
Electronic Journal of Qualitative Theory of Differential Equations
2018, No. 11, 1–15; https://doi.org/10.14232/ejqtde.2018.1.11 www.math.u-szeged.hu/ejqtde/

Robustness with respect to exponents for
nonautonomous reaction–diffusion equations

Rodrigo A. SamprognaB and Jacson Simsen

Instituto de Matemática e Computação, Universidade Federal de Itajubá,
Av. BPS n. 1303, Bairro Pinheirinho, Itajubá 37500-903, Brazil

Received 23 November 2017, appeared 14 February 2018

Communicated by Christian Pötzsche

Abstract. In this work we consider a family of nonautonomous problems with homoge-
neous Neumann boundary conditions and spatially variable exponents with equation
of the form

∂uλ

∂t
(t)− div

(
D(t)|∇uλ(t)|pλ(x)−2∇uλ(t)

)
+ |uλ(t)|pλ(x)−2uλ(t) = B(t, uλ(t)).

We study the continuity of the flow and we study the behavior of attractors when
pλ(·)→ p(·) in L∞(Ω) as λ→ ∞ where Ω is a bounded smooth domain in RN .
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1 Introduction

In several physical, chemical and biological problems the reaction–diffusion systems can be
a good model to describe the behavior of the problem, and in many of these problems may
appear operators in which some exponent p depends on the spatial variable, as in the case of
the operator p(x)-Laplacian [3, 4, 9]. These require the use of function spaces with spatially
dependent exponents and new mathematical techniques.

The asymptotic behavior of nonautonomous evolution problems has been investigated
recently [6,8]. An interesting problem is to investigate how is the asymptotic behavior of these
problems with the variation of parameters, more specifically, try to establish the existence of
attractors for each parameter and to study the continuity of these attractors with respect to
the variation of the parameters, see [6, 12, 13].

In this paper we establish upper semicontinuity of pullback attractors for a nonautonom-
ous evolution equation of the form

∂uλ
∂t
(t)− div

(
D(t)|∇uλ(t)|pλ(x)−2∇uλ(t)

)
+ |uλ(t)|pλ(x)−2uλ(t) = B(t, uλ(t)),

uλ(τ) = u0λ

(Pλ)

BCorresponding author. Email: samprogna@hotmail.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/163095922?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.14232/ejqtde.2018.1.11
https://www.math.u-szeged.hu/ejqtde/


2 R. A. Samprogna and J. Simsen

with a homogeneous Neumann boundary condition, for (t, x) ∈ (τ,+∞)×Ω where Ω is a
bounded smooth domain in RN for some N ≥ 1 and the initial condition uλ(τ) ∈ H := L2(Ω).
The terms pλ, B and D are assumed to satisfy:

Assumpition p pλ(·) ∈ C(Ω, R), for each λ ∈ [0, ∞), satisfies

(P1) there are m, M ∈ R such that

2 < m ≤ p−λ := minx∈Ω pλ(x) ≤ p+λ := maxx∈Ω pλ(x) ≤ M;

(P2) pλ → p in L∞(Ω) for some p such that p(·) ∈ C(Ω, R) and m ≤ p− ≤ p+ ≤ M.

Assumpition B The mapping B : [τ, T]× H → H is such that

(B1) there exists L ≥ 0 such that

‖B(t, x1)− B(t, x2)‖H ≤ L‖x1 − x2‖H

for all t ∈ [τ, T] and x1, x2 ∈ H;

(B2) for all x ∈ H the mapping t→ B(t, x) belongs to L2(τ, T; H);

(B3) the function t → ‖B(t, 0)‖H is nondecreasing, absolutely continuous and bounded on
compact subsets of R.

Assumpition D D : [τ, T]×Ω→ R is a function in L∞([τ, T]×Ω) such that

(D1) there are positive constants, β and M such that 0 < β ≤ D(t, x) ≤ M for almost all
(t, x) ∈ [τ, T]×Ω;

(D2) D(t, x) ≥ D(s, x) for each x ∈ Ω and t ≤ s in [τ, T].

The authors in [6] also considered the nonautonomous problem and proved the robustness
with respect to the diffusion coefficient whereas in this work we study the robustness with
respect to the exponents.

The paper is organized as follows. In Section 2 we present the time-dependent evolution
operator and the results of [6] that ensure some properties of the operator and existence and
uniqueness of solution for the problem. The work [6] also ensures the existence of a pullback
attractor for the problem, these results are in Section 3. With the objective of guaranteeing the
upper semicontinuity of attractors we need to develop some new uniform estimates for the
problem, these estimates are established in Section 4. In Section 5, we ensure the continuity
of the process associated with the problem and the upper semicontinuity of the pullback
attractors.

2 Preliminaries

In this section we present some definitions about Lebesgue and Sobolev spaces with variable
exponents, a general theory about this spaces can be found in [4,5,11]. Also we show some re-
sults about the operator associated with our problem and the results that ensure the existence
and uniqueness of solution, following [6].
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Let us recall the definitions of the Lebesgue and Sobolev spaces with variable exponents.
Considering p ∈ L∞

+(Ω) := {q ∈ L∞(Ω) : ess inf q ≥ 1}, then

Lp(x)(Ω) :=
{

u : Ω→ R : u is mensurable,
∫

Ω
|u(x)|p(x)dx < ∞

}
is a Banach space with the norm ‖u‖p(x) := inf{λ> 0 : ρ

( u
λ

)
≤ 1}, where ρ(u) :=

∫
Ω |u(x)|p(x)dx.

Furthermore,
W1,p(x)(Ω) :=

{
u ∈ Lp(x)(Ω); |∇u| ∈ Lp(x)(Ω)

}
which is a Banach space with the norm ‖u‖W1,p(x)(Ω) := ‖u‖p(x) + ‖∇u‖p(x).

The authors in [6] considered, for each λ ∈ [0, ∞) and t ∈ R, the operator Aλ(t) : Xλ → X∗λ,
where Xλ := W1,pλ(x)(Ω) with norm ‖ · ‖Xλ

:= ‖ · ‖W1,pλ(x)(Ω), defined by

Aλ(t)u(v) :=
∫

Ω
D(t, x)|∇u(x)|pλ(x)−2∇u(x) · ∇v(x)dx +

∫
Ω
|u(x)|pλ(x)−2u(x)v(x)dx,

for each u, v ∈ Xλ and they have proved that the operator Aλ(t) is monotone, hemicontinuous
and coercive for each t ∈ [τ, T] and λ ∈ [0, ∞). Then, they concluded that the operator is
maximal monotone and the realization operator of Aλ(t) at H = L2(Ω) is maximal monotone
in H, for each t ∈ [τ, T] and λ ∈ [0, ∞). With this it is possible to show that the operator Aλ(t)
is the subdifferential ∂ϕλ(t) of the convex, proper and lower semicontinuous map ϕλ(t) : H →
R∪ {+∞} given by

ϕλ(t)(u) :=

{∫
Ω

D(t,x)
pλ(x) |∇u|pλ(x)dx +

∫
Ω

1
pλ(x) |u|

pλ(x)dx, if u ∈ Xλ

+∞, otherwise.
(2.1)

Note that, defining A(t) as Aλ(t) with function p in place of function pλ we have that all
properties described above holds for operator A(t), for all t ∈ [τ, T], we will denote the space
X := W1,p(x)(Ω).

We will present some estimates that will be useful in the course of the work.

Theorem 2.1 ([5]). If u ∈ Lp(x)(Ω). Then

i) ‖u‖p(x) < 1(= 1;> 1) if and only if ρ(u) < 1(= 1;> 1);

ii) if ‖u‖p(x) > 1, then ‖u‖p−

p(x) ≤ ρ(u) ≤ ‖u‖p+

p(x);

iii) if ‖u‖p(x) < 1, then ‖u‖p+

p(x) ≤ ρ(u) ≤ ‖u‖p−

p(x).

From Lemmas 2.2 and 2.3 in [6] and Proposition 3.1 in [1] we can conclude the following
result.

Lemma 2.2. For t ∈ [τ, T], we have that for every u ∈ X

〈A(t)u, u〉X∗,X ≥


min{1,β}

2p+ ‖u‖p+
X , if ‖u‖X < 1

min{1,β}
2p+ ‖u‖p−

X , if ‖u‖X ≥ 1

Remark 2.3. It is obvious that both of the above results are satisfied if instead of function p
we take function pλ for each λ ∈ [0, ∞) and with their respective spaces Xλ and bounds p−λ
and p+λ .
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We recall the result of existence of solution from [6].

Theorem 2.4. If B : [τ, T] × H → H satisfies Assumptions (B1) and (B2) and u0λ ∈ H, then for
each λ ∈ [0, ∞) there exists a unique strong global solution of the problem (Pλ), i.e., there exists
uλ ∈ C([τ, T]; H), with uλ(τ) = u0λ such that

duλ

dt
(t) + Aλ(t)uλ(t) = B(t, uλ(t)) a.e. on [τ, T].

3 Pullback attractor

The theory about pullback attractors can be found in [2]. The existence of pullback attractor
for the Problem (Pλ) was ensured in [6], for each λ ∈ [0, ∞).

Definition 3.1. An evolution process in a metric space X is a family {U(t, τ) : X → X; t ≥
τ ∈ R} satisfying:

i) U(τ, τ) = IdX;

ii) U(t, τ) = U(t, s)U(s, τ), τ ≤ s ≤ t.

Definition 3.2. Let {U(t, τ); t ≥ τ ∈ R} be an evolution process in a metric space X. Given
A and B subsets of X, we say that A pullback attracts B at time t if

lim
τ→−∞

distH(U(t, τ)B, A) = 0,

where distH denote the Hausdorff semi-distance.

Definition 3.3. A family of subsets {A(t) : t ∈ R} of X is called a pullback attractor for the
evolution process {U(t, τ); t ≥ τ ∈ R} if, for each t ∈ R, A(t) is compact, A(t) pullback
attracts all bounded subsets of X at time t and the family is invariant, i.e., U(t, τ)A(τ) = A(t)
for any t ≥ τ.

Note that, for each λ ∈ [0, ∞), Theorem 2.4 defines an evolution process {Uλ(t, τ) : t ≥ τ}
in the space H associated with problem (Pλ). Indeed, given u0λ ∈ H define Uλ(t, τ)u0λ :=
uλ(t) where uλ is a solution of problem (Pλ) with initial condition uλ(τ) = u0λ, see [6] for
details. Denote by {U(t, τ) : t ≥ τ} the evolution process associated with a problem like
Problem (Pλ) but with the function p in place of pλ.

The next result was developed in [6] and ensures, for each λ ∈ [0, ∞), the existence of
pullback attractors.

Theorem 3.4. The evolution process associated with Problem (Pλ) has a pullback attractor Aλ =

{Aλ(t) : t ∈ R}.

This theorem also ensure the existence of a pullback attractor A = {A(t) : t ∈ R} for the
problem with function p.

4 Estimates

Our objective in this work is to show the upper semicontinuity of the pullback attractors, for
this, we will need develop some estimates uniform in λ.
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Theorem 4.1. Let uλ be a solution of Problem (Pλ). Then there exist a constant T1 ≥ 0 and a non
decreasing function B1 : R→ R such that

‖uλ(t)‖H ≤ B1(t), ∀ t ≥ T1 + τ

and λ ∈ [0, ∞).

Proof. Multiplying the equation of the Problem (Pλ) by uλ(t), we obtain

1
2

d
dt
‖uλ(t)‖2

H + 〈Aλ(t)uλ(t), uλ(t)〉 = 〈B(t, uλ(t)), uλ(t)〉 .

It is easy to see that ‖uλ(t)‖H ≤ 4(|Ω|+ 1)2‖uλ(t)‖Xλ
. Without loss of generality assume that

‖uλ(t)‖Xλ
≥ 1, if not the theorem is already proved. Then by, Lemma 2.2 and the Cauchy–

Schwarz inequality, we obtain

1
2

d
dt
‖uλ(t)‖2

H ≤ −
min{1, β}

2p+λ
‖uλ(t)‖

p−λ
Xλ

+ 〈B(t, uλ(t))− B(t, 0), uλ(t)〉+ 〈B(t, 0), uλ(t)〉

≤ −min{1, β}
2M ‖uλ(t)‖m

Xλ
+ C1‖uλ(t)‖2

Xλ
+ C2(t)‖uλ(t)‖Xλ

where C1 := L
[
4(|Ω|+ 1)2]2 and C2(t) := 4(|Ω|+ 1)2‖B(t, 0)‖H.

If θ := m
2 , 1

θ +
1
θ′ = 1 and 1

m + 1
m′ = 1. Then from Young’s inequality with ε > 0, we obtain

C1‖uλ(t)‖2
Xλ

+ C2(t)‖uλ(t)‖Xλ
=

C1ε

ε
‖uλ(t)‖2

Xλ
+

C2(t)ε
ε
‖uλ(t)‖Xλ

≤ 1
θ′

(
C1

ε

)θ′

+
1
θ

εθ‖uλ(t)‖m
Xλ

+
1

m′

(
C2(t)

ε

)m′

+
1
m

εm‖uλ(t)‖m
Xλ

.

Choose ε0 > 0 such that

γ :=
min{1, β}

2M − 1
θ

εθ
0 −

1
m

εm
0 > 0,

we have
1
2

d
dt
‖uλ(t)‖2

H + γ‖uλ(t)‖m
Xλ
≤ 1

θ′

(
C1

ε0

)θ′

+
1

m′

(
C2(t)

ε0

)m′

.

Let δ(t) := 2
θ′
(C1

ε0

)θ′
+ 2

m′
(C2(t)

ε0

)m′ , γ̃ := 2γ
[4(|Ω|+1)2]m

and yλ(t) := ‖uλ(t)‖2
H. Then

y′λ(t) + γ̃yλ(t)
m
2 ≤ δ(t), ∀t ≥ τ.

From a slight generalization of Lemma 5.1 in [14], we obtain

yλ(t) ≤
(

δ(t)
γ̃

) 2
m

+

(
γ̃

(
m− 2

2

)
(t− τ)

)− 2
m−2

.

Let T1 > 0 such that
[
γ̃
(m−2

2

)
T1
]− 2

m−2 ≤ 1. Then

‖uλ(t)‖H ≤
(

δ(t)
γ̃

) 1
m

+ 1 =: K1(t),

for all t ≥ T1 + τ. Observe that K1(t) is nondecreasing by Assumption (B3).
Taking B1(t) := max{K1(t), 4(|Ω|+ 1)2} the theorem follows.
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Theorem 4.2. Given T > τ and a bounded set B ⊂ H, there exists D1(T) > 0 such that ‖uλ(t)‖H ≤
D1(T), for all τ ≤ t ≤ T and λ ∈ [0, ∞) such that u0λ ∈ B.

Proof. Without loss of generality assume that ‖uλ(t)‖Xλ
≥ 1, if not the theorem is already

proved. Proceeding as in the first lines of the proof of the previous theorem above, we obtain

1
2

d
dt
‖uλ(t)‖2

H ≤ −γ‖uλ(t)‖m
Xλ

+
1
θ′

(
C1

ε0

)θ′

+
1

m′

(
C2(t)

ε0

)m′

≤ 1
θ′

(
C1

ε0

)θ′

+
1

m′

(
C2(t)

ε0

)m′

where ε0 > 0 was given in the proof of the previous theorem. Integrating from τ to t ≤ T, we
obtain

‖uλ(t)‖2
H ≤ ‖uλ(τ)‖2

H + (t− τ)

[
1
θ′

(
C1

ε0

)θ′
]
+ K(t)

where K(t) := 1
m′εm′

0

∫ t
τ C2(s)m′ds < ∞ is bounded.

Indeed, as m > 2 we have 1
m < 1

2 , therefore 1
2 < 1

m′ , and then 1 < m′ < 2, because
1
m + 1

m′ = 1. Remembering the definition of C2(t) and the assumption (B2), we can see that
K(T) is bounded.

Consequently

‖uλ(t)‖2
H ≤ ‖uλ(τ)‖2

H + (T − τ)

[
1
θ′

(
C1

ε0

)θ′
]
+ K(T).

Theorem 4.3. Let uλ ∈ C([τ, ∞); H) be the global solution of Problem (Pλ). Then there exist a
constant T2 > 0 and a nondecreasing function B2 : R→ R such that

‖uλ(t)‖Xλ
≤ B2(t), ∀t ≥ T2 + τ, λ ∈ [0, ∞).

Proof. Let uλ be the global solution of (Pλ). Using the identity

d
dt

ϕpλ
(t)(uλ(t)) =

〈
∂ϕpλ

(t)(uλ(t)),
duλ

dt
(t)
〉

=

〈
Aλ(t)uλ(t),

duλ

dt
(t)
〉

=

〈
B(t, uλ(t))−

duλ

dt
(t),

duλ

dt
(t)
〉

= −
∥∥∥∥B(t, uλ(t))−

duλ

dt
(t)
∥∥∥∥2

H
+

〈
B(t, uλ(t))−

duλ

dt
(t), B(t, uλ(t))

〉
≤ −

∥∥∥∥B(t, uλ(t))−
duλ

dt
(t)
∥∥∥∥2

H
+

1
2

∥∥∥∥B(t, uλ(t))−
duλ

dt
(t)
∥∥∥∥2

H

+
1
2
‖B(t, uλ(t))‖2

H .

Therefore,

d
dt

ϕpλ
(t)(uλ(t)) +

1
2

∥∥∥∥B(t, uλ(t))−
duλ

dt
(t)
∥∥∥∥2

H
≤ 1

2
‖B(t, uλ(t))‖2

H ,



Robustness with respect to exponents for nonautonomous equations 7

and thus,

d
dt

ϕpλ
(t)(uλ(t)) ≤

1
2

[
‖B(t, uλ(t))− B(t, 0)‖H + ‖B(t, 0)‖H

]2

≤ 1
2

[
L ‖uλ(t)‖H + ‖B(t, 0)‖H

]2

.

From Theorem 4.1, we obtain

d
dt

ϕpλ
(t)(uλ(t)) ≤ M1(t), ∀t ≥ T1 + τ,

where M1(t) := 1
2 [LB1(t) + ‖B(t, 0)‖H ]

2.
From the definition of subdifferential, we have

ϕpλ
(t)(uλ(t)) ≤

〈
∂ϕpλ

(t)(uλ(t)), uλ(t)
〉

.

Thus,

1
2

d
dt
‖uλ(t)‖2

H + ϕpλ
(t)(uλ(t)) ≤

〈
duλ

dt
(t), uλ(t)

〉
+
〈
∂ϕpλ

(t)(uλ(t)), uλ(t)
〉

=

〈
duλ

dt
(t) + ∂ϕpλ

(t)(uλ(t)), uλ(t)
〉

= 〈B(t, uλ(t)), uλ(t)〉
≤ ‖B(t, uλ(t))‖H‖uλ(t)‖H

≤ 1
2
‖B(t, uλ(t))‖2

H +
1
2
‖uλ(t)‖2

H

≤ M1(t) +
1
2

B1(t)2, ∀t ≥ T1 + τ.

(4.1)

Fixing r > 0 and integrating both sides of (4.1) over (t, t + r) for t ≥ T1 + τ,∫ t+r

t
ϕpλ

(s)(uλ(s))ds ≤ 1
2
‖uλ(t)‖2

H +
∫ t+r

t
M1(s) +

1
2

B1(s)2ds

≤ 1
2

B1(t)2 +
∫ t+r

t
M1(s) +

1
2

B1(s)2ds =: a3(t),

Let yλ(s) = ϕpλ
(s)(uλ(s)), g := 0 and h(s) := M1(s). Then

∫ t+r

t
g(s)ds = 0 =: a1(t),

∫ t+r

t
h(s)ds =: a2(t),

∫ t+r

t
yλ(s)ds ≤ a3(t),

from a slight generalization of the uniform Gronwall lemma [14], we obtain

yλ(t + r) ≤
(

a3(t)
r

+ a2(t)
)

e0 =: r̃1(t), ∀ t ≥ T1 + τ. (4.2)

Therefore, ∫
Ω

D(t, x)
pλ(x)

|∇uλ(`, x)|pλ(x) dx +
∫

Ω

1
pλ(x)

|uλ(`, x)|pλ(x) dx ≤ r̃1(t),
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for all ` ≥ T1 + τ + r and λ ∈ [0, ∞). Then

min{1, β}
M

[ρλ(∇uλ(`)) + ρλ(uλ(`))] ≤ r̃1(t)

for all ` ≥ T1 + τ + r and λ ∈ [0, ∞), and hence,

ρλ(∇uλ(`)) + ρλ(uλ(`)) ≤
M

min{1, β} r̃1(t) (4.3)

for all ` ≥ T1 + τ + r and λ ∈ [0, ∞).
If ` ≥ T1 + τ + r and ‖uλ(`)‖Xλ

≥ 1 there are four cases to analyze.

Case 1: If ‖∇uλ(`)‖pλ(x) ≥ 1 and ‖uλ(`)‖pλ(x) ≥ 1 we know that

‖∇uλ(`)‖
p−λ
pλ(x) ≤ ρλ(∇uλ(`)) ≤ ‖∇uλ(`)‖

p+λ
pλ(x)

and
‖uλ(`)‖

p−λ
pλ(x) ≤ ρλ(uλ(`)) ≤ ‖uλ(`)‖

p+λ
pλ(x).

Since m ≤ p−λ ≤ p+λ ≤ M and using (4.3), we have

‖uλ(`)‖Xλ
≤ R1(t), t ≥ T2 + τ, λ ∈ [0, ∞),

where R1(t) := 2
[ M

min{1,β} r̃1(t)
] 1

m and T2 := T1 + r.

Case 2: If ‖∇uλ(`)‖pλ(x) ≥ 1 and ‖uλ(`)‖pλ(x) ≤ 1 we know that

‖∇uλ(`)‖
p−λ
pλ(x) ≤ ρλ(∇uλ(`)) ≤ ‖∇uλ(`)‖

p+λ
pλ(x)

and
‖uλ(`)‖

p+λ
pλ(x) ≤ ρλ(uλ(`)) ≤ ‖uλ(`)‖

p−λ
pλ(x).

Since m ≤ p−λ ≤ p+λ ≤ M and using (4.3), we have

‖uλ(`)‖Xλ
≤ R2(t), t ≥ T2 + τ, λ ∈ [0, ∞),

where R2(t) :=
[ M

min{1,β} r̃1(t)
] 1

m +
[ M

min{1,β} r̃1(t)
] 1

M .

Case 3: If ‖∇uλ(`)‖pλ(x) ≤ 1 and ‖uλ(`)‖pλ(x) ≥ 1 we know that

‖∇uλ(`)‖
p+λ
pλ(x) ≤ ρλ(∇uλ(`)) ≤ ‖∇uλ(`)‖

p−λ
pλ(x)

and
‖uλ(`)‖

p−λ
pλ(x) ≤ ρλ(uλ(`)) ≤ ‖uλ(`)‖

p+λ
pλ(x).

Since m ≤ p−λ ≤ p+λ ≤ M and using (4.3), we have

‖uλ(`)‖Xλ
≤ R3(t), t ≥ T2 + τ, λ ∈ [0, ∞),

where R3(t) := R2(t).

Case 4: If ‖∇uλ(`)‖pλ(x) ≤ 1 and ‖uλ(`)‖pλ(x) ≤ 1 we know that

‖∇uλ(`)‖
p+λ
pλ(x) ≤ ρλ(∇uλ(`)) ≤ ‖∇uλ(`)‖

p−λ
pλ(x)
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and
‖uλ(`)‖

p+λ
pλ(x) ≤ ρλ(uλ(`)) ≤ ‖uλ(`)‖

p−λ
pλ(x).

Since m ≤ p−λ ≤ p+λ ≤ M and using (4.3), we have

‖uλ(`)‖Xλ
≤ R4(t), t ≥ T2 + τ, λ ∈ [0, ∞),

where R4(t) := 2
[ M

min{1,β} r̃1(t)
] 1

M .
In summary, defining

B2(t) := max

{
1, 2

[(
M

min{1, β} r̃1(t)
) 1

m

+

(
M

min{1, β} r̃1(t)
) 1

M
]}

we have
‖uλ(t)‖Xλ

≤ B2(t), t ≥ T2 + τ, λ ∈ [0, ∞).

Corollary 4.4. Let T2 > 0 obtained in the Theorem 4.3. The following statements are satisfied.

a) Let uλ be a solution of the Problem (Pλ) in [τ, ∞). There exist a nondecreasing function B3 :
R→ R such that

‖uλ(t)‖Xm ≤ B3(t), ∀ t ≥ T2 + τ and λ ∈ [0, ∞),

where Xm = W1,m(Ω);

b) There exist a family of bounded sets D := D(t)t∈R in Xm such that Aλ(t) ⊂ D(t) for each t and
λ ∈ [0, ∞), where Aλ is the pullback attractor for the evolution process associated with Problem
(Pλ);

c) ∪λ∈[0,∞)Aλ(t) is compact in H for each t ∈ R.

Proof. The item a) follows from Theorem 4.3.
The item b) follows from item a).
The item c) follows from compact embedding of Xm in H.

Theorem 4.5. Let uλ be a solution of Problem (Pλ) such that uλ(τ) = u0λ ∈ Xλ and suppose that
there is C > 0 such that ‖u0λ‖Xλ

≤ C for all λ ∈ [0, ∞). Given T > τ, then we have that there exists
D2(T) > 0 such that ‖uλ(t)‖Xλ

≤ D2(T), for all τ ≤ t ≤ T and λ ∈ [τ, ∞).

Proof. Proceeding as in the first lines of the proof of theorem above we obtain by Theorem 4.1
that

d
dt

ϕpλ
(t)(uλ(t)) ≤

1
2

[
‖B(t, uλ(t))− B(t, 0)‖H + ‖B(t, 0)‖H

]2

≤ 1
2

[
L ‖uλ(t)‖H + ‖B(t, 0)‖H

]2

≤ 1
2

[
LD1(T) + ‖B(t, 0)‖H

]2

.

Integrating in (τ, t), t ≤ T, we have

ϕpλ
(t)(uλ(t)) ≤ ϕpλ

(τ)(uλ(τ)) +
L2

2
D1(T)2(T − τ)

+
1
2

∫ t

τ
‖B(s, 0)‖2

H ds + LD1(T)
∫ t

τ
‖B(s, 0)‖Hds.
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As ‖uλ(τ)‖Xλ
≤ C we have that ϕpλ

(τ)(uλ(τ)) ≤ C̃. Since

min(1, β)

M
[ρ(∇uλ(t)) + ρ(uλ(t))] ≤ ϕpλ

(t)(uλ(t)),

we can use assumptions (B2) and (B3) and divide in cases as in the proof of the above theorem
and conclude the result.

5 Upper semicontinuity of pullback attractors

Finally we will show the upper semicontinuity of the pullback attractors but first we es-
tablished in the next theorem the continuity of the process, this proofs the robustness of
the problem and help us to proof our main result which is the upper semicontinuity of the
pullback attractors.

Theorem 5.1. Let {Uλ(t, τ) : t ≥ τ ∈ R} be the evolution process generated by the problem (Pλ).
If each ‖u0λ‖Xλ

≤ C and u0λ → u0 in H when λ → ∞, then Uλ(t, τ)u0λ → U(t, τ)u0 in H as
λ→ ∞, uniformly for t in compact subsets of R.

Proof. Subtracting equation (Pλ) from the limit equation gives

d
dt

(uλ(t)− u(t)) + Aλ(t)uλ(t)− A(t)u(t) = B(t, uλ(t))− B(t, u(t))

for a.e. t ∈ [τ, T]. Then multiplying by uλ(t)− u(t), we obtain

1
2

d
dt
‖uλ(t)− u(t)‖2

H + 〈Aλ(t)uλ(t)− A(t)u(t), uλ(t)− u(t)〉

= 〈B(t, uλ(t))− B(t, u(t)), uλ(t)− u(t)〉
≤ ‖B(t, uλ(t))− B(t, u(t))‖H ‖uλ(t)− u(t)‖H ≤ L ‖uλ(t)− u(t)‖2

H

Moreover, for any ξ, η ∈ RN we have the following inequality for a constant p ≥ 2 (see [5]):(
|ξ|p−2ξ − |η|p−2η

)
· (ξ − η) ≥

(
1
2

)p

|ξ − η|p. (5.1)

Using (5.1), after some computation we obtain

〈Aλ(t)uλ(t)− A(t)u(t), uλ(t)− u(t)〉

≥ β
∫

Ω

(
|∇uλ(t)|pλ(x)−2∇uλ(t)− |∇u(t)|pλ(x)−2∇u(t)

)
(∇uλ(t)−∇u(t)) dx

+
∫

Ω

(
|uλ(t)|pλ(x)−2uλ(t)− |u(t)|pλ(x)−2u(t)

)
(uλ(t)− u(t)) dx

+ β
∫

Ω

(
|∇u(t)|pλ(x)−2∇u(t)− |∇u(t)|p(x)−2∇u(t)

)
(∇uλ(t)−∇u(t)) dx

+
∫

Ω

(
|u(t)|pλ(x)−2u(t)− |u(t)|p(x)−2u(t)

)
(uλ(t)− u(t)) dx

≥ β

(
1
2

)M ∫
Ω
|∇uλ(t)−∇u(t)|pλ(x) dx +

(
1
2

)M ∫
Ω
|uλ(t)− u(t)|pλ(x) dx

+ β
∫

Ω

(
|∇u(t)|pλ(x)−2∇u(t)− |∇u(t)|p(x)−2∇u(t)

)
(∇uλ(t)−∇u(t)) dx

+
∫

Ω

(
|u(t)|pλ(x)−2u(t)− |u(t)|p(x)−2u(t)

)
(uλ(t)− u(t)) dx.
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Then

1
2

d
dt
‖uλ(t)− u(t)‖2

H

≤ L ‖uλ(t)− u(t)‖2
H

− β
∫

Ω

(
|∇u(t)|pλ(x)−2∇u(t)− |∇u(t)|p(x)−2∇u(t)

)
(∇uλ(t)−∇u(t)) dx

−
∫

Ω

(
|u(t)|pλ(x)−2u(t)− |u(t)|p(x)−2u(t)

)
(uλ(t)− u(t)) dx

= L ‖uλ(t)− u(t)‖2
H

− β
∫

Ω

(
|∇u(t)|pλ(x)−2 − |∇u(t)|p(x)−2

)
∇u(t) (∇uλ(t)−∇u(t)) dx

−
∫

Ω

(
|u(t)|pλ(x)−2 − |u(t)|p(x)−2

)
u(t) (uλ(t)− u(t)) dx

≤ L ‖uλ(t)− u(t)‖2
H

+ β
∫

Ω

∣∣∣|∇u(t)|pλ(x)−1 − |∇u(t)|p(x)−1
∣∣∣ |∇uλ(t)−∇u(t)| dx

+
∫

Ω

∣∣∣|u(t)|pλ(x)−1 + |u(t)|p(x)−1
∣∣∣ |uλ(t)− u(t)| dx,

a.e. in (τ, T).
Now, let us estimate the term∫

Ω

∣∣∣|∇u(t)|pλ(x)−1 − |∇u(t)|p(x)−1
∣∣∣ |∇uλ(t)−∇u(t)| dx.

From Theorems 4.3 and 4.5 there exists a constant K := K(T), which is independent of λ,
satisfying |∇u(t)| ≤ K for all t ∈ [τ, T] and a.e. for x ∈ Ω. By the mean value theorem, for
each x ∈ Ω and λ ∈ [0, ∞) there is q ∈ (p(x), pλ(x)), if p(x) ≤ pλ(x) (or q ∈ (pλ(x), p(x)), if
pλ(x) ≤ p(x)) such that∣∣∣|∇u(t)|pλ(x)−1 − |∇u(t)|p(x)−1

∣∣∣ = ∣∣∣|∇u(t)|q−1 ln |∇u(t)|
∣∣∣ |pλ(x)− p(x)|

provided that u(t) 6= 0. From the bound of |∇u(t)| and |∇uλ(t)| we have that there is κ1 such
that ∣∣∣|∇u(t)|q−1 ln |∇u(t)|

∣∣∣ |∇uλ(t)−∇u(t)| ≤ κ1,

for all t ∈ [τ, T] with u(t) 6= 0 and a.e. x ∈ Ω. Thus,∣∣∣|∇u(t)|pλ(x)−1 − |∇u(t)|p(x)−1
∣∣∣ |∇uλ(t)−∇u(t)| ≤ κ1|pλ(x)− p(x)|

for all t ∈ [τ, T] and a.e. x ∈ Ω.
Analogously, we can get κ2 such that∣∣∣|u(t)|pλ(x)−1 − |u(t)|p(x)−1

∣∣∣ |uλ(t)− u(t)| ≤ κ2|pλ(x)− p(x)|

for all t ∈ [τ, T] and a.e. x ∈ Ω.
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Therefore,

1
2

d
dt
‖uλ(t)− u(t)‖2

H ≤ L ‖uλ(t)− u(t)‖2
H

+ β
∫

Ω

∣∣∣|∇u(t)|pλ(x)−1 − |∇u(t)|p(x)−1
∣∣∣ |∇uλ(t)−∇u(t)| dx

+
∫

Ω

∣∣∣|u(t)|pλ(x)−1 + |u(t)|p(x)−1
∣∣∣ |uλ(t)− u(t)| dx,

≤ L ‖uλ(t)− u(t)‖2
H

+ κ1‖pλ(x)− p(x)‖L∞(Ω)

∫
Ω
|∇uλ(t)−∇u(t)| dx

+ κ2‖pλ(x)− p(x)‖L∞(Ω)

∫
Ω
|uλ(t)− u(t)| dx

≤ L ‖uλ(t)− u(t)‖2
H

+ κ1‖pλ(x)− p(x)‖L∞(Ω)

[
1
2
|Ω|+ 1

2
‖∇uλ(t)−∇u(t)‖2

H

]
+ κ2‖pλ(x)− p(x)‖L∞(Ω)

[
1
2
|Ω|+ 1

2
‖uλ(t)− u(t)‖2

H

]
≤ L ‖uλ(t)− u(t)‖2

H

+ κ1‖pλ(x)− p(x)‖L∞(Ω)

[
1
2
|Ω|+ 1

2
K̃(T)

]
+ κ2‖pλ(x)− p(x)‖L∞(Ω)

[
1
2
|Ω|+ 1

2
‖uλ(t)− u(t)‖2

H

]
a.e. in [τ, T], by Theorems 4.3 and 4.5.

Take κ := 2κ1 + 2κ2 + 2|Ω|+ K̃(T). Integrating from τ to t, t ≤ T, we obtain

‖uλ(t)− u(t)‖2
H ≤ ‖u0λ − u0‖2

H + (t− τ)κ‖pλ(x)− p(x)‖L∞(Ω)∫ t

τ

(
2L + κ2‖pλ(x)− p(x)‖L∞(Ω)

)
‖uλ(s)− u(s)‖2

H ds

Then, from the Gronwall–Bellman lemma, we obtain

‖uλ(t)− u(t)‖2
H ≤

(
‖u0λ − u0‖2

H + (T − τ)κ‖pλ(x)− p(x)‖L∞(Ω)

)
eL(λ)(T−τ) (5.2)

for all t ∈ [τ, T], where L(λ) := 2L + κ2‖pλ(x)− p(x)‖L∞(Ω) is bounded. Therefore, uλ → u
in C([τ, T]; H) as λ→ ∞.

Theorem 5.2. The family of pullback attractors {Aλ(t) : t ∈ R}, λ ∈ [0, ∞) is upper semicontinuous.

Proof. We will prove that for each t ∈ R,

dist (Aλ(t),A(t))→ 0, as λ→ ∞.

Given t ∈ R and ε > 0, let τ ∈ R be such that

dist (U(t, τ)D(τ),A(t)) < ε

3
,

where ∪λ∈[0,∞)Aλ(τ) ⊂ D(τ) and D(τ) is a bounded set in H (see Corollary 4.4).
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Given ψ0 ∈ Aλ0(τ) from invariance of the attractors there are τ1 ∈ R, with τ ≥ T2 + τ1,
and ψ̃0 ∈ Aλ0(τ1) such that, from Theorem 4.3, we have that

‖ψ0‖Xλ0
= ‖Uλ0(τ, τ1)ψ̃0‖Xλ0

≤ B2(τ).

Note that for each λ ∈ [0, ∞) and ψλ ∈ Aλ(τ) we can found τλ ∈ R and ψ̃λ ∈ Aλ(τλ) such
that τ ≥ T2 + τλ, and then, like above, ensuring that

‖ψλ‖Xλ
≤ B2(τ).

Thus, from Theorem 5.1, more precisely by the expression (5.2), there is λ0 = λ0(ε) > 0 such
that if λ ≥ λ0 we have that

‖Uλ(t, τ)ψλ −U(t, τ)ψλ‖H <
ε

3
.

for all ψλ ∈ Aλ(τ).
Then, we obtain

sup
ψλ∈Aλ(τ)

‖Uλ(t, τ)ψλ −U(t, τ)ψλ‖ ≤
ε

3

for all λ ≥ λ0.
Therefore,

dist (Aλ(t),A(t)) = dist (Uλ(t, τ)Aλ(τ),A(t))
= sup

ψλ∈Aλ(τ)

dist (Uλ(t, τ)ψλ,A(t))

≤ sup
ψλ∈Aλ(τ)

{dist (Uλ(t, τ)ψλ, U(t, τ)ψλ) + dist (U(t, τ)ψλ,A(t))}

≤ ε

3
+

ε

3
< ε,

for all λ ≥ λ0, showing the upper semicontinuity desired.

Note that, in all this work we could have asked only that pλ, p ∈ C(Ω, R) with 2 < m ≤
p− ≤ p+ ≤ M and pλ → p in L∞(Ω) as λ → ∞, and then, for λ large enough, all results
would be satisfied.

6 Final remarks

In this work we have ensured the upper semicontinuity of the pullback attractors, in other
words it means that for each t ∈ R,

Aλ(t)→ A(t), as λ→ ∞. (6.1)

In [7] the authors considered B(t, u(t)) ≡ B(u) and D(t, ·) → D∗(·) in L∞(Ω) when t → ∞,
and ensured that

A(t)→ A∞, as t→ ∞,

where A∞ is the global attractor for the autonomous version of problem (Pλ) with B(u), D∗

and p(x). Of course for each λ ∈ [0, ∞), using the same work cited above, we can ensure the
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existence of a global attractor Aλ
∞ associated with a autonomous version of problem as (Pλ)

with B(u), D∗ and pλ(x), and

Aλ(t)→ Aλ
∞, as t→ ∞. (6.2)

Furthermore, with the work [13] we can ensure that

Aλ
∞ → A∞, as λ→ ∞.

Observing all this behavior we can construct the following diagrams for the case B(t, u) ≡
B(u)

Aλ(t)

A(t) A∞

λ→∞

t→∞

and
Aλ(t) Aλ

∞

A∞

t→∞

λ→∞ .

This behavior draws our attention, because even for real functions this behavior does not
always happen. A result for real functions says that we can ensure that

lim
t→+∞

(
lim
n→∞

fn(t)
)
= lim

n→∞

(
lim

t→+∞
fn(t)

)
when fn → f uniformly in t (see Theorem 7.11 in [10]) otherwise there are examples where
these two limits are not the same.

With these ideas in mind it is reasonable to wonder whether it is possible to show the
double limit, i.e., limλ→∞

t→∞
Aλ(t) = A∞. It seems that some uniformity on t would be necessary

in (6.1) or some uniformity on λ in (6.2).
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