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Tests of the Efficient Markets Hypothesis

Erhard Reschenhofer and Michael A. Hauser

Institut für Statistik, OR und Computerverfahren, Universität Wien
Institut für Statistik, Wirtschaftsuniversität Wien

Abstract: This paper surveys various statistical methods that have been pro-

posed for the examination of the efficiency of financial markets and proposes

a novel procedure for testing the predictability of a time series. For illustra-

tion, this procedure is applied to Austrian stock return series.

Zusammenfassung: Im Anschluß an eine ausführliche Diskussion von ver-

schiedenen konventionellen Methoden zur Untersuchung der Effizienz von

Finanzmärkten wird eine neue Methode vorgeschlagen und ihre Anwendung

anhand von österreichischen Aktiendaten illustriert.

Keywords: Random Walk Hypothesis, Stable Distributions, Conditional Het-

eroscedasticity, Predictability

1 Introduction

Since the French mathematician BACHELIER published his “Théorie de la Spécula-

tion” in 1900, much research has been devoted to the question of whether, and to what

extent, stock price movements are predictable. For no obvious reason, a large number of

research workers (particularly of statisticians) used only past stock prices for prediction

and ignored any other available information. This practice clearly does not increase the

chance of success. Nevertheless, since our primary goal is the study of the employed

statistical methods, we do not break with this unfortunate habit. Accordingly, this paper

is confined solely to univariate analysis.

In the next section, we survey some standard tests1 of the hypothesis that stock price

changes are independent and identically distributed (i.i.d.). These tests usually require

that second moments exist. Since this assumption has been disputed in the past, we con-

sider alternative methods in Section 3, which remain useful in case of infinite second

moments, i.e. the R=S (range over standard deviation) analysis (see, e.g. MANDELBROT

and WALLIS, 1969, and WALLIS and MATALAS, 1970) and model selection procedures.

The observation of clusters of high and low volatility in financial data (see, e.g., MAN-

DELBROT, 1963) severely affected the above hypothesis of randomness, hence this hy-

pothesis had to be replaced by the more general hypothesis of non-predictability, which

states that the price series is a martingale or, equivalently, that the expected price of an

asset at time t + 1, given the prices up to time t, is (apart from a deterministic drift term)

just the price at time t. ENGLE (1982) introduced a class of conditional heteroscedastic

processes for the description of the clustering phenomenon. The unconditional distribu-

tions of the variates from these processes may have both fat tails and finite variances. In

Section 4, we propose a new test procedure for testing the predictability of price changes,
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which is robust to conditional heteroscedasticity. In contrast to other heteroscedasticity-

robust tests (see, e.g., LO and MACKINLAY, 1988) our test does not rely on implausible

assumptions. This test is applied to Austrian stock return series.

2 Testing the classical random walk hypothesis

The first model for a series p
0

; : : : ; p

n

of stock prices2 was independently developed by

BACHELIER (1900) and OSBORNE (1959) and refined by MANDELBROT (1963) and

FAMA (1965). This model describes the stock returns

x

t

= log(p

t

)� log(p

t�1

)

as independent and identically distributed random variables. Since stock returns essen-

tially are differenced (log) prices3, this model implies that the (log) stock prices them-

selves follow a random walk, hence it is called random walk model. Numerous tests were

carried out to examine the adequacy of the random walk model. Early empirical studies

concentrated upon the search for linear dependence in stock returns. The observed sample

autocorrelations of daily and weekly stock returns, although often statistically significant,

were usually too close to zero to be of much speculative value (for a summary see FAMA,

1970). The significance of a particular sample autocorrelation

�̂

s

= ĉ

s

=ĉ

0

; where ĉ
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1

n

n�jsj

X

t=1
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t

� �x)(x
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X

t=1

x

t

;

was assessed by using the well known fact that its variance is approximately 1=n for n

i.i.d. observations x
1

; : : : ; x

n

from a distribution with finite variance. Clearly, the consid-

eration of only a single sample autocorrelation, typically �̂

1

, implies blindness against a

variety of deviations from uncorrelatedness. On the other hand, performing significance

tests for several sample autocorrelations inevitably increases the risk of reporting false

findings. A natural alternative is to employ methods of simultaneous assessment of a

large number of sample autocorrelations, such as the modified Box-Pierce test, which is

based on the statistic

n(n+ 2)

S

X

s=1

(n� s)

�1

�̂

2

s

(see BOX and PIERCE, 1970, PROTHERO and WALLIS, 1976, and LJUNG and BOX,

1978). Obviously, the Box-Pierce test can have extremely low power in situations where

n is small and only a small fraction of the used sample autocorrelations is of appreciable

size.

An alternative statistic is the variance ratio (see, e.g., LO and MACKINLAY, 1988,

1989) which may be explained as follows. Let n equal Nq, where q is any integer greater

than 1. The plausibility of the hypothesis of no serial correlation may be checked by

comparing the variance estimate of x
t

,

s

2

1

= (n� 1)

�1

n

X

t=1

(x

t

� �x)

2

;
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to that of x
t+1

+ : : :+ x

t+q

, divided by q,

s

2

q

= q

�1

N

�1

N�1

X

t=0

(x

tq+1

+ : : :+ x

tq+q

� q�x)

2

:

A convenient test statistic is given by the centered variance ratio

r

q

= s

2

q

=s

2

1

� 1:

Using overlapping sums, we obtain the more refined statistics
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2

and

�r

q

= �s

2

q

=s

2

1

� 1:

Under the null hypothesis that the x
t

are independently and identically distributed vari-

ables with finite variance, n1=2

�r

q

is approximately normally distributed with mean zero

and variance 2(2q�1)(q�1)(3q)

�1 for large n (LO and MACKINLAY, 1988). The statis-

tic �r

q

may be approximately written as a linear combination of the first q � 1 sample

autocorrelations with arithmetically declining weights, i.e.

�r

q

'

q�1

X

s=1

2(q � s)q

�1

�̂

s

:

Since �r

q

has a representation as a linear combination of sample autocorrelations (and

not of squared sample autocorrelations !), it is completely insensitive when the absolute

values of the sums of positive and negative autocorrelations, respectively, are of approxi-

mately the same size (see also the remark at the end of Section 4.4).

GRANGER and MORGENSTERN (1963) promoted the idea that spectral (or frequency

domain) methods are the most appropriate statistical techniques for the investigation of

stock market data. Spectral analysis4 (in its simplest form) represents a (real) time series

as a weighted sum of harmonic components, i.e.

x

t

= n

�1=2

X
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n�1

2

]�j�[

n

2

]

f

j

exp(it!

j

); t = 1; : : : ; n;

where the Fourier frequencies !
j

= 2�j=n are the integer multiples of the fundamental

frequency 2�=n and the weights f
j

are the inner products
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)

of the vector x = (x
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which constitute an orthonormal basis for the n-dimensional complex space Cn. The

sequence of weights f
j

is called the discrete Fourier transform of x and the sequence of

squared absolute weights

I

j

= jf

j

j

2

=

�

n

�1=2

X

x

t

cos(it!

j

)

�

2

+

�

n

�1=2

X

x

t

sin(it!

j

)

�

2

is called the periodogram of x. The periodogram decomposes the sum of squares of x

into a sum of components associated with the Fourier frequencies !
j

, i.e.

X

x

2

t

=

X

I

j

;

hence a plot of the periodogram ordinates I
j

against the Fourier frequencies !
j

shows the

relative importance of each harmonic component. Obviously, I
�j

equals I
j

for all j.

If the observations x
1

; ::; x

n

are independent and identically normally distributed with

mean �

x

and variance �2

x

then the periodogram ordinates I
j

; j = 1; : : : ; m (where m =

h

n�1

2

i

) are independent and identically exponentially distributed with mean �

2

x

. Fortu-

nately, this result does not depend critically on the assumption of normality. For exam-

ple, if the x

t

are i.i.d. and have finite variance then the periodogram ordinates are still

approximately exponentially distributed5. Consequently, the frequency domain tests of

randomness considered below are rather robust to deviations from normality.

A widely used frequency domain test of randomness is due to BARTLETT (1954,

1955). Observing that the normalized cumulative periodogram

J

k

=

k

X

j=1

I

j

=

m

X

j=1

I

j

; k = 1; : : : ; m� 1;

of a Gaussian random sample has the same distribution as an ordered sample from a

uniform distribution, Bartlett proposed to apply the Kolmogorov-Smirnov goodness of fit

test to the empirical distribution function of the J
k

. DURBIN (1969) considered a closely

related (but possibly more natural) test, which is based on the maximum deviation of J
k

from its expected value k=m. Under the null hypothesis, the 95th percentile of

C = max

1�k�m�1

jJ

k

� k=mj

is approximately6 given by 1:358(m�1)

�1=2, hence the null hypothesis will be accepted if

the normalized integrated periodogram always lies between the two parallel lines a(!) =

!+1:358(m�1)

�1=2 and b(!) = !�1:358(m�1)

�1=2 which lie above and below the line

representing the null hypothesis. Figure 1 shows an actual application. The hypothesis

that this particular series of daily stock returns is purely random cannot be rejected at the

5% level of significance.

This outcome may be due to the fact that the conventional7 Kolmogorov-Smirnov test

has been designed for the detection of one distinct peak in the periodogram whereas the

periodogram of our stock returns at best shows some vague ups and downs. However,

there exist alternative tests which are more sensitive to such indistinct deviations from the

null hypothesis.
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Figure 1: Application of the Durbin test to a series of daily stock returns (IBM, see JENK-

INS and WATTS, 1968, or SCHLITTGEN and STREITBERG, 1984). The null hypothesis of

no serial correlation is accepted since the normalized integrated periodogram always lies

between the two lines forming the boundaries of the 95% region.

The tests proposed by RESCHENHOFER (1989) and RESCHENHOFER and BOMZE

(1992) are adaptive in the sense that the forms of their test statistics depend on the data.

Essentially they are based on the mutual independence of the “half periodograms”

A

2

j

=

�

�

�n

�1=2

X

x

t

cos(it!

j

)

�

�

�

2

; j = 1; : : : ; m

and

B

2

j

=

�

�

�n

�1=2

X

x

t

sin(it!

j

)

�

�

�

2

; j = 1; : : : ; m:

Independently of using information contained in the A2

j

to construct an appropriate test

statistic for the B

2

j

, information contained in the B

2

j

is used to construct an appropri-

ate test statistic for the A

2

j

. Finally the two tests for the A

2

j

and B

2

j

, respectively, are

combined in some suitable way. While the adaptive tests may have more power than

Bartlett’s test in case of several peaks in the periodogram, they are not competitive in case

of a single peak. Fortunately, this is not true for another test proposed by RESCHEN-

HOFER and BOMZE (1991). This test emerges from Bartlett’s test simply by replacing

the Kolmogorov-Smirnov goodness of fit measure by another one, namely the length of

the graph of the distribution function. Under the null hypothesis, the theoretical distri-

bution function is linear on the interval (0; 1), hence the graph has the smallest possible

length
p

2. Any deviation from the null hypothesis implies an increase in the length and

it doesn’t make any difference whether this increase is due to one large peak or to several

small peaks. The simplest version of this test is based on the length of the linearly inter-

polated empirical distribution function. Since this simple test takes into account only the

size of the periodogram ordinates but not their arrangement it cannot be efficient. More-

over, the length of the linearly interpolated empirical distribution function asymptotically
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overestimates the true length. An obvious modification is to replace the periodogram or-

dinates in this test by smoother quantities obtained by averaging neighbouring ordinates.

The results of a simulation study (RESCHENHOFER and BOMZE, 1991) show that this

smoothed length test is extremely powerful both in case of a single peak and in case of

several peaks. As a consequence of the fact that not even for relatively large sample sizes

the asymptotic distribution of the smoothed length can be used for the determination of

critical values, DITTRICH et al. (1993) made extensive tables of critical values available.

KUNST et al. (1991) applied the smoothed length test to ten Austrian stock return series

and rejected the null hypothesis in four cases at the 5% level of significance.

Originally, periodogram analysis was regarded as a technique for the detection of exact

periodicities. Since exact periodicities correspond to isolated peaks in the periodogram,

formal tests were typically based on single ordinates. While SCHUSTER (1898) exam-

ined the periodogram at a given frequency, WALKER (1914) used the largest ordinate as

test statistic. FISHER (1929) proposed to divide this statistic by the sum of all ordinates

in order to remove the dependence on the unknown variance of the data. The relevance

of these tests to the analysis of financial data is due to persistent speculations upon the

presence of seasonal and/or weekly patterns. However, because of substantial evidence

(see, e.g., FAMA and FRENCH, 1988, and LO and MACKINLAY, 1988) for the presence

of autocorrelation in stock returns, the rejection of the random walk hypothesis with one

of these tests is no serious indication of the existence of an exact periodicity. Thus tests

are required which are able to distinguish isolated peaks due to exact periodicities from

very narrow peaks due to continuous spectral components. An early test is due to WHIT-

TLE (1952). Whittle’s test statistic is similar to that of FISHER’S (1929) test. The only

difference is that Whittle divides all periodogram ordinates by smoothed ordinates, hence

the significance of large ordinates, in the neighbourhood of which there are other large or-

dinates, is reduced, whereas large ordinates which stand out from their neigbourhood, are

not affected. Unfortunately, Whittle’s test depends critically on the method of smoothing.

This is also true for most other tests. However, for a simple special case, it is possible

to construct a test which avoids this problem. For the time being, suppose that both the

period and the phase of the suspected periodicity are known. We model the data as

x

t

= �+ y

t

+ � cos (!

0

t+ '

0

) ;

where !
0

and '

0

are known constants and � and � are the unknown model parameters.

The y

t

have mean zero and are possibly autocorrelated, but show no strictly periodic

behavior. The null hypothesis states that � equals zero and it is rejected whenever the

regressor cos(!
0

t+'

0

) yields a much better fit than the regressor sin(!
0

t+'

0

). Clearly,

the size of the estimated parameters is a suitable measure for the goodness of fit. It is

therefore natural to use the ratio of the estimated regression parameters as test statis-

tic. The resulting test asymptotically detects the hidden periodicity with probability one

(see RESCHENHOFER, 1995). In practice, the phase '
0

of the suspected harmonic com-

ponent will not be known exactly. However, this test may still be used as long as the

suspected phase does not deviate too much from the true phase. If independent replicates

are available, the situation improves considerably. Then discrepancies of up to � over 4

are tolerable. For the practical application of this test to a single series of stock returns,

it is suggested to divide the series into a number of segments and to select a subsample
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of segments being sufficiently far apart to be treated as independent. The specification

of !
0

and '

0

depends on the alternative hypothesis one has in mind. For example, one

may suspect that daily stock returns show a weekly pattern with the minimum occurring

on Monday (see, e.g., KRÄMER and RUNDE, 1992). A similar test procedure, which gets

along without any prior information about the phase, has been proposed by RESCHEN-

HOFER (1997b).

3 Doubts about the existence of the second moment

The above-mentioned tests based on autocorrelations and periodogram ordinates, respec-

tively, depend on the existence of the variance, hence a rejection of the null hypothesis

need not necessarily be due to a deviation from randomness but may as well indicate

the non-existence of the variance. Since the long tails that have been observed in the

empirical distributions of stock returns are inconsistent with the assumption of normal-

ity, MANDELBROT (1963) proposed to use the other members of the stable family rather

than the normal distribution. Note that the normal distribution is the only stable distri-

bution with finite variance. Stable distributions have the convenient property of being

type-invariant under addition. For example, if the distribution of daily returns is stable,

the distribution of weekly and monthly returns will follow a stable distribution of exactly

the same form, except for origin and scale. It can be shown that these distributions are

the only possible limiting distributions for sums of i.i.d. random variables (see GNE-

DENKO and KOLMOGOROV, 1954). Alternatively, the long-tailed empirical distributions

of stock returns have been modeled as Student t distributions or mixtures of several nor-

mal distributions with approximately the same mean, but substantially different variances

(a more recent reference is KON, 1984). While FAMA (1965) presented evidence that

daily stock returns might follow stable distributions with infinite variances, subsequent

studies reported contrary evidence (OFFICER, 1972, HSU et al., 1974, and BLATT-BERG

and GONEDES, 1974). If MANDELBROT (1963) was right, methods would be required

which behave reasonably even in case of infinite second moments, e.g. model identifica-

tion with automatic criteria (see, e.g., AMEMIYA, 1980) and R=S (range over standard

deviation) analysis.

The R=S statistic was independently introduced by HURST (1951) and STEIGER

(1964). The numerator statistic

R = max

k

k

X

j=1

(x

j

� �x)�min

k

k

X

j=1

(x

j

� �x)

may be regarded as the time domain counterpart of the Kolmogorov-Smirnov statistic for

the normalized cumulative periodogram. It compares the time series plot of the sequence

of partial sums S
k

= x

1

+ : : : + x

k

; k = 0; : : : ; n with the straight line through the

points (0; 0) and (n; S

n

). The denominator statistic

S = (ĉ

0

)

1=2

=

0

@

n

�1

n

X

j=1

(x

j

� �x)

2

1

A

1=2
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serves to facilitate the comparison of different time series. The usefulness of the statistic

Q

n

= R=S

8

for testing the randomness of stock returns is questioned by the fact that asymptotically

the behavior of Q in case of randomness is quite similar to its behavior in case of weak

(short-term) autocorrelation. For illustration, assume that the variance exists. Then

Q

n

n

�1=2

d

! B (MANDELBROT, 1975)

for i.i.d. x
t

, where “
d

!” denotes weak convergence and B is a random variable which is

distributed as the range of a standard Brownian bridge on the unit interval, and

Q

n

n

�1=2

d

!

2

4

X

s2Z

�

s

3

5

1=2

B (SIDDIQUI, 1976)

for weakly autocorrelated x

t

with summable autocorrelations �
s

. Hence the test of ran-

domness based on Q
n

breaks down whenever
P

j 6=0

�

j

is close to zero, regardless whether

there are some large �
j

or not. On the other hand, this test can be expected to be quite

powerful if either
P

s2Z

�

s

= 0 or
P

s2Z

�

s

= 1 or, equivalently, if the (normalized)

spectral density

f(!) = (2�)

�1

X

s2Z

�

s

exp(�is!)

at the origin is either 0 or1, which is the case for strongly (long-term) autocorrelated x
t

.

Strong autocorrelation is characterized by hyperbolically decaying autocorrelations, i.e.

�

s

� Cs

2d�1 as s ! 1, where d 6= 0 and C 6= 0, or by spectral densities behaving like

C!

�2d as ! ! 0, where d 6= 0. We have f(0) = 0 for d < 0 and f(0) = 1 for d > 0.

The parameter d is used as a measure of the degree of strong autocorrelation. It can be

estimated by a technique, which is based on the fact that Q
n

n

�d�1=2 has a non-degenerate

limit (for the details of this technique see MANDELBROT and WALLIS, 1969, and WAL-

LIS and MATALAS, 1970, and for the statistical foundations see MANDELBROT, 1975,

TAQQU, 1975, 1977, and MANDELBROT and TAQQU, 1979). In essence, the R=S tech-

nique consists of evaluating the R=S statistic for various subsamples, computing average

values for each subsample size, regressing the log average values on the log subsample

sizes, and finally estimating the parameter d by the slope of the regression line minus

1=2. HAUSER and RESCHENHOFER (1995) performed extensive computer experiments

and concluded that this procedure does not allow reliable estimation of the parameter d.

GREENE and FIELITZ (1977) applied the R=S technique to stock returns and claimed to

have found strong autocorrelation. LO (1991) refined the R=S statistic to make it more

robust to weak autocorrelation. He found no evidence of strong autocorrelation in stock

returns once the effects of weak autocorrelation have been taken into account9.

A simple parametric method of examining the randomness of stock returns is to fit

P + 1 autoregressive (AR) models10

p

X

i=1

�

i

x

t�i

= �

t

;
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where 0 � p � P and (�

t

) is a purely random process, to the (mean-corrected) returns

x

1

; : : : ; x

n

and to choose the best fitting model according to some model selection crite-

rion. The hypothesis of randomness is accepted whenever the trivial model with p = 0 is

selected. The most famous model selection criteria are the Akaike information criterion

(AIC, AKAIKE, 1973)

AIC(p) = n log

�

�̂

2

�

(p)

�

+ 2(p+ 1)

and the Schwarz Bayesian information criterion (Schwarz-BIC, SCHWARZ, 1978)

Schwarz-BIC(p) = n log

�

�̂

2

�

(p)

�

+ (p+ 1) log(n);

both of which have to be minimized with respect to p. Here �̂

2

�

(p) denotes the ML-

estimate of the residual variance of the model of dimension p. KUNST et al. (1991)

selected the trivial model for only four of ten stock return series with the AIC and for

nine of ten series with the Schwarz-BIC. As shown, e.g., by BHANSALI (1988) model

selection criteria may remain useful in case of infinite variance. However, there are seri-

ous shortcomings in the derivations of these criteria. CHOW (1981) and RESCHENHOFER

(1996b) pointed out that the Schwarz-BIC is only a poor approximation to the princi-

ple of selecting the model with the highest posterior probability of being correct, and

RESCHENHOFER (1996a) showed that a related criterion, called Akaike-BIC, proposed

by AKAIKE (1977), breaks down in the special case of purely random data, which is of

special importance in financial applications. On the other hand, the AIC – which has been

designed as estimator of the expected Kullback-Leibler discrepancy – is severely biased

in case of misspecified models. SAWA (1978) and RESCHENHOFER (1994) evaluated the

bias for the general case to order O(n

0

) and O(n

�1

), respectively11. Unfortunately, since

the obtained bias terms depend on an unknown parameter which has to be estimated, the

consideration of these terms need not necessarily lead to superior criteria.

4 Conditional heteroscedasticity

Since the introduction of conditional heteroscedastic processes by ENGLE (1982), interest

has shifted from the modeling of the unconditional distribution of stock returns towards

the modeling of the conditional distribution, hence the question whether the unconditional

variance of stock returns is finite or infinite is no longer of outstanding importance. An-

other consequence is that the classical random walk model, which implies independence

of stock returns, is obsolete and any test for autocorrelation has to allow for conditional

heteroscedasticity.

Using a test which is based on a heteroscedasticity-robust estimator for the variance

of a sample (auto-) correlation coefficient (see EICKER, 1963, WHITE, 1980, WHITE and

DOMOWITZ, 1984), LO and MACKINLAY (1988) found significant positive serial corre-

lation for weekly and monthly returns. Unfortunately, their null hypothesis implies the

existence of higher moments, and hence it is inconsistent with the size of the parameter es-

timates obtained by the fitting of autoregressive conditional heteroscedastic (ARCH) pro-

cesses (see ENGLE, 1982) and generalized ARCH (GARCH) models (see BOLLERSLEV,
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1986) to various series of stock returns (CHOU, 1988, RÜNSTLER, 1992) and exchange

rates (BÄRLOCHER, 1990, HAUSER et al., 1994).

TAYLOR (1984) arrived at the same heteroscedasticity-robust estimator for the vari-

ance of a sample autocorrelation coefficient but under the sole assumption that the multi-

variate distribution of the sequence of returns is symmetric. However, although TAYLOR

(1984) claims that returns have approximately symmetric distributions, this assumption is

also too strong. For example, KON (1984) found significant skewness in the distribution

of daily returns for 29 out of a sample of 33 common stocks and indexes. A secondary

argument for the presence of skewness in daily data is that stock returns typically have

a positive mean, which would be inconsistent with the frequent occurrence of the zero-

change in daily data if the returns were symmetric around the mean. One reason for

excess zeros is that missing values caused by bank holidays are usually replaced by the

quotations of the last trading day in order to preserve the weekly pattern. Another reason

is the low trading activity on small stock markets. Of course, the latter does not apply to

indices.

Conditional heteroscedasticity and skewness may cause effects which appear to be

paradoxical at first sight. For example, imagine a situation where positive returns are

mostly of medium size and negative returns are typically of very small or of very large

size. In addition, assume that successive returns tend to be of approximately the same size.

Then one would possibly conclude that the returns are conditional heteroscedastic and that

the size of the returns can easily be predicted. But because of the extreme skewness, pre-

dictability of the absolute values of the returns is almost equivalent to predictability of the

returns themselves. On the other hand, predictability of the returns implies that the con-

ditional second moments around the mean of the unconditional distribution are no longer

identical with the conditional variances. Hence it may well be that in reality the condi-

tional variances are constant over time. Thus we should take warning from this example

not to rely blindly on some test of conditional heteroscedasticity when the assumption

of symmetry is violated. In the next section we first review the heteroscedasticity-robust

tests proposed by TAYLOR (1984) and LO and MACKINLAY (1988), respectively. Then

we propose a new test procedure which has been designed for situations where both con-

ditional heteroscedasticity and skewness are present.

4.1 Robust tests based on the assumption of symmetry

TAYLOR (1984) derived an heteroscedasticity-robust estimator for the variance of �̂
s

un-

der the sole assumption, H
S

, that the multivariate density f of x
1

; : : : ; x

n

is symmetric

around 0. Note that when this hypothesis is true, the bivariate density of x
s

and x

t

, de-

noted f
st

, satisfies

f

st

(x

s

; x

t

) = f

st

(x

s

;�x

t

) = f

st

(�x

s

; x

t

) = f

st

(�x

s

;�x

t

):

This implies that x
s

and x

t

are uncorrelated whenever s 6= t. Under H
S

, every sequence

(y

t

)

t=1::n

, for which each jy
t

j = jx

t

j, has the same likelihood as the observed sequence

(x

t

). These 2

n equiprobable realizations (y

(i)

t

); i = 1; : : : ; 2

n, provide a discrete condi-
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tional distribution of x
1

; : : : ; x

n

given jx
t

j ; t = 1; : : : ; n. The conditional variances of the

sample autocorrelations
n�s

X

t=1

x

t

x

t+s

 

n

X

t=1

x

2

t

!

�1

are given by
n�s

X

t�1

x

2

t

x

2

t+s

 

n

X

t=1

x

2

t

!

�2

and may serve as estimators for the variances of the unconditional sample autocorrela-

tions. TAYLOR (1984) calculated estimates for 17 financial time series. The median of

these estimates is about 2:5=n, hence standard autocorrelation tests, which are based on

an assumed variance 1=n, are unreliable.

4.2 Robust tests based on certain mixing and moment conditions

Using EICKER’S (1963) approach (see also WHITE, 1980, and WHITE and DOMOWITZ,

1984) one arrives at the same heteroscedasticity-robust estimator

v̂(�̂

s

) =

n�s

X

t=1

(x

t

� �x)

2

(x

t+s

� �x)

2

 

n

X

t=1

(x

t

� �x)

2

!

�2

of the variance of �̂
s

as TAYLOR (1984) but under different conditions. This estimator

may be used to robustify any conventional test for serial correlation which is based on

sample autocorrelations. For example, LO and MACKINLAY (1988) used this estimator

to robustify the variance ratio test based on the statistic �r

q

(see Section 2). Using the fact

that �r
q

may be approximately written as

�r

q

'

q�1

X

s=1

2(q � s)q

�1

�̂

s

and assuming that the sample autocorrelations are asymptotically uncorrelated, one ob-

tains that �r
q

is approximately normally distributed with mean zero and variance

q�1

X

s=1

�

2(q � s)=q

�

2

v̂(�̂

s

) for large n:

The mixing and moment conditions (LO and MACKINLAY, 1988, p. 49) required for a

formal proof of this result allow for a variety of forms of heteroscedasticity including

many (G)ARCH processes. In any case, the existence of higher moments (including

fourth moments !) is required.

ARCH processes have been introduced by ENGLE (1982) in order to generalize the

implausible assumption of a constant one-period forecast variance. BOLLERSLEV (1986)

extended the ARCH process to the GARCH process which is characterized by

var(x
t

j x

t�1

; x

t�2

; : : :) = �

0

+

q

X

i=1

�

i

x

2

t�i

+

p

X

i=1

�

i

h

t�i

; x

t

=h

t

i.i.d. N(0; 1):
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For p = 0, this GARCH(p; q) process reduces to the ARCH(q) process. A necessary and

sufficient condition for wide-sense stationarity is

q

X

1

�

i

+

p

X

1

�

i

< 1:

For the widely used GARCH(1; 1) model the condition for the existence of the fourth-

order moment is

3�

2

1

+ 2�

1

�

1

+ �

2

1

< 1:

The actual parameters of the processes estimated for a number of financial series

do not imply finite fourth moments (see CHOU, 1988, RÜNSTLER, 1992, BÄRLOCHER,

1992, HAUSER et al., 1994). Being aware of the fact that these results may rely to some

extent on the chosen values of p and q, we do not claim that fourth moments are definitely

not finite for stock return series. However, empirical evidence prevents us from taking the

existence of these moments for granted.

4.3 Allowing for infinite fourth moments and skewness

A natural way to make allowance for an asymmetric heteroscedastic null hypothesis is

to adapt Taylor’s approach (see 2.1) to the case of skewness by considering only se-

quences (y
t

) which have the same unconditional sample distribution as the original (mean-

corrected) sequence (x

t

). However, because of the continuity of the data, any change of

the sign of a nonzero observed entry x
t

will lead to a situation where x
t

does not occur in

the synthetic series and, vice versa, �x
t

does not occur in the observed sequence. There-

fore the only feasible synthetic series would be the trivial one, which is characterized by

no change at all. As a consequence, prior to generating the synthetic sequences (y
t

), one

has to transform the data in such a way that they become “more discrete”.

In our approach, this is achieved by specifying threshold values

(0 =) v

0

< v

1

< : : : < v

k

(� max jx

t

j)

and replacing each x

t

6= 0 by the product of its sign and the mean over all jx
s

j contained

in the same segment (v
j�1

; v

j

] as jx
t

j. x

t

remains unchanged if x
t

= 0. The resulting

discretized version (~x

t

) of the original sequence (x

t

) will be compared with synthetic se-

quences (~y
t

), which differ from (~x

t

) only in the signs, i.e. j~y
t

j = j~x

t

j for all t. The signs of

the ~y

t

are chosen by some random mechanism which guarantees that for each j the total

number of positive ~y

t

with j~y
t

j 2 (v

j�1

; v

j

] equals the total number of positive ~x

t

with

j~x

t

j 2 (v

j�1

; v

j

]. It is important to note that this method does not eliminate the asym-

metry and also that the resulting sequences (~y

t

) may be serially correlated. However,

one may still examine whether the synthetic sequences are significantly less correlated

than the original discretized sequence. Although this ad hoc procedure should certainly

be refined in the future, we think that it is already useful in its present form, particularly

in view of the restricted applicability of the conventional procedures. In any case, fur-

ther developments require a sound understanding of the relationship between conditional

heteroscedasticity, skewness, serial correlation and predictability.
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4.4 Results of an empirical study

The following empirical study serves to illustrate the application of our resampling proce-

dure. We used data from the Vienna Stock Exchange which is characterized by a modest

number of participants and low trading activity. Daily price changes of seventeen Austrian

stocks as well as of the GZ index are examined. The stocks are: Erste Allgemeine Stamm

(insurance), CA Vorzug, Länderbank Vorzug (both banks), Gösser, Österreichische Brau,

Reininghaus (all breweries), Semperit (rubber), Wienerberger (building materials), Con-

stantia (paper etc.), Jungbunzlauer (citric acid), Lenzing (viscose), Leykam (paper), Steyr

(vehicles), Veitscher (magnesite), Leipnik Stamm (industry), and A. Bau Porr Stamm

(construction). The total number n of price changes is 1231 (from January 1986 to De-

cember 1990) for the GZ index and three stocks (Gösser, Leipnik Stamm, A. Bau Porr

Stamm) and 1098 (from February 1986 to August 1990) for all other stocks. The sole

criterion for the selection of these particular series was the availability of the data.

For five of these series a simple binomial test, which is based on a comparison of

the total number of positive returns and the total number of negative returns, rejects the

hypothesis of symmetry at the 1% level of significance. If this test is applied to the

mean-corrected returns, the hypothesis of symmetry is rejected in all cases but one. Not

surprisingly, the only exception is the GZ index.

To assess the quality of the asymptotic approximation of the distribution of the vari-

ance ratio statistic �r

q

in case of symmetric heteroscedastic null hypotheses (see 4.2), 1000

synthetic series are generated (by randomly changing the sign of an observed mean cor-

rected return with probability 1=2) in each case. Table 1 gives the empirical sizes of

nominal 5 percent one-sided variance ratio tests �r

q

of the hypothesis of a random walk

with possibly heteroscedastic increments. Each row corresponds to a specific nonpara-

metric form of heteroscedasticity. As the empirical sizes are close to 5% the use of the

asymptotic distribution of the variance ratio is justified for our sample sizes and our spe-

cific forms of (symmetric) heteroscedasticity. Indeed, for our actual series the use of the

asymptotic distribution leads almost to the same results as the exact randomization test

(see Table 2). However, a rejection of the null hypothesis only because of asymmetry or

an infinite fourth-order moment would not be of much interest. Therefore we also employ

the procedure proposed in 4.3.

First the interval (0;max(�min(x

t

);max(x

t

))] is divided into 54 segments of equal

size for the series of length 1098 and into 61 segments for those of length 1231. Then each

x

t

6= 0 is replaced by the product of its sign and the mean over all jx
s

j contained in the

same segment as jx
t

j. Finally, 1000 synthetic series are generated along the lines given

in 4.3 and the variance ratio �r

q

(or an alternative test statistic, see below) is evaluated

for both the “original” series and the synthetic series. The null hypothesis, that there are

no dependencies left once the effects of conditional heteroscedasticity and skewness have

been taken into account, is rejected whenever the value of �r
q

for the original series is large

compared with the values of �r
q

for the synthetic series. The results obtained (see Table 3)

are in line with the results obtained before.

So far, we have used the variance ratio �r

q

to illustrate our robustification method, but
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Table 1: Empirical sizes of nominal 5 percent one-sided variance ratio tests �r

q

. For each

sequence of observed returns 1000 synthetic sequences are generated by randomly chang-

ing the sign of an observed return with probability 1=2.

q

Series Sample size 2 5 10 25 50

Erste A. St. 1098 4.8 5.3 5.4 6.1 5.9

Österr. Brau 1098 5.1 5.7 5.5 6.3 6.2

Reininghaus 1098 4.2 4.5 4.8 4.8 5.3

Semperit 1098 4.9 4.9 5.5 5.1 6.1

Wienerberger 1098 3.1 3.7 3.7 3.9 5.4

CA Vz. 1098 4.3 3.9 4.6 4.1 5.2

Länderbank Vz. 1098 4.2 4.4 6.1 6.4 7.5

Constantia 1098 4.9 4.6 5.4 4.1 4.4

Jungbunzlauer 1098 5.2 5.3 4.9 5.7 6.8

Lenzing 1098 3.3 4.0 5.1 6.1 4.9

Leykam 1098 4.2 4.4 4.5 4.8 4.8

Steyr 1098 4.6 5.0 3.8 4.3 5.4

Veitscher 1098 2.9 5.6 5.4 7.2 7.8

Gösser 1231 5.0 5.4 4.7 4.7 5.3

Leipnik St. 1231 5.1 4.2 3.9 4.3 4.4

A. Bau Porr St. 1231 5.3 4.9 4.2 4.7 5.5

GZ index 1231 5.0 5.0 5.2 4.9 5.6

it may as well be applied to other test statistics. Remember that the test statistic �r

q

can

approximately be written as

�r

q

'

q�1

X

s=1

2(q � s)q

�1

�̂

s

(see Section 2) and hence it may be interpreted as an nonparametric estimator for the

(normalized) spectral density at frequency 0. But in the absence of any prior information,

it is hard to see what is the sense of testing the constancy of the spectral density by ex-

amining it only at a single frequency. An alternative test is the (modified) Box-Pierce test

(see Section 2), which is sensitive to a broad class of deviations from uncorrelatedness.

However, for our data the results obtained with the robust version of the Box-Pierce test

are very similar to those obtained with the robust version of the variance ratio test. One

explanation of this finding is that rejections typically originate in a significant first sample

autocorrelation. As this sample autocorrelation is usually positive the use of the one-sided

(!) variance ratio even yields slightly better results than the use of the Box-Pierce statistic

which takes into account only the size of this coefficient but not its sign. Of course, it is

irrelevant to this argumentation whether the robust versions of the two tests are considered

or the original ones.
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Table 2: Squares indicate rejections of the hypothesis of uncorrelatedness by the one-sided

variance ratio test �r
q

at the 5%-level of significance. Filled squares indicate rejections at

the 1%-level. Critical values have been obtained by using an asymptotic approximation

(see LO and MACKINLAY, 1988). The entries in brackets correspond to the results ob-

tained by using a randomization procedure for the determination of critical values. This

procedure assumes that the data are symmetric.

q

Series Sample size 2 5 10 25 50

Erste A. St. 1098 ( ) ( ) ( ) ( ) ( )

Österr. Brau 1098 ( ) ( ) ( ) ( ) ( )

Reininghaus 1098 ( ) ( )

Semperit 1098 ( )

Wienerberger 1098 ( ) ( ) ( ) ( ) ( )

CA Vz. 1098 ( ) ( ) ( ) ( ) ( )

Länderbank Vz. 1098 ( )

Constantia 1098 ( ) ( ) ( ) ( )

Jungbunzlauer 1098 ( ) ( ) ( ) ( ) ( )

Lenzing 1098 ( ) ( ) ( ) ( ) ( )

Leykam 1098 ( ) ( ) ( ) ( ) ( )

Steyr 1098 ( )

Veitscher 1098 ( )

Gösser 1231 ( ) ( ) ( ) ( ) ( )

Leipnik St. 1231 ( ) ( ) ( ) ( ) ( )

A. Bau Porr St. 1231 ( ) ( ) ( ) ( ) ( )

GZ index 1231 ( ) ( ) ( ) ( ) ( )
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Endnotes

1 The presentation of these tests (and also of other conventional methods) will be some-

what biased towards previous research of the authors.

2 Our discussion applies not only to prices of stocks but largely also to prices of currencies

or commodities.

3 Note that suitable measures have to be taken to adjust for bank holidays, distributions of

dividend, and stock splits, respectively.
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Table 3: A square indicate that the test procedure based on the one-sided variance ratio

test �r
q

rejected the hypothesis (at the 5%-level of significance, in case of filled squares

at the 1%-level) that there are no dependencies left once the effects of conditional het-

eroscedasticity and skewness have been taken into account . Critical values have been

obtained by a combined discretization/randomization procedure which does not assume

that the data are symmetric.

q

Series Sample size 2 5 10 25 50

Erste A. St. 1098

Österr. Brau 1098

Reininghaus 1098

Semperit 1098

Wienerberger 1098

CA Vz. 1098

Länderbank Vz. 1098

Constantia 1098

Jungbunzlauer 1098

Lenzing 1098

Leykam 1098

Steyr 1098

Veitscher 1098

Gösser 1231

Leipnik St. 1231

A. Bau Porr St. 1231

GZ index 1231

4 For the basic concepts of spectral analysis see, e.g., PRIESTLEY (1981) or BROCKWELL

and DAVIS (1987).

5 In this case, the cosine and sine sums,
P

x

t

cos(it!
j

) and
P

x

t

sin(it!
j

), respectively,

are uncorrelated and have the same variance. In addition, the central limit theorem assures

that these sums are approximately normally distributed for large n.

6 Note that the accuracy of this approximation may be improved by using

C

�

=

�

C + 0:4(m� 1)

�1

� �

1 + 0:2(m� 1)

�1=2

+ 0:68(m� 1)

�1

�

instead of C (STEPHENS, 1970).

7 We write “Q
n

” instead of “Q” in order to emphasize the dependence on the sample size.

8 There exist generalized Kolmogorov-Smirnov tests which are more sensitive to multi-

modal alternatives (see RESCHENHOFER, 1997a).
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9 Unfortunately, there is a common tendency to explain contradictory findings solely by

the use of different statistical methods and to ignore the fact that different sets of data have

been analyzed. Moreover, LO (1991) claimed that the procedure used by GREENE and

FIELITZ (1977) can be significantly impaired by weak autocorrelation. He substantiated

his criticism by refering to DAVIES and HARTE (1987) who showed that a particular

version of the R=S analysis, which is based on subsamples sizes down to three, is highly

sensitive to short-term effects. In contrast, Greene and Fielitz employed the R=S analysis

with a minimum subsample size of fifty in order to reach negligibility of transience.

10Alternatively, the more general classes of autoregressive moving average (ARMA) mod-

els or fractionally integrated ARMA (ARFIMA) models could be used. For definitions

and properties of these models see, e.g., BROCKWELL and DAVIS (1987). For ARMA

models see also PRIESTLEY (1981). A more demanding reference is HANNAN and

DEISTLER (1988).

11 The latter result contains SUGIURA’S (1978) corrected AIC as special case.
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