\beta_{1}}{d_{1}} U\right) d x \tag{2.71}
\end{align*}
$$

>0.
The contradiction completes the proof of Claim 4.
Claim 5. $f \leq 0$ in $\left(x_{2}, x_{3}\right]$ with $f\left(x_{3}\right)<0$ for Case i: $g \leq, \not \equiv 0$ in $\left(0, x_{2}\right)$.
First, we show $f \leq 0$ in $\left[x_{2}, x_{3}\right]$. Otherwise, there is y_{3} and z_{2} with $x_{2} \leq y_{3}<z_{2} \leq x_{3}$ such that

$$
\left\{\begin{array}{l}
f(x) \leq 0, \quad x \in\left(x_{2}, y_{3}\right), \tag{2.72}\\
f\left(y_{3}\right)=0, \\
f(x)>0, \quad x \in\left(y_{3}, z_{2}\right) .
\end{array}\right.
$$

(2.72) implies that there exists small $\epsilon_{1}>0$ such that f is increasing in $\left(y_{3}, y_{3}+\epsilon_{1}\right)$. On the other hand, since $g\left(x_{3}\right)=0$ and $g(x) \geq 0$ in $\left(x_{2}, x_{3}\right)$, there exists small $\epsilon_{2}>0$ such that g is diminishing in $\left(x_{3}-\epsilon_{2}, x_{3}\right)$. By Claim 1, f is also diminishing in $\left(x_{3}-\epsilon_{2}, x_{3}\right)$.

Consequently, f must has at least one positive local maximum value point in $\left(y_{3}, x_{3}\right)$. Let z_{3} be the closest to y_{3}. Then we have

$$
\left\{\begin{array}{l}
f(x)=d_{1} U_{x}-\beta_{1} U>0, \quad x \in\left(y_{3}, z_{3}\right] \tag{2.73}\\
f^{\prime}\left(z_{3}\right)=0
\end{array}\right.
$$

Note that

$$
\begin{equation*}
f^{\prime}(x)=d_{1} U_{x x}-\beta_{1} U_{x} \tag{2.7.7}
\end{equation*}
$$

and

$$
\begin{equation*}
T^{\prime}(x)=\left[\frac{U_{x}}{U}\right]_{x}=\frac{U_{x x}}{U}-\left(\frac{U_{x}}{U}\right)^{2} . \tag{2.75}
\end{equation*}
$$

By (2.73) and (2.74), we find

$$
\left\{\begin{array}{l}
\frac{U_{x}}{U}>\frac{\beta_{1}}{d_{1}}, \quad x \in\left(y_{3}, z_{3}\right], \tag{2.76}\\
f^{\prime}\left(z_{3}\right)=d_{1} U_{x x}\left(z_{3}\right)-\beta_{1} U_{x}\left(z_{3}\right)=0 .
\end{array}\right.
$$

Due to (2.75) and (2.76), we deduce

$$
\begin{equation*}
T^{\prime}\left(z_{3}\right)=\left.\frac{U_{x x}}{U}\right|_{x=z_{3}}-\left.\left(\frac{U_{x}}{U}\right)^{2}\right|_{x=z_{3}}=\left.\frac{\beta_{1} U_{x}}{d_{1} U}\right|_{x=z_{3}}-\left.\left(\frac{U_{x}}{U}\right)^{2}\right|_{x=z_{3}}<0 . \tag{2.77}
\end{equation*}
$$

Then, (2.49), (2.72), (2.73) and (2.77) directly yield

$$
\left\{\begin{array}{l}
T(x)>\frac{\beta_{1}}{d_{1}}, x \in\left(y_{3}, z_{3}\right) \tag{2.78}\\
T\left(y_{3}\right)=\frac{\beta_{1}}{d_{1}}, \\
T^{\prime}\left(z_{3}\right)<0
\end{array}\right.
$$

From (2.78), we can obtain that T has a positive local maximum value point saying z_{4} in $\left(y_{3}, z_{3}\right)$. By the first equation of (2.51), we get

$$
\begin{equation*}
S\left(z_{4}\right)<0 \tag{2.79}
\end{equation*}
$$

On the other hand, since $g(x)>0$ in $\left(x_{2}, x_{3}\right)$,

$$
\begin{equation*}
S\left(z_{4}\right)>\frac{\beta_{2}}{d_{2}} \tag{2.80}
\end{equation*}
$$

The contradiction caused by (2.79) and (2.80) shows that $f(x) \leq 0$ in $\left[x_{2}, x_{3}\right]$. Considering f is diminishing in a small neighborhood of x_{3}, we derive $f\left(x_{3}\right)<0$.

After x_{3}, we can find the next zero point of g. Denote it by $x_{4} \in\left(x_{3}, L\right]$. It is obvious either $g \leq 0$ or $g \geq 0$ in $\left(x_{3}, x_{4}\right]$.
Claim 6. $f \leq 0$ in $\left(x_{3}, x_{4}\right]$ with $f\left(x_{4}\right)<0$ for $g \leq, \not \equiv 0$ in $\left(0, x_{2}\right)$.
Actually, when $g \geq 0$ in $\left(x_{3}, x_{4}\right]$ happens, we can deduce $f \leq 0$ in $\left(x_{3}, x_{4}\right]$ with $f\left(x_{4}\right)<0$ in the similar way to Claim 5. Next, we show $f \leq 0$ in $\left(x_{3}, x_{4}\right]$ if $g \leq 0$ in $\left(x_{3}, x_{4}\right]$ happens. If not, there exists $y_{4} \in\left(x_{3}, y_{4}\right]$ such that

$$
\begin{cases}f(x)=d_{1} U_{x}-\beta_{1} U<0, & x \in\left(x_{3}, y_{4}\right) \tag{2.81}\\ g(x)=d_{2} V_{x}-\beta_{2} V \leq 0, & x \in\left(x_{3}, y_{4}\right) \\ g\left(x_{3}\right)=0, g\left(y_{4}\right) \leq 0 \\ f\left(x_{3}\right)<0, f\left(y_{4}\right)=0\end{cases}
$$

Some direct calculations yield

$$
\begin{align*}
& \left.\left(d_{1} U_{x}-\beta_{1} U\right) e^{-\frac{\beta_{2}}{d_{2}} x} V\right|_{x=x_{3}}+\left.\left(d_{2} V_{x}-\beta_{2} V\right) e^{-\frac{\beta_{2}}{d_{2}} x} U\right|_{x=y_{4}} \\
& =\int_{x_{3}}^{y_{4}} e^{-\frac{\beta_{2}}{d_{2}} x} U V\left[\left(r_{1}-r_{2}\right)+\left(b_{2}-a_{1}\right) U+\left(a_{2}-b_{1}\right) V\right] \tag{2.82}\\
& \quad+\left[\left(d_{2}-d_{1}\right) U_{x}-\left(\beta_{2}-\beta_{1}\right) U\right] e^{-\frac{\beta_{2}}{d_{2}} x}\left(V_{x}-\frac{\beta_{2}}{d_{2}} V\right) d x
\end{align*}
$$

By the similar method to Claim 4, we arrive at

$$
\begin{equation*}
\left.\left(d_{1} U_{x}-\beta_{1} U\right) e^{-\frac{\beta_{2}}{d_{2}} x} V\right|_{x=x_{3}}+\left.\left(d_{2} V_{x}-\beta_{2} V\right) e^{-\frac{\beta_{2}}{d_{2}} x} U\right|_{x=y_{4}}<0 \tag{2.83}
\end{equation*}
$$

and

$$
\begin{align*}
& \int_{x_{3}}^{y_{4}} e^{-\frac{\beta_{2}}{d_{2}} x} U V\left[\left(r_{1}-r_{2}\right)+\left(b_{2}-a_{1}\right) U+\left(a_{2}-b_{1}\right) V\right] \\
& \quad+\left[\left(d_{2}-d_{1}\right) U_{x}-\left(\beta_{2}-\beta_{1}\right) U\right] e^{-\frac{\beta_{2}}{d_{2}} x}\left(V_{x}-\frac{\beta_{2}}{d_{2}} V\right) d x \tag{2.84}
\end{align*}
$$

$$
\geq 0
$$

The contradiction ends the proof of Claim 6.
Claim 7. $f \leq 0$ in $[0, L]$ for $g \leq, \not \equiv 0$ in $\left(0, x_{2}\right)$.
Due to Claim 2, Claim 3 and the isolated properties of the zero points for g, g has finitely many zero points. Consequently, by repeating the above analysis, we can obtain that $f \leq 0$ in $[0, L]$ for $g \leq, \not \equiv 0$ in $\left(0, x_{2}\right)$.

Claim 8. $f \leq 0$ in $[0, L]$
Actually, for $g \geq, \not \equiv 0$ in $\left(0, x_{2}\right)$, we can show that $f \leq 0$ in $[0, L]$ by the similar method to the case of $g \leq, \not \equiv 0$ in $\left(0, x_{2}\right)$, so Claim 8 can be verified directly.
$f \leq 0$ in $[0, L]$ contradicts Claim 3, which shows that the coexistence steady state (U, V) of system (1.1) with the addition of (1.3) does not exist if $0<r_{2} \leq r_{1}, 0<a_{1} \leq b_{2}, 0<b_{1} \leq a_{2}$, $0<d_{1}<d_{2}, 0<\beta_{1}<\beta_{2}$ and $\frac{\beta_{1}}{d_{1}}<\frac{\beta_{2}}{d_{2}}$.

For part (ii), we can apply the similar arguments to part (i) to show the non-existence of co-existence steady states if $0<r_{1} \leq r_{2}, 0<b_{2} \leq a_{1}, 0<a_{2} \leq b_{1}, 0<d_{1}<d_{2}$ and $0<\beta_{2}<\beta_{1}$, so we omit the details.

2.4 Global dynamics for problem (1.1) with the addition of (1.3)

In this subsection, we show the asymptotic behaviors of solution to problem (1.1) with the addition of (1.3). For convenience, we list the following conditions:

C1. $0<\beta_{1}<\beta_{2}, 0<r_{2} \leq r_{1}, 0<a_{1} \leq b_{2}, 0<b_{1} \leq a_{2}$;
C2. $0<\beta_{2}<\beta_{1}, 0<r_{1} \leq r_{2}, 0<a_{2} \leq b_{1}, 0<b_{2} \leq a_{1}$;
C3. $\beta_{1} \cdot \beta_{2}<0, r_{1}=r_{2}, 0<b_{2} \leq a_{1}, 0<b_{1} \leq a_{2}$.
Theorem 2.12. Suppose that $0<d_{1}<d_{2}$,
(i) if $\frac{\beta_{1}}{d_{1}} \leq \frac{\beta_{2}}{d_{2}}$ and C1 holds, the semi-trivial steady state $(\tilde{u}, 0)$ is globally asymptotically stable;
(ii) if C2 holds, the semi-trivial steady state $(0, \tilde{v})$ is globally asymptotically stable.

Proof. By using the theory of monotone dynamical system [23], part (i) of Theorem 2.12 directly follows from part (i) of lemma 2.9, part (i) of Lemma 2.10 and part (i) of Lemma 2.11; part (ii) of Theorem 2.12 directly follows from part (ii) of lemma 2.9, part (ii) of Lemma 2.10 and part (ii) of Lemma 2.11.

Actually, interchanging the labels of d_{1} and d_{2}, β_{1} and β_{2}, r_{1} and r_{2}, a_{1} and a_{2}, b_{1} and b_{2}, we can get the parallel results.

Theorem 2.13. Suppose that $0<d_{2}<d_{1}$,
(i) if $\frac{\beta_{2}}{d_{2}} \leq \frac{\beta_{1}}{d_{1}}$ and C2 holds, the semi-trivial steady state $(0, \tilde{v})$ is globally asymptotically stable;
(ii) if C1 holds, the semi-trivial steady state $(\tilde{u}, 0)$ is globally asymptotically stable.

Remark 2.14. Actually, if $r_{1}=r_{2}>0, a_{1}=b_{2}>0, a_{2}=b_{1}>0$, part (i) of Theorem 2.13 supports statement (1) of Theorem 1.1 in [29]; part (ii) of Theorem 2.13 is consistent with [29, Theorem 1.2].

Actually, let

$$
r_{1}=r_{2}=r>0, \quad a_{1}=b_{2}=a>0, \quad a_{2}=b_{1}=b>0,
$$

and

$$
a u=\widehat{u}, \quad b v=\widehat{v} .
$$

According to system (1.1) with the addition of (1.3), ($\widehat{u}, \widehat{v})$ satisfies

$$
\begin{cases}\widehat{u}_{t}=d_{1} \widehat{u}_{x x}-\beta_{1} \widehat{u}_{x}+\widehat{u}(r-\widehat{u}-\widehat{v}), & (x, t) \in(0, L) \times(0, \infty), \tag{2.85}\\ \widehat{v}_{t}=d_{2} \widehat{v}_{x x}-\beta_{2} \widehat{v}_{x}+\widehat{v}(r-\widehat{u}-\widehat{v}), & (x, t) \in(0, L) \times(0, \infty), \\ d_{1} \widehat{u}_{x}(0, t)-\beta_{1} \widehat{u}(0, t)=d_{1} \widehat{u}_{x}(L, t)-\beta_{1} \widehat{u}(L, t)=0, & t \in(0, \infty), \\ d_{2} \widehat{v}_{x}(0, t)-\beta_{2} \widehat{v}(0, t)=d_{2} \widehat{v}_{x}(L, t)-\beta_{2} \widehat{v}(L, t)=0, & t \in(0, \infty), \\ \widehat{u}(x, 0)=\widehat{u}_{0}(x), \widehat{v}(x, 0)=\widehat{v}_{0}(x), & x \in[0, L] .\end{cases}
$$

System (2.85) is just the model in [29]. As a result, Remark 2.14 is obvious.
Theorem 2.15. Suppose $0<d_{1} \leq d_{2}$ and C3 holds, problem (1.1) with the addition of (1.3) has two coexistence steady states $\left(U_{1}, V_{1}\right)$ and $\left(U_{2}, V_{2}\right)$ with $U_{1} \leq U_{2}$ and $V_{1} \geq V_{2}$. Furthermore, any positive solution $U(x, t)=(u(x, t), v(x, t))$ to problem (1.1) with the addition of (1.3) satisfies $\lim _{t \rightarrow+\infty} d\left(U(x, t),\left[U_{1}, U_{2}\right] \times\left[V_{2}, V_{1}\right]\right)=0$ uniformly for $x \in[0, L]$.

Proof. By the continuous-time version of [28, Theorem 2.4.1], Theorem 2.15 follows from part (iii) of Lemma 2.9 and part (iii) of Lemma 2.10.

Again interchanging the labels of d_{1} and d_{2}, β_{1} and β_{2}, a_{1} and a_{2}, b_{1} and b_{2}, the parallel results for Theorem 2.15 is as follows.

Theorem 2.16. Suppose $0<d_{2} \leq d_{1}$ and C3 holds, then we have the same results as in Theorem 2.15.
Combining Theorem 2.15 with Theorem 2.16, we get the following more general conclusion.

Theorem 2.17. Assume $d_{1}, d_{2} \in \mathbb{R}^{+}$and C3 holds, then we have the same results as in Theorem 2.15.
Remark 2.18. Particularly, if $a_{1}=b_{2}>0, a_{2}=b_{1}>0$, Theorem 2.16 and Theorem 2.17 support Theorem 1.3 and Theorem 1.3* in [29], respectively.

2.5 Numerical simulations

Next we present some numerical simulations to indicate our results obtained above. Furthermore, for $b_{1}>0, b_{2}<0$, we observe that problem (1.1) with the addition of (1.3) may have a co-existence state.

Throughout this subsection, we fix

$$
\begin{aligned}
& u_{0}(x)=0.1-0.1 \cos \left(\frac{2 \pi x}{L}\right) \\
& v_{0}(x)=0.01-0.01 \cos \left(\frac{2 \pi x}{L}\right),
\end{aligned}
$$

and

$$
L=3, \quad d_{1}=0.3, \quad d_{2}=1.1
$$

Figure 2.1: The asymptotic behaviors of $u(x, t)$ in (a) and $v(x, t)$ in (b) with $\beta_{1}=0.2, \beta_{2}=1, r_{1}=1, r_{2}=0.5, a_{1}=1.1, a_{2}=2.1, b_{1}=1.2, b_{2}=2$.

Figure 2.2: The asymptotic behaviors of $u(x, t)$ in (a) and $v(x, t)$ in (b) with $\beta_{1}=1, \beta_{2}=0.2, r_{1}=0.5, r_{2}=1, a_{1}=2.1, a_{2}=1.2, b_{1}=2.1, b_{2}=1.2$.

Figure 2.3: The asymptotic behaviors of $u(x, t)$ in (a) and $v(x, t)$ in (b) with $\beta_{1}=0.5, \beta_{2}=-0.5, r_{1}=r_{2}=1, a_{1}=2.1, a_{2}=2.3, b_{1}=1.2, b_{2}=1.1$.

Example 2.19. Figure 2.1 (resp. Figure 2.2) describes part (i) (resp. (ii)) of Theorem 2.12, and Figure 2.3 displays Theorem 2.15. From Figure 2.1, one can observe that the $u(x, t)$ in (a) stabilizes to a positive nonconstant state but $v(x, t)$ in (b) decays to zero quickly; from Figure 2.2, $u(x, t)$ drops to zero fast but $v(x, t)$ stabilizes to a positive nonconstant state. As shown in Figure 2.3, $u(x, t)$ and $v(x, t)$ both stabilize to positive nonconstant states as time goes on.

Furthermore, from Figure 2.3, one can see that advection can induce great difference between the left and right boundaries as time proceeds. To illustrate the variation on $u(x, t)$ and $v(x, t)$ with x from the left boundary to the right, the curves of $u(x)$ and $v(x)$ with $t=3,5,10,20,30,40$ are presented in Figure 2.4. One can observe that $u(x)$ in (a) and $v(x)$ in (b) goes up and down as x increases when t is fixed on 3,5 or 10 ; whereas $u(x)$ in (c) grows and $v(x)$ in (d) decreases with the increase of x when t is fixed on 20,30 or 40 . This is because the positive advection towards the right boundary but the negative advection towards the left boundary.

Example 2.20. Based on the the conditions in part (iv) of Lemma 2.9 and part (i) of Lemma 2.10, the numerical results are illustrated in Figure 2.5. We get that $u(x, t)$ in (a) and $v(x, t)$ in (b) both stabilize to positive nonconstant states as time goes on. This implies that $(\tilde{u}, 0)$ and $(0, \tilde{v})$ are both unstable, which is consistent with part (iv) of Lemma 2.9 and part (i) of Lemma 2.10.

Figure 2.4: The curves of $u(x)$ and $v(x)$ with respect to x when t is fixed. Here $\beta_{1}, \beta_{2}, r_{1}, r_{2}, a_{1}, a_{2}, b_{1}, b_{2}$ take the same values as them in Figure 2.3.

Figure 2.5: The illustration of $u(x, t)$ in (a) and $v(x, t)$ in (b) with $\beta_{1}=0.2, \beta_{2}=$ $1, r_{1}=r_{2}=1, a_{1}=1.2, a_{2}=2.1, b_{1}=1.1, b_{2}=-2$.

3 The free boundary problem

3.1 Existence and uniqueness

By a similar argument in $[7,8]$, we have the following result.
Lemma 3.1. For any given u_{0}, v_{0} satisfying (1.6) and any $\alpha \in(0,1)$, there is a $T>0$ such that problem (1.5) admits a unique solution

$$
\begin{equation*}
(u, v, h) \in\left[C^{1+\alpha,(1+\alpha) / 2}\left(D_{T}\right)\right]^{2} \times C^{1+\alpha / 2}([0, T]), \tag{3.1}
\end{equation*}
$$

where $D_{T}:=\{(x, t): x \in[0, h(t)], t \in[0, T]\}$, T only depends on $h_{0}, \alpha,\left\|u_{0}\right\|_{\mathcal{C}\left(\left[0, h_{0}\right]\right)}$ and $\left\|v_{0}\right\|_{C\left(\left[0, h_{0}\right]\right)}$. Moreover, there exists a constant C such that

$$
0<u(x, t), v(x, t), h^{\prime}(t) \leq C \quad \text { for }(x, t) \in(0, h(t)) \times[0, \infty)
$$

Next, we discuss the steady states of the problem (1.5),

$$
\begin{cases}-d_{1} u_{x x}+\beta_{1} u_{x}=u\left(r_{1}-a_{1} u-b_{1} v\right), & 0<x<\infty, \tag{3.2}\\ -d_{2} v_{x x}+\beta_{2} v_{x}=v\left(r_{2}-a_{2} v-b_{2} u\right), & 0<x<\infty, \\ u(0)=v(0)=0 & \end{cases}
$$

Lemma 3.2. Assume that $d_{i}>0, r_{i}>0, a_{i}>0, b_{i}>0,0 \leq \beta_{i}<2 \sqrt{d_{i} r_{i}}$ for $i=1,2$ and $a_{2} r_{1}>b_{1} r_{2}, a_{1} r_{2}>b_{2} r_{1}$, then problem (3.2) has a positive solution. Moreover, any positive solution (u, v) of (3.2) satisfies

$$
\underline{u}(x) \leq u(x) \leq \bar{u}(x), \quad \underline{v}(x) \leq v(x) \leq \bar{v}(x), \quad \text { for } x \in[0, \infty),
$$

where $\underline{u}(x), \bar{u}(x), \underline{v}(x)$ and $\bar{v}(x)$ will be given in the following proof.
Proof. Let \bar{u} be the unique solution of

$$
\left\{\begin{array}{l}
-d_{1} u_{x x}+\beta_{1} u_{x}=u\left(r_{1}-a_{1} u\right), \quad 0<x<\infty, \tag{3.3}\\
u(0)=0,
\end{array}\right.
$$

with $0 \leq \beta_{1}<2 \sqrt{d_{1} r_{1}}$. By [30, Theorem 2.4], $\lim _{x \rightarrow \infty} \bar{u}(x)=r_{1} / a_{1}$.
Similarly, the problem

$$
\left\{\begin{array}{l}
-d_{2} v_{x x}+\beta_{2} v_{x}=v\left(r_{2}-a_{2} v\right), \quad 0<x<\infty \tag{3.4}\\
v(0)=0
\end{array}\right.
$$

with $0 \leq \beta_{2}<2 \sqrt{d_{2} r_{2}}$, has a unique solution \bar{v}, then $\lim _{x \rightarrow \infty} \bar{v}(x)=r_{2} / a_{2}$. Since $0 \leq \beta_{1}<$ $2 \sqrt{d_{1} r_{1}}$ and $a_{2} r_{1}>b_{1} r_{2}$, the problem

$$
\left\{\begin{array}{l}
-d_{1} u_{x x}+\beta_{1} u_{x}=u\left(r_{1}-a_{1} u-b_{1} \bar{v}\right), \quad 0<x<\infty, \tag{3.5}\\
u(0)=0,
\end{array}\right.
$$

has a unique solution \underline{u}, then $\lim _{x \rightarrow \infty} \underline{u}(x)=\frac{a_{2} r_{1}-b_{1} r_{2}}{a_{1} a_{2}}$.
Denote \underline{v} is the unique solution of

$$
\left\{\begin{array}{l}
-d_{2} v_{x x}+\beta_{2} v_{x}=v\left(r_{2}-a_{2} v-b_{2} \bar{u}\right), \quad 0<x<\infty \tag{3.6}\\
u(0)=0
\end{array}\right.
$$

with $0 \leq \beta_{2}<2 \sqrt{d_{2} r_{2}}$. Since $a_{1} r_{2}>b_{2} r_{1}$, still by [30, Theorem 2.4], $\lim _{x \rightarrow \infty} \underline{v}(x)=\frac{a_{1} r_{2}-b_{2} r_{1}}{a_{1} a_{2}}$.
The above proof implies that $\underline{u}(x), \underline{v}(x), \bar{u}(x)$ and $\bar{v}(x)$ are the coupled ordered lower and upper solutions of (3.2). Clearly, for any $l>0, \underline{u}(x), \underline{v}(x), \bar{u}(x)$ and $\bar{v}(x)$ are also the coupled ordered lower and upper solutions of

$$
\begin{cases}-d_{1} u_{x x}+\beta_{1} u_{x}=u\left(r_{1}-a_{1} u-b_{1} v\right), & 0<x<l, \\ -d_{2} v_{x x}+\beta_{2} v_{x}=v\left(r_{2}-a_{2} v-b_{2} u\right), & 0<x<l, \\ u(0)=\underline{u}(0), v(0)=\underline{v}(0), & \\ u(l)=\bar{u}(l), v(l)=\bar{v}(l) . & \end{cases}
$$

By the standard upper and lower solutions method, we see that the problem has at least one positive solution $\left(u_{l}, v_{l}\right)$, satisfying

$$
\underline{u}(x) \leq u_{l}(x) \leq \bar{u}(x), \quad \underline{v}(x) \leq v_{l}(x) \leq \bar{u}(x), \quad \text { for } x \in[0, l] .
$$

According to the local estimation and compactness argument, we can conclude that $\left(u_{l}, v_{l}\right) \rightarrow$ (u, v) in $\left[C_{l o c}^{2}([0, \infty))\right]^{2}$, and (u, v) satisfies (3.2).

Next, we can obtain the similar result in the case: $b_{2}<0$.
Lemma 3.3. Assume that $d_{i}>0, r_{i}>0, a_{i}>0, b_{1}>0, b_{2}<0,0 \leq \beta_{i}<2 \sqrt{d_{i} r_{i}}$ for $i=1,2$ and $a_{1} a_{2} r_{1}>a_{1} b_{1} r_{2}-b_{1} b_{2} r_{1}$. Then problem (3.2) has a positive solution. Besides, any positive solution (u, v) of (3.2) satisfies

$$
\underline{u}(x) \leq u(x) \leq \bar{u}(x), \quad \underline{v}(x) \leq v(x) \leq \bar{v}(x), \quad \text { for } x \in[0, \infty),
$$

where $\bar{u}(x), \bar{v}(x), \underline{u}(x)$ and $\underline{v}(x)$ are the positive solutions of the following problems, respectively.

$$
\begin{array}{lll}
-d_{1} \bar{u}_{x x}+\beta_{1} \bar{u}_{x}=\bar{u}\left(r_{1}-a_{1} \bar{u}\right), & 0<x<\infty, & \bar{u}(0)=0, \\
-d_{2} \bar{v}_{x x}+\beta_{2} \bar{v}_{x}=\bar{v}\left(r_{2}-a_{2} \bar{v}-b_{2} \bar{u}\right), & 0<x<\infty, & \bar{v}(0)=0, \\
-d_{1} \underline{u}_{x x}+\beta_{1} \underline{u}_{x}=\underline{u}\left(r_{1}-a_{1} \underline{u}-b_{1} \bar{v}\right), & 0<x<\infty, & \underline{u}(0)=0, \\
-d_{2} \underline{v}_{x x}+\beta_{2} \underline{v}_{x}=\underline{v}\left(r_{2}-a_{2} \underline{v}-b_{2} \underline{u}\right), & 0<x<\infty, & \underline{v}(0)=0 . \tag{3.10}
\end{array}
$$

3.2 Conditions for spreading and vanishing

It follows from Lemma 3.1 that $x=h(t)$ is monotonically increasing. Then there exits $h_{\infty} \in$ $(0,+\infty]$ such that $h_{\infty}=\lim _{t \rightarrow+\infty} h(t)$.

Definition 3.4. The solution is vanishing if $h_{\infty}<+\infty$ and

$$
\lim _{t \rightarrow+\infty}\|u(\cdot, t)\|_{C([0, h(t)])}=\lim _{t \rightarrow+\infty}\|v(\cdot, t)\|_{C([0, h(t)])}=0,
$$

while the solution is spreading if $h_{\infty}=+\infty$ and

$$
\liminf _{t \rightarrow+\infty} u(x, t)>0, \liminf _{t \rightarrow+\infty} v(x, t)>0 \text { uniformly in any compact subset of }(0,+\infty) .
$$

3.2.1 Vanishing case

Lemma 3.5. Let (u, v, h) be the solution of problem (1.5). If $h_{\infty}<+\infty$, then there exists a constant K such that

$$
\begin{gathered}
\|u(\cdot, t), v(\cdot, t)\|_{C^{1}([0, h(t)])} \leq K, \quad \forall t>1, \\
\lim _{t \rightarrow \infty} h^{\prime}(t)=0 .
\end{gathered}
$$

Proof. The proof of this lemma is similar to [24, Theorem 3.1]. We give the details for the readers' convenience. Define a transformation

$$
(x, t) \rightarrow(y, t), \quad y=\frac{x}{h(t)}, \quad 0 \leq y<\infty .
$$

Let $u(x, t):=U(y, t), v(x, t):=V(y, t)$ and set

$$
F(U, V)=U\left(r_{1}-a_{1} U-b_{1} V\right), \quad G(U, V)=V\left(r_{2}-a_{2} V-b_{2} U\right)
$$

then the problem (1.5) becomes

$$
\begin{cases}U_{t}-\alpha_{1} U_{y y}-\gamma_{1} U_{y}=F(U, V), & 0<y<1, t>0 \\ V_{t}-\alpha_{2} V_{y y}-\gamma_{2} V_{y}=G(U, V), & 0<y<1, t>0, \\ U(0, t)=V(0, t)=U(1, t)=V(1, t)=0, & t>0 \\ U(y, 0)=u_{0}(y), V(y, 0)=v_{0}(y), & 0 \leq y \leq 1,\end{cases}
$$

where $\alpha_{i}(t):=\frac{d_{i}}{h^{2}(t)}$ and $\gamma_{i}(y, t):=\frac{h^{\prime}(t) y-\beta_{i}}{h(t)}$ for $i=1,2$.
Denote that $h_{n}(t)=h(t+n), U_{n}(y, t)=U(y, t+n), V_{n}(y, t)=V(y, t+n),\left(\alpha_{i}\right)_{n}(t)=\alpha_{i}(t+$ $n),\left(\gamma_{i}\right)_{n}(y, t)=\gamma_{i}(y, t+n)$ for $i=1,2$. Then U_{n} satisfies

$$
\begin{cases}\left(U_{n}\right)_{t}-\left(\alpha_{1}\right)_{n}\left(U_{n}\right)_{y y}-\left(\gamma_{1}\right)_{n}\left(U_{n}\right)_{y}=F_{n}(y, t), & 0<y<1, t>0 \\ \left(U_{n}\right)(0, t)=U_{n}(1, t)=0, & t>0 \\ U_{n}(y, 0)=u(h(n) y, n), & 0 \leq y \leq 1\end{cases}
$$

where $F_{n}=U_{n}\left(r_{1}-a_{1} U_{n}-b_{1} V_{n}\right)$.
Using the L^{p} estimate and embedding theorem, there exists a positive constant K such that

$$
\left\|U_{n}\right\|_{C^{1+\alpha, \frac{1+\alpha}{2}}([0,1] \times[1,3])} \leq K,
$$

for all $n \geq 0$. This implies $\|U\|_{C^{1+\alpha, \frac{1+\alpha}{2}}\left(E_{n}\right)} \leq K$ for all $n \geq 0$, where $E_{n}=[0,1] \times[n+1, n+3]$. Similarly, we get $\|V\|_{C^{1+\alpha, \frac{1+\alpha}{2}}{ }_{\left(E_{n}\right)} \leq K \text { for all } n \geq 0 \text {. Because these rectangles } E_{n} \text { overlap and } K ~}^{K}$ is independent of n, then $\|U, V\|_{C^{1,0}([0,1] \times[1, \infty))} \leq K$.

Since $u_{x}=h^{-1}(t) U_{y}$ and $v_{x}=h^{-1}(t) V_{y}$, then

$$
\|u(\cdot, t), v(\cdot, t)\|_{C^{1}([0, h(t)])} \leq K, \quad \forall t>1 .
$$

Due to the Stefan condition and $0<h^{\prime}(t) \leq C_{2}$, we derive that $\left\|h^{\prime}\right\|_{\left.C^{\frac{\alpha}{2}}(1, \infty)\right)} \leq L$. Since $h_{\infty}<\infty$, then $\lim _{t \rightarrow \infty} h^{\prime}(t)=0$.

In view of [27, Theorem 2.2] and Lemma 3.5, we get the following theorem.
Theorem 3.6. Let (u, v, h) be the solution of problem (1.5). If $h_{\infty}<+\infty$, then

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\|u(\cdot, t), v(\cdot, t)\|_{\mathcal{C}([0, h(t)])}=0 \tag{3.11}
\end{equation*}
$$

3.2.2 Spreading case

Theorem 3.7. Suppose that $d_{i}>0, r_{i}>0, a_{i}>0, b_{i}>0,0 \leq \beta_{i}<2 \sqrt{d_{i} r_{i}}$ for $i=1,2$ and $a_{2} r_{1}>b_{1} r_{2}, a_{1} r_{2}>b_{2} r_{1}$. If $h_{\infty}=\infty$, then the solution (u, v) of the problem (1.5) satisfies

$$
\begin{aligned}
& \liminf _{t \rightarrow \infty} u(x, t) \geq \underline{u}(x), \limsup _{t \rightarrow \infty} u(x, t) \leq \bar{u}(x), \text { locally uniformly for } x \in[0, \infty), \\
& \liminf _{t \rightarrow \infty} v(x, t) \geq \underline{v}(x), \limsup _{t \rightarrow \infty} v(x, t) \leq \bar{v}(x), \text { locally uniformly for } x \in[0, \infty) .
\end{aligned}
$$

where $\bar{u}, \bar{v}, \underline{u}$ and \underline{v} are given in the proof of Lemma 3.2.
The proof of this theorem is similar to the proof of [24, Theorem 3.5].
Theorem 3.8. Suppose that $d_{i}>0, r_{i}>0, a_{i}>0, b_{1}>0, b_{2}<0,0 \leq \beta_{i}<2 \sqrt{d_{i} r_{i}}$ for $i=1,2$ and $a_{1} a_{2} r_{1}>a_{1} b_{1} r_{2}-b_{1} b_{2} r_{1}$. If $h_{\infty}=\infty$, then the solution (u, v) of the problem (1.5) satisfies

$$
\begin{aligned}
& \liminf _{t \rightarrow \infty} u(x, t) \geq \underline{u}(x), \limsup _{t \rightarrow \infty} u(x, t) \leq \bar{u}(x), \text { locally uniformly for } x \in[0, \infty), \\
& \liminf _{t \rightarrow \infty} v(x, t) \geq \underline{v}(x), \limsup _{t \rightarrow \infty} v(x, t) \leq \bar{v}(x), \text { locally uniformly for } x \in[0, \infty),
\end{aligned}
$$

where $\bar{u}, \bar{v}, \underline{u}$ and \underline{v} are given in the proof of Lemma 3.3.

3.3 The criteria for spreading and vanishing

Here we first give the comparison principle. The proof is similar to the proof of [7, Lemma 3.5].
Lemma 3.9. Let $\bar{h} \in C^{1}([0, \infty)), \bar{u}, \bar{v} \in C(\bar{D}) \times C^{2,1}(D)$, with $D:=\left\{(x, t) \in R^{2}: 0<x<\right.$ $\bar{h}(t), t>0\}$. Assume that $d_{i}>0, r_{i}>0, a_{i}>0, b_{i}>0$ and $(\bar{u}, \bar{v}, \bar{h})$ satisfies

$$
\begin{cases}\bar{u}_{t}-d_{1} \bar{u}_{x x}+\beta_{1} \bar{u}_{x} \geq \bar{u}\left(r_{1}-a_{1} \bar{u}\right), & 0<x<\bar{h}(t), \tag{3.12}\\ \bar{v}_{t}-d_{2} \bar{v}_{x x}+\beta_{2} \bar{v}_{x} \geq \bar{v}\left(r_{2}-a_{2} \bar{v}\right), & 0<x<\bar{h}(t), \\ \bar{u}(0, t) \geq 0, \bar{v}(0, t) \geq 0, \bar{u}(\bar{h}(t), t)=0, \bar{v}(\bar{h}(t), t)=0, & t>0, \\ \bar{h}^{\prime}(t) \geq-\mu\left[\bar{u}_{x}(\bar{h}(t), t)+\rho \bar{v}_{x}(\bar{h}(t), t)\right], & t>0 .\end{cases}
$$

Assume that $d_{i}>0, r_{i}>0, a_{i}>0, b_{1}>0, b_{2}<0$ and $(\bar{u}, \bar{v}, \bar{h})$ satisfies

$$
\begin{cases}\bar{u}_{t}-d_{1} \bar{u}_{x x}+\beta_{1} \bar{u}_{x} \geq \bar{u}\left(r_{1}-a_{1} \bar{u}\right), & 0<x<\bar{h}(t), \tag{3.13}\\ \bar{v}_{t}-d_{2} \bar{v}_{x x}+\beta_{2} \bar{v}_{x} \geq \bar{v}\left(r_{2}-a_{2} \bar{v}-b_{2} \bar{u}\right), & 0<x<\bar{h}(t), \\ \bar{u}(0, t) \geq 0, \bar{v}(0, t) \geq 0, \bar{u}(\bar{h}(t), t)=0, \bar{v}(\bar{h}(t), t)=0, & t>0, \\ \bar{h}^{\prime}(t) \geq-\mu\left[\bar{u}_{x}(\bar{h}(t), t)+\rho \bar{v}_{x}(\bar{h}(t), t)\right], & t>0 .\end{cases}
$$

If $\bar{h}(0) \geq h_{0}, \bar{u}(x, 0) \geq u_{0}(x)$ and $\bar{v}(x, 0) \geq v_{0}(x)$ on $\left[0, h_{0}\right]$, then the solution (u, v, h) of problem (1.5) satisfies $\bar{h}(t) \geq h(t)$ on $[0, \infty)$ and $\bar{u} \geq u, \bar{v} \geq v$ on $[0, h(t)] \times[0, \infty)$.

Let $\lambda_{1}^{(i)}(l)$ be the principle eigenvalue of the following problem for $i=1,2$

$$
\left\{\begin{array}{l}
-d_{i} \phi_{x x}+\beta_{i} \phi_{x}=\lambda_{1}^{(i)}(l) \phi, \quad 0<x<l \tag{3.14}\\
\phi(0)=\phi(l)=0 .
\end{array}\right.
$$

It is well known that $\lambda_{1}^{(i)}(l)=\left(\frac{\beta_{i}}{2 d_{i}}\right)^{2}+d_{i}\left(\frac{\pi}{l}\right)^{2}$ is a strictly decreasing and continuous function in l and

$$
\lim _{l \rightarrow 0} \lambda_{1}^{(i)}(l)=\infty, \quad \lim _{l \rightarrow \infty} \lambda_{1}^{(i)}(l)=\left(\frac{\beta_{i}}{2 d_{i}}\right)^{2} .
$$

Theorem 3.10. Suppose that $d_{i}>0, r_{i}>0, a_{i}>0, b_{1}>0, b_{2} \in \mathbb{R}, 0 \leq \beta_{i}<2 \sqrt{d_{i} r_{i}}$ for $i=1$, 2. If $h_{\infty}<\infty$, then $h_{\infty} \leq h^{*}=\min \left\{L_{r_{i}}, i=1,2\right\}$, where $L_{r_{i}}$ satisfies $\lambda_{1}^{(i)}\left(L_{r_{i}}\right)=r_{i}$.

Proof. Due to Theorem 3.6, $\lim _{t \rightarrow \infty}\|u(\cdot, t), v(\cdot, t)\|_{C^{1}([0, h(t)])}=0$ if $h_{\infty}<\infty$. Assume $h_{\infty}>h^{*}$ to get a contradiction. If $h_{\infty}>L_{r_{1}}$, then there exists $\varepsilon>0$ such that $h_{\infty}>L_{r_{1}-b_{1} \varepsilon}$. For such ε, there exists $T_{0} \gg 1$ such that $h\left(T_{0}\right)=l>L_{r_{1}-b_{1} \varepsilon}$ and $v(x, t) \leq \varepsilon$ for $t \geq T_{0}, 0 \leq x \leq h(t)$.

Let $z=z(x, t)$ be the unique solution of

$$
\begin{cases}z_{t}-d_{1} z_{x x}+\beta_{1} z_{x}=z\left(r_{1}-a_{1} z-b_{1} \varepsilon\right), & 0<x<l, t \geq T_{0} \\ z(0, t)=z(l, t)=0, & t \geq T_{0} \\ z\left(x, T_{0}\right)=u\left(x, T_{0}\right), & 0 \leq x \leq l\end{cases}
$$

Applying the comparison principle, $z(x, t) \leq u(x, t)$ for $t \geq T_{0}, 0 \leq x \leq l$. Since $l>L_{r_{1}-b_{1} \varepsilon}$, then $\|z(\cdot, t)-Z(\cdot)\|_{C([0, l])} \rightarrow 0$ as $t \rightarrow \infty$, where $Z(x)$ is the unique positive solution of

$$
\left\{\begin{array}{l}
-d_{1} Z_{x x}+\beta_{1} Z_{x}=Z\left(r_{1}-a_{1} Z-b_{1} \varepsilon\right), \quad 0<x<l \\
Z(0)=Z(l)=0
\end{array}\right.
$$

$\liminf _{t \rightarrow \infty} u(x, t) \geq \lim _{t \rightarrow \infty} z(x, t)=Z(x)>0$ in $(0, l)$. This is a contradiction. If $h_{\infty}>L_{r_{2}}$, we can get a contradiction by using the similar argument.

Lemma 3.11. Suppose that $r_{i}>0, a_{i}>0, b_{i}>0,0 \leq \beta_{i}<2 \sqrt{d_{i} r_{i}}, d_{i}=1$ for $i=1,2$ and $h_{0}<h^{*}$, then there exists $\underline{\mu}>0$ depending on u_{0} and v_{0} such that $h_{\infty}<\infty$ if $\mu \leq \underline{\mu}$.

Proof. Since $h_{0}<h^{*}$, then $\lambda_{1}^{(i)}\left(h_{0}\right)=\left(\frac{\beta_{i}}{2 d_{i}}\right)^{2}+d_{i}\left(\frac{2 \pi}{h_{0}}\right)^{2}>r_{i}(i=1,2)$. We can choose δ, γ small such that

$$
\frac{1}{h_{0}(1+\delta)}\left(\frac{d_{i} \pi^{2}}{h_{0}(1+\delta)}-\delta \gamma h_{0}\right)+\frac{\beta_{i}^{2}}{4}-\gamma-r_{i}>0 .
$$

Define

$$
\begin{aligned}
\bar{h}(t) & :=h_{0}\left(1+\delta-\frac{\delta}{2} e^{-\gamma t}\right), & & t \geq 0, \\
U(y) & :=\sin (\pi y), & & 0 \leq y \leq 1, \\
\bar{u}(x, t) & :=M e^{\frac{\beta_{1}}{2} x-\gamma t} U\left(\frac{x}{\bar{h}(t)}\right), & & 0 \leq x \leq \bar{h}(t), \\
\bar{v}(x, t) & :=M e^{\frac{\beta_{2}}{2} x-\gamma t} U\left(\frac{x}{\bar{h}(t)}\right), & & 0 \leq x \leq \bar{h}(t),
\end{aligned}
$$

where M is a positive constant to be determined.
Direct computations yield

$$
\bar{u}_{t}-d_{1} \bar{u}_{x x}+\beta_{1} \bar{u}_{x}-\bar{u}\left(r_{1}-a_{1} \bar{u}\right) \geq \bar{u}\left[\frac{d_{1} \pi^{2}}{\bar{h}^{2}}+\frac{\beta_{1}^{2}}{4}-r_{1}-\gamma-\frac{h_{0} \delta \gamma e^{-\gamma t} \pi y}{2 \bar{h} \sin \pi y} \cos \pi y\right] .
$$

Since $\cos \pi y \leq 0$ for $1 / 2 \leq y \leq 1$, we have for $\bar{h}(t) / 2 \leq x \leq \bar{h}(t)$

$$
\bar{u}_{t}-d_{1} \bar{u}_{x x}+\beta_{1} \bar{u}_{x}-\bar{u}\left(r_{1}-a_{1} \bar{u}\right) \geq \bar{u}\left[\frac{d_{1} \pi^{2}}{\bar{h}^{2}}+\frac{\beta_{1}^{2}}{4}-r_{1}-\gamma\right] \geq 0 .
$$

Note that $0 \leq \cos \pi y \leq 1, y \leq \frac{2}{\pi} \sin \pi y$ for $0 \leq y \leq 1 / 2$, and $e^{-\gamma t} \leq 1$ for $t \geq 0$, then for $t>0$ and $0 \leq x \leq \bar{h}(t) / 2$,

$$
\bar{u}_{t}-d_{1} \bar{u}_{x x}+\beta_{1} \bar{u}_{x}-\bar{u}\left(r_{1}-a_{1} \bar{u}\right) \geq \bar{u}\left(\frac{d_{1} \pi^{2}}{\bar{h}^{2}}+\frac{\beta_{1}^{2}}{4}-r_{1}-\gamma-\frac{h_{0} \delta \gamma}{\bar{h}}\right) .
$$

It follows that for $t>0$ and $0 \leq x \leq \bar{h}(t) / 2$,

$$
\bar{u}_{t}-d_{1} \bar{u}_{x x}+\beta_{1} \bar{u}_{x}-\bar{u}\left(r_{1}-a_{1} \bar{u}\right) \geq \bar{u}\left[\frac{1}{h_{0}(1+\delta)}\left(\frac{d_{1} \pi^{2}}{h_{0}(1+\delta)}-\delta \gamma h_{0}\right)+\frac{\beta_{1}^{2}}{4}-r_{1}-\gamma\right] \geq 0 .
$$

In conclusion, for $t>0$ and $0 \leq x \leq \bar{h}(t)$,

$$
\bar{u}_{t}-d_{1} \bar{u}_{x x}+\beta_{1} \bar{u}_{x}-\bar{u}\left(r_{1}-a_{1} \bar{u}\right) \geq 0 .
$$

Similarly, for $t>0$ and $0 \leq x \leq \bar{h}(t)$,

$$
\bar{v}_{t}-d_{2} \bar{v}_{x x}+\beta_{2} \bar{v}_{x}-\bar{v}\left(r_{2}-a_{2} \bar{v}\right) \geq 0
$$

On the other hand, $\bar{u}(0, t)=\bar{v}(0, t)=\bar{u}(\bar{h}(t), t)=\bar{v}(\bar{h}(t), t)=0$. If we choose M sufficiently large such that

$$
\bar{u}(x, 0) \geq u_{0}(x), \quad \bar{v}(x, 0) \geq v_{0}(x), \quad \text { for } x \in[0, \bar{h}(0)] .
$$

For

$$
\mu \leq \underline{\mu}:=\frac{\delta \gamma(2+\delta) h_{0}^{2}}{2 \pi M(1+\rho)},
$$

then

$$
\bar{h}^{\prime}(t)+\mu\left[\bar{u}_{x}(\bar{h}(t), t)+\rho \bar{v}_{x}(\bar{h}(t), t)\right] \geq 0 .
$$

By Lemma 3.9, we have

$$
\bar{h}(t) \geq h(t), \quad \forall t \geq 0
$$

So we obtain $h_{\infty} \leq h_{0}(1+\delta)$. Then we complete the proof.

Lemma 3.12. Suppose that $d_{i}>0, r_{i}>0, a_{i}>0, b_{i} \in \mathbb{R}, 0 \leq \beta_{i}<2 \sqrt{d_{i} r_{i}}$ for $i=1,2$ and $h_{0}<h^{*}$, there exists $\bar{\mu}>0$ such that $h_{\infty}=\infty$ if $\mu \geq \bar{\mu}$.

Proof. Due to the boundedness of u and v, there exists δ^{*} such that

$$
u\left(r_{1}-a_{1} u-b_{1} v\right) \geq-\delta^{*} u, \quad v\left(r_{2}-a_{2} v-b_{2} u\right) \geq-\delta^{*} v .
$$

Consider the following problem

$$
\begin{cases}w_{t}-d_{1} w_{x x}+\beta_{1} w_{x}=-\delta^{*} w, & 0<x<r(t), t>0, \tag{3.15}\\ z_{t}-d_{2} z_{x x}+\beta_{2} z_{x}=-\delta^{*} z, & 0<x<r(t), t>0, \\ w(0, t)=z(0, t)=0, & t>0, \\ w(r(t), t)=z(r(t), t)=0, & t>0, \\ r^{\prime}(t)=-\mu\left[w_{x}(r(t), t)+\rho z_{x}(r(t), t)\right], & t>0, \\ w(x, 0)=u_{0}(x), z(x, 0)=v_{0}(x), r(0)=h_{0}, & 0<x<h_{0} .\end{cases}
$$

Similar to Lemma 3.1, such problem admits a unique global solution (w, z, r). Applying the comparison principle, it follows that

$$
\begin{equation*}
u(x, t) \geq w(x, t), \quad v(x, t) \geq z(x, t), \quad h(t) \geq r(t), \quad \text { for } x \in[0, r(t)], \quad t>0 \tag{3.16}
\end{equation*}
$$

Next, we prove that for all large $\mu, r(1) \geq h^{*}$. Choose a smooth function $\underline{r}(t)$ such that

$$
\underline{r}(0)=h_{0} / 2, \quad \underline{r}(1)=h^{*}, \quad \underline{r}^{\prime}(t)>0, \quad \text { for } t>0 .
$$

Consider the following initial-boundary value problem

$$
\begin{cases}\underline{w}_{t}-d_{1} \underline{w}_{x x}+\beta_{1} \underline{w}_{x}=-\delta^{*} \underline{w}, & 0<x<\underline{r}(t), t>0, \tag{3.17}\\ \underline{z}_{t}-d_{2} \underline{z}_{x x}+\beta_{2} \underline{z}_{x}=-\delta^{*} \underline{z}, & 0<x<\underline{r}(t), t>0, \\ \underline{w}(0, t)=\underline{z}(0, t)=0, & t>0, \\ \underline{w}(\underline{r}(t), t)=\underline{z} \underline{r}(t), t)=0, & t>0, \\ \underline{w}(x, 0)=\underline{w}_{0}(x), \underline{z}(x, 0)=\underline{z}_{0}(x), & 0<x<h_{0} / 2,\end{cases}
$$

here $\left(\underline{w}_{0}(x), \underline{z}_{0}(x)\right)$ satisfies

$$
\begin{aligned}
& 0<\underline{w}_{0}(x) \leq u_{0}(x) \quad \text { on }\left[0, h_{0} / 2\right], \quad \underline{w}_{0}(0)=\underline{w}_{0}\left(h_{0} / 2\right)=0, \quad \underline{w}_{0}^{\prime}\left(h_{0} / 2\right)<0, \\
& 0<\underline{z}_{0}(x) \leq v_{0}(x) \quad \text { on }\left[0, h_{0} / 2\right], \quad \underline{z}_{0}(0)=\underline{z}_{0}\left(h_{0} / 2\right)=0, \quad \underline{z}_{0}^{\prime}\left(h_{0} / 2\right)<0 .
\end{aligned}
$$

The standard theory for parabolic equations ensures that (3.17) has an unique positive solution $(\underline{w}, \underline{z})$ and $\underline{w}_{x}(\underline{r}(t), t)<0, \underline{z}_{x}(\underline{r}(t), t)<0$ for all $t \in[0,1]$ due to the Hopf Lemma. Then there exists a constant $\bar{\mu}>0$ such that for all $\mu \geq \bar{\mu}$,

$$
\begin{equation*}
\underline{r}^{\prime}(t) \leq-\mu\left[\underline{w}_{x}(\underline{r}(t), t)+\rho \underline{z}_{x}(\underline{r}(t), t)\right] \quad \text { for } t \in[0,1] . \tag{3.18}
\end{equation*}
$$

Since the choice of initial values and (3.15)-(3.18), we have

$$
r(t) \geq \underline{r}(t), \quad w(x, t) \geq \underline{w}(x, t), z(x, t) \geq \underline{z}(x, t), \quad \text { for } x \in[0, \underline{r}(t)], \quad t \in[0,1],
$$

which implies $r(1) \geq \underline{r}(1)=h^{*}$. In view of (3.16), $h_{\infty}>h(1) \geq h^{*}$. Together with Theorem 3.10, derives the desired result.

Theorem 3.13. Assume that $r_{i}>0, a_{i}>0, b_{i}>0,0 \leq \beta_{i}<2 \sqrt{d_{i} r_{i}}, d_{i}=1$ for $i=1,2$ and $h_{0}<h^{*}$, there exists $\mu^{*} \geq \mu_{*}>0$ such that vanishing happens $\left(h_{\infty}<\infty\right)$ if $0<\mu \leq \mu_{*}$ or $\mu=\mu^{*}$, and spreading happens $\left(h_{\infty}=\infty\right)$ if $\mu>\mu^{*}$.

Proof. Define $\Gamma:=\left\{\mu>0: h_{\infty} \leq h^{*}\right\}$. Due to Lemma 3.11, $\Gamma \neq \varnothing$. In view of Lemma 3.12, $\mu^{*}:=\sup \Gamma \in[\mu, \bar{\mu}]$. By the definition of μ^{*} and Theorem 3.10, we get that $h_{\infty}=\infty$ if $\mu>\mu^{*}$.

Next, we prove that $h_{\infty}<\infty$ if $\mu=\mu^{*}$. If not, $h_{\infty}=\infty$ for $\mu=\mu^{*}$. So there exists T such that $h(T)>h^{*}$. Since the solution (u, v, h) depends on μ, we write $\left(u_{\mu}, v_{\mu}, h_{\mu}\right)$ instead of (u, v, h). By the continuous dependence of $\left(u_{\mu}, v_{\mu}, h_{\mu}\right)$ on μ, for small $\varepsilon>0, h_{\mu}(T)>h^{*}$ for all $\left[\mu^{*}-\varepsilon, \mu^{*}+\varepsilon\right]$. Then $\sup \Gamma \leq \mu^{*}-\varepsilon$, which contradicts to the definition of μ^{*}. Hence $\mu^{*} \in \Gamma$.

Denote $\Lambda:=\left\{v>0: v \geq \underline{\mu}\right.$ such that $h_{\infty} \leq h^{*}$ for all $\left.0<\mu \leq v\right\}$ and $\mu_{*}:=\sup \Lambda \leq \mu^{*}$. Using the similar way to the above, we obtain that $\mu_{*} \in \Lambda$. The proof is completed.

4 Acknowledgments

This work is supported by the National Natural Science Foundation of China (11771407), the Innovative Research Team of Science and Technology in Henan Province (17IRTSTHN007), and the National Key R\&D Program of China (2017YFB0702504).

References

[1] A. A. Berryman, The orgins and evolution of predator-prey theory, Ecology 73(1992), No. 5, 1530-1535. https://doi.org/10.2307/1940005
[2] C. Bianca, Mathematical modeling for keloid formation triggered by virus: malignant effects and immune system competition, Math. Models Methods. Appl. Sci. 21(2011), No. 2, 389-419. https://doi.org/10.1142/S021820251100509X; MR2776673
[3] C. Bianca, M. Pennisi, S. Motta, M.A. Ragusa, Immune system network and cancer vaccine, AIP Conference Proceedings 1389(2011), No. 1, 945-948. https://doi.org/10. 1063/1. 3637764
[4] C. Bianca, F. Pappalardo, S. Motta, M. A. Ragusa, Persistence analysis in a Kolmogorov-type model for cancer-immune system competition, AIP Conference Proceedings 1558(2013), No. 1, 1797-1800. https://doi.org/10.1063/1.4825874
[5] R. S. Cantrell, C. Cosner, Spatial ecology via reaction-diffusion equations, Wiley Series in Mathematical and Computational Biology, John Wiley \& Sons Ltd., Chichester, 2003. https://doi.org/10.1002/0470871296; MR2191264
[6] J. Dockery, V. Hutson, K. Mischaikow, M. Pernarowski, The evolution of slow dispersal rates: a reaction diffusion model, J. Math. Biol. 37(1998), No. 1, 61-83. https: //doi.org/10.1007/s002850050120; MR1636644
[7] Y. Du, Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal. 42(2010), No. 1, 377-405. https://doi.org/10.1137/ 090771089; MR2607347
[8] J. Guo, C. Wu, On a free boundary for a two-species weak competition system, J. Dyn. Differential Equations 24(2012), No. 4, 873-895. https://doi.org/10.1007/ s10884-012-9267-0; MR3000608
[9] X. He, W. Ni, Global dynamics of the Lotka-Volterra competition-diffusion system: diffusion and spatial heterogeneity I, Comm. Pure. Appl. Math. 69(2016), No. 5, 981-1014. https://doi.org/10.1002/cpa.21596; MR3481286
[10] C. Lei, Z. Lin, H. Wang, The free bondary problem describing information diffusion in online social networks, J. Differential Equations 254(2013), No. 3, 1326-1341. https: //doi.org/10.1016/j.jde.2012.10.021; MR2997373
[11] Y. Kaneko, Y. Yamada, A free boundary problem for a reaction diffusion equation appearing in ecology, Adv. Math. Sci. Appl. 21(2011), No. 2, 467-492. MR2953128
[12] Y. Lou, F. Lutscher, Evolution of dispersal in open advective environments, J. Math. Biol. 69 (2014), No. 6-7, 1319-1342. https://doi.org/10.1007/s00285-013-0730-2; MR3275198
[13] F. Lutscher, E. McCauley, M. A. Lewis, Spatial patterns and coexistence mechanisms in systems with unidirectional flow, Theor. Popul. Biol. 71(2007), No. 3, 267-277. https: //doi.org/10.1016/j.tpb.2006.11.006
[14] Y. Kuang, E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol. 36(1998), No. 4, 389-406. https://doi.org/10.1007/s002850050105; MR1624192
[15] K. Y. Lam, W. Ni, Uniqueness and complete dynamics in heterogeneous competition diffusion systems, SIAM J. Appl. Math. 72(2012), No. 6, 1695-1712. https: //doi. org/10. 1137/120869481; MR3022283
[16] Y. Lou, D. Xiao, P. Zhou, Qualitative analasis for a Lotka-Volterra competition system in advective homogeneous environment, Discrete Contin. Dyn. Syst. A. 36(2016), No. 2, 953-969. https://doi.org/10.3934/dcds.2016.36.953; MR3392913
[17] Y. Lou, P. Zhou, Evolution of dispersal in advective homogeneous environment: the effect of boundary conditions, J. Differential Equations 259(2015), No. 1, 141-171. https: //doi.org/10.1016/j.jde.2015.02.004; MR3335923
[18] M. H. Protter, H. F. Weinberger, Maximum principles in differential equations, SpringerVerlag, New York, 1984. https://doi.org/10.1007/978-1-4612-5282-5; MR0762825
[19] C. V. Pao, Nonlinear parabolic and elliptic equations, Springer Science \& Business Media, New York, 1992. MR1212084
[20] J. Ren, X. Li, Bifurcations in a seasonally forced predator-prey model with generalized Holling type IV functional response, Int. J. Bifurcation Chaos 26(2016), No. 12, 1650203. https://doi.org/10.1142/S0218127416502035; MR3574812
[21] J. Ren, X. Li, How seasonal forcing influences the complexity of a predator-prey system, Discrete Contin. Dyn. Syst. B. 23(2018), No. 2, 785-807. https://doi .org/10.3934/dcdsb. 2018043
[22] J. Ren, L. Yu, Codimension-two bifurcation, chaos and control in a discrete-time information diffusion model, J. Nonlinear Sci. 26(2016), No. 6, 1895-1931. https://doi.org/10. 1007/s00332-016-9323-8; MR3562398
[23] H. L. Smith, Monotone dynamical systems. An introduction to the theory of competitive and cooperative systems, Mathematical Surveys and Monographs, Vol. 41 American Mathematical Society, Providence, 1995. MR1319817
[24] M. Wang, On some free boundary problems of the prey-predator model, J. Differential Equations 256(2014), No. 10, 3365-3394. https://doi.org/10.1016/j.jde.2014.02.013; MR3177899
[25] F. Wang, H. Wang, K. Xu, Diffusive logistic model towards predicting information diffusion in online social networks, in: 32nd International Conference on Distributed Computing Systems Workshops (ICDCS Workshops) 2012, 133-139. https://doi.org/10.1109/ICDCSW. 2012.16
[26] M. Wang, J. Zhao, Free boundary problems for a Lotka-Volterra competition system, J. Dyn. Differential Equations 26(2014), No. 3, 655-672. https://doi.org/10.1007/ s10884-014-9363-4; MR3274436
[27] M. Wang, Y. Zhang, Two kinds of free boundary problems for the diffusive preypredator model, Nonlinear Anal. Real World Appl. 24(2015), 73-82. https://doi.org/10. 1016/j.nonrwa.2015.01.004; MR3332883
[28] X. Zhao, Dynamical systems in population biology, Springer, New York, 2003. MR1980821
[29] P. Zhou, On a Lotka-Volterra competition system: diffusion vs advection, Calc. Var. 55(2016), No. 6. https://doi.org/10.1007/s00526-016-1082-8; MR3566937
[30] L. Zhou, S. Zhang, Z. Liu, A free boundary problem of a predator-prey model with advection in heterogeneous environment, Appl. Math. Comput. 289(2016), 22-36. https: //doi.org/10.1016/j.amc.2016.05.008; MR3515835

[^0]: ${ }^{\boxtimes}$ Corresponding author. Email: renj@zzu.edu.cn

