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1. Introduction 

 

Simulation of traffic conditions requires accurate knowledge of the travel demand. In a dynamic 

context, this entails estimating time-dependent demand matrices, which are a discretised 

representation of the dynamic origin-destination (OD) flows. This problem, referred to as Dynamic 

OD Estimation (DODE) in literature, seeks for the best possible approximation of OD flows, which 

minimises the error between simulated and available traffic data. Traditional DODE models solve two 

optimisation problems, according to a bi-level formulation: the upper level updates the time-

dependent OD flows, while in the lower level a dynamic traffic assignment model ensures consistency 

between demand and supply models. 

Since DODE problems are usually underdetermined because of the high number of unknown 

variables [1], researchers have dealt with the critical issue of decreasing the number of decision 

variables in order to (i) obtain a smooth approximation of objective function [2] and (ii) to reduce the 

overall computational time [3]. Additionally, issues have been addressed, among others, to the 

nonlinear relation between link and demand flows [4], pointing out how having a reliable a-priori 

knowledge of the demand (seed matrix) is of paramount relevance in order to achieve  a satisfactory 

outcome. Zhou and Mahmassani [5] highlight that, in order to provide a robust and reliable 

estimation, the demand should be considered as a convolution of three functional components: the 

“regular pattern”, the “structural deviation” and the “random fluctuation”. The regular pattern can be 

considered as the systematic component of the demand, the structural deviation is the influence of the 

specific conditions for which we are estimating/updating the OD matrix (weather conditions, road 

works,…) and, finally, the random component takes into account the random fluctuations of the 

demand. Since having a reliable knowledge of the seed matrix is equivalent to know the systematic 

component of the demand – or regular pattern - we argue that the overall reliability of the DODE 

depends on how accurate the knowledge of this component is. 

 

The contribution of this paper is twofold. First, we assess the reliability of a new methodology, which 

aims at estimating the regular pattern within the OD matrix. In fact, the authors believe that, in order 

to have a reliable approximation of the systematic component of the demand, trip purpose needs to be 

explicitly included in the DODE model. Based on the empirical findings presented in [6], [7], the 

authors already formulated a Utility-Based Dynamic OD Estimation (UB-DODE) model, which has 

been presented in [8]. Previous studies evaluated mathematical and numerical properties for the 

model. In this work, the new methodology is tested on the real network of Luxembourg City, 

generalizing those findings. Second, we propose a modification of the well-established SPSA. By 

imposing a soft constraint to the research space of the model, we systematically increase the results 

reliability in terms of how likely we are to estimate the “regular pattern” of the OD matrix.  

 

2. Methodology 

 

While for a detailed overview of the model the interested reader can refer to [8], in this section we 

provide a general overview. The main difference with respect to the standard DODE formulation is in 

the lower level. We include within lower level DTA procedure a Departure Time Choice (DTC) 
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model that performs the equilibrium through the utility maximisation theory, as proposed in [9]. The 

advantage of using this approach is twofold. 

 

 
Figure 1: Illustrative representation of the UB-DODE model; 

 

Firstly, this formulation systematically decreases the number of decision variables. The reason is that 

the parameters of the departure time choice model become the decision variables of the model. As a 

consequence, the UB-DODE becomes a parametric approach in which, for each OD pair, the model 

estimates the average departure time and its variance. The second advantage is that the DTC model 

can include different parameters for different activities, thus it explicitly accounts for the trip purpose 

within the DODE. Lastly, since each parameter directly affects a large number of time-dependent OD 

flows, the locality of the optimization problem strongly decreases. Figure 1 shows the main steps for 

the proposed UB-DODE model.  

 

The proposed methodology can be implemented with most of the existing solution algorithms, 

including the well-established SPSA. In this paper we proposed to use the C-SPSA (Cluster-

SPSA[10]), as it is intuitive to create different clusters for different type of variables (OD flows, 

preferred departure time,…) when calculating the gradient.  Unfortunately, many of the desirable 

properties of convergence of the SPSA derive from the assumptions that the variables are 

independent. Clearly, this assumption does not hold for the UB-DODE, as OD and DTC parameters 

are highly correlated. Therefore, the SPSA has the tendency of exploring unrealistic solutions during 

the optimization. To avoid this behaviour, we proposed the follow equation to update the solution at 

each iteration: 

  

𝑿𝑖+1 = 𝑿𝑖 + 𝛼 ∙ 𝑮𝑖 ∙ 𝑃(𝑿𝑖 + 𝛼 ∙ 𝑮𝑖) (1) 

  

Where 𝑿𝑖 is the vector of the variables to be updated at iteration i,  𝛼 is the step size and 𝑮𝑖 is the 

gradient. 𝑃(𝑿𝑖 + 𝛼 ∙ 𝑮𝑖)   represents the probability that a certain value is realistic for a certain 

variable. If for instance we are estimating the value for the preferred departure time for commuting to 

work in the morning, 𝑃(𝑿𝑖 + 𝛼 ∙ 𝑮𝑖) will have a very high value between 6 and 9 am, while will be 

close to zero for unrealistic values, such as 1 am or 17 pm. This probability, whose parameters are an 

input for the optimization, acts like a constraint during the optimization, reducing drastically the 

number of unrealistic solutions.  

 

3. Case study and results 

 

In order to assess the reliability of the UB-DODE, we applied the procedure to the network of 

Luxembourg City. This network consists of more than 3400 links and 1400 nodes and represents the 
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typical mid-sized European city. Moreover, Luxembourg City has the typical structure of a 

metropolitan area, composed of a city centre, ring, and suburb areas.  

Lastly, to support the claim that the model is ready for practical implementations, the simulation 

environment employed is PTV Visum, which is one of the most widely adopted software packages for 

traffic analysis. 

 

After generating a realistic starting matrix through the conventional 4-Step model, employing 

available socio-demographic data, we performed three different experiments, using the UB-DODE to 

estimate the systematic component of the demand. Figure (2) reports some of the results. The first test 

– Experiment 1 - exploits the standard C-SPSA to estimate the purpose-dependent demand. As shown 

in Figure (2a), the estimated OD demand does not provide an adequate approximation of the real 

demand. In the second test – Experiment 2 - we investigated the possibility of using a different set of 

parameters, which were more likely to provide a realistic result. Figure (2b) shows how this new set 

of parameters (step size, perturbation, weights within the goal function) leads to an extremely accurate 

estimation of the demand.  

 

 
Figure 2: Demand generated from France to Luxembourg according to Experiment 1 (a),2 (b) and 3(c) 

 

However, in this case study the real-demand is known, so it is relatively easy to properly calibrate the 

parameters of the model in order to improve the performances. Unfortunately, this is not the case for 

real applications. As a third option, in Experiment 3 we applied the C-SPSA combined with the soft 

constraint reported in Equation 1. Results show that the constrained C-SPSA achieves a satisfactory 

estimation of the demand, even with sub optimal set of parameters.  

 

Figure (2) reports an intuitive representation of how accurate the model is in reproducing a realistic 

demand profile. However, we are interested in the behaviour of the model at a network level. While 

Experiment 2 seems to outperform its constrained counterpart for that specific traffic zone, we need to 

analyse if this observation holds at network level. Hence, we calculated the relative improvement in 

terms of RMSE (Root Mean Squared Error) for the Generated Demand Flows for each traffic zone as:  

 

∆_𝑅𝑀𝑆𝐸𝑧𝑜𝑛𝑒 = 𝑅𝑀𝑆𝐸𝑍𝑜𝑛𝑒
𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔

− 𝑅𝑀𝑆𝐸𝑍𝑜𝑛𝑒
𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 (2) 

  

The ∆_𝑅𝑀𝑆𝐸𝑧𝑜𝑛𝑒 term represents how close we are to reality in terms of temporal distribution. If 

∆_𝑅𝑀𝑆𝐸 is negative, it means that the error is higher for the estimated matrix than for the starting 

demand, if it is equal to zero there is no improvement, while if ∆_𝑅𝑀𝑆𝐸 >0 we improved the 

situation with respect to the initial situation. The larger ∆_𝑅𝑀𝑆𝐸 is, the bigger is the improvement in 

the Estimated matrix. Figure (3) report the probability (3a) and cumulative probability (3b) of having 

a certain ∆_𝑅𝑀𝑆𝐸 value for a generic traffic zone according to the three Experiments. Figure 3 clearly 

shows that, at network level, if the constraint formulation is applied, we systematically improve the 

quality of the estimated OD matrix with respect to the unconstrained scenario. Even when we adopt a 

good set of parameters – Experiment 2 – at network level the model is not as good as the constrained 
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one, meaning that for each traffic zone properly calibrated – such as the one in Figure 2a – there is 

another one with a larger error. By contrast, the constrained formulation provides a more reliable 

estimation at network level.  

 
Figure 3: (a) Probability and (b) Cumulative Probability of improving the starting OD matrix for each Experiment 

 

The final goal of this study is to replicate the same experiment under several conditions, in order to 

verify the robustness of the constrained/ unconstrained UB-DODE approach. This will furthermore 

allow to assess the conditions under which the proposed model is capable of estimating a reliable 

demand profile, compatible with existing on-line/off-line DODE models. 
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