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Abstract. In this paper we study the nonlocal Neumann boundary value problem of
the following form

u′′ = f (t, u, u′), u′(0) = 0, u′(1) =
∫ 1

0
u′(s)dg(s),

where f : [0, 1] × Rn × Rn → Rn and g = diag(g1, . . . , gn) with gi : [0, 1] → R,
i = 1, . . . , n. The case when the function f does not depend on u′ is also considered.
The existence of solutions is obtained by means of the generalized Miranda theorem.
The main results can be applied to many problems of this type depending on which
conditions will be imposed upon the function f .
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Neumann problem, the Miranda theorem, Rδ-sets.
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1 Introduction

We consider the following nonlocal boundary value problem

u′′ = f (t, u, u′), u′(0) = 0, u′(1) =
∫ 1

0
u′(s)dg(s), (1.1)

where f : [0, 1]×Rn ×Rn → Rn and g : [0, 1] → Rn with g = diag(g1, . . . , gn). Observe that
the problem (1.1) is always resonant, since the functions u(t) ≡ b ∈ Rn are solutions to the
corresponding homogenous linear problem

u′′ = 0, u′(0) = 0, u′(1) =
∫ 1

0
u′(s)dg(s).

When g ≡ 0, the problem (1.1) reduces to the classical Neumann boundary value problem,
which has been extensively studied (see, for instance, [7,8,12,16,21] and the references therein).

BEmail: katarzyna.szymanska-debowska@p.lodz.pl

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/163095915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.14232/ejqtde.2018.1.28
https://www.math.u-szeged.hu/ejqtde/


2 K. Szymańska-Dębowska

Other types of generalizations of Neumann boundary value problems involving Riemann–
Stieltjes integrals than those discussed in this paper can be found, for instance, in [9, 19].

Recently, the following problem

x′′ = f (t, x), x′(0) = 0, x′(1) =
∫ 1

0
x′(s) dg(s), (1.2)

was considered in [17], where was shown that, under some Landesman–Lazer–Nirenberg-
type asymptotic condition, the problem (1.2) has at least one solution. In [13], one can find a
number of existence results of the problem (1.1), for instance: existence theorem in the case
when the function f satisfies some Villari-type conditions, existence conditions in terms of the
non-vanishing of the Brouwer degree of some mapping in Rn depending upon f and g (the
conditions for the problem (1.2) made in [17] follow from this result).

So far as we aware, the problems (1.1) and (1.2) were studied only in [13] and [17]. How-
ever, in both papers the function f is considered to be bounded. In this paper, using the
generalized Miranda theorem, we shall weaken the assumptions imposed upon the function
f in [13] and [17].

First, for the convenience of the reader, let us recall some notation and terminology needed
later on. Let X, Y be nonempty metric spaces. We say that a space X is contractible, if there exist
x0 ∈ X and a homotopy M : X × [0, 1]→ X such that M(x, 0) = x and M(x, 1) = x0 for every
x ∈ X. A compact space X is an Rδ-set (we write X ∈ Rδ) if there is a decreasing sequence Xn

of compact contractible spaces such that X =
⋂

n≥1 Xn. A set-valued map H : X ( Y is upper
semicontinuous (written USC) if, given an open V ⊂ Y, the set {x ∈ X | H(x) ⊂ V} is open.
We say that H : X ( Y is an Rδ-map if it is USC and, for each x ∈ X, H(x) ∈ Rδ. The key tool
in our approach is the following generalization of the Miranda theorem:

Theorem 1.1 ([18]). Let Ai > 0, i = 1, . . . , n, and F be an admissible map from ∏n
i=1[−Ai, Ai] to

Rn, i.e. there exist a Banach space E, dimE ≥ n, a linear, bounded and surjective map h : E → Rn

and an Rδ–map H from ∏n
i=1[−Ai, Ai] to E such that F = h ◦ H. If for any i = 1, . . . , n and every

y ∈ F(a), where |ai| = Ai, we have

ai · yi ≥ 0 (1.3)

or

ai · yi ≤ 0, (1.4)

then there exists a ∈ ∏n
i=1[−Ai, Ai] such that 0 ∈ F(a).

Remark 1.2. Theorem 1.1 differs from Theorem 5 proved in [18] with the condition (1.4). To
show that Theorem 1.1 holds true with the condition (1.4), in the proof given in [18] it is
sufficient to consider the following set-valued map G : ∏n

i=1[−Ai, Ai] ( ∏n
i=1[−Ai, Ai] and

the diagram

D :
n

∏
i=1

[−Ai, Ai]
Φ0
( E h→

n

∏
i=1

[−Ai, Ai],

where G = h ◦ Φ0 and Φ0(q) := {x ∈ E | x = j(q) + εz, z ∈ H(q)} with ε > 0 small enough
and j : Rn → E given by

j(q) =
n

∑
i=1

qiei,



Solutions to nonlocal Neumann BVPs 3

where ei is the element of the space E such that hj(ei) = δij, i, j = 1, . . . , n. Note that in order
to prove Theorem 1.1 with the condition (1.4), it is sufficient to change only the definition of
the map Φ0, the rest of the proof remains the same.

In this paper, using the generalized Miranda theorem (Theorem 1.1), general theorems of
the existence of solutions to the problems (1.1) and (1.2) are proved (Theorems 2.1–2.5). On the
one hand, this approach allows to consider functions f which can be unbounded, on the other
hand, as opposed to the previous results in which g was of bounded variation ([13, 17]), we
need to make some additional assumptions upon the function g. Special cases and examples,
for which the assumptions of Theorems 2.1–2.5 are satisfied, are given in Section 3.

The generalized Miranda theorem (Theorem 1.1) can be applied to systems of ordinary
differential equations, to both nonresonant and resonant cases. In [18] some examples of
using this method for systems of n differential equations of the form u′′ = f (t, u, u′) subject to
various local boundary conditions posed on an interval or on a half-line are given. Recently,
this approach has been applied to the following nonlocal resonant problem

x′′ = f (t, x, x′), x′(0) = 0, x(1) =
∫ 1

0
x(s) dg(s).

Under standard growth and sign conditions imposed on the function f and assuming that for
each i = 1, . . . , k functions gi are nondecreasing, it was showed that the above problem has at
least one solution (see [10] for more details).

2 Existence results

Denote by C1 ([0, 1], Rn) the space of once continuously differentiable functions with the usual
norm.

Let us consider the following family of initial value problems

u′′ = f (t, u, u′), u(0) = a, u′(0) = 0, (2.1)

where a ∈ Rn and f : [0, 1]×Rn ×Rn → Rn.
Define an operator T : Rn × C1 ([0, 1], Rn)→ C1 ([0, 1], Rn) by

Ta(u)(t) = a +
∫ t

0
(t− s) f (s, u(s), u′(s))ds. (2.2)

Let a ∈ Rn be fixed and set

Fix Ta := {u ∈ C1 ([0, 1], Rn) | Tau = u}.

Observe, that u ∈ Fix Ta if and only if u is a solution to the problem (2.1).

Let us consider a map H : Rn ( C1 ([0, 1], Rn) such that

H(a) = Fix Ta (2.3)

and define a map h : C1 ([0, 1], Rn)→ Rn by

h(u) = u′(1)−
∫ 1

0
u′(s)dg(s). (2.4)

Now, let a multifunction F : Rn ( Rn be such that F = h ◦ H, i.e.,

F(a) =
{

u′(1)−
∫ 1

0
u′(s)dg(s)

∣∣∣∣ u ∈ Fix Ta

}
. (2.5)
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Theorem 2.1. Let the following assumptions be fulfilled:

(F1) f : [0, 1]×Rn ×Rn → Rn is continuous;

(T1) (a priori estimate) for each a ∈ Rn the possible solutions to the problem (2.1) are equibounded in
the space C1 ([0, 1], Rn);

(G) for each i = 1, . . . , k, gi is nondecreasing, 0 ≤
∫ 1

0 dgi(s) ≤ 1 and, if
∫ 1

0 dgi(s) = 1, then gi is
not constant on [0, 1).

Moreover, assume that there are constants Ai > 0, i = 1, . . . , n, such that

(A1) if u ∈ Fix Ta with ai := Ai, then the functions u′i are nondecreasing on [0, 1], i = 1, . . . , n;

(A2) if u ∈ Fix Ta with ai := −Ai, then the functions u′i are nonincreasing on [0, 1], i = 1, . . . , n.

Then the problem (1.1) has at least one solution.

Proof. First, observe that h defined in (2.4) is a linear and continuous map. We shall show
that h is surjective. Let x = (x1, . . . , xn) ∈ Rn. By the assumption (G), one can always find
a function u ∈ C1([0, 1], Rn) such that u′i(1) = 0 and

∫ 1
0 u′i(s) dgi(s) 6= 0, i = 1, . . . , n. Let

di :=
∫ 1

0 u′i(s) dgi(s) and set

ui(t) := − xi

di
ui(t).

Thus, for each x there is an u such that h(u) = x and h is surjective.
From (F1), using the theorem on existence, the problem (2.1) has local solutions. Because

of local existence, it is enough to know that the possible global solutions are bounded to
conclude that they exist. By the assumption (T1), for every a ∈ Rn there is a constant Ra > 0
such that |u(t)| ≤ Ra and |u′(t)| ≤ Ra for all t ∈ [0, 1]. Now, using the theorem on a priori
bounds (cf. [15, p. 146]), for each fixed a ∈ Rn there exists at least one global solution u to the
problem (2.1), i.e. u ∈ C1 ([0, 1], Rn). Hence, the map H is well defined.

It is standard, using the Arzelà–Ascoli theorem, to show that under assumptions (F1) the
operator T is completely continuous. Now, the set-valued map

H :
n

∏
i=1

[−Ai, Ai] ( C1 ([0, 1], Rn)

is USC with compact values (cf. [18, Lemma 2]).
Set

f0(t, u, v) =


f (t, u, v), for t ∈ [0, 1] ∧ |u| ≤ Ra ∧ |v| ≤ Ra,

f (t, Ra
u
|u| , v), for t ∈ [0, 1] ∧ |u| ≥ Ra ∧ |v| ≤ Ra,

f (t, u, Ra
v
|v| ), for t ∈ [0, 1] ∧ |u| ≤ Ra ∧ |v| ≥ Ra,

f (t, Ra
u
|u| , Ra

v
|v| ), for t ∈ [0, 1] ∧ |u| ≥ Ra ∧ |v| ≥ Ra.

One can check that f0 is continuous and bounded. It is easy to see that the problem (2.1) is
equivalent to the following one

u′′ = f0(t, u, u′), u(0) = a, u′(0) = 0. (2.6)
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Hence, the set of solutions to the problem (2.1) is equal to the set of solutions to the problem
(2.6). Consequently, since f0 is integrably bounded, for each a ∈ ∏n

i=1[−Ai, Ai], H(a) ∈ Rδ

(see [4], [5] p. 162 or [6] p. 352 for more details). Hence, the set of all solutions to the problem
(2.1) is an Rδ-set.

Consequently, by the assumption (F1), (T1) and (G), F defined in (2.5) is the admissible
map in the sense of Theorem 1.1.

Now, applying Theorem 1.1, we shall show that there is an a ∈ ∏n
i=1[−Ai, Ai] such that

0 ∈ F(a), which means that there is an a for which the solution u to the problem (2.1) is also
a solution to the problem (1.1), i.e. u satisfies the second nonlocal boundary condition of the
problem (1.1).

Let us consider the initial value problem (2.1). If the assumption (A1) holds, then each
solution u ∈ C1 ([0, 1], Rn) to the problem (2.1) with ai = Ai, i = 1, . . . , n, is such that u′i is
nondecreasing on [0, 1]. In the case when ai = −Ai, from the assumption (A2), every solution
u ∈ C1 ([0, 1], Rn) to the initial value problem (2.1) is such that u′i is nonincreasing on [0, 1].

Thus, from the assumption (A1), for ai = Ai, we get

u′i(1) ≥ 0, (2.7)

since u′i(0) = 0. Moreover, we have

u′i(t) ≤ u′i(1), (2.8)

for all t ∈ [0, 1]. Integrating both sides of (2.8) over [0, 1] with respect to the measure dgi and
using (2.7) and the assumption (G), one gets∫ 1

0
u′i(s)dgi(s) ≤ u′i(1)

∫ 1

0
dgi(s) ≤ u′i(1).

If ai = −Ai, then, from the assumption (A2),

u′i(1) ≤ 0, (2.9)

and

u′i(t) ≥ u′i(1), (2.10)

for each t ∈ [0, 1]. Integrating both sides of (2.10), from (2.9) and the assumption (G), we
obtain ∫ 1

0
u′i(s)dgi(s) ≥ u′i(1)

∫ 1

0
dgi(s) ≥ u′i(1).

Consequently, for each u′i(1)−
∫ 1

0 u′i(s)dgi(s) ∈ F(a) with |ai| = Ai, one has

ai

(
u′i(1)−

∫ 1

0
u′i(s)dgi(s)

)
≥ 0 (2.11)

and the condition (1.3) of Theorem 1.1 is satisfied, what ends the proof.

Remark 2.2. In the assumption (G), the condition that gi is not constant on [0, 1), i = 1, . . . , n,
also guarantees that the second boundary conditions of the problems (1.1) and (1.2) are well
posed.
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The case when the measure dgi, i = 1, . . . , n, is negative provides the following existence
result

Theorem 2.3. Let the assumptions (F1), (T1), (A1) and (A2) hold. Moreover, let the following as-
sumption be satisfied

(G’) for each i = 1, . . . , k, gi is nonincreasing, −1 ≤
∫ 1

0 dgi(s) < 0.

Then there is at least one solution to the problem (1.1).

Proof. The beginning of the proof is analogous to the previous one. Observe that, if ai = Ai,
i = 1, . . . , n, then, from (2.7) and (2.8), we obtain

u′i(t) ≥ −u′i(1),

for every t ∈ [0, 1]. From (2.7) and the assumption (G’), one has∫ 1

0
u′i(s)dgi(s) ≤ u′i(1)

[
−
∫ 1

0
dgi(s)

]
≤ u′i(1).

In the case when ai = −Ai, from (2.9) and (2.10), we get

u′i(t) ≤ −u′i(1),

for each t ∈ [0, 1]. Consequently, from (2.9) and the assumption (G’), we obtain∫ 1

0
u′i(s)dgi(s) ≥

[
−u′i(1)

] ∫ 1

0
dgi(s) ≥ u′i(1).

In the case when the function f does not depend upon u′, we consider the following family
of initial value problems

u′′ = f (t, u), u(0) = a, u′(0) = 0, (2.12)

where a ∈ Rn and f : [0, 1] × Rn → Rn. Then the operator T : Rn × C1 ([0, 1], Rn) →
C1 ([0, 1], Rn) is given by

Ta(u)(t) = a +
∫ t

0
(t− s) f (s, u(s))ds. (2.13)

The above immediately leads to the following results:

Theorem 2.4. Let the assumption (G) be satisfied and the assumptions (A1) and (A2) hold for the
operator T defined in (2.13). Moreover, let the following assumptions be satisfied:

(F2) f : [0, 1]×Rn → Rn is continuous;

(T2) for each a ∈ Rn the possible solutions to the problem (2.12) are equibounded in the space
C1 ([0, 1], Rn).

Then the problem (1.2) has at least one solution.

Theorem 2.5. If the assumptions (G’), (F2) and (T2) are fulfilled and the assumptions (A1) and (A2)
hold for the operator T defined in (2.13), then the problem (1.2) has at least one solution.

Remark 2.6. One can generalize the assumptions (F1) and (F2) and assume that f is an
Carathéodory mapping. In this case one can use the Aronszajn characterization of the set
Fix Ta (see [1] or [6, p. 351]).
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3 Examples of the applications of the main theorems

Known results on the problems (1.1) and (1.2) refer to the case in which the function f is
bounded (cf. [13,17]). The assumptions made in Section 2 and the use of the generalization of
the Miranda theorem allow us to obtain the existence of solutions to the problems (1.1) and
(1.2) with much weaker assumptions upon the function f .

In this section we shall consider some conditions for which the assumptions of Theo-
rems 2.1–2.5 are fulfilled. One can see that the assumptions (T1) and (T2) are crucial here.
From this assumptions we obtain that the solutions to the problems (2.1) and (2.12) are global
and also we know something about the topological structure of the set of solutions to this
problems. Instead of the two examples of well known growth conditions given below, one can
impose on f any conditions that will guarantee equiboundedness of solutions to the problems
(2.1) and (2.12) (see the assumption (F9)). Some Gronwall’s type inequalities might be useful
here (cf. [3, 14]).

First, the following assumption upon f will be needed:

(F3) there are c1, c2, c3 ∈ R+ such that | f (t, u, v)| ≤ c1 |u|+ c2 |v|+ c3 for all (t, u, v) ∈ [0, 1]×
Rn ×Rn;

(F4) for each i = 1, . . . , k there is Mi > 0 such that ui fi(t, u, v) ≥ 0 for all t ∈ [0, 1], v ∈ Rk,
u ∈ Rk with |ui| ≥ Mi.

Let us consider the problem (2.1). For any solution one has

u′(t) =
∫ t

0
f
(
s, u(s), u′(s)

)
ds

and

u(t) = a +
∫ t

0
u′(s)ds. (3.1)

Hence, in the case when f has linear growth (the assumption (F3)), using Gronwall’s Lemma,
one can observe that if u is a solution to the problem (2.1), then there are constants Ua, Va > 0
such that |u(t)| ≤ Ua and |u′(t)| ≤ Va, for all t ∈ [0, 1] (cf. [18, Example 1]). Consequently,
under the assumptions (F1) and (F3) the assumption (T1) is satisfied.

The assumptions made upon f also imply the following results:

Lemma 3.1. Let the assumptions (F1), (F3) and (F4) be fulfilled and let ai := Mi + 1, i = 1, . . . , n.
Then the assumption (A1) holds.

Proof. Let ai = Mi + 1 =: Ai and let u ∈ C1 ([0, 1], Rn) be a global solution to the problem
(2.1).

First, we will show that u′i(t) ≥ 0, t ∈ [0, 1]. Note that u′i(0) = 0 and assume that for some t
we have u′i(t) < 0. Then there exists t0 := inf {t | x′i(t) < 0} such that, u′i(t0) = 0 and u′i(t) ≥ 0
for t < t0. Consequently, since u′i is continuous, there is t1 > t0 such that

∫ t1
t0
|u′i(t)|dt ≤ 1. By

(3.1), we have

ui(t) = Mi + 1 +
∫ t

t0

u′i(s)ds ≥ Mi, (3.2)
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for all t ∈ [t0, t1]. Now, since u′i(t0) = 0, we reach a contradiction. Indeed, by (3.2) and (F4),
one gets

ui(t) fi
(
t, u(t), u′(t)

)
= ui(t)u′′i (t) ≥ 0. (3.3)

Hence, u′′i (t) ≥ 0 for t ∈ [t0, t1], which means that u′i(t) is nondecreasing on [t0, t1].
Now, since u′i(t) ≥ 0 on [0, 1] and ui(0) = Mi + 1, one get ui(t) ≥ Mi + 1, t ∈ [0, 1]. Conse-

quently, for all t ∈ [0, 1], by (F4) and (3.3), we have : u′′i (t) ≥ 0. Hence, u′i is nondecreasing on
[0, 1].

Lemma 3.2. Let the assumptions (F1), (F3) and (F4) hold and let ai := −Mi − 1, i = 1, . . . , n. Then
the assumption (A2) is satisfied.

Proof. To the proof it is sufficient to follow in the same way as in the proof of Lemma 3.1,
showing first that u′i(t) ≤ 0 for t ∈ [0, 1].

From Lemmas 3.1–3.2, Theorems 2.1 and 2.3, it immediately follows:

Corollary 3.3. Let the assumptions (F1), (F3), (F4) and (G) be fulfilled. Then the problem (1.1) has at
least one solution.

Corollary 3.4. Under the assumptions (F1), (F3), (F4) and (G’), there is at least one solution to the
problem (1.1).

Example 3.5. Let gi(s) = s, i = 1, 2, and

f1(t, u, v) = a1(t, u, v) (u1 + arctan u2 + 1) ,

f2(t, u, v) = a2(t, u, v) (u2 + arctan v2 − 2) ,

where ai are continuous and there are constants 0 < li ≤ Li such that

li := inf
t∈[0,1],u∈Rn,v∈Rn

ai(t, u, v)

and

sup
t∈[0,1],u∈Rn,v∈Rn

ai(t, u, v) =: Li,

i = 1, 2. It is easy to check that in this case the assumptions (F1), (F3), (F4) and (G) are satisfied.
Consequently, from Corollary 3.3, the problem (1.1) with the functions f and g defined above
has at least one nontrivial solution.

For the special case when the function f does not depend on u′, let us make the following
additional assumptions:

(F5) there are c1, c2 ∈ R+ such that | f (t, u)| ≤ c1|u|+ c2 for all (t, u) ∈ [0, 1]×Rn;

(F6) for each i = 1, . . . , k there is Mi > 0 such that ui fi(t, u) ≥ 0 for all t ∈ [0, 1], u ∈ Rk with
|ui| ≥ Mi.

It is easy to observe that in this case Lemmas 3.1 and 3.2 hold as well. Now, Theorems 2.4
and 2.5 imply the following existence results:
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Corollary 3.6. Let the assumptions (F2), (F5), (F6) and (G) be fulfilled. Then the problem (1.2) has at
least one solution.

Corollary 3.7. Under the assumptions (F2), (F5), (F6) and (G’), the problem (1.2) has at least one
solution.

Now, we shall consider some generalization of the sublinear case. Let n = 1. The following
assumptions are made:

(F7) | f (t, u, v)| ≤ c1ω(|v|) + c2, t ∈ [0, 1], u, v ∈ R, where ω : R+ → R+ is a continuous
nondecreasing function;

(F8) there exists M > 0 such that u f (t, u, v) ≥ 0 for all t ∈ [0, 1], v ∈ R, u ∈ R with |u| ≥ M.

Applying the assumption (F7) to the problem (2.1), one gets

|u′(t)| ≤
∫ t

0

∣∣∣∣ f (s, a +
∫ s

0
u′(z) dz, u′(s)

)
ds
∣∣∣∣ ≤ c2 + c1

∫ t

0
ω(|u′(s)|)ds.

Consequently, using the generalization of Gronwall’s inequality due to Bihari (cf. [2, 3]), we
obtain

|u′(t)| ≤W−1
(

W(c2) + c1

)
, (3.4)

where t ∈ [0, 1] and W(ξ) =
∫ ξ

ξ0

ds
ω(s) with ξ0 > 0, ξ ≥ 0, provided that W(c2) + c1 ∈

dom(W−1). Thus, by (3.1),

|u(t)| ≤ a + W−1
(

W(c2) + c1

)
, (3.5)

Consequently, the assumption (T1) is satisfied.

Now, Theorems 2.1 and 2.3 can be written as follows:

Corollary 3.8. Let the assumptions (F1), (F7), (F8) and (G) be fulfilled. Then the problem (1.1) has at
least one solution.

Corollary 3.9. Under the assumptions (F1), (F7), (F8) and (G’), the problem (1.1) has at least one
solution.

Example 3.10. Let n = 1, g(s) = s and

f (t, u, v) = b1(t, u, v)(v2 + 1)k1(u) + b2(t, u, v)k2(u),

where the functions bi and ki are continuous, there are Mi > 0 such that

uki(u) ≥ 0,

for every |u| ≥ Mi and at least one ki is such that ki(0) 6= 0, i = 1, 2. Moreover, there exist
constants 0 < li ≤ Li, i = 1, 2, such that

li := inf
t∈[0,1],u∈R,v∈R

bi(t, u, v),



10 K. Szymańska-Dębowska

sup
t∈[0,1],u∈R,v∈R

b1(t, u, v)k1(u) =: L1 ≤
1
2

,

and

sup
t∈[0,1],u∈R,v∈R

b2(t, u, v)k2(u) =: L2 ≤ 1.

Obviously the condition (F1) holds. Observe that for all |u| ≥ M := max{M1, M2} the
condition (F8) is satisfied. Moreover, one has

| f (t, u, v)| ≤ 1
2
(v2 + 1) + 1.

Hence, setting ω(|v|) = v2 + 1, the assumption (F7) is also fulfilled.
In this case W(ξ) = arctan(ξ), ξ ∈ R, and W−1(ξ) = tan(ξ) with ξ ∈

(
− π

2 , π
2

)
. Since

c1 = 1
2 and c2 = 1 in the assumption (F7), we obtain : W(c2) + c1 = π

4 + 1
2 . Consequently,

W−1(W(c2) + c1
)

exists and the estimations (3.4) and (3.5) hold.
Using Corollary 3.8, we obtain that the problem (1.1) with the functions f and g defined

above has at least one nontrivial solution.

Now, we shall give the last example of conditions for which the assumptions of Theo-
rem 2.1 are fulfilled. The following assumption upon f will be needed

(F9) | f (t, u, v)| ≤ c1 + c2|v|+ c3|v|p, where t ∈ [0, 1], u, v ∈ R, p ≥ 0, c1 > 0 and c2, c3 ≥ 0.

Let the assumptions (F1) and (F9) hold. We have

|u′(t)| ≤ c1 + c2

∫ t

0
|u′(s)|ds + c3

∫ t

0
|u′(s)|pds,

for each t ∈ [0, 1]. Now, using the approach due to Lakshmikantham (cf. [11, Theorem 1]), we
know that, for any solution u to the problem (2.1), |u′(t)| is bounded by the solution x(t) to
the following problem

x′ = c2x + c3xp, x(0) = c1, (3.6)

which can be solved explicitly as a Bernoulli equation.
Note that if p ∈ {0, 1} or c3 = 0 then one gets the assumption (F3) and can use Gronwall’s

lemma to estimate |u′(t)|.
Let p > 1. In the case when p > 1 and c2 6= 0, we obtain

[x(t)]1−p =

(
c1−p

1 +
c3

c2

)
exp {c2(1− p)t} − c3

c2
. (3.7)

Observe that the solution x to the problem (3.6) will be finite for t ∈ [0, 1], if(
c1−p

1 +
c3

c2

)
exp {c2(1− p)t} − c3

c2
> 0

for all t ∈ [0, 1], i.e.

t <
1

c2(p− 1)
ln
(

c2

c3
c1−p

1 + 1
)
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for each t ∈ [0, 1]. Note that the above holds, if

1
c2(p− 1)

ln
(

c2

c3
c1−p

1 + 1
)
> 1.

Consequently, it is sufficient to assume that

c1 <

{
c3

c2
[exp {c2(p− 1)} − 1]

} 1
1−p

. (3.8)

Hence, if (3.8) holds, from (3.7) one has

|u′(t)| ≤
{(

c1−p
1 +

c3

c2

)
exp {c2(1− p)t} − c3

c2

} 1
1−p

≤
{(

c1−p
1 +

c3

c2

)
exp {c2(1− p)} − c3

c2

} 1
1−p

,

and

|u(t)| ≤ a +
{(

c1−p
1 +

c3

c2

)
exp {c2(1− p)} − c3

c2

} 1
1−p

,

for t ∈ [0, 1], and the assumption (T1) is satisfied.
If p > 1 and c2 = 0, then, from (3.6), we obtain

[x(t)]1−p = c1−p
1 + c3(1− p)t. (3.9)

In this case x will be finite on [0, 1], if for all t ∈ [0, 1]

t <
c1−p

1
c3(p− 1)

,

which leads to the following extra condition

c1 < {c3(p− 1)}
1

1−p . (3.10)

Consequently, if (3.10) is fulfilled, then, from (3.9), we obtain

|u′(t)| <
[
c1−p

1 + c3(1− p)t
] 1

1−p ≤
[
c1−p

1 + c3(1− p)
] 1

1−p

and

|u(t)| ≤ a +
[
c1−p

1 + c3(1− p)
] 1

1−p
,

for t ∈ [0, 1], and the assumption (T1) holds.
By proceeding in the same way as above, one can obtain an estimation for |u′(t)| in the

case when p ∈ (0, 1).

Remark 3.11. The above estimation is a special case of the generalization of Gronwall’s in-
equality due to Perov (cf. [3, p. 11], [14, p. 360]) or Willett and Wong (cf. [20, Theorem 2]).

Now, Theorems 2.1 and 2.3 imply the following corollaries.
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Corollary 3.12. Let the assumptions (F1), (F8), (F9) and (G) be fulfilled. Then the problem (1.1) has
at least one solution.

Corollary 3.13. Under the assumptions (F1), (F8), (F9) and (G’), the problem (1.1) has at least one
solution.

Example 3.14. Set n = 1, g(s) = −s and

f (t, u, v) = b1(t, u, v)k1(u) + b2(t, u, v)k2(u)m2(|v|) + b3(t, u, v)k3(u)m3(|v|),

where the functions bi and ki are continuous, there are Mi > 0 such that

uki(u) ≥ 0,

for every |u| ≥ Mi and at least one ki is such that ki(0) 6= 0, i = 1, 2, 3. Moreover, the functions
mi, i = 2, 3, are continuous and

0 ≤ m2(|v|) ≤ d2|v|, 0 ≤ m3(|v|) ≤ d3|v|77,

for v ∈ R and there exist constants li > 0 and ci > 0, i ∈ {1, 2, 3}, such that

li := inf
t∈[0,1],u∈R,v∈R

bi(t, u, v),

sup
t∈[0,1],u∈R,v∈R

dibi(t, u, v)ki(u) =: ci, i ∈ {2, 3}

and

sup
t∈[0,1],u∈R,v∈R

b1(t, u, v)k1(u) =: c1 <

{
c3

c2
[exp(76c2)− 1]

}− 1
76

.

One can easily check that the assumptions (F1), (F8), (F9) and (G’) are satisfied. Conse-
quently, from Corollary 3.13, the problem (1.1) with the functions f and g given above has at
least one nontrivial solution.
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