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Background and aims: This study aimed to evaluate the association between the severity of pathological gambling,
serum brain-derived neurotrophic factor (BDNF) level, and the characteristics of quantitative electroencephalography
(EEG) in patients with gambling disorder. Methods: A total of 55 male patients aged 18–65 with gambling disorder
participated. The severity of pathological gambling was assessed with the nine-item Problem Gambling Severity
Index from the Canadian Problem Gambling Index (CPGI-PGSI). The Beck Depression Inventory and Lubben Social
Network Scale were also assessed. Serum BDNF levels were assessed from blood samples. The resting-state EEG
was recorded while the eyes were closed, and the absolute power of five frequency bands was analyzed: delta
(1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–50 Hz). Results: Serum BDNF level was
positively correlated with theta power in the right parietal region (P4, r= .403, p= .011), beta power in the right
parietal region (P4, r= .456, p= .010), and beta power in the right temporal region (T8, r= .421, p= .008). Gambling
severity (CPGI-PGSI) was positively correlated with absolute beta power in the left frontal region (F7, r= .284,
p= .043) and central region [(C3, r= .292, p= .038), (C4, r= .304, p= .030)]. Conclusions: These findings support
the hypothesis that right-dominant lateralized correlations between BDNF and beta and theta power reflect right-
dominant brain activation in addiction. The positive correlations between beta power and the severity of gambling
disorder may be associated with hyperexcitability and increased cravings. These findings contribute to a better
understanding of brain-based electrophysiological changes and BDNF levels in patients with pathological gambling.
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INTRODUCTION

Gambling is a popular leisure enjoyed by 60%–90% of
people at least once in their lives, pathological gambling
results in health, financial, and social problems (Wölfling
et al., 2011). Gambling disorder is defined by persistent and
recurrent maladaptive gambling behavior that disrupts per-
sonal, family, and vocational pursuits (American Psychiatric
Association [APA], 2013). The lifetime prevalence of gam-
bling disorder is 0.4%–1.0% (APA, 2013). Gambling dis-
order is known to be highly comorbid with other psychiatric
disorders, such as substance-use disorder, depressive disor-
der, and anxiety disorder (APA, 2013; Lorains, Cowlishaw,
& Thomas, 2011).

Brain-derived neurotrophic factor (BDNF) is an impor-
tant regulator of neural survival, development, function, and
plasticity (Huang & Reichardt, 2001). BDNF is highly
expressed in limbic structures and the cerebral cortex, and
plays an important role in learning, memory, and reward-
related processes (Boulle et al., 2012; Yamada &
Nabeshima, 2003). It is associated with multiple mental
disorders, including depression, anxiety, schizophrenia, and

addiction (Boulle et al., 2012; Li & Wolf, 2015). Several
studies have reported that BDNF is elevated in patients with
pathological gambling (Angelucci et al., 2013; Choi et al.,
2016; Geisel, Panneck, Hellweg, Wiedemann, & Müller,
2015). Researchers have suggested that the increased BDNF
in pathological gamblers is related to altered dopaminergic
transmission in the ventral tegmental area and nucleus
accumbens, which are central components of the brain’s
reward system (Geisel, Banas, Hellweg, & Müller, 2012;
Pu, Liu, & Poo, 2006).

Quantitative electroencephalography (qEEG) involves
power spectral analysis of frequency bands, such as delta
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(1–4 Hz), theta (5–7 Hz), alpha (8–13 Hz), and beta
(14–30 Hz) (Houston & Ceballos, 2013). Pathological gam-
blers show dysfunctional EEG activity, especially in the
frontoparietal area (Quintero, 2017). Some studies of the
EEG correlates of gambling behavior have focused on reward
sensitivity and decision-making (Houston & Ceballos, 2013).
For example, theta and delta activities are correlated with
various aspects of the decision-making process (Houston &
Ceballos, 2013). Massar, Rossi, Schutter, and Kenemans
(2012) reported that an increased theta–beta ratio in the
resting-state EEG to be associated with risky or disadvanta-
geous decision-making in the Iowa Gambling Task. Amoss
(2009) reported that beta power asymmetry was associated
with the number of risky decision-making behaviors.

Gambling disorder is closely related to impulsivity,
which is a core feature of addictive disorders. In spite of
some inconsistent findings (Lee et al., 2017), studies of EEG
correlates in impulsive disorders, such as attention-deficit/
hyperactivity disorder, substance-use disorder, and vio-
lence, reported relatively consistent findings of increases
in the delta, theta, and beta bands (Kamarajan & Porjesz,
2012). Increased power of slow waves, such as the delta and
theta bands, suggests low cortical arousal, whereas in-
creased power in the beta band suggests hyperexcitability
of the central nervous system.

A relationship between BDNF and qEEG has been
described in patients with depressive disorder (Gatt et al.,
2008; Zoon et al., 2013). However, there has been no study
of the association between BDNF and qEEG power specifi-
cally in patients with gambling disorder. Thus, this study
aimed to investigate the associations between serum BDNF
level, qEEG power distribution, and the severity of patho-
logical gambling in patients with gambling disorder.

METHODS

Subjects

Individuals who visited the gambling disorder clinic were
considered for inclusion in the study. The inclusion criteria
were a diagnosis of gambling disorder, according to the fifth
edition of the Diagnostic and Statistical Manual of Mental
Disorders (DSM-5) criteria, male sex, and age between 18
and 65 years. Subjects were excluded if any of the following
applied: a diagnosis of substance-use disorder other than
nicotine or caffeine, based on the DSM-5 criteria; use of
psychotropic medications over the previous year; and pres-
ence of a physical, mental, or neurological disorder other
than gambling disorder. Based on the inclusion and exclu-
sion criteria, 55 male subjects (age: 38.42± 11.59 years)
were enrolled in the study. None of the participants
were taken any medications and all had completed at least
12 years of education (mean: 14.65± 1.89 years).

Measures

To assess serum BDNF level, a total of 10 ml of blood was
drawn from each subject and placed in a serum separator
tube. For analysis of serum, samples were allowed to clot for
30 min at room temperature before centrifugation for 15 min

at approximately 1,000 × g, after which the serum was
removed. All samples were stored at −80 °C. Serum BDNF
levels were determined using an enzyme-linked immuno-
sorbent assay protocol according to the manufacturer’s
instructions (DBD00, R&D Systems, Europe). The BDNF
level values were normally distributed, as verified by the
Kolmogorov–Smirnov test.

The nine-item Problem Gambling Severity Index (PGSI)
from the Canadian Problem Gambling Index (CPGI) (CPGI-
PGSI) was selected to quantify gambling severity (Ferris &
Wynne, 2001). The PGSI was used to assess problematic
gambling behavior and adverse consequences during the
previous 12 months. The response choices for each PGSI
item are “never,” “sometimes,” “most of the time,” and
“almost always,” with the total score ranging from 0 to 27.
Participants were categorized as “non-problem-gamblers”
(PGSI= 0), “low-risk” (PGSI = 1–2), “moderate-risk”
(PGSI= 3–7), or “problem-gambler” (PGSI > 7). The psy-
chometric properties of the PGSI have been examined in the
Korean population; Cronbach’s α value was .94 (Kim, Cha,
Kwon, & Lee, 2011). Beck Depression Inventory (BDI) and
Lubben Social Network Scale were also used to assess the
depressive mood and social activity of the participants.

EEG recording and preprocessing

The EEG recordings were performed using a SynAmps2
direct-current (DC) amplifier and a 10–20 layout 64-channel
Quick-Cap electrode-placement system (Neuroscan Inc.,
NC, USA). The EEG data were digitally recorded from
19 gold cup electrodes placed according to the international
10–20 system. The impedances were maintained below
5 kΩ, and the sampling rate was 1,000 Hz. We used a
linked-mastoid reference and two additional bipolar elec-
trodes to measure horizontal and vertical eye movements.
During the recordings, each participant laid down in a semi-
darkened, electrically shielded, sound-attenuated room.
Resting EEG samples were recorded after 3 min with the
participant’s eyes closed.

We used Matlab 7.0.1 (Math Works, Natick, MA, USA)
and the EEGLAB toolbox (Delorme & Makeig, 2004) to
preprocess and analyze the EEG recordings. First, the EEG
data were downsampled to 250 Hz. Next, the EEG data were
detrended and mean-subtracted to remove the DC compo-
nent. A 1-Hz high-pass filter and a 60-Hz notch filter were
applied to remove eye movement artifacts and electrical
noise. Independent component analysis (ICA) was then
performed to remove well-defined sources of artifacts. ICA
has been demonstrated to reliably isolate artifacts caused by
eye and muscle movements and heart noise (Jung et al.,
2000). Finally, clinical psychiatrists and EEG experts visu-
ally inspected the corrected EEGs. For the analysis, we
selected at least 2 min of artifact-free EEG data from the
3-min recordings.

EEG analysis

Four frequency bands were defined for further analysis:
delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta
(12–30 Hz). We investigated the power spectra of the EEG
data from each subject using the short-time-interval Fourier
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transform “spectrogram.m” function from the Signal Pro-
cessing Toolbox in MATLAB. Time windows of 1,000 ms
with an 800-ms overlap and Hamming window were used
for the spectral analysis. Outliers that were far from
the spectral value distribution for each frequency band, at
the 0.05 significance level, were removed. Finally, the
absolute power for each frequency band was averaged over
all the time windows for further analysis.

Statistical analysis

The MATLAB 7.0.1 Statistical Toolbox was used for the
statistical analyses. All values were expressed as the mean
and standard deviation (SD). To assess the relationship
between gambling severity (CPGI-PGSI) and EEG record-
ings, we used a Pearson’s partial correlation analysis that
controlled for age, education, BDI score, and Beck Anxiety
Inventory (BAI) score. To assess the relationship between
BDNF and the EEG recordings, we used the same analytic
method. Statistical significance was defined as p < .05. To
control for false positives from multiple comparisons, we
used a false discovery rate (FDR) correction in which the
p values were multiplied by the number of comparisons
(Benjamini & Hochberg, 1995).

Ethics

The study procedure was performed in accordance with
the Declaration of Helsinki (World Medical Association,
1964). The study protocols were approved by the Regional
Ethical Review Board in Seoul. All participants gave
written informed consent after receiving a complete de-
scription of the study and were not compensated for taking
part in the study.

RESULTS

Demographic and clinical characteristics

The total sample comprised 55 male individuals with gam-
bling disorder [mean age (SD)= 38.42 (11.59) years]. The
participants showed clinically higher scores compared with
the general population on the BDI [mean (SD)= 16.64
(9.42)] and CPGI-PGIS [mean (SD)= 18.87 (6.18)] (Kim
et al., 2011; Lasa, Ayuso-Mateos, Vazquez-Barquero,
Dıez-Manrique, & Dowrick, 2000). Their scores on the
Lubben Social Network Scale [mean (SD)= 24.71 (5.35)]
were low level and reflected a limited social network (Lee
et al., 2009). The demographic and clinical characteristics
are summarized in Table 1.

Correlation between serum BDNF level and absolute power
of resting EEG

To investigate whether the serum BDNF levels were
related to the absolute power of the resting EEG, we
examined partial correlations corrected for age, education,
BDI, and BAI. The partial correlation analysis for the
absolute delta and alpha power and the serum BDNF levels
showed no significant correlations, after imposing the FDR

correction. The serum BDNF level was positively
correlated with theta power in the right parietal region
(P4, r = .403, p = .011), beta power in the right parietal
region (P4, r = .456, p = .010), and beta power in the right
temporal region (T8, r = .421, p = .008). All these signifi-
cance assessments include FDR corrections (corrected
p < .05). A topographical representation of the Pearson’s
partial correlation coefficients and the associated p values
is presented in Figure 1.

Correlation between gambling severity and absolute power
of resting EEG

The partial correlation analysis, controlled for age, educa-
tion, BDI, and BAI, for the absolute delta, theta, and alpha
power and gambling severity (CPGI-PGSI) showed no
significant relationships. However, gambling severity
(CPGI-PGSI) was positively correlated with absolute beta
power. The significant findings appeared in the left
frontal region (F7, r= .284, p= .043) and central region
[(C3, r= .292, p= .038), (C4, r= .304, p= .030)]. All
significant differences were FDR-corrected (corrected
p< .05). Scatter plots of the three significant (p< .01)
partial correlations are presented in Figure 2.

DISCUSSION

This study investigated associations between the severity
of pathological gambling, serum BDNF level, and the
characteristics of qEEG power in patients with gambling
disorder. Several previous studies have reported an asso-
ciation between BDNF and qEEG power. Gatt et al. (2008)
reported that the BDNF Val66Met gene polymorphism was
associated with EEG power in depressive patients: carriers
of the methionine (Met) variant, who show phenotypic

Table 1. Demographic and clinical characteristics of subjects

Mean± SD GD (n= 55)

Age (years) 38.42± 11.59
Education (years) 14.65± 1.89
BDNF (pg/ml) 32,177.69± 9,969.95
BDI 16.64± 9.42
BAI 12.58± 9.68
BIS 56.42± 8.28
LSNS 24.71± 5.35
WURS 30.07± 15.80
CPGI-PGIS 18.87± 6.18
RTCQ

Precontemplation 2.09± 2.47
Contemplation 5.67± 2.04
Action 4.23± 2.58

Note. SD: standard deviation; GD: gambling disorder; BDNF:
brain-derived neurotrophic factor; BDI: Beck Depression Inventory;
BAI: Beck Anxiety Inventory; BIS: The Korean version of Barratt
Impulsiveness Scale; LSNS: Lubben Social Network Scale; WURS:
Wender–Utah Rating Scale; CPGI-PGIS: Canadian Problem Gam-
bling Index–Problem Gambling Severity Index; RTCQ: Readiness
To Change Questionnaire.
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characteristics of depression, presented elevated relative
theta and delta power coupled with reduced alpha power
compared to carriers of the valine (Val) variant. Zoon et al.
(2013) also reported that parietal–occipital alpha power
was negatively associated with depression severity in
depressive patients, and those Met/Met depressive patients
showed lower global absolute alpha power compared to
Val carriers.

However, those studies of the association between BDNF
and qEEG were performed with depressive patients. In
addition, those studies investigated the association between
EEG power and BDNF gene polymorphism. Notably, a
meta-analysis indicated that the BDNF Val66Met variant is
not associated with serum BDNF level (Terracciano et al.,
2013). This is the first study of the association between
BDNF and qEEG power in patients with gambling disorder.
Furthermore, we investigated the associations of qEEG band
power and BDNF in terms of the serum BDNF level, not in
terms of BDNF gene polymorphism. We identified signifi-
cant positive correlations between serum BDNF level and
beta and theta power in the right parietal and temporal
regions of the gambling disorder patients.

BDNF is known to be involved in learning and memory,
which are the functions of the hippocampus (Yamada &
Nabeshima, 2003). Some researchers have reported that the
BDNF Val66Met polymorphism is associated with the vol-
ume of the hippocampal formation (Pezawas et al., 2004;
Szeszko et al., 2005). Grunwald, Hensel, Wolf, Weiss, and
Gertz (2007) reported that an increase in EEG theta power
was associated with decreased hippocampal volume. Thus, it
is plausible that the correlations between BDNF and EEG
power in the temporal and parietal lobes, which were identi-
fied in this study, might be associated with the anatomical
location of the hippocampus. However, this explanation
requires confirmation by further studies using MRI data.

With regard to the EEG asymmetry, multiple studies
have reported a right-dominant resting frontal EEG asym-
metry in alpha power in relation to depression and anxiety
(Thibodeau, Jorgensen, & Kim, 2006). Bulgin et al. (2008)
reported that theta EEG asymmetry in parietal brain regions
was affected by the BDNF Val66Met polymorphism in
patients with childhood-onset mood disorder. In a functional
MRI study of the laterality of brain activation in addictive
disorders, Gordon (2016) reported right dominance of brain

Figure 1. Topographical representations of the Pearson’s partial correlations, corrected for age, education, BDI, and BAI, between the
absolute powers and the serum BDNF levels. Scales show uV2 for absolute power. Red represents higher values and blue represents lower

values. The upper topography denotes the Pearson’s partial correlation coefficients, and the lower topography denotes the p values
after adjusting for the false discovery rate (corrected p< .05). BDI: Beck Depression Inventory; BAI: Beck Anxiety Inventory;

BDNF: brain-derived neurotrophic factor

Figure 2. Correlation of the absolute beta power at the F7, C3, and C4 electrodes site with scores on the Canadian Problem Gambling Index
(CPGI) in patients with gambling disorder
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activation for impulsivity tasks and left dominance for cue-
induced craving in most addictive disorders, including
addictions to cocaine, heroin, and food. However, cue-
induced craving for Internet gaming, which is a behavioral
addiction comparable to gambling, showed right-dominated
brain activation. The right-favoring lateralized correlations
between BDNF and beta and theta power identified in this
study reflect consistent findings, which should be confirmed
by further studies.

Another main finding of this study is the positive correla-
tion between beta activity and the severity of pathological
gambling, as measured by the CPGI-PGSI. The high-
frequency bands (beta and gamma) are involved in local,
short-range neural communication (Von Stein & Sarnthein,
2000), and increased beta power is considered to indicate
hyperexcitability in the brain (Rangaswamy et al., 2002).
Several psychiatric disorders characterized by impulsivity and
hyperarousal, including intermittent explosive disorder and
substance-use disorders, were reported to be associated with
increased beta activity (Kamarajan & Porjesz, 2012).
Herrera-Díaz et al. (2016) also reported increased absolute
and relative beta power in alcohol-use disorder patients
compared to controls.

Other researchers have focused on associations between
craving and beta activity. Knott et al. (2008) reported that a
scripted scene eliciting the desire to smoke-produced crav-
ing response and increased beta power in smokers. Arras
(2017) reported that women with uncontrollable eating
show increased reward sensitivity, which is correlated with
elevated beta activity during the resting state. Tammela et al.
(2010) reported that women with binge-eating showed
higher resting-state beta power than women without
binge-eating, and that pictures of food increased beta power
in women both with and without binge-eating. Increased
high beta power in response to positive feedback was also
reported to be associated with activation in a largely sub-
cortical network encompassing core areas of the reward
network (Andreou et al., 2017).

It is plausible that the positive correlations between beta
power and CPGI-PGSI identified in this study may be
associated with hyperexcitability and increased craving in
people with gambling disorders. Further studies are required
to confirm these associations, including studies using other
physiologic indices or experimental procedures to assess
hyperexcitability and craving.

Interestingly, previous studies of Internet addiction,
which is a behavioral addiction comparable to gambling
disorder, have reported some inconsistent findings. An
Internet gaming disorder group was reported to show lower
absolute beta power than healthy control groups (Son et al.,
2015). However, Park et al. (2017) reported that an Internet
gaming disorder group showed increased gamma band
(30–40 Hz) coherence compared to an alcohol-use disorder
group and healthy controls. Choi et al. (2013) also reported
that an Internet addiction group showed higher absolute
power in the gamma band than controls, whereas the beta
power of the Internet addiction group was lower than that of
the controls. These reports may be consistent with the
finding that increased activity in the higher frequency bands
is associated with pathological hyperexcitability in behav-
ioral addictions.

Notably, previous studies of serum BDNF levels in
patients with gambling disorder have reported inconsistent
findings. On one hand, the serum BDNF level has been
reported to increase in patients with gambling disorder
compared to healthy control (Choi et al., 2016; Geisel
et al., 2012). On the other hand, although Choi et al.
(2016) also reported a positive correlation between serum
BDNF level and the severity of the gambling disorder, there
was no significant correlation between BDNF serum level
and the severity of pathological gambling in the study of
Geisel et al. (2012). This study also did not find a significant
correlation between serum BDNF level and the severity of
pathological gambling.

Limitations

This study has several limitations that should be noted. First,
this study did not include healthy controls and therefore
does not allow comparisons between the patients and con-
trols. A future case–control design is required to confirm our
findings. Second, the age range of the participants was
broad, that is, 18–65. The power of EEG frequency bands
is known to vary according to age, although the changes in
EEG power during adulthood are less remarkable than those
in childhood (Dustman, Shearer, & Emmerson, 1999). The
characteristics of gambling can also show age-dependent
features (Kardos, Tóth, Boha, File, & Molnár, 2017). A
future study with an age-matching design or narrow age
span is warranted to overcome this limitation. Third, the
severity of gambling was assessed by self-administered
questionnaires alone. In addition, we did not collect infor-
mation on the clinical history of gambling. Patients with
gambling disorder often have poor insight, so more objec-
tive tools for the assessment of gambling severity and a
thorough clinical history of the patients are required. Fourth,
although qEEG could be affected by handedness, and
studies for qEEG usually consider the handedness of the
participants, we did not take handedness into account.
However, only 4.2% of Koreans were reported to be left-
handed in a study of Korean college students (Kang &
Harris, 2000). Thus, the effect of handedness on the results
of this study is expected to be minimal. Finally, only 19
electrodes were used in this study, which is not enough to
evaluate topographical functions. To resolve topographical
issues, EEG source reconstruction is required, but is not
possible with the relatively small number of 19 channels. To
compensate this limitation, previous studies have combined
EEG with MRI or used more electrodes (Lei, Wang, Yuan,
& Mantini, 2014; Mantini, Perrucci, Del Gratta, Romani, &
Corbetta, 2007). Therefore, a future study with more elec-
trodes is warranted.

CONCLUSIONS

This study extends the understanding of the associations
between serum BDNF level, EEG characteristics in the
resting state, and the severity of gambling disorder. The
results showed a positive correlation between serum BDNF
level and theta and beta power in the right temporoparietal
region, and a positive correlation between the severity of
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pathological gambling and beta power in the frontal and
central regions. The right-dominant lateralized correlations
between BDNF and beta and theta power might reflect the
right-dominant brain activation that is reported in most
addictive disorders. The positive correlations between beta
power and the severity of gambling disorder may be asso-
ciated with hyperexcitability and increased cravings. These
findings suggest the possibility of objective measurement of
the severity of gambling disorder and neurophysiological
state of the patients, and may lead to useful clinical infor-
mation in the form of neurobiological markers for assess-
ment and treatment planning for patients with gambling
disorder.
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