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Abstract. This paper deals with a parabolic-elliptic chemotaxis-growth system with
nonlinear sensitivity{

ut = ∆u− χ∇ · (ψ(u)∇v) + f (u), (x, t) ∈ Ω× (0, ∞),
0 = ∆v− v + g(u), (x, t) ∈ Ω× (0, ∞),

under homogeneous Neumann boundary conditions in a smooth bounded domain Ω ⊂
Rn (n ≥ 1), where χ > 0, the chemotactic sensitivity ψ(u) ≤ (u + 1)q with q > 0,
g(u) ≤ (u + 1)l with l ∈ R and f (u) is a logistic source. The main goal of this paper is
to extend a previous result on global boundedness by Zheng et al. [J. Math. Anal. Appl.
424(2015), 509–522] under the condition that 1 ≤ q + l < 2

n + 1 to the case q + l < 1.
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1 Introduction

In this paper, we study the following Keller–Segel chemotaxis-growth system with nonlinear
sensitivity under homogeneous Neumann boundary conditions

ut = ∆u− χ∇ · (ψ(u)∇v) + f (u), (x, t) ∈ Ω× (0, ∞),

0 = ∆v− v + g(u), (x, t) ∈ Ω× (0, ∞),
∂u
∂ν

=
∂v
∂ν

= 0, (x, t) ∈ ∂Ω× (0, ∞),

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω ⊂ Rn (n ≥ 1) is a smooth bounded domain, ∂
∂ν denotes the differentiation with re-

spect to the outward normal derivative on ∂Ω, χ > 0 is a parameter referred to as chemosen-
sitivity, and u(x, t), v(x, t) denote the density of the cells population and the concentration
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of the chemoattractant, respectively. ψ(u) and g(u) describe the chemotactic sensitivity of
cell population and production rate of the chemoattractant, respectively. Throughout this pa-
per, we assume that the nonnegative functions ψ ∈ C2([0, ∞)) and g ∈ C2([0, ∞)) satisfy the
conditions that there exist some constants q > 0 and l ∈ R such that

ψ(s) ≤ (s + 1)q and g(s) ≤ (s + 1)l for all s ≥ 0. (1.2)

Moreover, the logistic source f ∈ C0([0, ∞)) ∩ C1((0, ∞)) fulfills

f (s) ≤ a− bsk with a ≥ 0, b > 0, k > 1 and f (0) ≥ 0. (1.3)

Chemotaxis is the oriented movement of biological cells or organisms in response to gradi-
ents of the concentration of chemical signal substance in their environment, where the chem-
ical signal substance may be produced or consumed by the cells themselves. The most in-
teresting situation related to self-organization phenomenon takes place when cells detect and
response to a chemical which is secreted by themselves. The pioneering works of chemotaxis
model were introduced by Patlak [13] in 1953 and Keller and Segel [9] in 1970, and we re-
fer the reader to the surveys [5–7] where a comprehensive information of further examples
illustrating the outstanding biological relevance of chemotaxis can be found.

In order to understand (1.1), let us mention some previous contributions in this direction.
In recent years, the following initial boundary value problems have been studied by many
authors 

ut = ∇ · (ϕ(u)∇u)− χ∇ · (ψ(u)∇v) + f (u), (x, t) ∈ Ω× (0, ∞),

0 = ∆v− v + g(u), (x, t) ∈ Ω× (0, ∞),
∂u
∂ν

=
∂v
∂ν

= 0, (x, t) ∈ ∂Ω× (0, ∞),

u(x, 0) = u0(x), x ∈ Ω,

(1.4)

where f (u) ≤ a− buk with a ≥ 0, b > 0 and k > 1, χ > 0, Ω ⊂ Rn (n ≥ 1) is a bounded
domain with smooth boundary ∂Ω. For the special case ϕ(u) = 1, ψ(u) = g(u) = u and
k = 2 in (1.4), Tello and Winkler [15] proved that the solutions of (1.4) are global and bounded
provided that either n ≤ 2, or n ≥ 3 and b > (n−2)χ

n with χ > 0. Moreover, for any n ≥ 1 and
b > 0, the existence of global weak solution was shown under some additional conditions.
Furthermore, if k > 2− 1

n , some global very weak solutions of semilinear parabolic-elliptic
model (1.4) were constructed by Winkler [19]. When ψ(u) = g(u) = u, ϕ(u) ≥ c(u + 1)p with
c > 0, p ∈ R, k = 2 and b >

(
1− 2

n(1−p)+

)
χ with χ > 0, Cao and Zheng [2] proved that

model (1.4) has a unique global classic solution, which is uniformly bounded. Wang et al. in
[18] investigated the boundedness and asymptotic behavior for model (1.4) with the special
case ψ(u) = g(u) = u and ϕ(u) ≥ Cϕum−1 (m ≥ 1) under other additional technique condi-
tions. Recently, Zheng [24] and Xie–Xiang [23] improved the results of [18] by using different
methods, respectively. In the recent paper [21], for the case of f (u) = ru − µu2 with r ≥ 0
and µ > 0, in one-dimensional case, Winkler proved that going beyond carrying capacities
actually is a genuinely dynamical feature of the simplified parabolic-elliptic system provided
that µ < 1 and diffusion is sufficiently weak, moreover, he investigated global boundedness
and finite-time blow-up for a corresponding hyperbolic-elliptic limit problem. Furthermore,
Lankeit [10] extended the results of Winkler [21] to the higher dimensional radially symmetric
case. Moreover, Viglialoro and Woolley [16] derived the eventual smoothness and asymptotic
behavior of solutions for the corresponding fully parabolic (1.4) with ϕ(u) = 1, ψ = u and
g(u) = u in three dimensional case. For the case f (u) = κu− µu2, Lankeit [11] showed that
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in the three-dimensional setting, after some time, these solutions become classical solutions,
provided that κ is not too large. In this case, he also considered their large-time behaviour
and proved decay if κ ≤ 0 and the existence of an absorbing set if κ > 0 is sufficiently small.
When f (u) = 0, Egger et al. [4] investigated the identification of these nonlinear parameter
functions for problem (1.1). Furthermore, this is underlined in [12] by a recent result on global
existence and boundedness in a fully parabolic counterpart of (1.4) involving general signal
production under the assumption that f (u) = 0 and g(u) ≤ Kuκ for all u ≥ 1 with some
κ < 2

n . To the best of our knowledge, when ϕ(u) = 1, ψ(u) = u in (1.4), where the second
equation in (1.4) is replaced by 0 = ∆v−m(t) + u with m(t) = 1

|Ω|
∫

Ω u(x, t)dx, the only result
obtained by Winkler in [20] for (1.4) with logistic source f (u) is about finite-time blow-up
in the higher-dimensional case under some additional conditions. Furthermore, for the gen-
eral cases ϕ and ψ in (1.4), Zheng et al. [27] studied the global boundedness and finite-time
blow-up for the solution under different conditions about the parameter functions. When
ϕ(u) = 1, g(u) ≤ ul in (1.4), Zheng et al. [28] proved that model (1.1) possesses a unique
nonnegative global bounded classical solution (u, v), provided that one of the cases holds:
(i) 1 ≤ q + l < 2

n + 1 and k > 1; (ii) q + l ≥ 2
n + 1, b > (q+l−1)n−2

(q+l−1)n χ, q ≥ 1 and k ≥ q + l.
Moreover, other variants of the corresponding parabolic-parabolic types have been studied by
some authors [1, 14, 17, 25, 26, 29].

In the present paper, motivated by the ideas in [24], our main purpose is to extend a
previous result on global boundedness by Zheng et al. [28] under the condition that 1 ≤
q + l < 2

n + 1 to the case q + l < 1. Our main result in this paper is stated as follows.

Theorem 1.1. Let Ω ⊂ Rn, n ≥ 1 be a bounded domain with smooth boundary. Assume that ψ(u)
and g(u) satisfy (1.2) with q + l < 1, and f (u) fulfills (1.3). Then for any nonnegative initial data
u0 ∈ C1(Ω), model (1.1) possesses a nonnegative global classical solution (u, v) which is uniformly
bounded in time in the sense that there exists C > 0 such that

‖u(·, t)‖L∞(Ω) ≤ C for all t > 0.

This paper is organized as follows. In the next section, we prove our main result by means
of the iteration technique.

2 Proof of Theorem 1.1

In this section, we shall prove our boundedness result by an iteration procedure used in [24].
Firstly, we state one result concerning local existence of a classical solution to (1.1).

Lemma 2.1. Let Ω ⊂ Rn (n ≥ 1) be a bounded domain with smooth boundary. Assume that
the functions ψ and g belong to C2([0, ∞)) and satisfy ψ ≥ 0 and g ≥ 0 in [0, ∞), and f ∈
C0([0, ∞)) ∩ C1((0, ∞)) fulfills f (0) ≥ 0. Then for any nonnegative initial data u0 ∈ C1(Ω),
there exists a maximal existence time Tmax ∈ (0, ∞] and a pair of nonnegative functions (u, v) ∈(
C0 (Ω× [0, Tmax)

)
∩ C2,1(Ω× (0, Tmax))

)2 such that (u, v) is a classical solution of (1.1) in Ω×
(0, Tmax). Moreover, if Tmax < +∞, then

lim
t↗Tmax

‖u(·, t)‖L∞(Ω) = ∞. (2.1)

Proof. The local-in-time existence of classical solution to (1.1) is well-established by a fixed
point theorem in the context of Keller–Segel-type chemotaxis systems. The proof is quite
standard, for the details, we refer the readers to [3, 8, 15, 18, 22, 24].
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Now let us pick any s ∈ (0, Tmax) and s ≤ 1, then by the regularity property asserted
in Lemma 2.1, we derive (u(·, s), v(·, s)) ∈ C2(Ω) with ∂u(·,s)

∂ν = ∂v(·,s)
∂ν = 0 on ∂Ω, so that in

particular we can take M > 0 such that

sup
0≤τ≤s

‖u(·, τ)‖L∞(Ω) + sup
0≤τ≤s

‖v(·, τ)‖L∞(Ω) ≤ M. (2.2)

Lemma 2.2. Let (u, v) be a solution to (1.1) on (0, Tmax). Assume that ψ(u) and g(u) satisfy (1.2)
with q + l < 1, and f (u) fulfills (1.3). Then there exist positive constants K0 and K, depending only
on a, b, q, l, k, M and Ω, such that∫

Ω
uµi(x, t)dx ≤ K0Kµi(T + 1) for all t ∈ (s, T), (2.3)

where
µi = 2i + 1− q− l and i ≥ 1. (2.4)

Proof. Multiplying the first equation in (1.1) by (1 + u)µi−1 and integrating by parts, we have

1
µi

d
dt

∫
Ω
(1 + u)µi dx =− (µi − 1)

∫
Ω
(1 + u)µi−2|∇u|2dx + χ(µi − 1)

×
∫

Ω
(1 + u)µi−2ψ(u)∇u · ∇vdx +

∫
Ω
(1 + u)µi−1 f (u)dx

=:I + II + III.

(2.5)

Let
Ψ(u) =

∫ u

0
(1 + σ)µi−2ψ(σ)dσ, (2.6)

then
Ψ(u) ≤

∫ u

0
(1 + σ)µi+q−2dσ ≤ 1

µi + q− 1
(1 + u)µi+q−1 (2.7)

due to the condition (1.2).
By the second equation in (1.1) and (2.7), we derive from q > 0 that

II = χ(µi − 1)
∫

Ω
(1 + u)µi−2ψ(u)∇u · ∇vdx

= −χ(µi − 1)
∫

Ω
Ψ(u)∆vdx

= χ(µi − 1)
∫

Ω
Ψ(u)(g(u)− v)dx

≤ χ(µi − 1)
∫

Ω
Ψ(u)g(u)dx

≤ χ(µi − 1)
µi + q− 1

∫
Ω
(1 + u)µi+q+l−1dx

≤ χ
∫

Ω
(1 + u)µi+q+l−1dx.

(2.8)

By using Young’s inequality, we infer from k > 1 that

III =
∫

Ω
(1 + u)µi−1 f (u)dx

≤
∫

Ω
(1 + u)µi−1(a− buk)dx

≤
∫

Ω
(1 + u)µi−1(a− b + kb− kbu)dx

= (a− b + 2kb)
∫

Ω
(1 + u)µi−1dx− kb

∫
Ω
(1 + u)µi dx.

(2.9)
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Hence, it follows from (2.5), (2.8) and (2.9) that

1
µi

d
dt

∫
Ω
(1 + u)µi dx ≤ − (µi − 1)

∫
Ω
(1 + u)µi−2|∇u|2dx + χ

∫
Ω
(1 + u)µi+q+l−1dx

+ (a− b + 2kb)
∫

Ω
(1 + u)µi−1dx− kb

∫
Ω
(1 + u)µi dx.

(2.10)

By q + l < 1 and Young’s inequality twice again, we see

χ
∫

Ω
(1 + u)µi+q+l−1dx ≤ kb

4

∫
Ω
(1 + u)µi dx + C1 (2.11)

and

(a− b + 2kb)
∫

Ω
(1 + u)µi−1dx ≤ kb

4

∫
Ω
(1 + u)µi dx + C2, (2.12)

where

C1 =
1− q− l

µi

(
kb
4
· µi

µi + q + l − 1

)− µi+q+l−1
1−q−l

χ
µi

1−q−l |Ω|

=
1− q− l

µi

kb
4

(
1 +

1− q− l
µi + q + l − 1

)− µi+q+l−1
1−q−l

[(
4χ

kb

) 1
1−q−l

]µi

|Ω|

≤ 1− q− l
µi

kb|Ω|
4

[(
4χ

kb

) 1
1−q−l

]µi

(2.13)

and

C2 =
1
µi
(a− b + kb)µi

(
kb
4
· µi

µi − 1

)−(µi−1)

|Ω|

=
1
µi

kb|Ω|
4

(
1 +

1
µi − 1

)−(µi−1) (4(a− b + kb)
kb

)µi

≤ 1
µi

kb|Ω|
4

(
4(a− b + kb)

kb

)µi

.

(2.14)

Now, taking

K1 =
kb|Ω|

4
max{1− q− l, 1}

and

K2 = max

{
1 +

(
4χ

kb

) 1
1−q−l

, 1 +
4(a− b + kb)

kb

}
,

it follows from (2.10)–(2.14), we derive

1
µi

d
dt

∫
Ω
(1 + u)µi dx +

kb
2

∫
Ω
(1 + u)µi dx ≤ 2K1Kµi

2
µi

. (2.15)

Integrating (2.15) over (s, t) for all t < T, we have∫
Ω
(1 + u(x, t))µi dx ≤

∫
Ω
(1 + u(x, s))µi dx + 2K1Kµi

2 T. (2.16)
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According to (2.2), we derive

∫
Ω
(1 + u(x, t))µi dx ≤ (1 + M)µi |Ω|+ 2K1Kµi

2 T

≤ K0Kµi(T + 1)
(2.17)

where K0 = 2K1 + |Ω| and K = K2 + M + 1. The proof of Lemma 2.2 is complete.

Now, we establish an iteration procedure to derive L∞-estimate of u(·, t) for all t ∈ (0, T),
where T ∈ (0, Tmax).

Lemma 2.3. Let (u, v) be a solution to (1.1) on (0, Tmax). Assume that ψ(u) and g(u) satisfy (1.2)
with q + l < 1, and f (u) fulfills (1.3). Then there exists a positive constant C > 0 such that

‖u(·, t)‖L∞(Ω) ≤ C for all t ∈ (0, T),

where T ∈ (0, Tmax).

Proof. Let

µi = 2i + 1− q− l and i ≥ 1, (2.18)

it follows from Lemma 2.2 that∫
Ω

uµi(x, t)dx ≤ K0Kµi(T + 1) for all t ∈ (s, T), (2.19)

which implies

‖u(·, t)‖Lµi (Ω) ≤ K
1
µi
0 K(T + 1)

1
µi for all t ∈ (s, T) and i ≥ 1, (2.20)

where s, K0 and K are given by (2.2) and Lemma 2.2, respectively.
Due to q + l < 1, it follows that µi → ∞ as i → ∞. Hence, letting i → ∞ on both sides of

(2.20), we have

‖u(·, t)‖L∞(Ω) ≤ K for all t ∈ (s, T). (2.21)

On the other hand, we derive from Lemma 2.1 that

‖u(·, t)‖L∞(Ω) ≤ M for all t ∈ (0, s]. (2.22)

Now, selecting C := max{K, M}, it is easy to see that Lemma 2.3 holds.

Now we begin with the proof of Theorem 1.1.

Proof of Theorem 1.1. With the aid of the blow up criterion (2.1) and Lemma 2.3, it follows that
Tmax = ∞. Therefore, according to Lemma 2.1 and Lemma 2.3, we obtain the desired result.
The proof of Theorem 1.1 is complete.
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