
ePubWU Institutional Repository

Manfred M. Fischer and Florian Huber and Michael Pfarrhofer and Petra
Staufer-Steinnocher

The dynamic impact of monetary policy on regional housing prices in the
United States

Paper

Original Citation:
Fischer, Manfred M. and Huber, Florian and Pfarrhofer, Michael and Staufer-Steinnocher, Petra
(2018) The dynamic impact of monetary policy on regional housing prices in the United States.
Working Papers in Regional Science, 2018/09. WU Vienna University of Economics and Business,
Vienna.

This version is available at: http://epub.wu.ac.at/6658/
Available in ePubWU: November 2018

ePubWU, the institutional repository of the WU Vienna University of Economics and Business, is
provided by the University Library and the IT-Services. The aim is to enable open access to the
scholarly output of the WU.

http://epub.wu.ac.at/

http://epub.wu.ac.at/6658/
http://epub.wu.ac.at/


The dynamic impact of monetary policy on regional housing
prices in the United States

Manfred M. Fischer1, Florian Huber2, Michael Pfarrhofer1,2, and
Petra Staufer-Steinnocher1

1Vienna University of Economics and Business
2Salzburg Centre of European Union Studies (SCEUS), University of Salzburg

Abstract

This paper uses a factor-augmented vector autoregressive model to examine the impact of mon-
etary policy shocks on housing prices across metropolitan and micropolitan regions. To simul-
taneously estimate the model parameters and unobserved factors we rely on Bayesian estim-
ation and inference. Policy shocks are identified using high-frequency suprises around policy
announcements as an external instrument. Impulse reponse functions reveal differences in re-
gional housing price responses, which in some cases are substantial. The heterogeneity in policy
responses is found to be significantly related to local regulatory environments and housing sup-
ply elasticities. Moreover, housing prices responses tend to be similar within states and adjacent
regions in neighboring states.
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1 Introduction

The housing market is one of the most important, but at the same time most volatile sectors of the

economy, and hence of crucial concern for economic policy makers in general, and central banks

in particular (Moulton and Wentland, 2018). The notion of a national housing market disregards

the fact that housing activities substantially vary across the United States. Moench and Ng (2011)

emphasize that of the four regions defined by the United States Census Bureau, the West Region

(including California, Nevada and Arizona) and the Northeast Region (including New York and

Massachusetts) have, from a historical perspective, shown more active housing markets than the

Midwest Region (including Illinois, Ohio and Minnesota) and the South Region (including Florida,

Texas and North Carolina). Another factor motivating regional disaggregation of the housing mar-

ket is the volatility of regional housing markets relative to macroeconomic fluctuations (Fratantoni

and Schuh, 2003).

The literature on the impact of monetary policy on housing is fairly limited, in particular at

the regional level. Previous work generally relies on two competing approaches. The first uses

structural models to analyze the relationship (see Iacoviello and Minetti, 2003; Iacoviello and Neri,

2010; Ungerer, 2015). The major strength of this model-based approach is to provide a theor-

etically grounded answer to the question of interest. However, such models necessarily strongly

impose a priori restrictions on crucial parameters. The second, evidence-based approach, focuses

on empirics and relies less directly on economic theory. Microeconomic event studies, for example,

provide answers using information on individual transactions to identify causal effects of monetary

policy shocks in short-time frames around monetary policy announcements (Moulton and Wentland,

2018). Macroeconomists instead typically use vector autoregressive (VAR) models to measure the

impact of monetary policy innovations over longer time horizons, exploiting information contained

in macroeconomic time series. Examples include Fratantoni and Schuh (2003), Iacoviello (2005),

del Negro and Otrok (2007), Jarocinski and Smets (2008), Iacoviello and Minetti (2008), Vargas-

Silva (2008a,b), and Moench and Ng (2011). VAR models are dynamic models of time series that

allow the data rather than the researcher, to specify the dynamic structure of the model, and provide

a plausible assessment of macroeconomic variables to monetary policy shocks without the need of

a fully specified structural model.

This paper lies in the tradition of the second approach, and differs from previous work in terms

of both its focus and methodology. Like Fratantoni and Schuh (2003), and del Negro and Otrok

(2007), we focus on regional differences in response of housing prices. The coarseness of quarterly

state-level observations used in previous research, however, may conceal important variations that

is key for researchers to identify cross-regional differences in policy responses. Hence, we use

monthly observations on housing prices and provide a comprehensive coverage of the United States

at the level of metro- and micropolitan statistical areas,1 to appropriately identify a monetary policy

shock and the associated regional reactions.

1For the definition of metropolitan and micropolitan statistical areas, see subsection 3.1 along with Appendix A.
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Similar to Vargas-Silva (2008a), and Moench and Ng (2011), we rely on a factor-augmented

vector autoregressive (FAVAR) model to identify the impact of a monetary policy shock on hous-

ing prices, but use a fully Bayesian FAVAR model, based on a set of macroeconomic and financial

variables, to explore regional housing price responses to a national monetary policy shock. In par-

ticular, we apply Markov chain Monte Carlo (MCMC) methods to estimate the model parameters

and unobserved factors simultaneously, in contrast to previous approaches. Bayesian inference is

advantageous because it directly addresses uncertainty surrounding latent factors and model para-

meters. Policy shocks are identified using high-frequency surprises around policy announcements

as external instrument, where policy surprises are measured within a tight window of 30 minutes

around the announcements by the Federal Reserve (see Kuttner, 2001; Gürkaynak et al., 2005;

Gertler and Karadi, 2015).

The effects of monetary policy on housing prices in the regions are analyzed using the FAVAR

model estimated over the period 1997:04 to 2012:06. Impulse response functions from the estim-

ated model reveal a rich picture about how an expansionary monetary policy shock affects regional

housing prices. Differences are evident, and in some cases, substantial. Regions within California,

Florida and Nevada are found to be the most sensitive to monetary policy changes, exhibiting ef-

fects two times as large as the average response across the country. By contrast, some regions, for

example, within Mississippi, Tennessee, Oklahoma and North Carolina are found to be the least

responsive, showing no significant impact or even slightly negative responses. By linking the results

to the housing supply elasticity literature (Gyourko et al., 2008; Saiz, 2010; Howard and Lieber-

sohn, 2018), this paper provides evidence that the measured cumulative cross-regional differential

responses can partly be explained by housing supply elasticities and local regulatory environments.

The remainder of the paper is organized as follows. The next section presents the FAVAR model

along with the Bayesian approach for estimation, and specifics about identification of monetary

policy shocks. Section 3 describes the data and the sample of regions, and outlines the model

specification. The results are presented in Section 4, combined with a brief discussion about the

question why housing prices in some regions are more sensitive to monetary policy shocks than

others. The final section concludes.

2 Methodology

2.1 The factor-augmented vector autoregressive model

The econometric approach we employ in this study is a FAVAR model, as introduced by Bernanke

et al. (2005). In our implementation, we let Ht denote an R × 1 vector of housing prices at time t

(t = 1, . . . , T ) for R regions. The model postulates that regional housing prices depend on a number

of latent factors, monetary and macroeconomic national aggregates and region-specific shocks. This
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relationship, henceforth termed the measurement equation, can be written as[
Ht

Mt

]
=

[
ΛF ΛM

0K×S IK

][
Ft

Mt

]
+

[
εt

0K×1

]
, (1)

where Ft is an S × 1 vector of latent (unobservable) factors which capture co-movement at the

regional level. Mt is a K × 1 vector of economic and monetary national aggregates that are treated

as observable factors, and εt is an R × 1 vector of normally distributed zero mean disturbances

with an R × R variance-covariance matrix Σε = diag(σ21, . . . , σ
2
R). These disturbances arise from

measurement errors and special features that are specific to individual regional time series. ΛF is

an R×S matrix of factor loadings, while ΛM denotes a coefficient matrix of dimension R×K. The

number of latent factors is much smaller than the number of regions, that is, S � R. Note that the

diagonal structure of Σε implies that any co-movement between the elements in Ht and Mt stems

exclusively from the presence of the latent factors.

The evolution of the factors yt = (F ′t ,M
′
t)
′ is given by the state equation, governed by a VAR

process of order Q,

yt = Axt + ut, (2)

with xt = (y′t−1, . . . ,y
′
t−Q)′ and the associated (S +K)×Q(S +K)-dimensional coefficient matrix

A. Moreover, ut is an (S + K)-dimensional vector of normally distributed shocks, with zero mean

and variance-covariance matrix Σu.

The parameters ΛF , ΛM andA as well as the latent dynamic factors Ft are unkown and have to

be estimated. To econometrically identify the model, we follow Bernanke et al. (2005) and assume

that the upper S × S-dimensional submatrix of ΛF equals an identity matrix IS while the first S

rows of ΛM are set equal to zero. This identification strategy implies that the first S elements inHt

are effectively the factors plus noise.

2.2 A Bayesian approach to estimation

The model described above is highly parameterized, containing more parameters as can reasonably

be estimated with the data at hand. In this study, we use a Bayesian estimation approach to incor-

porate knowledge about parameter values via prior distributions. It is convenient to stack the free

elements of the factor loadings in an L-dimensional vector λ = vec[(ΛF ,ΛM )′] with L = R(S+K),

and the VAR coefficients in a J -dimensional vector a = vec(A) with J = (S +K)2Q.

Prior distributions for the state equation

For the VAR coefficients aj (j = 1, . . . , J) we impose the Normal-Gamma shrinkage prior proposed

in Griffin and Brown (2010, 2017), and applied in a VAR framework by Huber and Feldkircher

(2017),

aj |ξa, τ2aj ∼ N
(
0, 2 ξ−1a τ2aj

)
, (3)
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that is controlled by Gamma priors on τ2aj (j = 1, . . . , J) and ξa,

ξa ∼ G(d0, d1), (4)

τ2aj ∼ G(ϑa, ϑa), (5)

with hyperparameters d0, d1, and ϑa, respectively. ξa operates as global shrinkage parameter, and

τ2aj as local scaling parameter. This hierarchical prior shows two convenient features. First, ξa
applies to all J elements in a. Higher values of ξa yield stronger global shrinkage towards the

origin whereas smaller values induce only little shrinkage. Second, the local scaling parameters τ2aj
place sufficient prior mass of aj away from zero in the presence of strong overall shrinkage involved

by large values for ξa, in cases where the likelihood suggests non-zero values.

The hyperparameter ϑa in Eq. (5) controls the excess kurtosis of the marginal prior,

p(aj |ξa) =

∫
p(aj |ξa, τ2aj)dτ2aj , (6)

obtained after integrating over the local scales. Lower values of ϑa generally place increasing mass

on zero, but at the same time lead to heavy tails, allowing for large deviations of aj from zero, if

necessary. The hyperparameters d0 and d1 in Eq. (4) are usually set to rather small values to induce

heavy overall shrinkage (see Griffin and Brown, 2010, for more details).

For the variance-covariance matrix Σu we use an inverted Wishart prior,

Σu ∼ IW(v,Σ), (7)

with v denoting prior degrees of freedom, while Σ is a prior scaling matrix of dimension (S +K)×
(S +K).

Prior distributions for the observation equation

For the factor loadings λ` (` = 1, . . . , L) we employ a Normal-Gamma prior similar to the one used

for the VAR coefficients in a. The set-up follows Kastner (2016) with a single global shrinkage

parameter ξλ that applies to all free elements λ` in the factor loadings matrix. Specifically, we

impose a hierarchical Gaussian prior on λ` that depends on Gamma priors for τ2λ` (` = 1, . . . , L) and

ξλ,

λ`|ξλ, τ2λ` ∼ N
(
0, 2 ξ−1λ τ2λ`

)
, (8)

ξλ ∼ G(c0, c1),

τ2λ` ∼ G(ϑλ, ϑλ).

The hyperparameters c0, c1, and ϑλ control the tail behavior and overall degree of shrinkage

of the prior. For the measurement error variances σ2r (r = 1, . . . , R) we rely on a sequence of
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independent inverted Gamma priors,

σ2r ∼ G−1(e0, e1), (9)

where the hyperparameters e0 and e1 are typically set to small values to reduce prior influence on

σ2r .

Estimation of the model parameters and the latent factors is based on the MCMC algorithm

described in Appendix B. More specifically, we use Gibbs sampling to simulate a chain consisting

of 20,000 draws, where we discard the first 10,000 draws as burn-in. It is worth noting that the

MCMC algorithm shows fast mixing and satisfactory convergence properties.

2.3 Identification of monetary policy shocks

The standard approach to identify monetary policy shocks in a VAR framework involves imposing a

set of zero restrictions via a Cholesky identification scheme. This approach relies on the assumption

that macroeconomic quantities in the system react to changes in the monetary policy instrument

with a time lag. Timing restrictions on the impact of the policy indicator may be reasonable for

the interactions between the funds rate and macroeconomic variables, but becomes problematic if

financial variables are present in addition. Policy shifts not only influence financial quantities, but

may also respond to them, directly or indirectly (Gertler and Karadi, 2015). To circumvent the

problem of simultaneity, we follow Gertler and Karadi (2015) and use high-frequency surprises as

external instrument to identify monetary policy shocks.

The high-frequency variant of the external instruments identification approach employed in this

paper is based on surprises in the prices of three-months-ahead futures contracts of the federal funds

rate that reflect expectations on interest rate movements further into the future, measured within

a 30 minutes time window surrounding announcements by the Federal Open Market Committee

(FOMC), the governing council of the Federal Reserve (Kuttner, 2001; Gürkaynak et al., 2005;

Gertler and Karadi, 2015). The tight time frame around these announcements is chosen to reduce

the likelihood of other events affecting prices of the futures contracts.

Financial markets internalize the behavior of the Federal Reserve (Fed) by anticipating changes

in the policy instrument based on predicted movements in key macroeconomic quantities. For in-

stance, facing a weakening economic outlook, federal funds rates futures would decline in advance

of the policy announcement by the Fed. Depending on the specific monetary policy action con-

ducted by the central bank, futures markets may either correctly predict the enacted policies, or

react to unexpected changes in the policy rate precisely around official announcements. Gürkaynak

et al. (2005) provide evidence that the adjustment of the prices of futures contracts happens almost

instantaneously, in contrast to fully anticipated changes that do not cause observable reactions. A

convenient by-product of this approach is that it also reflects Fed information shocks in the context

of forward guidance.
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For illustrative purposes, the evolution of the effective federal funds rate over the observation

period 1997:04 to 2012:06 is shown in Fig. 1 (upper panel) along with the corresponding policy

surprises around announcements (lower panel). The dashed red line refers to the zero line, while

the light blue shaded vertical bars represent the recessions dated by the Business Cycle Dating

Committee of the National Bureau of Economic Research. Large monetary policy surprises tend to

occur in recessionary economic episodes, evidenced by unexpected innovations for both the period

between 2001 and 2002, as well as during the Great Recession. Notice that decreases in the federal

funds rate not necessarily reflect expansionary shocks. In June 2001, for instance, markets expected

the Fed to further decrease the target rate, while the rate was decreased only slightly, translating

into a contractionary monetary policy shock. The contrary is observable in the first half of 1997 or

June 2006. Here, the Fed left the target rate unchanged while markets expected further increases,

resulting in expansionary monetary policy shocks.

0

2

4

6

8

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Date

F
e

d
e

ra
l 
fu

n
d

s
 r

a
te

−30

−20

−10

0

10

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Date

S
u

rp
ri

s
e

s
 (

b
a

s
is

−
p

o
in

ts
)

Fig. 1: The federal funds rate and exogenous monetary policy surprises.

Notes: The dashed red line refers to the zero line, while the light blue shaded vertical bars denote the recessions dated
by the Business Cycle Dating Committee of the National Bureau of Economic Research (www.nber.org). Surprises are
measured within an half-hour window, starting ten minutes before and ending 20 minutes after release of the FOMC
policy statement. The data for monetary policy surprises between 1997:04 and 2012:06 come from Gertler and Karadi
(2015).

To implement the approach, we follow Paul (2018) and use high-frequency surprises as a proxy

for the monetary policy shock. This is achieved by integrating the surprises into Eq. (2) as an
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exogenous variable zt, to yield

yt = Axt + ζzt + ut. (10)

Hereby ζ is aQ(S+K)-dimensional vector of regression coefficients that collects the impulses of the

shocks. Paul (2018) shows that under mild conditions, the contemporaneous relative impulse re-

sponses can be estimated consistently.2 Note that the impact response of yt to changes in zt is given

by ζ. Higher order responses are obtained recursively by exploiting the state space representation

of the VAR model in Eq. (2).

3 Data and model implementation

3.1 Regions and data

To explore regional differences in the impact of monetary policy on housing prices, we need to

define our notion of regions. Throughout the paper, we use R = 417 regions, a subsample of the

917 core-based statistical areas.3 These 417 regions include 263 metropolitan and 154 micropolitan

statistical areas. They have been selected based on the availability of the data over time. For the list

of regions in the sample, see Appendix A.

Our dataset consists of a panel of monthly time series ranging from 1997:04 to 2012:06. The

R × 1 vector of housing prices Ht is constructed using the Zillow Home Value Index.4 A key

advantage of this index is to provide a comprehensive coverage of core-based statistical areas across

the country, in contrast to the FHFA (Federal Housing Finance Agency) Index and the Standard &

Poor’s Case-Shiller Index. The Zillow Home Value Index does not use a repeat sales methodology,

but statistical models along with information from sales assessments to generate valuations for all

homes (single family houses, town houses, appartments, condos and properties that are typically

associated with the residential market) in any given region. These valuations are aggregated to

determine the Zillow Home Value Index, measured in US dollars.

We include K = 7 variables in the vector of observable national aggregates Mt: three economic

variables, namely housing investment (measured in terms of housing starts), the industrial pro-

2Relative impulse responses are obtained by normalizing the absolute impulse responses, that is, the change in yt+h to a
change in zt, by the contemporaneous response of some element in yt.

3A core-based statistical area is a US geographic area – defined by the Office of Management and Budget – that consists
of one or more counties anchored by an urban center of at least 10,000 people plus adjacent counties that are socioeco-
nomically tied to the urban center. The term core-based statistical area refers collectively to both metropolitan and
micropolitan statistical areas.

4The Zillow Home Value Index uses detailed information about hundreds of millions of real estate transactions across
the United States to provide a comprehensive coverage of the core-based statistical areas. The set of data we use in
this study is available for download at https://www.zillow.com/research/data/. Note that no data is available for
Maine and South Dakota since these states do not require mandatory disclosure for sale prices. Core-based statistical
areas within Montana, Vermont and Wyoming had to be eliminated due to limited availability of time series data.
Previous VAR/FAVAR-based studies on monetary transmission via house prices rely on different price indices. Fratantoni
and Schuh (2003) use the MSA-level index from the Fannie Mae Repeat Transactions Database, Iacoviello (2005) the
Freddie Mac House Price Index, del Negro and Otrok (2007) the FHFA/OFHEO house prices indices, and Jarocinski and
Smets (2008) the S&P/Case-Shiller Index.
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duction index and the consumer price index. The one-year government bond rate serves as policy

indicator of the Fed. The advantage of using this longer rate rather than the federal funds rate is

that it incorporates – as Gertler and Karadi (2015) argue – measures of forward guidance and hence

remains a valid measure of the monetary policy stance also in situations when the federal funds rate

is constrained by the zero lower bound.5

The FAVAR model developed in this paper extends a standard macroeconomic autoregressive

model with a set of three credit-spreads: the ten-year treasury yield minus the federal funds rate,

the prime mortgage spread calculated over ten-year government bond yields, and the Gilchrist and

Zakraǰsek (2012) excess bond premium. The excess bond premium may roughly be seen as the

component of the spread between an index of yields on corporate fixed income securities and a

similar maturity government bond rate that is left after removing the component due to default

risk (Gertler and Karadi, 2015). Gilchrist and Zakraǰsek (2012) show that this variable provides a

convenient summary of additional information that may be relevant to economic activity.

The economic variables capture housing, price and output movements. The mortgage spread is

relevant to the cost of housing finance, and the excess bond premium to the cost of long-term credit

in the business sector, while the term spread measures expectations on short-term interest rates

(Gertler and Karadi, 2015). All observable national aggregates are taken from the FRED database

(McCracken and Ng, 2016), with the exception of the excess bond premium and the mortgage

spread that have been obtained from the dataset provided in Gertler and Karadi (2015). All data

series are seasonally adjusted, if applicable, and transformed to be approximately stationary.

3.2 Model implementation

For implementation of the FAVAR, we have to specify the lag order Q of the VAR process and the

number of latent factors, S. As is standard in the literature, we pick Q = 2 lags of the endo-

genous variables. To decide on the number of factors, we use the deviance information criterion

(Spiegelhalter et al., 2002) where the full data likelihood is obtained by running the Kalman filter

and integrating out the latent states. This procedure yields S = 1, a choice that is also consistent

with traditional criteria, for instance, the Bayesian information criterion or the Kaiser criterion, for

selecting the number of factors.

A brief word on hyperparameter selection for the prior setup is in order. We specify ϑa = ϑλ =

0.1, a choice that yields strong shrinkage but, at the same time, leads to heavy tails in the underlying

marginal prior. Recent literature (see, for example, Huber and Feldkircher, 2017) integrates out

ϑa, ϑλ and finds that, for US data, the posterior is centered on values between 0.10 and 0.15. The

hyperparameters on the global shrinkage parameters are set equal to c0 = c1 = d0 = d1 = 0.01,

a choice that is consistent with heavy shrinkage towards the origin representing a standard in the

literature (Griffin and Brown, 2010). The prior on Σu is specified to be weakly informative, i.e.

5To support this view, we estimated the model using the federal funds rate as policy indicator for a robustness check. The
results – available upon request – suggest similar responses compared to the one-year government bond rate.
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ν = S + K + 1 and Σ = 10−2IS+K . Likewise, for the inverted Gamma prior on σ2r (r = 1, . . . , R)

we set e0 = e1 = 0.01 to render the prior only weakly influential.

4 Econometric results

4.1 The dynamic factor and its loadings

We briefly consider the estimated latent factor and its loadings, with two aims in mind: first, to

provide a rough intuition on how the latent factor captures co-movement in regional house price

variations, and second, to indicate the relative importance of individual regions shaping the evolu-

tion of the common factor. The posterior mean of the negative latent factor (in solid red) shown in

Fig. 2 provides evidence that the common factor co-moves with the average growth rate of housing

prices (in solid blue, calculated using the arithmetic mean of the individual regional housing prices)

nearly perfectly. The figure illustrates that during the 2001 recession, housing price declines have

been mild, while being substantial during the Great Recession, with large variations across space.

It is worth noting that home prices fell the most during the late 2000s in regions with the largest

declines in economic activity (Beraja et al., 2017).

Fig. 2: Co-movement of the negative latent dynamic factor and national housing prices over time.

Notes: The solid red line denotes the posterior mean of the negative latent factor, i.e. −Ft, the solid blue line the
national housing prices, calculated as mean of the individual regions. The dashed black line refers to the zero line, while
the light blue shaded vertical bars represent the recessions dated by the Business Cycle Dating Committee of the
National Bureau of Economic Research (www.nber.org). Sample period: 1997:04 – 2012:06. Vertical axis: growth rates.
Front axis: months.

While Fig. 2 provides intuition on the shape of the latent housing factor, the question on how

individual regions are linked to it still needs to be addressed. For this purpose, Fig. 3 reports the

posterior mean of the region-specific factor loadings in form of a geographic map in which thinner

lines denote the boundaries of the regions, while thicker lines signify US state boundaries. Visualiz-

ation is based on a classification scheme with equal-interval breaks. We see that the great majority

of regions exhibit negative loadings, and only 23 regions show positive values. Eighty regions have

zero loadings or loadings where the 16th and 84th credible sets (68 percent posterior coverage) of

10



Fig. 3: Region-specific factor loadings.

Notes: Visualization is based on a classification scheme with equal-interval breaks. The Number of regions is allocated to
the classes in squared brackets. Thinner lines denote the boundaries of the regions, while thicker lines represent US
state boundaries. Results are based on 10,000 posterior draws. Sample period: 1997:04 – 2012:06. For the list of
regions see Appendix A.

the respective posterior distributions include zero. The pattern of factor loadings, evidenced by the

map, indicates that the latent factor is largely driven by regions located in California, Arizona and

Florida. Regions in the rest of the country, with loadings being either small in absolute terms or not

significantly different from zero, tend to play only a minor role in shaping national housing prices.

4.2 Impulse responses of macroeconomic quantities

Impulse response functions represent the standard way to summarize the dynamic impact of policy

shocks. We first consider the dynamic evolution of the endogenous variables included in Mt in

response to a monetary policy shock to illustrate that the results of the model are consistent with

established findings in the literature. An expansionary monetary policy shock is modeled by taking

the one-year government bond rate as the relevant policy indicator, rather than the federal funds

rate that is commonly used in the literature. Gertler and Karadi (2015) show that the one-year
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Industrial production index Housing investment Consumer price index

One-year government bond rate Term spread Prime mortgage spread

Excess bond premium

Fig. 4: Impulse responses of macroeconomic fundamentals to a monetary policy shock.

Notes: The solid blue line denotes the median response, the dashed red line the zero line, and the shaded bands (in light
blue) the 68 percent posterior coverage interval. Results are based on 10,000 posterior draws. Sample period: 1997:04
– 2012:06. Vertical axis: percentage changes for indices and housing investment; otherwise percentage points. Front
axis: months after impact.

bond rate has a stronger impact on market interests than the funds rate does, based on the assertion

that forward guidance is more adequately reflected in the longer maturity yield. Normalization is

achieved by assuming that a monetary policy shock yields a five basis points decrease in the policy

indicator.
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The impulse response functions of all the endogenous variables to the monetary policy shock

are presented in Fig. 4. All plots include the median response (in blue) for 72 months after impact

along with 68 percent posterior coverage intervals reflecting posterior uncertainty. An unanticipated

decrease in the government bond rate by five basis points causes a significant increase in real

activity, with industrial production, housing investment and consumer prices all increasing over the

next months after the impact. From a quantitative standpoint, the effects of the monetary shock

on industrial production and consumer prices are considerably larger than the impact on housing

investment, although uncertainty surrounding the size of impacts is large, and posterior coverage

intervals include zero during the first months after impact. Housing investment shows a reaction

similar in shape to real activity measured in terms of the industrial production index, suggesting a

positive relationship between expansionary monetary policy and housing investment at the national

level.

Turning to the responses of financial market indicators, it should be noted that the one-year

government bond rate falls by five basis points on impact by construction, then increases signific-

antly before it turns non-significant after about nine months. The term spread reacts adversely on

impact, and we find significant deviations from zero that die out after about 16 months. This res-

ult points towards an imperfect pass-through of monetary policy on long-term rates, implying that

long-term yields display a weaker decline as compared to short-term rates. The prime mortgage

spread does not show a significant effect on impact, while responses between ten to 20 months

ahead indicate a slightly negative overall reaction to expansionary monetary policy. Consistent with

Gilchrist and Zakraǰsek (2012), one implication of this finding is that movements in key short-term

interest rates tend to impact credit markets, with mortage spreads showing a tendency to decline.

The responses of the excess bond premium almost perfectly mirror the reaction of the mortgage

spread. The effects, however, are much larger from a quantitative point of view.

To sum up, the results obtained by the impulse response analysis provide empirical support that

monetary policy shocks, identified by using high-frequency surprises around policy announcements

as external instrument, generate impulse responses of the endogenous variables that are consistent

with economic theory and the findings of previous empirical studies.6

4.3 Impulse responses of housing prices

Figure 5 displays the impulse response function of the latent factor over 72 months after impact

to an expansionary monetary policy shock. The latent factor reacts positively after the shock, but

the posterior coverage interval includes zero for the time horizon considered. Nevertheless, suffi-

cient posterior mass is shifted away from zero reflecting positive reactions. This is consistent with

economic theory, suggesting decreases in the cost of financing a home purchase via expanding the

6To allay potential concerns of the policy rate reaching the zero lower bound, we conducted various robustness checks
(results are available upon request). Using a shadow rate to capture unconventional monetary policy actions leaves
the results qualitatively unchanged. The same holds true when using the federal funds rate rather than the one-year
government bond rate as policy indicator.
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availability of credit, thereby increasing the demand for housing. As a result, real housing prices

tend to increase.

Fig. 5: Reaction of the negative latent factor, following a monetary policy shock.

Notes: The solid blue line denotes the median response, the dashed red line the zero line, and the shaded bands (in light
blue) the 68 percent posterior coverage interval. Results are based on 10,000 posterior draws. Vertical axis: percentage
points. Front axis: months after impact.

While for reasons of space we do not report the housing price responses of all the 417 regions,

we summarize the long-run regional house price responses (i.e., cumulative 72 months responses,

expressed in percentage points) in form of a geographic map with a classification scheme that

generates class breaks in standard deviation measures (SD=0.61) above and below the mean of

0.71 (see Fig. 6).7 Again thinner lines denote the boundaries of the regions and thicker lines those

of the US states. Some few regions show no significant impact or even negative responses. In more

than 91 percent of the regions, however, the cumulative response of housing prices is positive.

Monetary policy shocks affect regions asymmetrically. Differences in policy responses are evid-

ent, and in some cases, substantial. The largest response among regions (Las Vegas-Henderson-

Paradise, Nevada) exceeds the smallest (Tahlequah, Oklahoma) by 3.2 percentage points. Regions

within California, Florida and Nevada – commonly referred to as Sand States – are noticeably more

responsive to monetary policy changes. The top ten most responsive regions are dominated by six

Californian regions: Riverside-San Bernadino-Ontario, Madera, Merced, Clearlake, Modesto and

Bakersfield. The first two slots in the ranking, however, are occupied by Las Vegas-Henderson-

Paradise and Fernley, a micropolitan region (both within Nevada). Port St. Lucie, Clewiston and

Key West (all Florida) round out the top ten, and bring the coastal eastern regions into picture.

By contrast, certain regions of the country are much less sensitive to monetary policy shocks

(±0.25 standard deviation from zero). These regions are not concentrated in only a few states

or areas. Rather, they span 14 states and 24 metro- and micropolitan regions. Given the narrow-

ness of our definition, this emphasizes the point that less responsive regions, in terms of reactions

7The results are robust to an alternative identification scheme based on sign-restrictions (see Appendix C). Concerns on
the validity of the identification scheme using external instruments, that may come from the period where interest rates
nearly reached zero, are thus alleviated.
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Fig. 6: Long-run responses of regional housing prices to a monetary policy shock, i.e. cumulative
72 months responses.

Notes: Visualization is based on a classification scheme that generates breaks in standard deviation measures (SD
= 0.61) above or below the mean of 0.71. Number of regions allocated to the classes in squared brackets. The responses
based on 10,000 posterior draws have been accumulated. Thinner lines denote the boundaries of the regions, while
thicker lines represent US state boundaries. Sample period: 1997:04 – 2012:06. For the list of regions see Appendix A.

to monetary policy shocks, are spread throughout much of the country. Clarksville (Tennessee-

Kentucky), Tulsa, Enid and Bartlesville (Oklahoma), as well as Hickory-Lenoir-Morgenton and Fay-

etteville (North Carolina), and Baton Rouge (Louisiana) are found to be the least responsive. Note

that five percent of the regions do not show significant results, while 3.6 percent (including, e.g.,

Salt Lake City, Utah) exhibit negative responses.

Metropolitan regions like Chicago-Naperville-Elgin (Illionois-Indiana-Wisconsin), Boston-Cambridge-

Newton (Massachusetts-New Hampshire), Portland-Vancouver-Willsborough (Oregon-Washington),

Savannah (Georgia) and San Jose-Sunnyvale-Santa Clara (California) respond to monetary policy

changes in ways that closely mirror the average dynamic response across the United States (±0.25

standard deviation).

Figure 6 reveals substantial heterogeneity in the magnitude of the dynamic responses, but also

indicates that regional responses tend to be similar within states and adjacent neighboring states.
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This spatial autocorrelation phenomenon becomes particularly evident in the case of Californian

regions and is most likely due to the importance of new house construction industries, along with

the spatial influence the Californian housing market has on regions in neighboring states, especially

Nevada and Arizona.

4.4 Explanation for the differential housing price responses

Housing price responses vary substantially over space, with size and modest sign differences among

the regions, as evidenced by Fig. 6. This raises the question why housing prices in some regions are

more responsive to monetary policy shocks than in others. To address this issue, we link our results

to the housing supply elasticity literature (Gyourko et al., 2008; Saiz, 2010; Howard and Liebersohn,

2018), more specifically, to local land use regulation as captured by the Wharton Residential Land

Use Regulatory Index (WRLURI), and a measure of housing supply elasticity developed by Howard

and Liebersohn (2018).

The WRLURI created by Gyourko et al. (2008) is an index comprised of eleven sub-indices

that summarize information on different aspects of the local regulatory environment. The index

calculated for our regions shows that much heterogeneity in land use regulatory environments ex-

ists across the regions.8 The two Michigan metropolitan regions, Ann Arbor and Jackson, and the

Michigan micropolitan region, Adrian, represent the most heavily regulated markets, with WRLURI

scores at least 2.9 standard deviation above the national mean of −0.18. The next most heavily

regulated regions, according to the index, are Seattle-Tacoma-Bellevue (Washington), San Diego-

Carlsbad and San Francisco-Oakland-Hayward (both within California), being about one standard

deviation above the mean. Dallas-Fort Worth-Arlington (Texas) is a typical housing market near

the mean in terms of land use regulatory environments. Bartlesville (Oklahoma), Lewiston (Idaho-

Washington), Toledo (Ohio) and Tahlequah (Oklahoma) are examples for the least regulated re-

gions, having WRLURI scores that are at least one standard deviation below the mean. All these

examples emphasize that local land use regulation is neither uniformly high nor uniform across the

country.

8We calculate WRLURI scores for the regions by taking a population-weighted average for all counties within a region.
Note that the WRLURI does not provide full coverage for the United States, and systematically undercovers micropolitan
regions. Hence, scores are missing for 15 percent of the regions in our sample.
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Fig. 7: Estimated local land use regulation, captured by WRLURI, and comparison with the
housing price responses.

Notes: The left hand panel presents the estimated local land use regulation (visualized of the geographic map based on a
classification scheme with equal-interval breaks around the mean of −0.18), while the right panel shows the correlation
between cumulative impulse responses of housing prices and the corresponding WRLURI scores (the circles represent
the regions, with their size indicating population density). Thinner lines denote the boundaries of the regions, while
thicker lines represent US state boundaries. The solid red line denotes the correlation. For the list of regions see
Appendix A.

Figure 7 presents the estimated local land use regulation in form of a geographic map with a

classification scheme that generates class breaks in standard deviation (0.82) measures above and

below the mean of −0.18 (left panel), while the comparison with the corresponding cumulative

impulse responses of housing prices is shown in the right panel. The figure clearly suggests that

there exists a positive relationship between the sensitivity of housing price reactions and land use

regulation. Regions characterized by tight regulations also tend to feature strong reactions of local

housing markets. This can be attributed to the positive relationship between regulatory measures

and housing prices that has previously been identified in the literature (see, for instance, Ihlanfeldt,

2007; Glaeser and Ward, 2009). We conjecture that this relationship directly translates into in-

creased responsiveness of housing prices, leading to stronger reactions to national monetary policy

shocks.

In the next step, we assess how housing supply elasticity is linked to housing price responses in

Fig. 8. We use Howard and Liebersohn’s housing supply elasticity measure for commuting zones to

construct elasticities for the regions. The elasticity measure estimates the effect of a change in hous-

ing units on housing prices, projecting this relationship onto three measures associated with land

availability: the WRLURI index, population density and the coastal status (Howard and Liebersohn,
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2018).9 Estimated housing supply elasticities for the regions reveal that San Francisco-Oakland-

Hayward, San Diego-Carlsbad, Santa Rosa, Napa and Vallejo-Fairfield (all within California) belong

to the top ten most inelastic regions, with elasticities below 0.72. The three Michigan regions

Ann Arbor, Adrian and Jackson along with Philadelphia-Camden-Wilmington (Pennsylvania-New

Jersey-Delaware-Maryland) and Trenton (New Jersey) complete the top ten list. Housing supply is

estimated to be quite elastic (3.73, with a standard deviation of 2.78) for the average region, rep-

resented by Salt Lake City (Utah). By contrast, Las Vegas-Henderson-Paradise (Nevada) and Santa

Fe (New Mexico) stand out as prominent examples with most elastic housing supply, with at least

one standard deviation above the national mean.
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Fig. 8: Estimated elasticities and comparison with the housing price responses.

Notes: The left hand panel presents the estimated housing supply elasticities (visualized of the geographic map based on
a classification scheme with equal-interval breaks around the mean of 3.73), while the right panel shows the correlation
between cumulative impulse responses of housing prices and the corresponding elasticities (the circles represent the
regions, with their size indicating population density). Thinner lines denote the boundaries of the regions, while thicker
lines represent US state boundaries. The solid red line denotes the correlation. For the list of regions see Appendix A.

On the right in Fig. 8, one observes a negative relationship between housing supply elasticities

and price responses. In our specific example, we find that expansionary monetary policy directly

translates into cheaper credit, leading to upward movements in housing demand. This increase in

housing demand in face of a rather steep supply curve for housing yields a strong price reaction.

This finding corroborates and extends the results in Glaesera et al. (2008), who report a negative

relationship between supply elasticities and movements in property prices, especially in the context

of excessive increases in housing prices. These results indicate higher effectiveness of monetary

9To classify coastal regions, we used NOAA’s (National Oceanic and Athmospheric Administration) definition of coastal
counties. Any region that contains a coastal county was coded as coastal.
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policy to influence housing prices by the central bank in regions characterized by low levels of

supply elasticities.

5 Closing remarks

This paper uses a Bayesian FAVAR model to examine the impact of monetary policy shocks on hous-

ing prices across the United States. Bayesian inference is advantageous because it directly addresses

uncertainty surrounding latent factors and model parameters. Monetary policy shocks are identi-

fied making use of high-frequency surprises around policy announcements as external instrument.

Impulse response functions reveal that monetary policy shocks affect regions asymmetrically. There

is substantial heterogeneity in the magnitude of the regional housing price responses. The largest

response exceeds the smallest by 3.2 percentage points. Regions within California, Florida and

Nevada are noticeably more responsive than others. By contrast, the least responsive regions are

spread throughout much of the country.

This heterogeneity in responses may be due to varying sensitivity of housing to interest rates

across space, and regional differences in housing markets such as different local regulatory environ-

ments and supply elasticities. The paper links the results to the housing supply elasticity literature

and provides evidence that the variation in housing responses across space can be explained partly

by different supply elasticities and regulatory environments.

Finally, it is worth noting that our analysis is confined to a linear setting, implying the underlying

transmission mechanism to be constant over time. This assumption simplifies the analysis, but may

be overly simplistic in turbulent economic times such as the collapse of the housing market around

the Great Recesssion. Hence, an extension of the linear setting to allow for non-linearities – in the

spirit of Huber and Fischer (2018) – might be a promising avenue for future research.
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Appendix A Regions used in the study

Regions in this study are defined as core-based statistical areas (CBSA) that – by definition of the

United States Office of Management and Budget – are based on the concept of a core area of at

least 10,000 population, plus adjacent counties having at least 25 percent of employed residents

of the county who work in the core area. Core-based statistical areas may be categorized as being

either metropolitan or micropolitan. The 917 core-based statistical areas include 381 metropolitan

statistical areas which have an urban core population of at least 50,000, and 536 micropolitan

statistical areas which have an urban core population of at least 10,000 but less than 50,000. In this

study we use 263 metropolitan and 154 micropolitan statistical areas, due to limited availability

of data. These 417 regions represent contiguous states (excluding Maine, Montana, South Dakota,

Vermont and Wyoming) plus the District of Columbia, and Hawaii.

Table A.1: The list of metropolitan statistical areas used.

State (Census Bureau Region) Region

Alabama (South) Birmingham-Hoover, Daphne-Fairhope-Foley, Mobile, Montgomery, Tus-
caloosa

Arizona (West) Flagstaff, Lake Havasu City-Kingman, Phoenix-Mesa-Scottsdale, Prescott,
Sierra Vista-Douglas, Tucson, Yuma

Arkansas (South) Fayetteville-Springdale-Rogers*, Fort Smith*, Hot Springs, Jonesboro,
Little Rock-North Little Rock-Conway

California (West) Bakersfield, Chico, El Centro, Fresno, Hanford-Corcoran, Los Angeles-
Long Beach-Anaheim, Madera, Merced, Modesto, Napa, Oxnard-
Thousand Oaks-Ventura, Redding, Riverside-San Bernardino-Ontario,
Sacramento–Roseville–Arden-Arcade, Salinas, San Diego-Carlsbad, San
Francisco-Oakland-Hayward, San Jose-Sunnyvale-Santa Clara, San Luis
Obispo-Paso Robles-Arroyo Grande, Santa Cruz-Watsonville, Santa
Maria-Santa Barbara, Santa Rosa, Stockton-Lodi, Vallejo-Fairfield,
Visalia-Porterville, Yuba City

Colorado (West) Boulder, Colorado Springs, Denver-Aurora-Lakewood, Fort Collins,
Grand Junction, Greeley, Pueblo

Connecticut (Northeast) Bridgeport-Stamford-Norwalk, Hartford-West Hartford-East Hartford,
New Haven-Milford, Norwich-New London

Delaware (South) Dover
District of Columbia (South) Washington-Arlington-Alexandria*
Florida (South) Cape Coral-Fort Myers, Crestview-Fort Walton Beach-Destin, Deltona-

Daytona Beach-Ormond Beach, Gainesville, Homosassa Springs, Jack-
sonville, Lakeland-Winter Haven, Miami-Fort Lauderdale-West Palm
Beach, Naples-Immokalee-Marco Island, North Port-Sarasota-Bradenton,
Ocala, Orlando-Kissimmee-Sanford, Palm Bay-Melbourne-Titusville,
Panama City, Pensacola-Ferry Pass-Brent, Port St. Lucie, Punta Gorda,
Sebastian-Vero Beach, Sebring, Tallahassee, Tampa-St. Petersburg-
Clearwater, The Villages

Georgia (South) Albany, Athens-Clarke County, Atlanta-Sandy Springs-Roswell, Augusta-
Richmond County*, Columbus*, Dalton, Gainesville, Hinesville, Macon,
Savannah, Valdosta, Warner Robins

Hawaii (West) Kahului-Wailuku-Lahaina, Urban Honolulu
Idaho (West) Boise City, Idaho Falls, Lewiston*
Illinois (Midwest) Bloomington, Chicago-Naperville-Elgin*, Davenport-Moline-Rock Is-

land*, Kankakee, Springfield
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ctd.

Indiana (Midwest) Bloomington, Elkhart-Goshen, Evansville*, Fort Wayne, Lafayette-West
Lafayette, Muncie, South Bend-Mishawaka*, Terre Haute

Iowa (Midwest) Des Moines-West Des Moines
Kansas (Midwest) Lawrence
Kentucky (South) Lexington-Fayette, Louisville-Jefferson County*
Louisiana (South) Alexandria, Baton Rouge, Houma-Thibodaux, Lafayette, Lake Charles
Maryland (South) Baltimore-Columbia-Towson, California-Lexington Park, Cumberland*,

Hagerstown-Martinsburg*, Salisbury*
Massachusetts (Northeast) Barnstable Town, Boston-Cambridge-Newton*, Pittsfield, Springfield,

Worcester*
Michigan (Midwest) Ann Arbor, Battle Creek, Bay City, Grand Rapids-Wyoming, Jackson,

Lansing-East Lansing, Midland, Monroe, Muskegon, Saginaw
Minnesota (Midwest) Mankato-North Mankato, Minneapolis-St. Paul-Bloomington*, Rochester
Mississippi (South) Hattiesburg, Jackson
Missouri (Midwest) Columbia, Joplin, Springfield, St. Louis*
Nebraska (Midwest) Grand Island, Lincoln, Omaha-Council Bluffs*
Nevada (West) Las Vegas-Henderson-Paradise, Reno
New Hampshire (Northeast) Manchester-Nashua
New Jersey (Northeast) Ocean City, Trenton, Vineland-Bridgeton
New Mexico (West) Albuquerque, Las Cruces, Santa Fe
New York (Northeast) Albany-Schenectady-Troy, Binghamton, Elmira, Glens Falls, Ithaca, King-

ston, New York-Newark-Jersey City*, Rochester, Syracuse, Watertown-
Fort Drum

North Carolina (South) Asheville, Burlington, Charlotte-Concord-Gastonia*, Durham-Chapel
Hill, Fayetteville, Greensboro-High Point, Hickory-Lenoir-Morganton,
Raleigh, Rocky Mount, Wilmington, Winston-Salem

North Dakota (Midwest) Fargo*
Ohio (Midwest) Akron, Canton-Massillon, Cincinnati*, Cleveland-Elyria, Columbus,

Dayton, Lima, Springfield, Toledo, Youngstown-Warren-Boardman*
Oklahoma (South) Oklahoma City, Tulsa
Oregon (West) Albany, Bend-Redmond, Corvallis, Eugene, Grants Pass, Medford,

Portland-Vancouver-Hillsboro*, Salem
Pennsylvania (Northeast) Allentown-Bethlehem-Easton*, Altoona, Erie, Harrisburg-Carlisle,

Lancaster, Philadelphia-Camden-Wilmington*, Pittsburgh, Reading,
Scranton–Wilkes-Barre–Hazleton, State College, York-Hanover

Rhode Island (Northeast) Providence-Warwick*
South Carolina (South) Columbia, Florence, Greenville-Anderson-Mauldin, Hilton Head Island-

Bluffton-Beaufort, Myrtle Beach-Conway-North Myrtle Beach*, Spartan-
burg

Tennessee (South) Chattanooga*, Clarksville*, Cleveland, Jackson, Johnson City, Kingsport-
Bristol-Bristol*, Knoxville, Nashville-Davidson–Murfreesboro–Franklin

Texas (South) Amarillo, Brownsville-Harlingen, College Station-Bryan, Dallas-Fort
Worth-Arlington, El Paso, Killeen-Temple, Laredo, Midland, Texarkana*

Utah (West) Ogden-Clearfield, Provo-Orem, Salt Lake City, St. George
Virginia (South) Charlottesville, Harrisonburg, Richmond, Roanoke, Staunton-

Waynesboro, Virginia Beach-Norfolk-Newport News*, Winchester*
Washington (West) Bellingham, Kennewick-Richland, Longview, Olympia-Tumwater,

Seattle-Tacoma-Bellevue, Spokane-Spokane Valley, Walla Walla, Yakima
West Virginia (South) Charleston
Wisconsin (Midwest) Appleton, Eau Claire, Fond du Lac, Janesville-Beloit, La Crosse-

Onalaska*, Madison, Oshkosh-Neenah, Racine

Note: Asterisks indicate that the metropolitan area lies mainly in the indicated state, but parts of it cross state borders.
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Table A.2: The list of micropolitan statistical areas used.

State (Census Bureau Region) Region

Arizona (West) Nogales, Payson, Safford
Arkansas (South) Batesville, Harrison, Paragould, Russellville, Searcy
California (West) Clearlake, Eureka-Arcata-Fortuna, Red Bluff, Susanville, Truckee-Grass

Valley
Colorado (West) Durango, Glenwood Springs, Montrose, Sterling
Connecticut (Northeast) Torrington
Florida (South) Clewiston, Key West, Lake City, Okeechobee, Palatka
Georgia (South) Bainbridge, Calhoun, Cedartown, Dublin, Jesup, Moultrie, St. Marys,

Thomaston, Tifton, Vidalia, Waycross
Hawaii (West) Hilo
Idaho (West) Burley
Illinois (Midwest) Effingham, Jacksonville
Indiana (Midwest) Angola, Auburn, Bedford, Connersville, Crawfordsville, Decatur, Frank-

fort, Greensburg, Huntington, Jasper, Kendallville, Logansport, Madison,
Marion, New Castle, North Vernon, Peru, Plymouth, Richmond, Seymour,
Vincennes, Wabash, Warsaw, Washington

Kansas (Midwest) Garden City
Kentucky (South) Danville, Murray
Louisiana (South) Opelousas
Maryland (South) Cambridge, Easton
Massachusetts (Northeast) Greenfield Town, Vineyard Haven
Michigan (Midwest) Adrian, Hillsdale, Holland, Ionia, Ludington, Owosso
Minnesota (Midwest) Owatonna, Willmar, Winona
Mississippi (South) Cleveland, Columbus, Corinth, Grenada, Laurel, Oxford, Picayune, Tu-

pelo, Vicksburg
Missouri (Midwest) Mexico
Nebraska (Midwest) North Platte
Nevada (West) Elko, Fernley, Gardnerville Ranchos
New Hampshire (Northeast) Concord, Keene, Laconia
New York (Northeast) Amsterdam, Batavia, Corning, Cortland, Gloversville, Hudson, Olean,

Oneonta, Plattsburgh, Seneca Falls
North Carolina (South) Albemarle, Morehead City, Sanford, Wilson
Ohio (Midwest) Ashtabula, Coshocton, Defiance, Findlay, Jackson, New Philadelphia-

Dover, Portsmouth, Sandusky, Urbana, Wooster
Oklahoma (South) Ardmore, Bartlesville, Durant, Enid, Marion, McAlester, Tahlequah
Oregon (West) Coos Bay, Hermiston-Pendleton, Klamath Falls, Ontario*, Roseburg, The

Dalles
Pennsylvania (Northeast) Indiana, Lock Haven, Oil City, Pottsville
South Carolina (South) Orangeburg
Tennessee (South) Cookeville, Lawrenceburg, Lewisburg, Martin, Paris, Sevierville,

Shelbyville, Tullahoma-Manchester
Virginia (South) Danville, Martinsville
Washington (West) Oak Harbor, Port Angeles, Shelton
Wisconsin (Midwest) Baraboo, Marinette*, Whitewater-Elkhorn

Note: Asterisks indicate that the micropolitan area lies mainly in the indicated state, but parts of it cross state borders.
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Appendix B The MCMC algorithm

We estimate the model by running an MCMC algorithm. The full conditional posterior distributions

are available in closed form implying that we can apply Gibbs sampling to obtain draws from the

joint posterior distribution. More specifically, our MCMC algorithm involves the following steps:

(i) Simulate the VAR coefficients aj (j = 1, . . . , J) conditional on the factors and remaining
model parameters from a multivariate Gaussian distribution that takes a standard form (see,
for instance, George et al., 2008, for further information).

(ii) Simulate the latent factors Ft by using forward filtering backward sampling (Carter and Kohn,
1994; Frühwirth-Schnatter, 1994).

(iii) The error variance-covariance matrix Σu is simulated from an inverted Wishart posterior dis-
tribution with degrees of freedom equal to ν = v + T and scaling matrix equal to P =∑T

t=1(yt −Axt)′(yt −Axt) + Σ.

(iv) Simulate the factor loadings λ` (` = 1, . . . , L) from Gaussian posteriors (conditioned on the
remaining parameters and the latent factors) by running a sequence of (R − S) unrelated
regression models.

(v) The measurement error variances σ2r for r = S + 1, . . . , R are simulated independently from
an inverse Gamma distribution σ2r |Ξ ∼ G−1(αr, βr) with αr = 1

2T + e0 and βr = 1
2

∑T
t=1(Hrt−

ΛF
r•Ft −ΛM

r•Mt)
2 + e1. The notation ΛF

r• indicates that the rth row of the matrix concerned
is selected and Ξ stands for conditioning on the remaining parameters and the data.

(vi) Simulate τ2aj (j = 1, . . . , J) from a generalized inverted Gaussian distributed posterior distri-
bution with

τ2aj |Ξ ∼ GIG
(
ϑa −

1

2
, a2j , ϑaξa

)
. (B.1)

(vii) Draw ξa from a Gamma distributed posterior given by

ξa|Ξ ∼ G

(
c0 + ϑaJ, c1 +

1

2
ϑa

L∑
`=1

τ2a`

)
. (B.2)

(viii) Simulate the posterior of τ2λ` (` = 1, . . . , L) from a generalized inverted Gaussian distribution,

τ2λ`|Ξ ∼ GIG
(
ϑλ −

1

2
, λ2` , ϑλξλ

)
. (B.3)

(ix) Finally, the global shrinkage parameter ξλ associated with the prior on the factor loadings is
simulated from a Gamma distribution,

ξλ|Ξ ∼ G

(
d0 + ϑλL, d1 +

1

2
ϑλ

L∑
`=1

τ2λ`

)
. (B.4)

Steps described above are iterated for 20,000 cycles, where we discard the first 10,000 draws as

burn-in.
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Appendix C Robustness check – comparing with an identification scheme

imposing sign-restrictions

To assess the sensitivity of our results with respect to identification of the monetary policy shock,

we use an alternative strategy based on contemporaneous sign restrictions (see Uhlig, 2005; Dedola

and Neri, 2007). Technical implementation is achieved by adopting the algorithm proposed in Arias

et al. (2014) that collapses to the procedure outlined in Rubio-Ramirez et al. (2010) in the absence

of zero restrictions. For each iteration of the MCMC algorithm we draw a rotation matrix and assess

whether the following set of sign restrictions is satisfied. Consistent with economic common sense,

output (measured in terms of the industrial production index), housing investment (measured in

terms of housing starts) and consumer prices (measured in terms of the consumer price index) are

bound to increase on impact. Moreover, we assume that the term-spread also widens on impact.

Finally, consistent with the normalization adopted when using an external instrument, we assume

that the one-year yield declines. If this is the case, we keep the rotation matrix and store the

associated structural coefficients, while if the sign restrictions are not met, we reject the draw and

repeat the procedure.

The results are displayed in form of a geographic map with a classification scheme that generates

class breaks in standard deviation measures above and below the mean, see Fig. C.1. A comparison

with Fig. 6 provides evidence of the robustness of our results.

Fig. C.1: Robustness check: Cumulative responses of regional housing prices to a monetary policy
shock identified using sign restrictions.

Notes: Visualization is based on a classification scheme that generates breaks in standard deviation measures. The
number of regions is allocated to the classes in squared brackets. The responses based on 10,000 posterior draws have
been accumulated. Thinner lines denote the boundaries of the regions, while thicker lines represent US state
boundaries. Sample period: 1997:04–2012:06. For the list of regions see Appendix A.
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