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Abstract. Big Data on cities and regions bring new opportunities and challenges to data analysts 

and city planners. On the one side, they hold great promise to combine increasingly detailed data 

for each citizen with critical infrastructures to plan, govern and manage cities and regions, 

improve their sustainability, optimize processes and maximize the provision of public and 

private services. On the other side, the massive sample size and high-dimensionality of Big Data 

and their geo-temporal character introduce unique computational and statistical challenges. This 

chapter provides overviews on the salient characteristics of Big Data and how these features 

impact on paradigm change of data management and analysis, and also on the computing 

environment. 
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1 Introduction 

Over the past two decades, we have seen a paradigm shift in the way information and data is 

generated and handled. This shift is driven by several factors: (i) the significant improvements in 

storage capacity and computing power to process very large data sets; (ii) the rapid increase in 

remote sensors generating new streams of digital data from telescopes, traffic monitors and video 

cameras monitoring the environment; (iii) the introduction of the Internet of Things, implying 

that even simple components, sensors, and devices can communicate over the internet; (iv) the 

mobile revolution with the advent of location-enabled communications devices such as 

smartphones, enabling to receive and send information anytime and everywhere; (v) the 

emergence of electronic commerce channels and social media platforms; and (vi) crowdsourcing 

platforms for volunteered geographic information (VGI), a type of user-generated content with a 

geospatial component. These changes together have resulted in what is called Big Data. 

Big Data on cities and regions bring new opportunities and challenges to data analysts and city 

planners. On the one hand, they hold great promise to combine increasingly detailed and 

personalized data for each citizen with critical infrastructures to plan, govern and manage cities 

and regions, improve their sustainability, optimize processes and maximize the provision of 

public and private services. On the other hand, Big Data introduce unique computational and 

analytical challenges, which compromise its value in smart city or regional contexts.  

A number of challenges in both data management and data analysis call for new strategies and 

solutions to support the Big Data era. Major challenges that arise include: (i) handling different 

data formats and structures, (ii) dealing with the massive and high-dimensional nature of the 

data, (iii) developing algorithms that exploit parallel and distributed architectures, (iv) coping 

with sample biases and heterogeneity, (v) developing methods for visualizing massive data, and 

(vi) coping with the need for real-time analysis and decision making. These challenges are 

magnified in cases where Big Data are distributed across locations (National Research Council, 

2013). In addition, spatio-temporal Big Data create specific problems and difficulties that need to 

be taken into consideration. 

This chapter provides overviews on the salient characteristics of Big Data and how these features 

impact on changing the classical paradigm of data management and analysis, and also the 

computing environment. In doing so the contribution presents a broad and encompassing 

overview of the topic, highlighting what we consider to be the main challenges and tasks for the 

future. Major issues, such as those relating to data ownership, education and training, costs, 

security, epistemology, policy, law and ethics – while important topics in their own right – are 

beyond the current scope. Thus, we set such topics aside to keep the discussion appropriately 

focused.  

 

2 Big Data and Prospects for Research 

 

2.1 What is Big Data? 
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The term Big Data has been widely used for any sort of data sets that is larger than usual. Big 

Data has features that are not shared by traditional data sets. In essence, there are three aspects 

that define Big Data (Miller, 2016; Pattnaik and Mishra, 2016). 

Volume: Big Data is about size – massive volumes of data beyond the capability of traditional 

approaches of data analytics. Data sets grow in size in part because they are increasingly being 

gathered by ubiquitous information sensory mobile devices such as aerial sensory technologies, 

radio-frequency readers, cameras, and wireless sensor networks. Unlike in traditional data sets, 

Big Data are characterized not only by massive sample size, but also high-dimensionality. Much 

of the data is geographic in nature containing explicit or implicit spatial information. Terabyte 

archives for remotely sensed imagery data, vast volumes of real-time sensor observations and 

location-based media data, and VGI data are examples where new innovative procedures for 

handling and analyzing massive volumes of spatial data have been or still have to be developed. 

Velocity: Big Data is generated in a very rapid pace, and often has to be processed quickly. 

Traffic data in mobile communication networks and streaming video data are prime examples. 

The velocity of Big Data is also relevant in the Internet of Things where an up-to-date picture of 

information and near real-time responses are prerequisites.  

Variety: Big Data is highly heterogeneous in nature. Data come from multiple data sources, and 

the level in which they are structured tends to vary from data source to data source. Data 

increasingly lose structure and many new formats that occur go beyond relational data bases, 

pure text, photo, video, web and GPS (global positioning system) data. Transferring unstructured 

data into structured format for later analysis is a major challenge. 

There are more aspects that recently came into view to support the above three V’s (volume, 

velocity and variety) of Big Data to further define Big Data, and these are ‘veracity’ and ‘value’. 

Veracity relates to uncertainty of data and data incompleteness, while value to the aspect to turn 

Big Data into values otherwise useless (Pattnaik and Mishra, 2016). 

Big Data are complex in a variety of ways. They are voluminous, high-dimensional, 

heterogeneous, multi-source and collected over a range of temporal and spatial scales. Spatial 

data may come from earth observations, social media, mobile phone calls, and unmanned aerial 

vehicles. Sensor technology is also being embedded in vehicles and containers, adding to the 

abundance of data. Moreover, the deployment of the Internet of Things will produce large 

amounts of text-like communication between devices, people, and places.  

Through the whole spectrum of society and business, vast volumes of data are collected on our 

physical and human-made environment, including building structures, nightlights, land use 

cover, meteorological conditions, water quality, and so on. Large-scale simulations based on this 

data (e.g., global climate modeling) provide an additional layer of data in Geographical 

Information Systems (GISs). The world wide web, and complex ecosystems of online electronic 

commerce websites and infomediaries (e.g., job markets, dating websites, recommendation 

services), repositories of digitized documents, open data portals, social media platforms, and 

other websites it encompasses, give us a rich and unfolding picture of the interests, preferences, 

needs, and activities of individuals, organizations, and firms in cities and regions all over the 
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world. Web 2.0 or the interactive web and related social media platforms, ‘apps’, and discussion 

fora, in particular, have created a new generation of sensors, namely humans (or citizens) as 

sensors. Mobile devices including smartphones and location acquisition technologies such as 

global position systems are producing realms of spatial trajectory data that capture detailed 

information on human, material, and information, and animal movements.   

Emerging technologies, such as blockchain, nanotechnology, cloud robotics, are contributing to 

even newer sources of Big Data. Such cutting-edge technologies are also advancing our capacity 

to store, process, and glean insight and knowledge from Big Data. The Internet of Things, which 

comprises a large and growing assemblage of interconnected devices, is actively monitoring and 

intelligently processing everything from the contents of our refrigerators, for example, to the 

second-to-second operational characteristics of large-scale infrastructure. Cyber-physical 

systems, which integrate computing, networking, and physical technologies in a complex and 

adaptive fashion, are a burgeoning source of Big Data. For example, automated vehicles collect 

vast amounts of real-time data about traffic conditions and other aspects of the surrounding 

environment, information that is instantaneously fed back to the cloud for processing to optimize 

vehicular routing and performance.  Indeed, machine-generated data – that is, raw data produced 

by machines – is a rapidly expanding type of data. Such machine-generated data could soon 

make up 50 percent of all of the data in the world (Gantz and Reinsel, 2012). 

Just like a-spatial Big Data, geospatial Big Data (or Big Spatial Data) contains disparate formats, 

structures, semantics, granularity, and so forth. However, space and time dimensions of the data 

add further heterogeneity. To this point, spatial data comprises varying spatial and temporal 

scales, levels of resolution, and extents of coverage, and with different spatial referencing 

systems (Fischer, Scholten and Unwin, 1996). Citizen sensing, crowd-sourcing and other forms 

of user-generated data tend to have a high degree of spatial and temporal resolution – that is, 

information that is often summarized down to latitude and longitude coordinates, and seconds of 

the day – and coverage that extends over the entire globe.  Other types of spatial data, such as 

those collected from official organizations are more aggregated, and limited in geographic scope. 

The heterogeneity of Big Data also stems from the particular characteristics of the data 

acquisition devices themselves. Sensors are either positioned on moving objects or static, 

continually monitoring the changing environment in an area or at a particular location (Li et al., 

2016). Thus, spatial objects are classified geometrically as line, point, or area (Fischer and 

Wang, 2011).  

Big Spatial Data is fraught with heterogeneity, but also with noise, incompleteness, redundancy, 

uncertainty, and other undesirable features. For example, sensors that monitor the environment 

produce repetitive coverage, since multiple images must be collected in a short amount of time to 

achieve appropriate and adequate spatial coverage. Mobile trace data tends towards noise and 

incompleteness, given that location positioning technologies are currently unable to produce 

proper signals in specific environments. Crowd-sourced geographic information data often 

contain duplicate records stemming from human error, technological and algorithmic glitches 

(Kwan, 2016). Moreover, user-generated data is notoriously biased towards demographic 

characteristics, preferences, interests, and activity patterns of their users. The digital divide is a 
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further source of bias and gaps in Big Data (Schintler, 2017). Given that regions have different 

demographic, economic, cultural, and technological profiles, the type and extent of bias vary 

from place to place.  

 

2.2 The Promise of Big Data 

To the extent that the challenges surrounding Big Data analysis can be effectively managed, the 

hope is that the frontiers of science will expand in transformative ways, and technology will 

become more adaptive, flexible, personalized, and robust (National Research Council, 2013). Big 

Data offers enormous opportunities for cities and regions, especially in the era of the ‘new urban 

world’ (Kourtit and Nijkamp, 2018).  Specifically, new and expanding sources of data, coupled 

with advanced computational and analytical methods and techniques, can enable communities to 

operate as high-powered cognitive engines (Batty, 2013).  

Moreover, new models of computation, methods and techniques that combine data, simulations, 

predictive analytics, and visualization can help in better understanding cities and regions in the 

first place. In the era of Big Data then, it is easy to imagine cities and regions in which 

increasingly refined and customized data are collected and maintained for each citizen and in 

which such data are combined with critical infrastructures (including not only buildings and 

streets, but also water, gas and electricity pipelines) to plan, govern, manage, and control cities 

and regions in an optimal manner, to ultimately enhance their sustainability, livability, and 

competitiveness.  

Understandably, there is a great deal of optimism about the potential of Big Data. Recent 

advancements in computer hardware (faster CPUs, cheaper memory), and new technologies and 

software for processing Big Data have made it easier to collect, analyze and mine massive 

amounts of structured and unstructured data. Indeed, our knowledge of how to design scalable 

data-centric technologies through cloud computing and storage, and parallel and distributed 

platforms, tailored to the nuances of Big Data, has been greatly enhanced in the last few decades. 

In addition, innovations in the fields of machine learning, statistics, and algorithmic theory have 

produced analytical methods that can handle increasingly large and multi-source data sets 

(National Research Council, 2013). 

 

3 Challenges 

The prospects of Big Data, however, must be appropriately balanced by an understanding of the 

major difficulties and challenges that conflict with the envisioned aims of Big Data in science 

and society. The massive sample size and high-dimensionality of Big Data pose unique and 

profound computational and statistical challenges. This section briefly discusses challenges that 

arise in the five distinctive stages of the data analysis pipeline that leads from ‘data acquisition 

and recording’ over ‘information extraction and cleaning’ and ‘data integration, aggregation and 

representation’ to ‘query processing, modeling and analysis’ and ‘visualization and 

interpretation’. 
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3.1 Data acquisition and recording 

Managing large volumes and varieties of (structured and unstructured) data is one of the most 

apparent technical challenges in Big Data analytics. Big Data is first acquired from some 

generating source (or sources) and then transmitted to storage and recorded for future use. In 

some cases, it may not be a viable option to store data. This can be either because it is physically 

and/or economically not feasible to store immensely large volumes of data, or because  

management overhead becomes too large, for example, when data is updated faster than it can be 

stored. Streaming processing is an approach to address several of the challenges concerning the 

analysis of the data that cannot be, may not be, or is better not to store (Andrada, Gedik and 

Turaga, 2014). 

Because of the large size of high-dimensional data, it is often necessary to use compressed data 

instead. Lossy compression is the class of data encoding methods often used to reduce data size 

for storage and handling. While lossy compression is effective in reducing the volume of Big 

Data, it comes at the cost of information loss caused by inexact approximations and partial data 

discarding.  Information loss is especially problematic in the case of data produced by multiple 

sensors of different types. For Big Spatial Data, in particular, information on spatial relations and 

generalization can be lost in the compression.  Instead one can conduct dimensionality reduction 

– another technique used in the high-dimensional data acquisition and processing context – that 

represents high-dimensional data points in a lower-dimensional space while preserving hereby 

properties of the data as much as possible (see van der Maaten, Postma and van den Herik, 

2009). However, such processes are computationally intensive, particularly in the case of space-

time data. Use of clustering algorithms explicitly designed for spatial (and spatiotemporal) data – 

e.g., the Spatio-Temporal Density-based Spatial Clustering of Applications with Noise (ST-

DBSCAN) algorithm– may help in managing this problem (Li et al., 2016).  

An increasing number of social media and mobile technologies are generating geo- and time-

tagged data. In such cases, it is common to develop streaming algorithms that attempt to process 

the data in real-time, avoiding storage. Examples include early alert systems for disease 

outbreaks. The requirement for real-time processing creates new algorithmic challenges, where 

‘answer quality’ needs to be traded off against ‘answer timeliness’. Many data sets are also 

indexed by spatial coordinates. This yields new algorithmic challenges, where ‘answer quality 

and timeliness’ has to be traded off against the geographic granularity of the answer (National 

Research Council, 2013). 

When dealing with data sets from diverse sources, systematic recording and tracking of data 

quality metadata are very important. Metadata is used to record information about the data, for 

example, sample size, sampling strategy, scale, availability, age, ownership, and price (if 

relevant) (Getis, 1999). However, creating metadata for Big Data is complicated and often 

impractical. One challenge is that Big Data tends to change hands frequently, where it gets 

repurposed, repackaged, and reprocessed at each stop (Schintler and Chen, 2017). Thus, details 

of the data often get lost as it travels from one person or organization to another. Moreover, 
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attributes are sometimes hidden, as is often the case with proprietary or personally-sensitive Big 

Data (Getis, 1999). In crowd-sourced or user-generated data, information on the granularity of 

data in space and time and related details are often missing, making full and proper 

documentation of such data difficult (Li et al., 2016). The ability for automatically generating the 

metadata, however, is currently underdeveloped. 

 

3.2 Information extraction and cleaning 

Frequently raw data collected will not be in a format ready for analysis. For example, we must 

convert unstructured data in the form of text to structured data before it is suitable for using 

classical modeling and analysis tools. In the case of geospatial data, it requires geocoding before 

using it in a GIS. We expect an information extraction process that pulls out the required 

information from the underlying sources and expresses it in a standard form appropriate for the 

analysis at hand. Doing this correctly is a continuing technical issue. In a city or regional 

environment, we need to be able to extract information on the location of features, and the spatial 

context of these objects from the data.  While some sources of Big Data contain explicit 

geographic references – e.g., latitude and longitude coordinates – many others do not. For 

example, in social media data geographic information is embedded in the feeds, often across 

multiple rather than a single entity, and the information is in poorly-defined formats (Vatsavai et 

al., 2012).  

Most sources of data are far from perfect. Data tend to be corrupted by either systematic bias or 

random noise, or both. Measurement processes are a major source of noise, as are data generated 

from simulations which hinge on the underlying quality of the initial data in the first place 

(National Research Council, 2013). Noise and spurious correlation are especially problematic in 

the case of Big Data given the high-dimensionality of the data (Fan, Han and Liu, 2014). Having 

a larger sample size does not necessarily mitigate against these problems. Even data obtained by 

high-quality instrumentations or through robust sampling can be problematic (National Research 

Council, 2013). 

The practice of cleaning data is fairly well established for small and moderate data sets, but new 

challenges arise in the context of large samples (Osborne, 2013). While the tasks of detecting 

mistakes, missing information, and other imperfections in samples of small data – for example, 

through sanity checking and data exploration techniques – can be applied in the case of Big Data, 

finding representative samples in large data sets poses challenges in this regard. Moreover, 

human interaction is impossible in such situations, given time limitations and the size of the data. 

Thus, it is desirable to have automatic cleaning mechanisms embedded into the data acquisition 

and data storage software (National Research Council, 2013). 

 

3.3 Data integration, aggregation, and representation 

In general, the value of data increases, when linked with other data. Hence, data integration can 

act as a useful means to create value. But integration of Big Data collected from different sources 
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is difficult due to the diversity of data types and formats, semantics, ownership, organizational 

structures and levels of resolution, and so on. It is even more complicated in the case of Big 

Spatial Data, given the varying spatial/temporal scales, levels of granularity and coverage the 

data comprises (Fischer, Scholten and Unwin, 1996).  Data aggregation in spatial and temporal 

data is fraught by the modifiable areal unit and the modifiable temporal unit problems (Manley, 

2014). Spatial data magnifies these issues, given that there are countless ways to parse and 

aggregate the data spatially and temporally.  

Big Data on cities and regions are typically highly distributed and generally remain distributed 

because of technical, political, social and economic reasons. Due to limitations in transmitting 

massive volumes through channels with limited bandwidth, the highly distributed nature of Big 

Data creates challenges in terms of data access, integration, and sharing. Moreover, not all the 

data produced by different sources are defined using the same data representation techniques, 

and this imposes additional challenges in terms of managing data in a distributed environment.  

Data representation involves selecting an appropriate mathematical structure with which to 

model the data to reduce computation in a way that leads not only to algorithmically efficient, 

but also statistically meaningful results (National Research Council, 2013). 

 

3.4 Query Processing, Modeling, and Analysis  

One basic operation in processing Big Data involves querying part of the data, which is usually 

done by indexing. Different types of queries and data require different indexing methods to 

ensure that search and retrieval of information is efficient and effective (National Research 

Council, 2013). For spatial queries – such as ‘find all features located in a particular region’ or 

‘find all objects that contain a given query point’ – processing is computationally intensive 

because of the polynomial complexity of the geometric operations required to pull data. In 

multidimensional data, there are additional spatial relationships, which further impede the 

efficiency of query processing (Wang, Aji and Vo, 2015).  

Recent research on spatial query processing of real-time streaming Big Data focuses on 

designing indexing methods, which segment the search space into tiles, such that search time 

focuses on a single tile at a time. However, an open question is how to organize the tiles in such 

a way that the search process is efficient. Hilbert space-filling curves may help in addressing this 

concern (Li et al., 2016). When querying Big Spatial Data, we also need to ensure adequate 

extracting and appropriate samples from the data, as failure to do so increases the probability of 

erroneous conclusions. This is a problem with immense spatial data as there are many possible 

realizations that can be drawn from a single source (Getis, 1999). 

The primary goal of analyzing Big Data is to derive knowledge from data. For achieving this, 

typically statistical models are used as a convenient framework. Statistical models allow to 

identify relationships between variables and to understand how these variables impact on the 

system of interest. Statistical models, moreover, unable one to make predictions along with 

coverage intervals reflecting uncertainties. Although parametric statistical models may play an 

important role in data analysis, especially in contexts where the model can be – at least partly – 
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specified from an underlying theory, the nonparametric perspective is more in line with the 

exploratory and predictive goals of Big Data analysis (National Research Council, 2013).  

A large body of methods exists for small-scale to medium-scale data analysis and machine 

learning (notably data mining), but most are difficult or impossible to use for massive and high-

dimensional data because they do not interface well with existing large-scale computer systems 

and architectures, such as multi-core processors or distributed clusters of machines. Hence, a 

major challenge in large-scale data representation is to extend work developed in the context of 

single machines and medium-scale data to parallel, distributed processing and much larger-scale 

contexts. In a distributed computing environment Bayesian models with parameters estimated 

using Markov Chain Monte Carlo simulation can relatively easily make advantage of multiple 

computers by performing independent simulations  (National Research Council, 2013). 

Machine learning – based on well-grounded statistical principles and  coupled with 

reinforcement learning, support vector machines, Bayesian networks, evolutionary and swarm-

based algorithms – provides important means to read out value from data (see Bishop, 2006; 

Panda, Dehuri and Patra, 2015; Raschka and Mirjalili, 2017). The problem of massive sample 

size and high-dimensionality of data is generally solved through parallelization of algorithms 

accomplished either by data parallelism or task parallelism. Machine learning methods can 

capture nonlinearity, heterogeneity, noise, and other complexities in spatial and temporal data. 

Feedforward neural networks, in particular, may be used for nonparametric statistical inference, 

as they do not require a priori specifications  of functional forms to be approximated (Fischer, 

2015). Deep learning, an emerging paradigm within machine learning (see Bengio, 2009), 

focuses on features composed of multiple levels of nonlinear operations, such as in feedforward 

neural networks with many hidden layers. But searching the parameter space of deep 

architectures is a challenging task. 

 

3.5 Visualization and Interpretation 

Visualization and interaction technologies may give users a gateway into their – massive 

amounts of structured and unstructured – data. Visualization can, for example, be used to 

uncover hidden patterns and spot outliers, which can reveal ways in which the data could be 

better partitioned for further computational analysis. Systems with a rich palette of visualization 

tools become essential in conveying to the users the results of the queries in a way that is best 

understood in the particular domain (Miller, 2016). Ultimately, display of Big Data appears to be 

useful but only if succinctly and correctly summarizing the underlying information.  Related to 

this, the user should be able to easily and quickly scrutinize each piece of data that she sees, to 

learn to know its provenance, which is critical to understanding the data in the first place. 

For smart cities and regions, the challenge is to design visualization tools that enable policy and 

decision makers, city and regional planners, and the community-at-large to visually explore and 

analyze the data for better decision making (Li et al., 2016). Dashboards and geoportals have 

great utility in this context (Batty et al., 2012). More research is needed to develop 

(geo)visualization tools that can efficiently deal with all of the dimensions of Big Data, including 
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quality and veracity of the data. Ideally, the design of visualization should be informed by 

capabilities and constraints in human information processing, perception, and cognition (Li et al., 

2016).  

Many of the current challenges in visualization come from scalability issues. As the volume of 

data to be analyzed continues to increase, it becomes increasingly difficult to provide useful 

visual representations of data. In recent years, there have been advances in the visualization of 

data through various approaches with GIS-based capabilities. Better techniques and methods, 

however, are needed for analyzing Big Data, especially for massive and high-dimensional data 

sets that are heterogeneous in nature. 

Interpretation is at the center of data analysis. Regardless of the size of the data, it is subject to 

limitations and bias. Without these biases and limitations being understood and outlined, 

misinterpretation tends to be the rule rather than an exception. Big Data is most effective when 

researchers take account of the complex methodological processes that underlie the analysis of 

data. 

 

4 Cross-Cutting Challenges 

Cross-cutting challenges are common challenges that underlie many, sometimes all, of the stages 

of the data analysis pipeline. Heterogeneity, uncertainty, scale, timeliness and human interaction 

problems with Big Data may impede progress at all stages of the pipeline. 

 

4.1 Heterogeneity  

When humans consume information, a great deal of heterogeneity is comfortably tolerated or 

even desired.  However, machine algorithms expect homogeneous data, and cannot easily 

understand nuances. Consequently, one has to structure Big Data carefully as a first step in or 

before data analysis. To do this efficiently, one needs to express differences in data structures 

and semantics to be shown in forms that are computer understandable. There is a strong body of 

work in data integration that can provide some of the answers. However, considerable additional 

work is required to achieve automated error-free difference resolution. 

Unstructured data is difficult to work with, using relational database management systems and 

desktop statistics and visualization software.  NoSQL (not only structured query languages) 

database management systems, instead, provide support for clouding architectures and the 

facility to generate patterns and trends without the need for additional infrastructure. Sometimes 

it is just not possible or practical to combine Big Data with varying spatial and temporal scales, 

hierarchies, and levels of resolution to make it compatible for analysis.   

 

4.2 Uncertainty 
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Uncertainty is present in all stages of the Big Data pipeline. Representation and propagation of 

constrained forms of data quality, such as error bars, is an active area of research. There are 

several sources of errors in the process from data to inference and interpretation: errors and noise 

in the measurements themselves, lossy compression of data, mistakes in model assumptions, and 

(unknown) failures in algorithm creation and execution. Other sources of errors prevalent in Big 

Data include the high-dimensional nature of many data sets, issues of heterogeneity, and 

unknown provenance of data items in a data base. 

If errors are present in the raw data, they can propagate to all stages in the Big Data pipeline. 

Recent work on managing probabilistic data and modeling suggests one way to make progress. 

For example, interval analysis allows one to model the uncertainty of the input variables (e.g., 

from sensor observations) and the corresponding uncertainty of the functions based on the 

variables (Li et al., 2016). Functional analysis methods (e.g., wavelets) are also useful for 

modeling uncertainty.  Moreover, precision analysis can be used to evaluate the veracity of Big 

Data from the perspective of data quality, while simultaneously ensuring that the utility of the 

data is preserved.  

 

4.3 Scale 

In recent years, parallel and distributed computing systems have become a reality. These systems 

have given rise to search engines and online commerce and entertainment, providing the 

platform on which Big Data issues and problems came to bear. Scaling these systems and related 

algorithms to increasingly larger data sets is an ongoing challenge (National Research Council, 

2013) Managing large and rapidly increasing volumes of data has been a challenging issue for 

many decades. In the past, this challenge was mitigated by processing getting faster, following 

Moore’s law (Mishra et al., 2016). In recent years, there is a shift underway to move towards 

cloud computing. Cloud computing aggregates multiple disparate workloads with varying 

performance goals across large numbers of processors to manage computational efficiency. The 

most striking characteristic of cloud computing is its elasticity and ability to scale up and down 

as needed, making it suitable for data storing and processing in the Big Data era (Fan, Han and 

Liu, 2014).  The level of sharing resources on expensive and large clusters requires new ways of 

determining how to run and execute data processing jobs and to deal with system failures. This 

task requires us to rethink how to design, build and operate data processing components to 

support activities at each stage in the data pipeline. 

Given that Big Data can be highly dynamic, it is often infeasible to store and process the data in 

a centralized data base. The main approach to address this problem is to divide-and-conquer, 

which partitions a large problem into tractable and independent sub-problems. Each sub-problem 

is tackled simultaneously by different processing units (Fan, Han and Liu, 2014). Ensemble 

analysis, which strategically integrates multiple algorithms, can enable us to model an entire data 

set rather than a subsample of the data. Spatial ensemble methods may be applied to deal with 

the nuances of data. However, use of ensemble methods poses some difficulties, including 

ensuring that there is consistency between the algorithms. Moreover, many partitioning 
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techniques are not yet optimized for geometric computation (Wang, Aji and Vo, 2015). Another 

approach for managing scalability issues in Big Spatial Data is to exploit complex properties of 

such data, e.g., fractal patterns.  Indeed, data produced via bottom-up mechanisms, such as 

crowd-sourced data, tends to exhibit fractal structure and related properties, which lends itself to 

such strategies (Batty et al., 2012; Li et al., 2016).  

 

4.4 Timeliness 

The design of a system that effectively deals with size is likely to result into a system that can 

process a given data set faster. However, it is not just this speed that is usually meant when one 

speaks of velocity in the context of Big Data. Rather, there is an acquisition rate challenge and a 

timeliness challenge. Many data sources operate in real-time, producing data streams that can 

overwhelm data analysis pipelines. And there is often a desire to make decisions rapidly, 

possibly also in real-time. If, for example, a fraudulent credit card transaction is suspected, it 

should ideally be flagged before the transaction is completed, potentially preventing the 

transaction from taking place at all. Obviously, a full analysis of a user's purchase history is not 

likely to be feasible in real-time. Instead, we need to develop partial results in advance so that a 

small amount of incremental computation with new data can be used to arrive at a quick 

determination (Mishra et al., 2016). 

For spatial algorithms, in particular, we cannot wait until all the data are known (Li et al., 2016). 

A significant requirement for data-intensive spatial applications is fast query response which 

requires a scalable architecture that can query spatial data on large-scale data.  However, speed 

must not come at the sacrifice of the validity and trustworthiness of the data and results based on 

the data (Li et al., 2016).  For useful large-scale, real-time analysis of Big Data, most if not all of 

the processes should be automated. While techniques like complex event processing and online 

analytical processing are useful for managing multiple, fast-moving data streams, they are not 

yet able to adequately support geospatial features and computations in an efficient manner (Lee 

and Kang, 2015).  

 

4.5 Human Collaboration 

Despite the progress achieved in developing machine-based solutions for processing and 

analyzing Big Data, humans still need to provide input into the data analysis loop at all stages of 

the pipeline (Mishra et al., 2016). While it may be able to find many ‘statistically significant’ 

results and effects with Big Data, discerning the substantive relevance and importance of these 

findings remains a challenge. However, drawing meaningful inferences tends to be subjective 

and context-dependent, and these are aspects of human intelligence that – at least currently – are 

beyond the capability of machines and algorithms. Thus, Big Data analysis must be evaluated 

with human subject matter knowledge and experience (National Research Council, 2013). 

Humans are needed to understand the context, adequately frame analyses using Big Data, and 

position models in appropriate theoretical and empirical contexts. The new field of visual 
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analytics is attempting to do this, at least concerning the modeling and analysis stage in the 

pipeline (National Research Council, 2013). A popular new method of harnessing human 

ingenuity to solve problems is through crowdsourcing or participatory sensing, in situations 

where human perception, peoples’ ability to disambiguate context and make subjective 

judgements, exceed the capabilities of computer systems (see Sui, Elwood and Goodchild, 2013, 

for crowd-sourcing of geographic knowledge). While collaborative mechanisms are a rich source 

of data, the data tend to be error-prone, biased, and context sensitive. Incentive-based approaches 

have the potential to help in improving the quality, cost and timeliness of crowd-sourced data. 

This is an important area for future research (National Research Council, 2013). In a smart city 

context, community participation and engagement are critical for ensuring the creation of 

reliable, timely and trustworthy information about collective phenomena (Batty et al., 2012).  

 

5 Closing Remarks 

The paper discusses computational and statistical aspects of the analysis of Big Data on cities 

and regions, using the data analysis pipeline as guiding framework. This final section 

summarizes some of the key conclusions. 

First, Big Data on cities and regions are not centrally stored but distributed across multiple 

technical infrastructures, creating challenges in data access, integration, sharing and use. 

Accordingly, analysis of Big Data should make effective use of parallel and distributed hardware 

platforms, accommodating a wide range of data formats and statistical methods, and providing 

seamless interfaces to other computational platforms and tools for visualization of central aspects 

of the analysis. 

Second, scalability is one of the most crucial technical challenges in Big Data analytics. Most of 

the methods available for analyzing data scale only to certain levels of complexity and size of 

Big Data. Beyond such levels these methods will become increasingly irrelevant and likely to be 

not appropriate for developing refinements of competitive value. Evidently, we face a need for 

new statistical thinking and computational methods to tackle the scalability challenges of Big 

Data. The design of computational procedures has to address challenges such as heterogeneity, 

noise accumulation and spurious correlations, and to balance statistical accuracy and 

computational efficiency. 

Third, there are many sources of potential error in Big Data analysis, such as high-dimensionality 

and heterogeneity of Big Data, biases arising from sampling procedures and processes, and 

missing information on the provenance of the data. Any data analysis is based on a set of 

assumptions, and the assumptions underlying traditional statistical methods are not likely to be 

satisfied with Big Data. In addition, issues such as most notably that of sampling impinge on the 

quality of inference (National Research Council, 2013).  

Fourth, Big Data analysis creates new challenges at the intersection between humans and 

machines. Human input from data analysts and domain experts is needed throughout the Big 

Data pipeline, specifically in instances where algorithmic approaches are insufficient in making 

sense of the data.  
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Finally, it is worth noting that research and development necessary to tackle the challenges of 

using Big Data on cities and regions does not involve a single discipline or field. To this point, 

there is a critical need for cross-fertilization among different subject domains.  Not only do 

computer scientists, mathematicians and data analysts play an important role in this regard, but 

also experts in visualization including artists. Domain specialists and users of technology also 

have an essential role to play in designing and developing new perspectives on Big Data analysis 

and computation.  
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