
Towards trajectory planning from a given path for
multirotor aerial robots trajectory tracking

Jose Luis Sanchez-Lopez1 and Miguel A. Olivares-Mendez1 and Manuel Castillo-Lopez1 and Holger Voos1,2

Abstract— Planning feasible trajectories given desired
collision-free paths is an essential capability of multirotor aerial
robots that enables the trajectory tracking task, in contrast
to path following. This paper presents a trajectory planner
for multirotor aerial robots carefully designed considering the
requirements of real applications such as aerial inspection or
package delivery, unlike other research works that focus on
aggressive maneuvering. Our planned trajectory is formed by
a set of polynomials of two kinds, acceleration/deceleration and
constant velocity. The trajectory planning is carried out by
means of an optimization that minimizes the trajectory tracking
time, applying some typical constraints as m-continuity or
limits on velocity, acceleration and jerk, but also the maximum
distance between the trajectory and the given path. Our
trajectory planner has been tested in real flights with a big
and heavy aerial platform such the one that would be used in a
real operation. Our experiments demonstrate that the proposed
trajectory planner is suitable for real applications and it is
positively influencing the controller for the trajectory tracking
task.

I. INTRODUCTION

A. Motivation

During the last years, the use of multirotor aerial robots
in many different applications, such as aerial inspection or
package delivery, has became a reality. Recent advances
in fully autonomous architectures and software frameworks
like Aerostack [1], [2], have demonstrated the high-level
of autonomy required to safely integrate aerial robots in
daily use. Nevertheless, there are still multiple open research
problems that limit the use of aerial robots. One of them is
planning and tracking collision-free trajectories (see Fig. 1).

To solve the problem of planning and tracking collision-
free trajectories, an approach frequently seen in the literature,
[3], [4], [5], [6], is the combination of three components:
(1) a collision-free geometric path planner, (2) a trajectory
planner that computes a feasible trajectory from the previ-
ously given path, considering the limits on the dynamic of
the robot, and (3) a controller for the trajectory tracking.

In this work we focus on planning feasible trajectories
from given paths. These given paths might be provided by the

This work was supported by the ”Fonds National de la Recherche” (FNR),
Luxembourg, under the project C15/15/10484117 (BEST-RPAS).

1 Dr. Jose Luis Sanchez-Lopez, Dr. Miguel A. Olivares-Mendez,
Manuel Castillo and Prof. Dr.-Ing. Holger Voos are with Automation
and Robotics Research Group (ARG), Interdisciplinary Centre for Se-
curity, Reliability and Trust (SnT), University of Luxembourg. Address:
29, avenue J. F. Kenedy, L-1855 Luxembourg (Luxembourg). e-mail:
joseluis.sanchezlopez@uni.lu

2 Prof. Dr.-Ing. Holger Voos is with the Faculté des Sciences, de la
Technologie et de la Communication, University of Luxembourg. e-mail:
holger.voos@uni.lu

Fig. 1. Our aerial robot tracking the trajectory presented in Sect. VI.

user or by a geometric path planner such as [3], [7]. The max-
imum distance between the planned trajectories and the given
paths must be bounded to avoid collisions with the obstacles
of the environment, as a requirement for industrial oriented
applications. Moreover, these kinds of applications demand
sufficient payload of the aerial platforms to carry sensors and
computers onboard, what imposes additional requirements on
the trajectory planning. Finally, these trajectories are used as
reference by the trajectory tracking controller.

B. State of the art

The field of trajectory generation from a given path is a
recurrent topic found in the literature. There are multiple
works related to robotic manipulators: In [8], the authors
generate smooth velocity and acceleration-bounded trajecto-
ries for robotic manipulators by replacing parts of the given
path by closed form time-optimal collision-free segments.
In [9], [10], [11], the authors propose an analytical closed-
form algorithm for the generation of velocity, acceleration
and jerk-bounded trajectories. The proposed trajectory is
formed by a set of polynomials and is defined by different
phases, i.e. acceleration increment, sustained acceleration,
acceleration decrement, and constant velocity. The waypoints
can include any arbitrary desired command, i.e. velocities
and accelerations.

The works that are specifically designed for aerial robots
can be divided into (1) path smoothing and (2) trajectory
planning. In the first group, in [12], the authors propose
a kinematically feasible path for fixed-wing aerial robots
that connects a series of waypoints, whereas a continuous
curvature path smoothing for fixed-wing aerial robots is

2018 International Conference on Unmanned Aircraft Systems (ICUAS)
Dallas, TX, USA, June 12-15, 2018

978-1-5386-1353-5/18/$31.00 ©2018 IEEE 1342

presented in [13]. In [5], [14], the authors propose a splines-
based optimization to plan a path for multirotor aerial robots.
In [14] the path is planned over a grid, whereas in [5], the
path is planned with the help of Voronoi diagrams. The main
drawback of these approaches is that dynamic constraints,
e.g. velocity and acceleration bounds and continuity, are not
guaranteed to be satisfied, and only the curvature of the path
is considered.

To guarantee dynamic constraints of multirotor aerial
robots, a full trajectory planning is needed. This can be
done together with the control, such as in [15], [16], where
authors use a model predictive controller (MPC) to track a
path, but considering the dynamic model of the aerial robot,
imposing a jerk-continuous movement. The main drawback
of these approaches is the tightness between the trajectory
planner and the controller. This enforces the need of re-
planning in real-time which is impossible for long and
complex trajectories.

Planning trajectories in a different component than the
controller ensures a real-time execution. In [17], [18], [19],
the authors propose a closed-form analytical trajectory plan-
ning approach for multirotor aerial robots. The trajectory has
a multiple phases polynomial definition, as some other works
mentioned above. In [18], [19], the proposed trajectory is
jerk-bounded but jerk discontinuous. Despite being faster,
and more suitable for real-time applications, having a closed-
form analytical solution limits the versatility of the trajectory
planning, being impossible to add newer constraints such as
the maximum distance between the trajectory and the original
path or certain requirements of the waypoints.

Finally, in [6], [4], [20], an optimization-based trajectory
planning approach for multirotor aerial robot is presented.
The trajectory is defined as a set of polynomials. Differ-
ential flatness is used to model the robot. Authors of [6]
incorporate a collision-free check, while [20] simply impose
some distance to path limitations in certain discrete trajectory
parts. In [6], [4], the snap is minimized, whereas in [20] the
energy (acceleration) is optimized but with the requirement
to have a continuous snap. These works are very suitable
for aggressive maneuvers, but the fact of not imposing
distance to path restrictions difficult its usage in cluttered
environments. Moreover, in [4], [20], the time to pass for
the waypoints is imposed externally and not computed by
the planner.

C. Problem formulation

We assume to have a collision-free path, P , defined as
a discrete set of waypoints that encode the desired position
and heading of the aerial robot. The initial position of the
robot is considered as the first waypoint.

The objective of the proposed trajectory planner is the
generation of a trajectory, L, used by the trajectory tracking
controller as reference. This trajectory consists of the rela-
tionship between time and the desired values of the position,
heading of the aerial robot and all their derivatives, which
the robot has to track. The trajectory has to follow the given

path, without getting far away from it, and passing through
the waypoints, and has to be feasible by the robot.

D. Contributions and outline

The first contribution of the paper is the definition of the
trajectory as a set of two different kind of polynomials:
acceleration/deceleration and constant velocity. This multi-
phase trajectory definition allows to calculate, without lost
of flexibility, an optimal solution but following a predefined
simple profile. That is specially beneficial when tracking
realistic trajectories for real applications such as inspection or
package delivery, unlike other research-oriented aggressive
maneuvers shown in the literature. It is important to highlight
that our trajectory description allows though to impose
continuity of the derivative of the pose at our choice.

Secondly, we developed a formulation of an optimization-
based trajectory planning solution from a given path. Unlike
analytical closed-form solution found in the literature, this
formulation allows to easily modify the restrictions on the
trajectory, including not only m-continuity of the trajectory,
limits on velocity, acceleration and jerk, and constraints in
the waypoints, but also, maximum distance between the
trajectory and the given path. This last restriction is a must
when intended to track realistic trajectories in cluttered envi-
ronments for real applications, which is not incorporated in
many works found in the literature, where these restrictions
only apply in the waypoints.

Third, our approach avoids singularities on the repre-
sentation of the orientation over the trajectory by using
quaternions, unlike other state of art approaches that use
Euler angles.

Finally, our trajectory minimizes the trajectory tracking
time, instead of energy or snap, making it more suitable for
the previously mentioned real applications. Moreover, in our
experiments, we saw that minimizing the time, also reduces
indirectly the energy and the snap.

The remainder of the paper is organized as follows: Sect. II
includes the mathematical background needed in this work.
Sect. III describes the aerial robot model, whereas Sect. IV
defines the trajectory model used. In Sect. V, we state the
optimization problem that the proposed trajectory planner
has to solve. An evaluation and discussion of the results of
this work is done in Sect. VI. Finally, Sect. VII concludes
the paper and points out some future lines of work.

II. MATHEMATICAL BACKGROUND

A. Linear variables

The position of the robot in world coordinates is repre-
sented as p = [px, py, pz]

T , being the l-th derivative of
the position of the robot with respect to world in world
coordinates given by:

p(l) =
d(l)p

dt(l)
=


dp(l)x
dt(l)

dp(l)y
dt(l)

dp(l)z
dt(l)

 , ∀l ∈ Z, l > 0 (1)

1343

B. Angular variables

The orientation of the robot in world coordinates is
represented by the unit quaternion, q = [qw, qv] =
[qw, qx, qy, qz], being the l-th derivative of the orientation
of the robot with respect to world in world coordinates given
by:

dq

dt
=

1

2
· ω ⊗ q, l = 1 (2)

ω(l−1) =
d(l−1)ω

dt(l−1)
=


dω(l−1)

x

dt(l−1)

dω(l−1)
y

dt(l−1)

dω(l−1)
z

dt(l−1)

 , ∀l ∈ Z, l > 1 (3)

where in equation 2, abusing of notation, ω represents the
pure quaternion associated to the angular velocity ω, and ⊗
is the quaternion product.

The use of quaternions allows us to have a continuous and
singularity-free representation of the orientation of the robot
(unlike for instance Euler angles) with a reduced number of
variables (unlike rotation matrices).

The quaternion difference, δq, between two quaternions
qa and qb is calculated as:

δq = q∗a ⊗ qb (4)

where q∗a is the conjugate of qa.
The error-quaternion, δθ, between two quaternions qa and

qb is calculated as:

δθ = fδθ (qa, qb) ≈ 2 · δqv (5)

where δqv is the vectorial part of the quaternion difference
δq. It requires that qa ≈ qb, and therefore

δq ≈
[

1
1
2δθ

]
(6)

C. Angular variables: Simplification

In the case that we are only interested in the yaw angle,
without considering the other two angles, the attitude of the
aerial robot can be represented by the following simplified
unit “s-quaternion”, q̃ = [qw, qz].

The l-th derivative of the orientation of the robot in world
coordinates with respect to world can be simplified to:

dq̃

dt
=

1

2
· ω̃ ⊗ q̃, l = 1 (7)

ω̃(l−1) =
d(l−1)ω̃

dt(l−1)
=
[

dω
(l−1)
ψ

dt(l−1)

]
, ∀l ∈ Z, l > 1 (8)

Using the algebra of the quaternions, simplified to the case
of the “s-quaternion”, and considering the unity property of
the “s-quaternion”, |q̃| = 1, equation 7 is reduced to:[

dqw
dt

dqz
dt

]
=

[
− 1

2 · ωψ ·
√

1− q2
w

1
2 · ωψ ·

√
1− q2

z

]
(9)

After the integration of the previous differential equation,
the relationship between the angular velocity with the orien-
tation is simplified to:

q̃ =

[
cos
(

1
2 · ρψ

)
sin
(

1
2 · ρψ

)] (10)

where the orientation-related value, ρψ , is related to the
angular velocity as

ωψ =
dρψ
dt

(11)

III. AERIAL ROBOT MODEL

According to [4], [21], the dynamics of an underactuated
multirotor aerial robot is differentially flat. This means that
the states and the inputs can be written as algebraic functions
of four carefully selected flat outputs and their deriva-
tives. This facilitates the generation of trajectories since any
smooth trajectory (with reasonably bounded derivatives) in
the space of flat outputs can be followed by the aerial robot.

A common choice of the flat outputs, [4], [21], are the
position of the center of mass of the aerial robot in world
coordinates, pWR = [px, py, pz]

T , and its yaw (heading) an-
gle, that in this work we represent as a simplified quaternion
q̃WR = [qw, qz].

The restrictions we have applied to our model are the
following2:

• Bounded linear velocity, vRR|W .
• Bounded angular velocity, ωψRR|W .
• Bounded linear acceleration, aRR|W .
• Bounded angular acceleration, αψRR|W .
• Bounded linear jerk, jRR|W .
• Bounded angular jerk, ιψRR|W .

We have seen that bounding higher-order derivatives is not
needed to accurately represent the robot model for the
calculation of a smooth trajectory.

IV. TRAJECTORY DEFINITION

The trajectory, L, is defined as a piecewise set of ns
segments, si, that depend on the time, t, and are defined
within a time range, t ∈

[
ti0, tif

]
:

L = {si(t), t ∈
[
ti0, tif

]
, ∀i = {1..ns}}

Carrying out the following change on the time variable:

τi = t− ti0, τi ∈
[
0,∆τi = tif − ti0

]
the trajectory, L, is redefined as:

L = {s̃i(τi), τi ∈ [0,∆τi] , ∀i = {1..ns}}

The number of segments, ns, of the trajectory, L, is related
to the number of waypoints, nw, of the given path, P . We
propose to have three segments in the trajectory between
every two existing waypoints, which, as explained below,
represent three different phases: acceleration, constant veloc-
ity, and deceleration. The number of segments is therefore
calculated as:

ns = 3 · (nw − 1) (12)

2The notation νC
A|B represents the value of the magnitude ν of the system

A, with respect to system B, represented in coordinates of the system C.

1344

All the segments, s̃i(τi), are 4-dimensional, having one
dimension per flat output, i.e.

s̃i(τi) =


pi,x(τi)
pi,y(τi)
pi,z(τi)
ρi,ψ(τi)

 , ∀i = {1..ns} (13)

.
The segments of every dimension j = {x, y, z, ψ} are

defined as polynomials functions of order m, i.e. the (m+1)-
th derivative of the position, pj , and the orientation-related
value, ρψ , is zero:

pi,j(bi,j,:, τi) =

k=m∑
k=0

(
bi,j,k · τki

)
, j = {x, y, z} (14)

ρi,ψ(bi,ψ,:, τi) =

k=m∑
k=0

(
bi,ψ,k · τki

)
(15)

The value of the orientation, q̃i,ψ(bi,ψ,:, τi) is calculated
combining equations 10 and 15.

The derivatives of the linear variables are calculated by
differentiation of equation 14 as shown in equation 1. The
first derivative of the angular variable requires the differenti-
ation of equation 15 following equation 11. The higher-order
derivatives of the angular variable are calculated following
equation 8.

This definition of the trajectory allows to calculate a
trajectory that is continuous up to nd-th order, i.e. T is Cnd .
In other words, all the segments and their derivatives up to
the nd-th order are continuous.

Although our presented solution is general enough, we
propose a trajectory that is continuous up to third order, nd =
3, that is, the third derivative, i.e. the jerk, is continuous but
not derivable.

We propose to have two kinds of polynomial segments,
the ones that are connected to the waypoints, and the ones
that are not. We have therefore two waypoint connected
polynomials, per each intermediate one. For the waypoint
connected polynomials we propose to force the seventh
derivative, i.e. the lock, to be zero, obtaining for the position
and the orientation-related value a 6th-degree polynomial,
m = 6, with 7 coefficients per dimension and segment. These
segments are used to represent acceleration and deceleration
movements of the robot. For the intermediate polynomials
we force the second derivative, i.e. the acceleration, to be
zero, obtaining for the position and the orientation-related
value a 1st-degree polynomial, m = 1, with 2 coefficients
per dimension and segment. These segments are used to
represent a constant velocity movement of the robot.

V. TRAJECTORY PLANNER

The trajectory planner calculates the optimum trajectory,
L∗, defined by the parameters, b∗, and ∆τ ∗, as illustrated in
Sect. IV, by solving the following single-objective nonlinear
multivariable constrained minimization problem:

b∗,∆τ ∗ = arg min
b∈B,∆τ∈T

(J(∆τ))

subject to:
Time feasibility: −∆τ ≤ 0
Derivability of the trajectory: cs(b,∆τ) = 0
Dynamics of the robot: νR(b,∆τ)− νmax ≤ 0

νmin − νR(b,∆τ) ≤ 0
Waypoints: w(b,∆τ , P) = 0
Distance to path: d(b,∆τ , P)− dmax ≤ 0

The proposed optimization problem is detailed in the
following Sects. V-A to V-D.

A. Optimization variables

The optimization variables, x, also called unknowns,
gather all the parameters that describe the trajectory, L,
introduced in Sect. IV, i.e.:
• The coefficients of the polynomials of the segments,
b = {bi,j,k} ∈ B, ∀i = {1..ns}, ∀j = {x, y, z, ψ}, and
∀k = {1..7} for the case of waypoint connected poly-
nomials, and ∀k = {1..2} for the case of intermediate
polynomials.

• The time intervals of the segments, ∆τ = {∆τi} ∈ T ,
∀i = {1..ns}.

being, therefore, the number of unknowns, nx = 67·(nw−1).
All the unknowns are real numbers, i.e. x ∈ Rnx .

B. Objective function

The objective function, J(x), also called cost function,
that has to be minimized, is the total time of the trajectory
tracking. It is calculated as

J(∆τ) =
∑
∀i

∆τi (16)

C. Constraints

Two kinds of constraints, cin(x) ≤ 0, and ceq(x) = 0,
are included in the optimization problem formulation and
are detailed below.

1) Time feasibility: The time intervals of all the segments,
∆τi, must be feasible, i.e. cannot be negative:

∆τi ≥ 0, ∀i = {1..ns} (17)

2) Derivability of the trajectory: As mentioned in Sect.
IV, the trajectory has to be derivable up to nd-th order,
i.e. T is Cnd . In other words, all the segments and their
derivatives up to the nd-th order (in our case, nd = 3) have
to be continuous. We represent this set of restrictions as
cs(b,∆τ) = 0.

For the linear variables, we have ∀i = {1..ns}, ∀j =
{x, y, z}, and ∀l = {0..nd}, the following expression:

p
(l)
i,j (bi,j,:,∆τi)− p(l)

i,j (bi+1,j,:, 0) = 0 (18)

For the orientation, we have ∀i = {1..ns}:

fδθ̃
(
q̃i,ψ (bi,ψ,:,∆τi) , q̃i,ψ (bi+1,ψ,:, 0)

)
= 0 (19)

1345

where fδθ̃ is the error-quaternion calculated following equa-
tion 5.

For the derivatives of the angular variables. we have ∀i =
{1..ns}, and ∀l = {1..nd}:

ω
(l−1)
i,ψ (bi,ψ,:,∆τi)− ω(l−1)

i,ψ (bi+1,ψ,:, 0) = 0 (20)

3) Dynamics of the robot: The trajectory has to fulfill all
the constraints on the dynamics of the robot, presented in
Sect. III, as

νmin ≤ νR(b,∆τ) ≤ νmax (21)

4) Waypoints: The trajectory has to pass through the
waypoints of the given path, P . We represent this set of
restrictions as w(b,∆τ , P) = 0.

For the position, we have ∀j = {x, y, z}, ∀n ∈ P , and
∀i−, i+ connecting polynomials, the following expressions:

pi+,j
(
bi+,j,:, 0

)
− pwn = 0 (22)

pi−,j
(
bi−,j,:,∆τi−

)
− pwn = 0 (23)

Similarly, for the orientation, we have:

fδθ̃

(
q̃i+,ψ

(
bi+,j,:, 0

)
, q̃wn

)
= 0 (24)

fδθ̃

(
q̃i−,ψ

(
bi−,j,:,∆τi−

)
, q̃wn

)
= 0 (25)

where fδθ̃ is the error-quaternion calculated following equa-
tion 5.

The reader must note that the waypoint n is characterized
by is position, pwn and orientation, q̃wn .

5) Distance to path: The euclidean distance between the
given path and the position variables of the trajectory has to
be lower than a value, dmax. We represent this restriction as
d(b,∆τ , P) ≤ dmax, and it is calculated as:

‖pi,: (bi,xyz,:, τ)− pPn,n+1
‖2 ≤ dmax (26)

∀τ ∈ [0,∆τi], ∀i = {1..ns}, and for all the position
subpaths, pPn,n+1

, that form the complete path P .

D. Initialization

The initialization of the unknowns is essential for a fast
convergence of the optimization algorithm to a local minima.
The initial value of the unknowns, x0, has to be feasible from
the optimization problem point of view, i.e. it has to fulfill
the constraints described in Sect. V-C.

We propose an initial trajectory, L0, that exactly follows
the given path, P , by setting to zero the velocity and all
the higher order derivatives in the waypoints. This means
that, between every two waypoints, three stages take place:
acceleration from zero velocity, constant velocity movement,
and deceleration to zero velocity. The maximum jerk, the
maximum acceleration and the maximum velocity of this
trajectory is given by the constraints of the dynamics of
the robot. Our initial trajectory also follows its derivability
constraints.

The aforementioned initial trajectory, L0, is feasible from
the optimization problem point of view. It can be calculated
analytically but for the sake of brevity, a complete expound
of its computation method is omitted.

VI. EVALUATION AND RESULTS
A. Evaluation methodology

The validation of the proposed trajectory planner is done
considering two different aspects.

In the one hand, in Sect. VI-B, we evaluate the pro-
posed trajectory planner in terms of the optimization process
presented in Sect. V, and the properties of the calculated
trajectory. We use the root mean square (RMS) value, νrms,
of different magnitudes, ν, of the trajectory:

νrms =

√
1

tf
·
∫ tf

0

ν2(t) · dt

In the other hand, the usefulness of the generated trajectory
when used together with a controller is evaluated in Sect.
VI-D by means of real flights. The experimental setup of
the real flights is described in Sect. VI-C. It is important to
highlight that this paper focuses on trajectory planning, and
therefore, the performance of the control solution used in
these experiments is not quantitatively evaluated.

We have implemented our trajectory planner in MATLAB,
using the single-objective nonlinear multivariable constrained
minimization solver provided by the function fmincon.

B. Trajectory planning results

In this section, we evaluate the proposed trajectory plan-
ner, analyzing the optimization process and the properties of
the calculated trajectory. The path used for the evaluation is
defined by the 9 waypoints listed in Table I and it is shown
in Fig. 2. We assume the aerial robot to be initially hovering
with a pose that coincides with the first waypoint. Despite
being a short path3, it is very challenging, as it includes
simultaneous movements in the four degrees of freedom of
the aerial robot. It is important to highlight that we have
artificially included waypoint 5 for evaluation purposes.

Fig. 2. 3D view of the path used for the evaluation. The path is represented
with a dashed black line, being its waypoints, listed in Table I, represented
by a circle (position) and a red arrow (heading).

We have configured our trajectory planner with the con-
figuration parameters listed in Table II.

3Note that the length of the path is limited by the size of our flight arena.

1346

W1 W2 W3 W4 W5 W6 W7 W8 W9

px (m) -2 0 2 2 0 -2 2 -2 -2
py (m) -2 -2 0 2 2 2 -2 2 -2
pz (m) 1.25 1.25 1.25 1.25 1.25 1.25 2 2 2
ψ (◦) 0 45 45 90 135 180 0 -90 0

TABLE I
LIST OF WAYPOINTS OF THE PATH USED FOR THE EVALUATION.

dpath vW
R|W ωψ

W
R|W aW

R|W αψ
W
R|W jW

R|W ιψ
W
R|W

(m) (m·s−1) (rad·s−1) (m·s−2) (rad·s−2) (m·s−3) (rad·s−3)
min 0 -1.5 -1.5 -2 -2 -5 -5
max 0.05 1.5 1.5 2 2 5 5

TABLE II
CONFIGURATION PARAMETERS OF THE TRAJECTORY PLANNER.

As described in Sect. V-D, we initialize the optimization
problem that our trajectory planner has to solve with an initial
trajectory that fulfills all the constraints and exactly follows
the given path. The values (pose and derivatives up to jerk)
of this initial trajectory are plotted in Fig. 3 and Fig. 4. The
total time of the trajectory tracking of this initial trajectory
is t = 24.35 s.

Fig. 5 shows the 3D view of the calculated trajectory
once the optimization process ended. The values (pose and
derivatives up to jerk) of this trajectory are plotted in Fig. 6
and Fig. 7. The total time of the trajectory tracking of this
trajectory is t = 18.1 s.

As expected, the calculated trajectory still fulfills all the
constraints, but the total time of the trajectory tracking has
decreased by 25.67% from the initial trajectory (t = 24.35
s.) to the optimized one (t = 18.1 s.). Considering the initial
trajectory without waypoint 5, the total time of the trajectory
tracking has decreased by 21.13% (from t = 22.95 s.).

The reader is recommended to deeply compare Fig. 3 and
Fig. 4 with Fig. 6 and Fig. 7 to perceive the difference
between the two trajectories. For example, in the artificial
waypoint 5, the velocity in x-axis of the initial trajectory was
0 m·s−1, while in the optimized trajectory is −1.5 m·s−1,
as we would not have included it as a waypoint of the path.
In the rest of the waypoints, the velocity has also increased.

Moreover, as shown in Table III, the RMS value of the
velocity of the trajectory has increased by more than 10%
while the RMS of the other higher order derivatives has
decreased (except the linear acceleration). This means that
the calculated trajectory is not only faster than the initial one,
but also smoother and more energy-efficient.

v ωψ a αψ j ιψ s σψ
initial (a) 0.9853 0.5169 1.1665 0.5867 3.1034 1.5701 15.6377 7.9575

initial w/o W5 (b) 1.0336 0.5422 1.1487 0.5754 2.9555 1.4862 14.3780 7.2615
optimized (c) 1.1783 0.6122 1.2062 0.5309 2.7346 1.1411 13.8708 5.5012

% change (a)-(c) 19.58 18.43 3.40 -9.50 -11.88 -27.32 -11.30 -30.87
% change (b)-(c) 14.00 12.90 5.01 -7.73 -7.47 -23.22 -3.53 -24.24

TABLE III
RMS VALUES OF DIFFERENT MAGNITUDES OF BOTH INITIAL AND

OPTIMIZED TRAJECTORIES.

As expected, the optimization process eventually con-
verges to a feasible solution that minimizes the total time of

trajectory tracking. In case of real-time constraints and / or
limited computational resources availability, the user would
be able to stop the optimization process at any iteration. In
such case, the calculated trajectory would still be feasible
(i.e. all the constraints would be fulfilled), but it would
not have converged to a minimum of the total time of
trajectory tracking. Nevertheless, this solution would be a
better choice than the initial trajectory, in terms of the RMS
values discussed before.

C. Experimental setup

In Sect. VI-D, we evaluate the usefulness of the generated
trajectory when used together with a controller by means
of real flights (see 1), describing along this section the
experimental setup.

Fig. 8 shows the proposed system architecture for the
experimental evaluation. All the components, except the
trajectory planner, have been implemented in C++ using ROS
[22] as middleware.

Our aerial robot platform is a DJI Matrice 1004 quadrotor
(see Fig. 9). It is equipped with a DJI N1 flight controller,
that does not only stabilizes the platform, but also pro-
vides a velocity controller that uses only onboard sensors
(including a DJI Guidance5). This autopilot allows us to
input a command in terms of the desired velocity of the
platform (i.e. linear velocity and heading velocity, both in
robot coordinates), unlike [4], [21], where the control com-
mands are the spinning velocity of the motors of the aerial
platform. Moreover, our aerial robot platform is equipped
with some extra sensors and a companion computer for
industrial oriented applications.

We model our platform (mechanical part together with the
autopilot with the velocity controller) following a similar
procedure as described in [23]. We define the state of the
aerial robot platform as:

x =
[
pWR , q̃

W
R , v

R
R|W , ωψ

R
R|W

]T
(27)

And the state-space model, ẋ = f(x,u), that represents the
dynamics of the system, is as follows:

ṗWR = RWR · vRR|W (28)

v̇j
R
R|W = − 1

τj
· vjRR|W +

kj
τj
· uj , ∀j = {x, y, z} (29)

˙̃qWR =
1

2
· ωψRR|W ⊗ q̃

W
R (30)

ω̇ψ
R
R|W = − 1

τψ
· ωψRR|W +

kψ
τψ
· uψ (31)

where RWR is the rotation matrix associated to the simplified
quaternion q̃WR . The values of the parameters kj and τj have
been calculated empirically, and are shown in Table IV. Note
that in this particular case, ωψRR|W = ωψ

W
R|W , as we are only

considering the heading angle.
We collect information about the state of our aerial plat-

form by means of an Optitrack motion capture system, which

4https://www.dji.com/matrice100
5https://www.dji.com/guidance

1347

(a) x. (b) y. (c) z.

Fig. 3. Initial trajectory. Position, and its derivatives up to jerk, plotted in solid blue. The blue dots and squares illustrate the beginning and end of a
segment of the trajectory. The vertical dashed black lines represent the waypoints. Its total time of tracking is t = 24.35 s.

Fig. 4. Initial trajectory. Heading, and its derivatives up to jerk, plotted
in dashed red and magenta and in solid blue. The blue dots and squares
illustrate the beginning and end of a segment of the trajectory. The vertical
dashed black lines represent the waypoints. Its total time of tracking is
t = 24.35 s.

provides the measurements of its position and orientation at
a frequency of 200 Hz. The state of the robot (i.e. pose and
velocity) is estimated using [24].

Our control loop is formed by a feedforward controller
and a feedback controller in parallel, u = uff + ufb, as
shown in Fig. 8. We set the frequency of the control loop to
50 Hz.

The feedforward controller inverts the model of the robot
and feeds it with the desired values of the magnitude of
the planned trajectory to calculate the control commands,

Fig. 5. 3D view of the calculated trajectory. The position values are drawn
with a solid blue line, whereas the heading is represented with magenta
arrows. The path is displayed with a dashed black line, being its waypoints
represented by a circle (position) and a red arrow (heading).

x y z ψ
kj 1.0 1.0 1.0 π/180
τj 0.8355 0.7701 0.5013 0.5142

TABLE IV
EMPIRICALLY CALCULATED VALUES OF THE DYNAMICS OF OUR AERIAL

PLATFORM.

uff = f−1(xd, ẋd), as:

uff,j =
τj
kj
· ad,jRR|W +

1

kj
· vd,jRR|W , ∀j = {x, y, z}

(32)

uff,ψ =
τψ
kψ
· αd,ψRR|W +

1

kψ
· ωd,ψRR|W (33)

where, as mentioned before, vdRR|W = (Rd
W
R)T · vdWR|W ,

1348

(a) x. (b) y. (c) z.

Fig. 6. Calculated trajectory. Position, and its derivatives up to jerk, plotted in solid blue. The blue dots and squares illustrate the beginning and end of
a segment of the trajectory. The vertical dashed black lines represent the waypoints. Its total time of tracking is t = 18.1 s.

Fig. 7. Calculated trajectory. Heading, and its derivatives up to jerk, plotted
in dashed red and magenta and in solid blue. The blue dots and squares
illustrate the beginning and end of a segment of the trajectory. The vertical
dashed black lines represent the waypoints. Its total time of tracking is
t = 18.1 s.

Fig. 8. System architecture setup for the experimental evaluation of the
proposed trajectory planner.

Fig. 9. The aerial robot platform used for the experimental validation.

ad
R
R|W = (Rd

W
R)T · adWR|W , αd,ψ

R
R|W = αd,ψ

W
R|W and

ωd,ψ
R
R|W = ωd,ψ

W
R|W .

The feedback controller is based on [25], and it is formed
by four fuzzy logic based controllers that calculate the con-
trol command considering the desired pose of the platform
given by the trajectory planner and the estimated current pose
of the robot:

ufb = cFL
(
pWR , q̃

W
R ,pd

W
R , q̃d

W
R

)
(34)

Finally, as mentioned before, the trajectory planner has
been implemented in MATLAB and it is executed offline.

D. Experimental results

Fig. 10 and Fig. 11 show the desired values of the position,
orientation and velocity (in blue) of the calculated trajectory
presented in Sect. VI-B, and the estimated values of the same
magnitudes of the robot during the presented experiment (in
red).

As can be seen, the trajectory is properly tracked not only
in position, but also in velocity. It is important to remind the
reader that this work focuses on trajectory planning and not
in control, and as stated before, the objective of this section is
simply to demonstrate the usefulness of the trajectory planner

1349

(a) x. (b) y. (c) z.

Fig. 10. Position and linear velocity of the robot during the experiment of tracking the trajectory calculated in Sect. VI-B. In blue the desired values
calculated by the proposed trajectory planner. In red the estimated values that the robot had during the execution of the experiment.

Fig. 11. Heading and angular velocity of the robot during the experiment
of tracking the trajectory calculated in Sect. VI-B. In blue the desired values
calculated by the proposed trajectory planner. In red the estimated values
that the robot had during the execution of the experiment.

when used together with a controller in real flights, but we
are not interested in analyzing quantitatively the error on the
trajectory tracking. Therefore, we have used the control loop
described in Sect. VI-C without an extra tunning or complex
modeling.

Fig. 12 shows the control commands given to the robot
to track the trajectory calculated in Sect. VI-B. The total
control command (in red) is the addition of the feedforward
command (in blue) and the feedback command (in green).

As can be extracted from Fig. 12, the feedforward con-
troller is generating the major part of the total control
command, reducing the effort of the feedback controller (and
therefore making the trajectory tracking less dependent on
it). It is, therefore, important to highlight the usefulness of
feedforward controller despite the very simple model that

(a) ux. (b) uy .

(c) uz . (d) uψ .

Fig. 12. Control commands given to the robot during the presented
experiment to track the trajectory calculated in Sect. VI-B. The total control
command (in red) is the addition of the feedforward command (in blue) and
the feedback command (in green).

we use to represent the dynamics of the aerial robot (and
therefore to calculate the feedforward controller). Moreover,
the reader might remember that the use of this feedforward
controller is only possible thanks to the trajectory planner,
which allows to have the desired values of the higher order
derivatives that permits the inversion of the dynamic model
of the robot.

Finally, the reader might note that our aerial robot (see Fig.
9) is considerably bigger and heavier (Size: 890×890×340
mm3, MTOW: 3600 g.) than the aerial platforms used in
works like [6], [4], [20] that focus on aggressive maneuvering

1350

(e.g. AscTec Hummingbird6. Size: 540 × 540 × 85.5 mm3,
MTOW: 710 g.).

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an algorithm for multirotor
aerial robots that calculates a feasible trajectory given a
desired path. We have carefully designed our planner con-
sidering the requirements of real applications such as aerial
inspection or package delivery, unlike other research works
oriented to aggressive maneuvering. Our planned trajectory
is formed by a set of polynomials of two kinds, accel-
eration/deceleration and constant velocity. The trajectory
planning is carried out by means of an optimization that
minimizes the trajectory tracking time, applying some typical
constraints as m-continuity or limits on velocity, acceleration
and jerk, but also the maximum distance between the trajec-
tory and the given path.

We have tested our trajectory planner by means of real
flights with a big and heavy aerial platform such the one
that would be used in a real industrial application. In our
experiments we have used a simple trajectory tracking con-
trol architecture that combines a feedforward and a feedback
controller based on simple models and basic tuning. Our
experiments have demonstrated that our trajectory planner is
suitable for real applications and it is positively influencing
the controller for the trajectory tracking task.

Some future work lines related to the trajectory planner
include its online execution, a multi-objective optimization
(for example minimizing time and snap simultaneously),
and the incorporation of constraints in the derivatives of
linear and angular variables in the waypoints (e.g. velocity
in the waypoints). Very interesting would be to carry out a
deep analysis of the initialization of the optimization and
the configuration parameters. Finally, to completely solve
the trajectory tracking problem, the control architecture is
required to be improved.

REFERENCES

[1] J. L. Sanchez-Lopez, R. A. S. Fernández, H. Bavle, C. Sampedro,
M. Molina, J. Pestana, and P. Campoy, “Aerostack: An architecture
and open-source software framework for aerial robotics,” in 2016
International Conference on Unmanned Aircraft Systems (ICUAS),
June 2016, pp. 332–341.

[2] J. L. Sanchez-Lopez, M. Molina, H. Bavle, C. Sampedro, R. A.
Suárez Fernández, and P. Campoy, “A multi-layered component-based
approach for the development of aerial robotic systems: The aerostack
framework,” Journal of Intelligent & Robotic Systems, pp. 1–27, 2017.

[3] J. L. Sanchez-Lopez, J. Pestana, and P. Campoy, “A robust real-
time path planner for the collision-free navigation of multirotor aerial
robots in dynamic environments,” in 2017 International Conference
on Unmanned Aircraft Systems (ICUAS), June 2017, pp. 316–325.

[4] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in 2011 IEEE International Conference
on Robotics and Automation, May 2011, pp. 2520–2525.

[5] K. B. Judd and T. W. McLain, “Spline based path planning for
unmanned air vehicles,” in AIAA Guidance, Navigation, and Control
Conference and Exhibit, vol. 9. Montreal, Canada, 2001.

[6] C. Richter, A. Bry, and N. Roy, Polynomial Trajectory Planning for
Aggressive Quadrotor Flight in Dense Indoor Environments. Cham:
Springer International Publishing, 2016, pp. 649–666.

6Source: http://www.asctec.de/en/
uav-uas-drones-rpas-roav/asctec-hummingbird/

[7] J. L. Sanchez-Lopez, M. Wang, M. A. Olivares-Mendez, M. Molina,
and H. Voos, “A real-time 3d trajectory planning solution for collision-
free navigation of multirotor aerial robots in dynamic environments,”
Journal of Intelligent & Robotic Systems, pp. 1–32, 2018.

[8] K. Hauser and V. Ng-Thow-Hing, “Fast smoothing of manipulator
trajectories using optimal bounded-acceleration shortcuts,” in 2010
IEEE International Conference on Robotics and Automation, May
2010, pp. 2493–2498.

[9] S. Macfarlane and E. A. Croft, “Jerk-bounded manipulator trajectory
planning: design for real-time applications,” IEEE Transactions on
Robotics and Automation, vol. 19, no. 1, pp. 42–52, Feb 2003.

[10] R. Haschke, E. Weitnauer, and H. Ritter, “On-line planning of time-
optimal, jerk-limited trajectories,” in 2008 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sept 2008, pp. 3248–
3253.

[11] B. Ezair, T. Tassa, and Z. Shiller, “Planning high order trajectories
with general initial and final conditions and asymmetric bounds,” The
International Journal of Robotics Research, vol. 33, no. 6, pp. 898–
916, 2014.

[12] S. G. Manyam, S. Rathinam, D. Casbeer, and E. Garcia, “Tightly
bounding the shortest dubins paths through a sequence of points,”
Journal of Intelligent & Robotic Systems, vol. 88, no. 2, pp. 495–511,
Dec 2017.

[13] K. Yang and S. Sukkarieh, “An analytical continuous-curvature path-
smoothing algorithm,” IEEE Transactions on Robotics, vol. 26, no. 3,
pp. 561–568, June 2010.

[14] D. Jung and P. Tsiotras, “On-line path generation for small unmanned
aerial vehicles using b-spline path templates,” in AIAA Guidance,
Navigation and Control Conference, AIAA, vol. 7135, 2008.

[15] M. W. Mueller and R. D’Andrea, “A model predictive controller for
quadrocopter state interception,” in 2013 European Control Confer-
ence (ECC), July 2013, pp. 1383–1389.

[16] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally
efficient algorithm for state-to-state quadrocopter trajectory generation
and feasibility verification,” in 2013 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, Nov 2013, pp. 3480–3486.

[17] A. Boeuf, J. Corts, R. Alami, and T. Simon, “Planning agile motions
for quadrotors in constrained environments,” in 2014 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, Sept 2014, pp.
218–223.

[18] M. Beul and S. Behnke, “Analytical time-optimal trajectory generation
and control for multirotors,” in 2016 International Conference on
Unmanned Aircraft Systems (ICUAS), June 2016, pp. 87–96.

[19] S. Beul, M. Behnke, “Fast full state trajectory generation for multiro-
tors,” in 2017 International Conference on Unmanned Aircraft Systems
(ICUAS), June 2017, pp. 408–416.

[20] M. W. Achtelik, S. Lynen, M. Chli, and R. Siegwart, “Inversion
based direct position control and trajectory following for micro aerial
vehicles,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Nov 2013, pp. 2933–2939.

[21] M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness
of quadrotor dynamics subject to rotor drag for accurate tracking of
high-speed trajectories,” IEEE Robotics and Automation Letters, vol. 3,
no. 2, pp. 620–626, April 2018.

[22] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009, p. 5.

[23] M. Castillo-Lopez, M. A. Olivares-Mendez, and H. Voos, “Evasive ma-
neuvering for uavs: An mpc approach,” in ROBOT 2017: Third Iberian
Robotics Conference, A. Ollero, A. Sanfeliu, L. Montano, N. Lau, and
C. Cardeira, Eds. Cham: Springer International Publishing, 2018, pp.
829–840.

[24] J. L. Sanchez-Lopez, V. Arellano-Quintana, M. Tognon, P. Campoy,
and A. Franchi, “Visual marker based multi-sensor fusion state estima-
tion,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 16 003 – 16 008, 2017,
20th IFAC World Congress.

[25] M. Olivares-Mendez, S. Kannan, and H. Voos, “Vision based fuzzy
control autonomous landing with uavs: From v-rep to real experi-
ments,” in Control and Automation (MED), 2015 23th Mediterranean
Conference on, June 2015, pp. 14–21.

1351

		2018-08-29T16:51:56-0400
	Preflight Ticket Signature

