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Abstract. The paper is devoted to study the uniqueness of solutions for a differential
system with coupled integral boundary conditions under a Lipschitz condition. Our
approach is based on the Banach’s contraction principle. The interesting point is that
the Lipschitz constant is related to the spectral radius corresponding to the related
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1 Introduction

In this paper, we consider the uniqueness of solutions for the following differential system
with coupled integral boundary conditions

−x′′(t) = f (t, x(t), y(t)), t ∈ (0, 1),

−y′′(t) = g(t, x(t), y(t)), t ∈ (0, 1),

x(0) = y(0) = 0, x(1) = α[y], y(1) = β[x]

(1.1)

where α[x], β[x] are bounded linear functionals on C[0, 1] given by

α[x] =
∫ 1

0
x(t)dA(t), β[x] =

∫ 1

0
x(t)dB(t)

involving Riemann–Stieltjes integrals, in particular, A, B are non-decreasing functions, so dA,
dB are positive Stieltjes measures.
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Differential system with coupled boundary conditions arise from the study of reaction-
diffusion equations and Sturm–Liouville problems, and have extensive applications in various
fields of sciences and engineering such as the heat equation and mathematical biology.

The existence of solutions or positive solutions of differential system with coupled bound-
ary conditions has been studied by many researchers, see [1–4,6–10,13] for some recent work.
For example, by using the Guo–Krasnosel’skii fixed-point theorem, the existence of positive
solution of the following singular system with coupled four-point boundary value conditions
are obtained [1] 

−x′′(t) = f1(t, x(t), y(t)), t ∈ (0, 1),

−y′′(t) = f2(t, x(t), y(t)), t ∈ (0, 1),

x(0) = y(0) = 0, x(1) = αy(ξ), y(1) = βx(η).

In [8], Infante, Minhós and Pietramala, by means of classical fixed point index theory, provided
a general theory for existence of positive solutions for coupled systems.

The uniqueness of solutions can be an important problem for boundary value problems
of differential equation or differential system. This problem has been investigated by many
authors by use of techniques of nonlinear analysis. We refer the reader to [3, 4] for some
recent uniqueness results for differential system, to [5, 12, 14] for differential equation. In [3],
by means of the Guo–Krasnosel’skii fixed-point theorem and mixed monotone method, Cui,
Liu and Zhang investigated the uniqueness of positive solutions of singular system (1.1) in
the case that the nonlinearities f and g may be singular at t = 0, 1.

However, to our best knowledge, there are fewer results concerned the uniqueness of
solutions for differential systems with coupled integral boundary conditions. So, we consider
the uniqueness of solutions for differential system (1.1) under a Lipschitz condition on f and
g. By using Banach’s contraction principle, a new result on the uniqueness of solutions for
differential system (1.1) is obtained. It is worthwhile to mention that the Lipschitz constant is
related to the spectral radius corresponding to the related linear operators.

Throughout the paper, we assume that the following conditions hold.

(H1) α[t] =
∫ 1

0 tdA(t) > 0, β[t] =
∫ 1

0 tdB(t) > 0, κ = 1− α[t]β[t] > 0.

(H2) f , g : [0, 1]×R2 → R are continuous.

2 Preliminaries

Let C[0, 1] be the Banach space of continuous functions endowed with the norm ‖x‖ =

maxt∈[0,1] |x(t)| and let P1 be the cone of nonnegative functions in C[0, 1] given by

P1 = {x ∈ C[0, 1] : x(t) ≥ 0, ∀ t ∈ [0, 1]}.

Thus E = C[0, 1]× C[0, 1] is a Banach space with the norm defined by ‖(x, y)‖E = max{‖x‖,
‖y‖}, and P = P1 × P1 is a cone in E.

Lemma 2.1 ([2]). Let u, v ∈ C[0, 1], then the system of BVPs{
−x′′(t) = u(t), −y′′(t) = v(t), t ∈ [0, 1],

x(0) = y(0) = 0, x(1) = α[y], y(1) = β[x]
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has integral representation
x(t) =

∫ 1

0
G1(t, s)u(s)ds +

∫ 1

0
H1(t, s)v(s)ds,

y(t) =
∫ 1

0
G2(t, s)v(s)ds +

∫ 1

0
H2(t, s)u(s)ds,

where

G1(t, s) =
α[t]t

κ

∫ 1

0
k(s, τ)dB(τ) + k(t, s), H1(t, s) =

t
κ

∫ 1

0
k(s, τ)dA(τ),

G2(t, s) =
β[t]t

κ

∫ 1

0
k(s, τ)dA(τ) + k(t, s), H2(t, s) =

t
κ

∫ 1

0
k(s, τ)dB(τ),

k(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1,

s(1− t), 0 ≤ s ≤ t ≤ 1.

Employing Lemma 2.1, we can reformulate BVP (1.1) as a fixed point for the following
integral equations:

x(t) =
∫ 1

0
G1(t, s) f (s, x(s), y(s))ds +

∫ 1

0
H1(t, s)g(s, x(s), y(s))ds,

y(t) =
∫ 1

0
G2(t, s)g(s, x(s), y(s))ds +

∫ 1

0
H2(t, s) f (s, x(s), y(s))ds.

Define an operator S by

S(x, y) = (S1(x, y), S2(x, y)), (x, y) ∈ E, (2.1)

where operators S1, S2 : E→ C[0, 1] are defined by
S1(x, y)(t) =

∫ 1

0
G1(t, s) f (s, x(s), y(s))ds +

∫ 1

0
H1(t, s)g(s, x(s), y(s))ds, t ∈ [0, 1],

S2(x, y)(t) =
∫ 1

0
G2(t, s)g(s, x(s), y(s))ds +

∫ 1

0
H2(t, s) f (s, x(s), y(s))ds, t ∈ [0, 1].

Then the existence of a solution of differential system (1.1) is equivalent to the existence of a
fixed point of S on E.

It is well known that the function k(t, s) has the following properties:

t(1− t)s(1− s) ≤ k(t, s) ≤ t(1− t), ∀ t, s ∈ [0, 1].

From this and (H1), for t, s ∈ [0, 1], we have

G1(t, s) ≤ t +
α[t]t

κ

∫ 1

0
dB(τ), H1(t, s) ≤ t

κ

∫ 1

0
dA(τ),

G2(t, s) = t +
β[t]t

κ

∫ 1

0
dA(τ), H2(t, s) =

t
κ

∫ 1

0
dB(τ),

and

G1(t, s) ≥ α[t]t
κ

∫ 1

0
k(s, τ)dB(τ) ≥ α[t]s(1− s)

κ

∫ 1

0
τ(1− τ)dB(τ) · t,

G2(t, s) ≥ β[t]t
κ

∫ 1

0
k(s, τ)dA(τ) ≥ β[t]s(1− s)

κ

∫ 1

0
τ(1− τ)dA(τ) · t,
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H1(t, s) ≥ s(1− s)
κ

∫ 1

0
τ(1− τ)dA(τ) · t,

H2(t, s) ≥ H2(t, s) =
s(1− s)

κ

∫ 1

0
τ(1− τ)dB(τ) · t.

Therefore we have
Gi(t, s) ≤ ρt, Hi(t, s) ≤ ρt, i = 1, 2, (2.2)

and
Gi(t, s) ≥ νts(1− s), Hi(t, s) ≥ νts(1− s), i = 1, 2, (2.3)

where

ρ = max
{

α[t]
κ

β[1] + 1,
β[t]
κ

α[1] + 1,
1
κ

β[1],
1
κ

α[1]
}

,

ν = min
{

α[t]
κ

β[t(1− t)],
β[t]
κ

α[t(1− t)],
1
κ

β[t(1− t)],
1
κ

α[t(1− t)]
}

.

Let R+ = [0,+∞). For a = (a, b, c, d) ∈ R4
+ with a2 + b2 + c2 + d2 6= 0, define an operator

T : E→ E by
Ta(x, y) = (Ta,1(x, y), Ta,2(x, y)), (2.4)

where operators Ta,1, Ta,2 : E→ C[0, 1] are defined by

Ta,1(x, y)(t) =
∫ 1

0
G1(t, s)(ax(s) + by(s))ds +

∫ 1

0
H1(t, s)(cx(s) + dy(s))ds, t ∈ [0, 1],

Ta,2(x, y)(t) =
∫ 1

0
G2(t, s)(cx(s) + dy(s))ds +

∫ 1

0
H2(t, s)(ax(s) + by(s))ds, t ∈ [0, 1].

It is not difficult to verify that Ta : E→ E is a completely continuous linear operator.

Definition 2.2 ([11]). Let E be a Banach space, P ⊂ E be a cone in E. Let e ∈ P\{θ}, a mapping
T : P→ P is called e−positive if for every nonzero x ∈ P a natural number n = n(x) and two
positive number cx, dx can be found such that

cxe ≤ Tnx ≤ dxe.

Recall that a real number λ is an eigenvalue of the operator T if there exists a non-zero
element x ∈ E such that Tx = λx.

Lemma 2.3 ([11, Theorem 2.5, Lemma 2.1, Theorem 2.10]). Suppose that T : E → E is a
e−positive, completely continuous linear operator. If there exist ψ ∈ E\(−P) and a constant c > 0
such that cTψ ≥ ψ, then the spectral radius r(T) 6= 0, and r(T) is the unique positive eigenvalue with
its eigenfunction in P.

Lemma 2.4. Suppose that (H1) holds. Then for the operator Ta defined by (2.4), there is a unique
positive eigenvalue r(Ta) with its eigenfunction in P.

Proof. First, we show that Ta is e−positive with e(t) = (t, t), that is, for any (x, y) ∈ P\{θ},
there exist cx,y, dx,y > 0 such that

cx,y · e ≤ Ta(x, y) ≤ dx,y · e. (2.5)

Let dx,y = ρ(a + c)
∫ 1

0 x(s)ds + ρ(b + d)
∫ 1

0 y(s)ds. By (2.2), we can derive Ta(x, y)(t) ≤ dx,y ·
(t, t) = dx,y · e(t). Let cx,y = ν(a + c)

∫ 1
0 s(1− s)x(s)ds + ν(b + d)

∫ 1
0 s(1− s)y(s)ds. By (2.3),

Ta(x, y)(t) ≥ cx,y · e(t) holds, in particular, we have Tae(t) ≥ ce(t) · e(t). So (2.5) is proved and
Lemma 2.4 holds follows from Lemma 2.3. This completes the proof.
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Remark 2.5. Let (ϕ, ψ) be the positive eigenfunction of Ta corresponding to r(Ta), thus

Ta(ϕ, ψ) = r(Ta)(ϕ, ψ). (2.6)

Then by the proof of Lemma 2.4 and Definition 2.2, there exist cϕ,ψ > 0 such that

cϕ,ψ · (t, t) = cϕ,ψ · e(t) ≤ Ta(ϕ, ψ)(t) = r(Ta) · (ϕ(t), ψ(t)),

i.e.,

t ≤ r(Ta)

cϕ,ψ
ϕ(t), t ≤ r(Ta)

cϕ,ψ
ψ(t), t ∈ [0, 1]. (2.7)

3 Main results

Theorem 3.1. Suppose that there exists a = (a, b, c, d) ∈ R4
+ with a2 + b2 + c2 + d2 6= 0 such that

| f (t, u1, v1)− f (t, u2, v2)| ≤ a|u1 − u2|+ b|v1 − v2|, ∀ t ∈ [0, 1], u1, u2, v1, v2 ∈ R, (3.1)

and

|g(t, u1, v1)− g(t, u2, v2)| ≤ c|u1 − u2|+ d|v1 − v2|, ∀ t ∈ [0, 1], u1, u2, v1, v2 ∈ R. (3.2)

If r(Ta) < 1, then differential system (1.1) has a unique solution in E.

Proof. It is clear that the fixed points of operator S coincide with the solutions to differential
system (1.1).

For (x, y) ∈ E, by (2.2), (2.7), (3.1) and(3.2) we have

|S1(x, y)(t)|

≤
∣∣∣∣∫ 1

0
G1(t, s) f (s, x(s), y(s))ds−

∫ 1

0
G1(t, s) f (s, 0, 0)ds

∣∣∣∣+ ∣∣∣∣∫ 1

0
G1(t, s) f (s, 0, 0)ds

∣∣∣∣
+

∣∣∣∣∫ 1

0
H1(t, s)g(s, x(s), y(s))ds−

∫ 1

0
H1(t, s)g(s, 0, 0)ds

∣∣∣∣+ ∣∣∣∣∫ 1

0
H1(t, s)g(s, 0, 0)ds

∣∣∣∣
≤
∫ 1

0
G1(t, s)| f (s, x(s), y(s))− f (s, 0, 0)|ds +

∫ 1

0
G1(t, s)| f (s, 0, 0)|ds

+
∫ 1

0
H1(t, s)|g(s, x(s), y(s))− g(s, 0, 0)|ds +

∫ 1

0
H1(t, s)|g(s, 0, 0)|ds

≤ ρt
(
(a + c)

∫ 1

0
|x(s)|ds + (b + d)

∫ 1

0
|y(s)|ds +

∫ 1

0
| f (s, 0, 0)|ds +

∫ 1

0
|g(s, 0, 0)|ds

)
≤ r(Ta)ρ

cϕ,ψ

(
(a + c)

∫ 1

0
|x(s)|ds + (b + d)

∫ 1

0
|y(s)|ds

+
∫ 1

0
| f (s, 0, 0)|ds +

∫ 1

0
|g(s, 0, 0)|ds

)
· ϕ(t), t ∈ [0, 1].

In the same way, we can prove that

|S2(x, y)(t)| ≤ r(Ta)ρ

cϕ,ψ

(
(a + c)

∫ 1

0
|x(s)|ds + (b + d)

∫ 1

0
|y(s)|ds

+
∫ 1

0
| f (s, 0, 0)|ds +

∫ 1

0
|g(s, 0, 0)|ds

)
· ψ(t), t ∈ [0, 1].
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Therefore, S maps all of E into the following vector subspace

E1 =

{
(x, y) ∈ E :

|x(t)|
ϕ(t)

,
|y(t)|
ψ(t)

are bounded for t ∈ [0, 1]
}

.

Evidently, E1 is a subspace of E and E1 is an Banach space with the norm

‖(x, y)‖1 = max

{
sup

t∈[0,1]

|x(t)|
ϕ(t)

, sup
t∈[0,1]

|y(t)|
ψ(t)

}
.

So it suffices to consider the fixed point of S in E1. Note that

Ta(ϕ, ψ) = r(Ta)(ϕ, ψ)

means

r(Ta)ϕ(t) =
∫ 1

0
G1(t, s)(aϕ(s) + bψ(s))ds +

∫ 1

0
H1(t, s)(cϕ(s) + dψ(s))ds

and

r(Ta)ψ(t) =
∫ 1

0
G2(t, s)(cϕ(s) + dψ(s))ds +

∫ 1

0
H2(t, s)(aϕ(s) + bψ(s))ds.

Let (x1, y1), (x2, y2) ∈ E1. Then

|S1(x1, y1)(t)− S1(x2, y2)(t)|

≤
∣∣∣∣∫ 1

0
G1(t, s) f (s, x1(s), y1(s))ds−

∫ 1

0
G1(t, s) f (s, x2(s), y2(s))ds

∣∣∣∣
+

∣∣∣∣∫ 1

0
H1(t, s)g(s, x1(s), y1(s))ds−

∫ 1

0
H1(t, s)g(s, x2(s), y2(s))ds

∣∣∣∣
≤ a

∫ 1

0
G1(t, s)|x1(s)− x2(s)|ds + b

∫ 1

0
G1(t, s)|y1(s)− y2(s)|ds

+ c
∫ 1

0
H1(t, s)|x1(s)− x2(s)|ds + d

∫ 1

0
H1(t, s)|y1(s)− y2(s)|ds

≤ a
∫ 1

0
G1(t, s)‖(x1, y1)− (x2, y2)‖1ϕ(s)ds + b

∫ 1

0
G1(t, s)‖(x1, y1)− (x2, y2)‖1ψ(s)ds

+ c
∫ 1

0
H1(t, s)‖(x1, y1)− (x2, y2)‖1ϕ(s)ds + d

∫ 1

0
H1(t, s)‖(x1, y1)− (x2, y2)‖1ψ(s)ds

= ‖(x1, y1)− (x2, y2)‖1 · Ta,1(ϕ, ψ)(t) = r(Ta)‖(x1, y1)− (x2, y2)‖1 · ϕ(t).

In the same way, we can prove that

|S2(x1, y1)(t)− S2(x2, y2)(t)| ≤ r(Ta)‖(x1, y1)− (x2, y2)‖1 · ψ(t), t ∈ [0, 1].

The above two inequalities imply that

‖S(x1, y1)− S(x2, y2)‖1 ≤ r(Ta)‖(x1, y1)− (x2, y2)‖1, ∀ (x1, y1), (x2, y2) ∈ E1.

Notice that r(Ta) < 1, the operator S is a contraction. Hence, it follows from the well known
Banach’s contraction principle that S has a unique fixed point (x, y) ∈ E1, which is obviously
a unique solution of differential system (1.1). It ends the proof.
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From the above argument, we know that the basic space used in the proof of Theorem 3.1
is E1, not in E. If we consider differential system (1.1) in E by use of Banach’s contraction
principle, the result of Theorem 3.1 remains true except that the condition r(Ta) < 1 is replaced
by ‖Ta‖ < 1, where

‖Ta‖ = sup
(x,y)∈E

‖Ta(x, y)‖E

‖(x, y)‖E
.

It follows from the well-known Gelfand’s Formula that

r(Ta) = lim
n→∞

n
√
‖Tn

a ‖ ≤ ‖Ta‖

which concludes that it may be favorable to consider the uniqueness of differential system
(1.1) in E1.

In the following, we give two examples to illustrate our main result. Obviously, it is rather
difficult to determine the value of r(Ta) in general. In the two examples, we determine the
spectral radius r(Ta) for certain four-point coupled boundary conditions which can be seen as
a special cases of coupled integral boundary conditions.

Example 3.2. Consider the system
−x′′(t) = a sin x(t) + h1(t), t ∈ (0, 1),

−y′′(t) = a
√

y2(t) + 1 + h2(t), t ∈ (0, 1),

x(0) = y(0) = 0, x(1) = y( 1
3 ), y(1) = 3x( 1

4 ),

(3.3)

where a ∈ R, h1, h2 ∈ C[0, 1]. In this case the integral boundary conditions are given by the
functionals α[y] = y( 1

3 ) and β[x] = 3x( 1
4 ).

Let
f (t, x, y) = a sin x + h1(t), g(t, x, y) = a

√
y2 + 1 + h2(t),

then
| f (t, u1, v1)− f (t, u2, v2)| ≤ |a||u1 − u2|, ∀ t ∈ [0, 1], u1, u2, v1, v2 ∈ R

and
|g(t, u1, v1)− g(t, u2, v2)| ≤ |a||v1 − v2|, ∀ t ∈ [0, 1], u1, u2, v1, v2 ∈ R.

Thus we have b = c = 0, κ = 1− α[t]β[t] = 3
4 .

Take a = (|a|, 0, 0, |a|). Let (ϕ, ψ) be the positive eigenfunction of Ta corresponding to
r(Ta), thus

Ta,1(ϕ, ψ) = r(Ta)ϕ, Ta,2(ϕ, ψ) = r(Ta)ψ. (3.4)

Let λ = |a|
r(Ta)

. It follows from (3.4) that{
−ϕ′′(t) = λϕ, −ψ′′(t) = λψ(t), t ∈ (0, 1),

ϕ(0) = ψ(0) = 0, ϕ(1) = ψ( 1
3 ), ψ(1) = 3ϕ( 1

4 ).

By ordinary method, we conclude that (ϕ(t), ψ(t)) = (c1, c2) sin
√

λt for some c1, c2 ∈ R. This
together with the four-point coupled boundary conditions yields

c1 sin
√

λ = c2 sin

√
λ

3
, c2 sin

√
λ = 3c1 sin

√
λ

4
.
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So, λ is the unique positive solution of the equation

sin2
√

λ = 3 sin

√
λ

3
sin

√
λ

4
, λ ∈ (0, π2).

We can obtain λ ≈ 1.95852 ≈ 3.83584 by MATLAB. Therefore, if |a| < 3.83584, the problems
(3.3) has a unique solution.

Example 3.3. Consider the differential system
−x′′(t) = a cos x(t)− a ln(1 + y2(t)) + h1(t), t ∈ (0, 1),

−y′′(t) = a arctan x(t)− ay(t) + h2(t), t ∈ (0, 1),

x(0) = y(0) = 0, x(1) = y( 1
2 ), y(1) = 2x( 1

4 ),

(3.5)

where a ∈ R, h1, h2 ∈ C[0, 1]. Let

f (t, x, y) = a cos x− a ln(1 + y2) + h1(t), g(t, x, y) = a arctan x− ay + h2(t),

then
| f (t, u1, v1)− f (t, u2, v2)| ≤ |a||u1 − u2|+ |a||v1 − v2|,

and
|g(t, u1, v1)− g(t, u2, v2)| ≤ |a||u1 − u2|+ |a||v1 − v2|,

where t ∈ [0, 1], u1, u2, v1, v2 ∈ R.
Take a = (|a|, |a|, |a|, |a|). Let (ϕ, ψ) be the positive eigenfunction of Ta corresponding to

r(Ta), thus
Ta,1(ϕ, ψ) = r(Ta)ϕ, Ta,2(ϕ, ψ) = r(Ta)ψ. (3.6)

Let λ = |a|
r(Ta)

. It follows from (3.6) that{
−ϕ′′(t) = λϕ(t) + λψ(t), −ψ′′(t) = λϕ(t) + λψ(t), t ∈ (0, 1),

ϕ(0) = ψ(0) = 0, ϕ(1) = ψ( 1
2 ), ψ(1) = 2ϕ( 1

4 ).

By ordinary method, we deduce that ϕ(t) = c1
2 sin

√
2λt + c2

2 t, ψ(t) = c1
2 sin

√
2λt − c2

2 t for
some c1, c2 ∈ R. Clearly, c1 6= 0 holds from the non-negativity of functions ϕ and ψ. Without
loss of generality, we assume that c1 = 2. Considering the boundary conditions, we have

sin
√

2λ +
c2

2
= sin

√
2λ

2
− c2

4
,

and

sin
√

2λ− c2

2
= 2

(
sin

√
2λ

4
+

c2

8

)
.

Therefore, λ is the smallest positive solution of the equation

2 sin
√

2λ− sin

√
2λ

2
− 2 sin

√
2λ

4
= 0, λ ∈

(
0,

π2

2

)
.

With the help of MATLAB, we have λ ≈ 2.0236421 which implies that the problems (3.5) has
a unique solution if |a| ≤ 2.02364.
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