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Abstract

Background: Recent advances in high-throughput sequencing allow for much deeper exploitation of natural and
engineered microbial communities, and to unravel so-called “microbial dark matter” (microbes that until now have
evaded cultivation). Metagenomic analyses result in a large number of genomic fragments (contigs) that need to
be grouped (binned) in order to reconstruct draft microbial genomes. While several contig binning algorithms have
been developed in the past 2 years, they often lack consensus. Furthermore, these software tools typically lack a
provision for the visualization of data and bin characteristics.

Results: We present ICoVeR, the Interactive Contig-bin Verification and Refinement tool, which allows the
visualization of genome bins. More specifically, ICoVeR allows curation of bin assignments based on multiple
binning algorithms. Its visualization window is composed of two connected and interactive main views, including
a parallel coordinates view and a dimensionality reduction plot. To demonstrate ICoVeR’s utility, we used it to
refine disparate genome bins automatically generated using MetaBAT, CONCOCT and MyCC for an anaerobic
digestion metagenomic (AD microbiome) dataset. Out of 31 refined genome bins, 23 were characterized with
higher completeness and lower contamination in comparison to their respective, automatically generated,
genome bins. Additionally, to benchmark ICoVeR against a previously validated dataset, we used Sharon’s
dataset representing an infant gut metagenome.

Conclusions: ICoVeR is an open source software package that allows curation of disparate genome bins generated
with automatic binning algorithms. It is freely available under the GPLv3 license at https://git.list.lu/eScience/ICoVeR.
The data management and analytical functions of ICoVeR are implemented in R, therefore the software can be easily
installed on any system for which R is available. Installation and usage guide together with the example files ready to
be visualized are also provided via the project wiki. ICoVeR running instance preloaded with AD microbiome and
Sharon’s datasets can be accessed via the website.
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Background
Rapid improvement of high-throughput sequencing tech-
nologies allows for much deeper exploitation of microbial
communities, including bacteria, archaea and microeukar-
yotes. While only a small fraction of the microbial phylo-
genetic diversity is represented by cultivated organisms

[1], metagenomics (shotgun DNA sequencing) allows
reconstruction of microbial genomes (partial and/or
complete) directly from environmental samples without
cultivation. However, the binning of assembled metage-
nomic contigs into individual genomes still remains a
significant challenge.
The combination of tetra-nucleotide frequencies (TNFs;

sequence-dependent contig binning) with contigs’ differ-
ential abundance spectra (sequence-independent contig
binning) has resulted recently in the development of
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multiple (fully) automated contig binning approaches
[2–6]. Even though fully automated genome binning al-
lows the processing of large amounts of sequencing
data, the different binning algorithms often result in re-
dundant or overlapping genome bins. Moreover, depend-
ing on the chosen parameters, even an individual binning
algorithm may provide different binning results. This
makes it difficult for a user to determine which configur-
ation produces the best results. Alternatively, one might
want to combine bin assignments from different tools (or
parameter configurations) in order to get the “consensus”
set of bins, similarly to a recently proposed merged assem-
bly concept [7].
Therefore, further verification of bin completeness and

contamination (based on the presence of essential single
copy genes, ESCGs) as well as subsequent bin refinement
are necessary. The first task has been recently addressed
by the development of CheckM [8], an automated tool
that estimates the completeness and contamination of
draft genomes (population genomes recovered from meta-
genomic data) using a set of marker genes that are specific
to a genome’s inferred lineage. The second issue concern-
ing the refinement of genomic bins would ideally require
an interactive framework allowing for visualizing several
automated binning outputs in order to perform further
supervised binning. To our knowledge, anvi’o [9] is the
only interactive tool that enables for such visualization
and for subsequent human-assisted improvement of
automatically generated genome bins resulting from
multiple binning algorithms. Even though, the anvi’o
metagenomic workflow enables the user to interactively
work with the data and to perform a supervised binning
using a real-time display of bin completeness and con-
tamination estimates, its main limitation is a low num-
ber (up to 20,000) of contigs (contig splits) that can be
clustered for human-guided binning. Visualization of
larger datasets decreases the responsiveness of its inter-
active interface.
Here, we introduce ICoVeR, the Interactive Contig-bin

Verification and Refinement visualization tool, which
allows user-guided refinement of automatically gener-
ated contig bins. The software provides a visual inter-
face that allows for comparing different binning results
and their further supervised refinement. Its visualization
window is composed of two connected and interactive
main views: (1) a parallel coordinates view in which GC
content, gene length, contig abundance spectra across
different samples, binning results and TNFs values are
displayed, and (2) a dimensionality reduction plot in which
projections of the TNFs and contigs are shown (Fig. 1). To
demonstrate ICoVeR’s utility we used it to refine auto-
mated binning results for a dataset representing the
microbiome of an anaerobic digester (AD microbiome).
We show that it improved the completeness and reduced

the contamination of genome bins initially generated with
MetaBAT [5], CONCOCT [3], and MyCC [6]. Moreover,
we further used ICoVeR to refine genome bins for an
infant gut metagenome [10], previously validated with
CONCOCT [3], GroopM [4], MaxBin2 [11], MetaBAT [5]
and MyCC [6].

Implementation
Overview of ICoVeR software
ICoVeR was designed as a visualization and refinement
interface and not as primary binning software. It consists
of data management and analytical functionality in the
back end, and interactive visualization functionality in
the front end. Data management and analytical functions
of ICoVeR are implemented in R, thus the software is
easily deployable on any system for which R is available.
The front end of the application was developed using
Web technologies. The interface between the R code
and the web front end leverages OpenCPU [12], which
provides an HTTP/REST API reflecting the functionality
exported by the R package. The analytical functionality
in the back end is added to drive the refinement process
through the visual interface of ICoVeR. It is used to help
focusing on relevant parts of the data, and to guide the
decision making with respect to adding or removing
contigs from a particular bin. Currently, it involves
classic clustering and dimensionality reduction tech-
niques, including the k-means [13] and correlation-
based clustering. Correlation-based clustering is similar
to the canopy clustering proposed by Nielsen et al. [14].
As opposed to the latter approach, the data items subject
to clustering in our application are contigs rather than
called genes. Here, the correlation clustering algorithm
depends on two criteria: (1) the correlation threshold,
which determines whether a contig is added to a bin with
a given seed contig, and (2) the minimal cluster size,
which determines the minimum number of contigs before
a bin is considered a single cluster. The R Hmisc::rcorr
function used for calculating the correlation-based
clustering requires at least five variables (samples with
calculated contigs abundances). In the case where a
lower number of samples is available for the analysis,
the user may choose to rely on the automated binning
results only. Additionally, the user can extend the clus-
tering of contigs abundances over samples to other vari-
ables, including the GC content or a selection of TNFs, or
alternatively penta-nucleotide frequencies (PNFs). In
addition to the clusterings, two dimensionality reduction
techniques are provided, including correspondence ana-
lysis (CA) and principal component analysis (PCA; [15]).
Both techniques are used to extract important information
from a multivariate dataset in order to interactively select
a subset of the potentially most interesting variables
(samples or TNFs/PNFs) and individuals (contigs). The

Broeksema et al. BMC Bioinformatics  (2017) 18:233 Page 2 of 12



level of “interestingness” refers to variables (samples or
TNFs/PNFs) that differ from the majority and thus may
include patterns that may be important in driving differ-
ences between the individuals (contigs). While both PCA
and CA result in orthogonal components, the former
applies better to continuous numeric data (contigs abun-
dance over samples), while the latter applies to categorical
data (here TNFs and PNFs). As such, they represent
straightforward methods for selecting a possibly inter-
esting subset of variables to be visualized.
As a pre-requisite for ICoVeR, a user must provide: (1)

a co-assembly file (in the FASTA format) containing all
co-assembled contig sequences for all the metagenomic
samples to be analyzed; (2) a contig coverage (abundance)
file in the CSV format calculated for each metagenomic
sample separately; (3) an ESCGs file in the CSV format
containing all the predicted ESCGs for all co-assembled
contigs; and (4) a clustering file in the CSV format (op-
tional) with binning results from one or more automated
binning tools that the user wants to refine. Although, the
implemented k-means and correlation-based clusterings
can perform an initial contig binning, it is highly recom-
mended to start with dedicated automated binning soft-
ware prior data visualization and refinement processes. A

detailed installation guide is provided online https://
git.list.lu/eScience/ICoVeR/wikis/home/. Once the pack-
age is installed it allows the software to be run in two
different ways. Either the R OpenCPU package is used to
start OpenCPU from an interactive R session, or a dedi-
cated OpenCPU installation is used. The first option
allows individual users to get started more quickly. The
latter version scales better and allows for handling simul-
taneous requests.

AD microbiome sequencing, co-assembly and data
preparation
An anaerobic, mesophilic pilot-scale continuously stirred
tank reactor (CSTR) of 100 L reaction capacity was inoc-
ulated and operated as previously described [16]. Seven
samples (time points M4, M20, M28, M36, M40, M44
and M48) were selected for metagenomic analysis and the
total genomic DNA was extracted with a PowerSoil DNA
Isolation Kit (MoBio Laboratories Inc.), according to the
manufacturer instructions. Sequencing libraries were pre-
pared using a Nextera XTDNA Library Prep Kit (Illumina
Inc.), and were pair-end sequenced (2 × 250 bp) in a
single run on an Illumina MiSeq using a MiSeq Reagent
Kit V2-500. Raw sequence data was deposited in the

Fig. 1 Static image from the ICoVeR interactive display of the AD microbiome dataset. ICoVeR-refined genome bins 17 and 30 are shown as examples
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Sequence Read Archives (SRA) under the project acces-
sion number PRJNA303948. The resulting 26,371,696
metagenomic reads with average read length of 187.4 nt
were imported to CLC Genomics Workbench v6.5
(CLC Bio), and trimmed using a phred quality score of
20 (limit of 0.01), minimum length of 50, and allowing
no ambiguous nucleotides. A total number of 1,258,249
reads were completely removed after trimming. The
seven metagenomes were assembled together using the
CLC’s de novo assembly algorithm in mapping mode,
using the following settings: word size of 48, automated
bubble size, minimum contig length of 1000, mismatch
cost of 2, insertion cost of 3, deletion cost of 3, length
fraction of 0.9, and similarity fraction of 0.95. Assembly
of over 20 million (M) reads (nearly 3.5 billion nt) led
to 31,483 contigs (total length of 89,693,915 nt) with
N50 of 3489 nt, and the longest contig of 416,944 nt.
To determine the average coverage of contigs for each
metagenome sample, reads were de-replicated and
mapped back to the de novo assembled contigs using
the RNA-seq analysis mode, with a minimum similarity
of 0.8 over 0.9 of the read length, and using the ‘count
paired-reads as two’ mode. In total, 73.02% of reads
mapped back to the assembled contigs. The average
abundance was calculated as DNA-RPKMs (here equal
to the number of reads mapped to the contig and normal-
ized by the contig length and per million mappable reads)
and exported in BAM and CSV formats. TNFs and the
GC content of the resulting contigs were calculated
using functionality provided by the Biostrings package
(detailed workflow is available at https://bioconductor.
org/packages/release/bioc/html/Biostrings.html). Open
reading frames (ORFs) on the resulting co-assembled
contigs were first predicted with MetaProdigal [17], and
subsequently ESCGs were identified as previously de-
scribed [2, 18]. They are specific to the domain Bacteria.

AD microbiome automated binning with MetaBAT,
CONCOCT and MyCC
The AD microbiome dataset was initially binned using
the fully automated MetaBAT, CONCOCT and MyCC
binning software. To that purpose, respective BAM files
were generated with CLC Genomics Workbench after
mapping the quality trimmed reads to the resulting
contigs, as described above. To generate genome bins
MetaBAT was run using three different modes includ-
ing ‘(very) sensitive’, ‘specific’ and ‘superspecific’. The
lowest possible cut-off of 1500 for ‘minContig’ was used
to valorize multiple short contigs. In addition the AD
microbiome dataset was binned with CONCOCT using
a cluster number set to 34. This number of clusters was
chosen based on the estimated number of at least 30%
complete draft genomes (based on the sets of 109
ESCGs) able to be recovered for the CSTR metagenome

dataset. MyCC was run using the default parameters
(except for using the ‘meta’ mode of Prodigal) and includ-
ing the calculated contigs abundance information for the
seven metagenomes. The binning results were further
combined in a single CSV file and visualized with ICoVeR
for further human-assisted bin refinement. Genome bins
completeness and the level of contamination with foreign
DNA were assessed with CheckM. An F1 score was used
to weigh precision and recall of genome binning, and was
calculated as previously described by [6]. Due to the lack
of reference genomes, the CheckM calculated bin com-
pleteness was used as a recall value. The precision value
was calculated as a difference of 100% minus the CheckM
calculated bin contamination. For contamination values
exceeding 100%, the precision value was set to zero.
Paired-end connections for the different contigs grouping
into the resulting genome bins were visualized with Circos
[19], using the pipeline described in [2].

Sharon’s dataset
A human infant gut microbiome [10] was used to further
validate ICoVeR. The metagenome assembly along with
the depth files (average contig’s abundance over 18 meta-
genomics samples) and binning information for CON-
COCT [3], GroopM [4], MaxBin2 [11], MetaBAT [5] and
MyCC [6] were downloaded from http://sourceforge.net/
projects/sb2nhri/files/MyCC/Data/Sharon.zip and https://
sourceforge.net/projects/sb2nhri/files/MyCC/Data/bench-
mark/Sharon.zip/download. These files were previously
prepared as described in [6]. Only contigs above 1000 bp
were considered (2329 contigs). The CheckM calculated
bin completeness and contamination for CONCOCT,
GroopM, MaxBin2, MetaBAT and MyCC bin assigne-
ments were taken from [6], (Additional file 1: Table S1 in
that reference). For the ICoVeR-refined genome bins, bin
completeness, contamination and F1 scores were calcu-
lated as explained above for the AD microbiome dataset.

Results and Discussion
ICoVeR implementation
ICoVeR provides an interactive visualization and refine-
ment interface for the refinement of metagenomic contig
bins resulting from multiple automated binning algo-
rithms. Two clustering algorithms running in its back end
work on rows that contain a variety of contig properties.
While the widely used k-means clustering algorithm [13]
is not suitable on its own to cluster full metagenomic
datasets, we found it useful to enlarge or narrow down the
selection of contigs during the refinement process. The
correlation-based clustering is similar to the canopy con-
cept previously proposed [14], however it allows the user
to extend the contig coverages-based clustering to other
variables such as GC content or a selection of TNFs, alter-
natively PNFs. This concept is similar to e.g. CONCOCT
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[3], which uses Gaussian mixture models to cluster con-
tigs into population-level genomes based on sequence
composition and coverage across multiple samples.
Moreover, it allows a level of freedom that exceeds even
the approach implemented in anvi’o [9], where the
clustering profiles are currently limited either to cover-
age information, TNFs or the combination of both.
In addition to these two clustering algorithms, dimen-

sionality reduction techniques are provided in ICoVeR
for selecting variables and contigs of interest. CA is ap-
plied to TNFs (calculated by default) and PNFs, while
PCA is useful to optionally select the most important
samples (explaining the most variation retained by the
dimensionality reduction technique) in case of large
dataset composed of hundreds of samples, prior their
visualization in the parallel coordinates view. Unlike
other dimensionality reduction methods, e.g. modified t-
SNE referred to as BH-SNE, initially implemented in
VizBin [20] and more recently in MyCC [6], CA might
not always capture the structure of the data in the most
optimal way. However, by applying CA we can visualize
not only the final projections but also the calculated
contributions of the variables and individual contigs
(the same refers to PCA, Fig. 1). These in turn allow
for more informative views which provide a wide range
of interaction opportunities to drive the refinement
process.
The front end of ICoVeR is a Web application with

two main views, including a parallel coordinates view
[21] and a dimensionality reduction plot (Fig. 1). Both
views are linked to each other and are highly interactive
to support a real-time refinement process. The parallel
coordinates view displays a vertical axis for each
variable of the input dataset that is selected for
visualization. Each contig is represented by a piecewise
linear curve, which crosses each of these axes. The
point at which a line crosses an axis represents the
value of the corresponding contig for the variable rep-
resented by the axis. Lines in this view can be colored
in different ways to ease the pattern discovery. By de-
fault, lines are colored based on GC content, but the
user can choose any variable to color the lines by, or
use a manual color mode where a color of choice can
be assigned to a selection of contigs. The user can spe-
cify contigs of interest by making selections on one or
several axes. Contigs which are selected are highlighted
in the window. Next, the pane can be simplified by
choosing either to keep the selected contigs or to
remove them. The interactive CA dimensionality reduc-
tion plot shows the 2D projections of TNFs (default)
and/or PNFs (optional) and the contigs. By default the
threshold is set to display up to 5000 contigs in the
dimensionality reduction plot. This plot focuses on
refining individual clusters. As such this threshold

reflects a trade-off between functionality and perform-
ance. Besides both projections, the dimensionality re-
duction plot shows additional extracted metrics to aid
in assessing the importance of the projections as well
as informing about the variables which are the most
discriminative. By interacting with this widget, users
can select variables of interest and look for structure in
different projection planes. To help the interactive re-
finement process, CA is performed automatically on
the TNFs data. This projection is updated automatically
each time the contigs or bins are filtered. Selecting con-
tigs in the contig projection view will highlight them in
the parallel coordinates view and vice-versa. Selecting
variables in the variable projection view will add them
as axes to the parallel coordinates window. Thus, only
variables capturing the structure which may render the
refinement process more efficient can be selected. For
an efficient visualization and refinement of more com-
plex datasets, with a higher number of bins, a fish-eye
zoom option was added to enable the selection of bins
of interest from the parallel coordinates view [22]. Even
on a modestly-sized desktop monitor (e.g. 30 x 38 cm)
up to 50 bins can be easily handled without using the
zoom.
Even though, most of the metagenomic datasets

contain only a few samples, the accuracy of binning has
been shown to improve as the number of samples
(variables) increase [3]. Displaying too many samples in
the parallel coordinates view without prior reduction
can result in overcrowding and visual clutter. Automat-
ically assessing the relative value of each variable could
be used to rank these variables and present the user
with the most informative ones only [23]. In ICoVeR,
PCA can optionally be performed on all (selected)
samples and the user can chose to display in the paral-
lel coordinates view only the samples that explain the
largest amounts of variation in the data (i.e. show the
highest contribution). The same pre-selected samples
can be further used for additional contig clustering.
The two main ICoVeR views are surrounded by

additional features to support the verification and re-
finement process. There is a contig highlighter which
allows highlighting a contig of interest. Furthermore,
the interface provides a data counter which helps to
keep a sense of how many contigs are in the current
view. A tagging feature is provided to keep track of
the refined bins. Finally, the ESCGs view shows in
real-time the statistics for the current selection of
contigs, based on the set of 109 ESCGs. It displays the
information on how many of the expected genes are in
the current selection as well as how many genes have
two or more occurrences. This supports quick verifi-
cation of completeness and contamination for the
current selection of contigs.
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Automated bins assignment for AD microbiome
The AD microbiome dataset was selected to evaluate
ICoVeR, since it represents a microbial (mostly bacteria
and archaea) community of low to medium complexity
that can be easily visualized and the generated genome
bins can be easily refined in a reasonable period of
time. Based on the previous results of the 16S rRNA
gene amplicon sequencing, the CSTR metagenome was
mainly comprised of members of Bacteroidetes, Cloaci-
monetes and Firmicutes [16]. The calculated indices of
bacterial richness varied between 102 and 132 for the
different samples. However, the 30 top dominant bac-
terial operational taxonomic units (OTUs) accounted
for 80.54% ±4.53 of the whole bacterial community.
Accordingly, using the determined number of 109
ESCG sets [18], the predicted number of at least 30%
complete microbial genomes that should be recovered
from this metagenome assembly was estimated at 34.
Around 30 genomes should be at least 50% complete
(according to the draft genome quality classification
scheme proposed by [8]).
The AD metagenome was initially binned with

MetaBAT, CONCOCT and MyCC, leading to disparate
genome bins (Tables 1 and 2, Additional file 1: Table S1).
Even though, these three different algorithms can combine
sequence composition and contigs coverage information
across multiple samples, the underlying algorithms are
quite different. Nevertheless, our focus here was not on
comparing the accuracy of the existing binning algo-
rithms on the AD microbiome dataset, but on generat-
ing consensus-based genome bins from the disparate
bins obtained with automated binning software and
refined with ICoVeR. Binning with MetaBAT led to 34
bins assignments using the ‘sensitive’ or ‘specific'
modes, and to 33 bins assignments using the ‘superspe-
cific’ mode. Both ‘sensitive’ and ‘specific’ modes resulted
in identical genome bins, while the ‘superspecific’ mode
resulted in different bin assignments, which were in
most cases more complete but contained a higher level

of contamination (Tables 2 and 3). Regardless of the bin-
ning mode used, short contigs (below 2500 nt) were not
incorporated to the bins, even when the limit was set to
1500 nucleotides. On the other hand, 34 CONCOCT-
generated bin assignments were obtained. However, for
the main part they were contaminated, as further deter-
mined by CheckM (Additional file 2: Table S2); most
probably due to the loss of precision related to the low
number of samples used for the AD microbiome as-
sembly (seven samples). Indeed, the overall accuracy of
CONCOCT starts to decrease below 50 samples [3].
MyCC has been recently identified as the most suitable
binning and visualization tool when applied to small
sample sizes [6]. Here, automated binning with MyCC
resulted in 49 bins, 30 of which were around 50%
complete microbial genomes with low (≤5%; 13 genome
bins) and medium (5% to ≤10%; 10 genome bins) level
of contamination (Additional file 1: Table S1).

Visualization and refinement of AD microbiome bins with
ICoVeR
Although visualization with ICoVeR facilitates whole
community analysis, for some datasets of high microbial
complexity, the refinement process of all generated gen-
ome bins might be time-consuming. Here, we used
CheckM to estimate the completeness and contamin-
ation of the resulting MetaBAT, CONCOCT and MyCC
genome bins in order to prioritize most complete gen-
ome bins for further refinement with ICoVeR (Tables 2
and 3). In total, we selected 31 genome bins with
around 50% of completeness, based on the CheckM re-
sults for the different automated binning algorithms
(these bins can be visualised using a running instance
of the tool preloaded with AD microbiome dataset; http://
icover.list.lu:4200/ocpu/user/icover/library/ICoVeR/www/).
A step-by-step description on how to load the data and
refine contig bins is provided online for a few ICoVeR-
refined genome bins (https://git.list.lu/eScience/ICoVeR/
wikis/home/).

Table 1 Summary of genome bins for AD microbiome dataset reconstructed with different binning algorithms
Binning
algorithm

No genome
bins

Completeness Contamination

Near
(≥90%)

Substantial
(≥70 to 90%)

Moderate
(≥50 to 70%)

Partial
(<50%)

Low
(≤5%)

Medium
(5 to ≤10%)

High
(10 to ≤15%)

Very high
(>15%)

MetaBAT_1 34 8 7 5 14 31 3 0 0

MetaBAT_2 33 8 7 5 13 29 3 0 1

MyCC 49 12 8 10 19 29 14 2 4

CONCOCT 34 14 4 5 11 17 3 1 13

ICoVeRa 31 11 8 10 2 30 1 0 0

MetaBAT_1 - ‘sensitive/specific’ mode
MetaBAT_2 - ‘superspecific’ mode
aFor ICoVeR (bold font), 31 pre-selected and the most complete genome bins (≥50% completeness based on MyCC genome bins) were refined
Completeness and contamination were calculated with CheckM. For CONCOCT the maximum number of clusters was setup to 34. The draft genome quality
classification scheme is as proposed by [8]
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None of the automated binning algorithms produced
a single set of genome bins with highest completeness
and lowest contamination (Table 2). Data visualization
with ICoVeR helped to improve the completeness and
to reduce the contamination for 23 out of 31 refined
genome bins. Average completeness of ICoVeR-refined
genome bins equaled 76.6% and contamination 1.8%.

Even though the genome bins generated with CONCOCT
and MyCC were in general more complete than the
ICoVeR-refined bins, they both had higher levels of con-
tamination (Table 3). Among the different binning algo-
rithms, an average F1 score was the highest for
ICoVeR-refined genome bins. Except for one genome
bin, none of the ICoVeR-refined bins was characterized

Table 2 Completeness and contamination for 31 ICoVeR-refined genome bins for AD microbiome dataset
Bina Marker lineageb Metagen.

abund. %c
GC
%

ICoVeR MyCC MetaBAT_1 MetaBAT_2 CONCOCT

Compl. % Cont. % Compl. % Cont. % Compl. % Cont. % Compl. % Cont. % Compl. % Cont. %

1 Bacteria (UID2495) 22.3 36.1 98.9 0 98.9 0 98.9 0 98.9 0 100.0 18.8

2 Bacteroidales (UID2654) 6.3 41.7 96.6 0.4 98.9 39.2 96.6 0.4 96.6 2.2 100.0 82.3

3 Clostridiales (UID1212) 1.6 41.9 95.3 1.3 96.6 1.8 95.0 0.7 74.8 0.7 98.0 1.7

4 Firmicutes (UID241) 2.6 58.8 94.9 2.0 94.9 2.2 90.3 2.0 90.3 2.0 98.3 6.0

5 Bacteria (UID209) 1.5 42.0 94.8 1.7 94.8 3.7 90.8 0 90.8 0 94.8 2.0

6 Euryarchaeota (UID54) 1.5 59.9 92.2 0.2 94.7 4.7 85.8 0.1 85.8 0.1 94.6 42.8

7 Bacteria (UID2495) 1.1 51.9 66.7 0.0 94.7 51.0 66.7 0 66.7 0 100.0 101.7

8 Bacteria (UID2569) 8.8 46.7 82.91 2.5 93.4 23.8 75.6 7.7 75.7 9.8 100.0 99.4

9 Bacteria (UID209) 0.7 51.9 92.8 3.2 92.8 1.5 80.0 0.6 80.0 0.6 92.7 3.2

10 Bacteria (UID209) 1.0 51.1 92.2 0 91.4 1.7 93.6 6.8 93.6 6.8 98.2 19.1

11 Bacteroidetes (UID2605) 1.2 46.6 85.9 3.8 90.4 22.0 58.2 2.2 67.1 6.1 88.0 3.8

12 Firmicutes (UID239) 2.4 55.3 89.8 2.7 90.1 6.8 85.2 3.2 85.2 3.2 100 72.2

13 Bacteria (UID2495) 1.1 51.1 87.3 2.2 87.3 3.8 76.3 0 76.8 0 96.5 92.0

14 Bacteria (UID2495) 0.8 53.3 83.8 0.6 84.9 7.6 66.4 0.4 66.3 0.4 94.6 42.8

15 Bacteria (UID2570) 12.0 41.6 81.6 2.5 84.3 5.3 73.7 0.5 74.8 1.1 100.0 99.4

16 Firmicutes (UID1022) 0.7 54.2 63.9 2.0 83.4 17.2 48.0 0.2 43.8 0.2 100.0 72.2

17 Bacteroidetes (UID2605) 1.2 45.3 91.2 0.6 82.0 14.1 91.0 1.1 91.2 1.6 96.5 54.0

18 Bacteria (UID2495) 0.6 46.1 76.3 3.8 78.5 7.2 48.6 0 48.6 0 100 82.3

19 Bacteria (UID2982) 1.4 58.4 77.3 5.3 77.7 5.3 56.2 1.4 56.2 1.4 77.7 2.6

20 Firmicutes (UID241) 0.5 50.7 60.4 2.1 77.6 8.7 62.9 9.8 63.4 18.5 99.8 110.8

21 Bacteria (UID2565) 0.6 50.9 65.5 1.1 66.6 1.7 25.5 1.1 25.5 1.1 67.6 12.2

22 Clostridiales (UID1212) 0.3 45.4 62.01 2.4 63.7 4.0 NB NB 63.0 5.1

23 Thermoanaerobacterales
(UID1420)

0.6 35.8 51.8 3.2 63.7 7.3 28.9 0.1 29.0 0 51.8 3.2

24 Bacteria (UID209) 0.4 32.4 66.8 3.6 63.3 3.6 14.9 0 16.7 0 72.7 24.2

25 Bacteroidetes (UID2605) 0.5 49.9 59.0 1.0 60.0 5.0 46.2 0.7 46.2 0.7 75.5 3.01

26 Bacteria (UID2570) 0.3 49.6 51.3 3.3 56.8 10.2 NB NB 96.6 54.0

27 Firmicutes (UID241) 0.3 52.3 49.5 1.0 56.8 6.0 12.8 0 NB 47.0 1.1

28 Bacteria (UID2569) 0.6 49.7 54.5 2.1 54.5 2.1 11.2 0 NB 62.4 15.3

29d Clostridiales (UID1120) 0.1 47.4 14.6 0.7 53.7 8.1 NB NB 45.2 3.8

30 Bacteroidetes (UID2605) 3.4 52.3 99.5 0.5 52.4 0.7 98.6 0.5 93.3 0.5 100.0 101.7

31 Bacteria (UID2495) 1.7 52.7 95.6 0.1 49.4 0 78.0 0.1 93.4 0.1 96.6 91.9

MetaBAT_1 - ‘sensitive/specific’ mode
MetaBAT_2 - ‘superspecific’ mode
aNumber corresponds to the ICoVeR-refined bin (Table S2)
bMarker lineage was defined by CheckM
cMetagenomic abundance corresponds to the % of reads mapping to the contigs binned inside each bin
dBased on the wide range in the GC content, the pattern of contigs abundances across the multiple samples and the level of contamination, we
judged this bin to be a mixture of several low abundant organisms. Therefore, the ICoVeR-refined genome bin was less complete than the corre-
sponding MyCC and CONCOCT genome bins
Completeness and contamination were calculated with CheckM (highlighted in bold font for ICoVeR-refined bins). NB – no genome bin assigned
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with the contamination exceeding 5%. Further tracking
and visualization of pair-end reads mapping to assem-
bled contigs, showed that out of nearly 15,000 good
end connections, only 3.85% were between the contigs
assigned to the different ICoVeR-refined genome bins
(Fig. 2). This relatively low number of displayed inter-
bin pair-end read connections confirms the overall low
CheckM estimates of ICoVeR-refined bins contamina-
tions (Table 2). On the other hand, this information
could be integrated to the future release of ICoVeR to
further improve the refinement process.
Metagenomic abundance of the refined genome bins

was in a range from 22.3% (bin 1) to 0.1% (bin 29). Their
size varied from 0.5 Mb (bin 29; 14.6% complete) to
3.37 Mb (bin 2, 96.6% complete). The GC content ranged
from 35.8% (bin 23) to 59.9% (bin 6). Except for bin 6 that

Table 3 Summary of binning performance for 31 ICoVeR-refined
genome bins initially assigned with different binning algorithms
for AD microbiome dataset
Binning
algorithm

Average completeness
(%)

Average contamination
(%)

F1 (%)

MetaBAT_1 66.3 1.4 75.4

MetaBAT_2 70.4 2.2 79.3

MyCC 78.3 8.9 82.5

CONCOCTa 87.3 42.7 56.9

ICoVeR 76.6 1.8 84.4
aThe relatively lower performance of CONCOCT on the AD microbiome dataset
may be attributed to the loss of precision due to insufficient number of
samples analysed (accuracy starts to decrease below 50 samples). Results for
ICoVeR are highlighted in bold font

Fig. 2 Visual representation of the paired-end connections for contigs grouping into the resulting genome bins for the AD microbiome dataset.
Intra- (between the contigs inside the same bin) and inter-bin (between the contigs assigned to two different bins) paired-end contig connections
are displayed as grey and red lines, respectively
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was assigned to Euryarchaeota, all other refined genome
bins were of bacterial origin. Further biological interpret-
ation of the obtained results is outside of the scope of the
present paper and will be discussed elsewhere (manuscript
in preparation).

Refinement of genome bins with ICoVeR for a previously
validated Sharon’s dataset
Recovering genome bins from mock communities
(simulated datasets) was previously shown to yield very
high precision (the absence of foreign DNA) and recall
(percent of expected ESCGs that are binned) for the
tested automated binning algorithms (compared to the
same simulated datasets in [6]). Contigs derived from the
same genome should ideally show similar abundance pro-
files across the different samples. In case of simulated
datasets, the sequence coverage is nearly identical, what is
reflected by 90–100% precision and recall of such contigs
bins. However, due to the biases resulting from the avail-
able sequencing technologies, contigs coverages may vary
quite significantly within and between the different sam-
ples in the case of real datasets [24, 25]. Additional bio-
logical factors e.g. recombination and/or horizontal
gene transfer may render the accurate calculation of
contigs abundances even more challenging. Therefore, to
further demonstrate the effectiveness of ICoVeR we exe-
cuted it on a previously validated Sharon’s dataset [10].
Genome bins of different completeness and contamin-
ation [6], formerly assigned by CONCOCT (32 genome
bins), GroopM (13), MaxBin2 (10), MetaBAT (10) and
MyCC (14), were visualized with ICoVeR (http://icover.lis-
t.lu:4200/ocpu/user/sharon/library/ICoVeR/www/). Based
on the CheckM calculated completeness and contamin-
ation, we prioritized nine most complete bins for
ICoVeR refinement. As a result, we obtained seven
high-quality genome bins with completeness above 95%

and contamination below 5% (strain heterogeneity was not
taken into account; Table 4; Additional file 3: Table S3). By
contrast, only five and four genome bins meeting the same
criteria were generated with MaxBin2, MyCC and
CONCOCT, MetaBAT, GroopM, respectively. Accordingly,
the demonstrated advantage of combined bin refinement
with ICoVeR against metagenomic binning results pro-
duced by separate binning tools was further supported by
the superior average bin completeness, contamination and
F1 scores (Table 5).

Current and future perspectives on genome bins
visualization and refinement with ICoVeR
Even though most of the different automated binning al-
gorithms that have emerged in the last couple of years
combine both the TNFs alternatively PNFs information
and the contigs co-abundances, their different underlying
algorithms lead to disparate genome bins. Currently, there
is no single, perfect tool for contig binning, however the
binning variations could be further explored by refining
the results of different binning tools. Visualization of mul-
tiple genome bins and further interactive refinement has
been addressed previously by developing anvi’o [9], and
currently ICoVeR. The principles behind the two tools are
similar. Anvi’o in addition to its metagenomic workflow
can perform further analysis of combined omics data,
thus offering a dynamic work environment for compre-
hensive data exploitation. However, with respect to its
application in refining the different automated binning
results, the major drawback of anvi’o is the limited
number of contigs (contig splits) that can be simultan-
eously displayed (currently up to 20,000) and refined.
Here, we initially tested ICoVeR using a relatively small
AD microbiome dataset (over 30,000 contigs), which
was already too big to be entirely refined by anvi’o. A lar-
ger dataset (over 90,000 contigs; [26]) was also successfully

Table 4 Completeness and contamination for nine ICoVeR-refined genome bins for Sharon’s dataset
Bina Marker lineageb ICoVeR MaxBin2c MyCCc CONCOCTc MetaBATc GroopMc

Compl. % Cont. % Compl. % Cont. % Compl. % Cont. % Compl. % Cont. % Compl. % Cont. % Compl. % Cont. %

1 Lactobacillales (UID544) 99.2 0 99.2 0 99.2 0 100 204.2 99.2 0 99.2 0

2 Clostridiales (UID1120) 98.9 0 98.9 0 98.9 0 98.9 0 98.9 0 NB

3 Actinomycetales (UID1530) 97.9 0 22.4 0 97.9 0 97.9 0 100 37.9 97.9 0

66.9 0

4 Staphylococcus (UID301) 99.5 0.1 99.5 0.1 99.5 0.1 99.5 2.9 99.5 2.9 99.5 0.1

5 Staphylococcus (UID294) 95.9 0 97 1.1 100 104.2 100 204.2 100 108.3 100 104.2

6 Staphylococcus (UID294) 97.9 2.8 97.9 3.4

7 Staphylococcus (UID298) 95.4 0.6 100 24.4 95.4 0.6 95.4 0.6 95.4 0.6 95.8 1.7

8 Staphylococcus (UID298) 84.1 0 84.9 2.5 78.7 0 84.1 0 84.1 0 82.5 3.0

9 Leuconostocaceae (UID486) 45.1 0.2 72.8 37.9 45.1 0.2 45.1 0.2 37.7 0 24.7 0
aNumber corresponds to the ICoVeR-refined bin (Table S3)
bMarker lineage was defined by CheckM. Completeness and contamination were calculated with CheckM (highlighted in bold font for ICoVeR-refined bins)
cBin assignments for MaxBin2, MyCC, CONCOCT, MetaBAT and GroopM were downloaded
from https://sourceforge.net/projects/sb2nhri/files/MyCC/Data/benchmark/Sharon.zip/download
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displayed with ICoVeR and the complete set of files
ready to be refined is available online for prospective
users (https://git.list.lu/eScience/ICoVeR/wikis/second-
dataset). Another advantage of ICoVeR in terms of big
datasets is the very large number of samples (variables)
that can be used for analysis, while only the samples
capturing the contig co-abundance profiles which may
render the refinement process more efficient can be se-
lected to be displayed in the parallel coordinates view.
While ICoVeR currently allows users to include the out-

put of different automated binning algorithms, one poten-
tial avenue for future work is to allow for algorithms such
as CONCOCT, MyCC or MetaBAT to be configured and
run as part of the ICoVeR workflow. However, currently
this will require significant effort in terms of updating the
application interface and architecture and would limit its
usage to the Linux systems only. Thus, it would offer little
benefit compared to including the results of these algo-
rithms in the input data.
Quality of the recovered draft genome is crucial for de-

termining its suitability for further analyses. Currently, the
state-of-the-art estimation of the accuracy of generated
genome bins relies on the presence or absence of
ESCGs in contigs that form the specific bin [8]. In
ICoVeR to reinforce the selection of contigs we rely on
a selection of bacterial domain-specific 109 ESCGs
[18]. Future implementation of a real-time display of
the microbial lineage-specific information of complete-
ness and contamination for a selection of contigs,
would likely improve the quality of recovered genomes.
Currently, this is determined by CheckM as a post-
binning evaluation procedure [8]. In addition to ESCGs
estimates, to facilitate the accuracy of the bin refine-
ment process, information of linkage between contigs
provided by the paired-end reads could be incorpo-
rated. This information has currently been explored in
the recently published COCACOLA software (not tested
in our study), where it was shown to improve the overall

binning performance, especially when the number of sam-
ples is small [27].
The interactive visualization approaches allow the user

to leverage their human-vision abilities to detect pat-
terns, which a priori is subjective and may differ from
one person to another. Even though the visualization-
based metagenomic bin refinement process is supported
by the ESCGs estimates, patterns of TNFs and/or
contigs abundance spectra, etc., it largely depends on a
human-vision ability for pattern recognition. For this
reason, it is difficult to accurately compare the outputs of
the visualization-based tools using simulated or even pre-
viously published metagenomic datasets. Indeed, compu-
tational applications that are exploratory in nature, such
as data visualization, involve many trial-and-error steps.
Accurate reproduction of such analytical sessions would
require the system to record the trail of user decisions and
interactions in order to reproduce them at a later time.
This concern about the provenance of insights and the re-
producibility of findings using visual analytics tools has re-
cently been an active research topic. Future use of an
open source systems similar to e.g. VisTrails could capture
the actual changes to data together with a detailed infor-
mation on how these changes came about [28].
Additionally, to improve the visualization-based bin

refinement process and to render it more reproducible,
an algorithmic approach that combines bin predictions
of several automatic binning tools into single, merged
clustering should be envisaged. Recently, a method to
merge suboptimal assemblies of the high-throughput
sequencing reads was shown to successfully improve
multiple assemblies of metagenomic samples, regardless
of the data type, assembler used or parameter variation
[7]. Such an automated approach applied to merge dis-
parate genome bins would be highly interesting, and
would potentially make full use of the available data for
bin reconstruction, regardless of the algorithm settings.

Conclusions
We present ICoVeR, a new interactive visualization
interface for contig-bin verification and refinement. The
software can visualize bin assignments from automated
binning approaches, as well as perform further contig
clustering using both contig co-abundances across mul-
tiple samples and their TNFs/PNFs features. ICoVeR has
an open design that allows adding new algorithms and
solutions that could further contribute to a better and fas-
ter genome bins refinement. We demonstrated the utility
of ICoVeR by refining MyCC, MetaBAT and CONCOCT
bin assignments for AD microbiome dataset. In addition,
we applied ICoVeR to further refine genome bins for a
previously validated Sharon’s dataset, formerly binned
with CONCOCT, GroopM, MaxBin2, MetaBAT and
MyCC. As a result, combining the strength of several

Table 5 Summary of binning performance for nine ICoVeR-
refined genome bins initially assigned with different binning
algorithms for Sharon’s dataset
Binning
algorithm

Average completeness
(%)

Average contamination
(%)

F1 (%)

MaxBin2 83.9 6.9 90.9

MyCC 89.3 13.1 71.7

CONCOCT 90.1 51.5 60.8

MetaBAT 89.4 18.7 68.6

GroopM 85.6 15.6 65.5

ICoVeR 90.4 0.4 93.8

Completeness and contamination were calculated with CheckM. Bin assignments
for MaxBin2, MyCC, CONCOCT, MetaBAT and GroopM were downloaded from
https://sourceforge.net/projects/sb2nhri/files/MyCC/Data/benchmark/Sharon.zip/
download.. Results for ICoVeR are highlighted in bold font
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binning algorithms led in many cases to nearly complete
draft microbial genomes for both analyzed datasets. We
also point to several improvements that would further
render the bin refinement process faster and more rep-
licable; such as an implementation of systematic mech-
anisms to capture the provenance of changes derived in
the course of an exploratory task and an algorithmic
approach to combine the different binning results into
a single set of merged and improved genome bins before
their visualization.
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Additional file 1: Table S1. List of contigs and their bin assignments
for the automated binning tools used in this study and for the subset of
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Additional file 2: Table S2. CheckM results for the genome bins
generated with the automated binning tools used in this study and for
the subset of ICoVeR-refined genome bins for AD microbiome dataset.
(XLS 109 kb)

Additional file 3: Table S3. CheckM results for ICoVeR-refined genome
bins for Sharon’s dataset. (XLS 56 kb)
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