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Bayesian latent class analysis with shrinkage priors:
an application to the Hungarian heart disease data

Bettina Griin*, Gertraud Malsiner-Walli**

Abstract:  Latent class analysis explains dependency structures in multivariate categorical
data by assuming the presence of latent classes. We investigate the specification of suitable
priors for the Bayesian latent class model to determine the number of classes and perform
variable selection. Estimation is possible using standard tools implementing general purpose
Markov chain Monte Carlo sampling techniques such as the software JAGS. However, class
specific inference requires suitable post-processing in order to eliminate label switching. The
proposed Bayesian specification and analysis method is applied to the Hungarian heart dis-
ease data set to determine the number of classes and identify relevant variables and results are

compared to those obtained with the standard prior for the component specific parameters.

Keywords: Bayesian latent class analysis, Shrinkage prior, Variable selection.

1. Introduction

Latent class analysis (LCA) is a modeling approach for categorical data
originally proposed by Lazarsfeld (1950). The observed association between
the manifest categorical variables is assumed to be caused by latent classes.
Conditional on class membership the categorical variables are assumed to be
independent given the class specific variable distributions.

Issues in LCA are the selection of the number of classes and the identifica-
tion of relevant variables. Within the frequentist framework using maximum
likelihood estimation Dean and Raftery (2010) investigated the use of the BIC
in combination with a headlong search algorithm to explore the model space
to determine a suitable number of classes as well as subset of variables. They
illustrate their approach using the Hungarian heart disease data set. Alterna-
tively, White et al. (2016) use stochastic search methods to select the number
of classes and relevant variables within the Bayesian framework.
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In this paper we investigate the use of sparse finite mixture models in com-
bination with shrinkage priors. Malsiner-Walli et al. (2016) proposed the
sparse finite mixture model with shrinkage priors on the means for the Gaus-
sian finite mixture model. We extend this approach to the Bayesian latent
class model. We also indicate how a general purpose Markov chain Monte
Carlo (MCMC) sampler such as JAGS (Just Another Gibbs Sampler; Plum-
mer 2003) can be used to obtain draws from the posterior and present suitable
post-processing tools of the MCMC draws to eliminate label switching. This
proposed model specification and analysis strategy is used to reanalyze the
Hungarian heart disease data set.

2. Bayesian latent class model

Assume there are n observations y;, 2 = 1, ..., n given. Each observation
Yy; is a vector of length J, i.e., J variables are observed and each element y;;
contains values in {1...., L;} implying that each variable j is a categorical
variable with L; > 2 different values.
The latent class model for observations y;, 2 = 1,....n is given by
K J Lj
film.©) =" m \[TT16 ™" |
k=1 j=11=1

where T = (71,)p=1

.....

tor function, and

K
Zﬂ'kzl, m, > 0, Vk,
k=1
L;
> Oji=1,Vk.j, Orj1 > 0, Vk, j,1.
=1

2.1. Prior specification

The parameter vector consists of (7, ®). In Bayesian finite mixture model-
ing one assumes in general that the component weights 7 and the component
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specific parameters © are a-priori independent and that the component spe-
cific parameters are independently identically distributed (at least conditional
on some hyperparameters). Furthermore conditionally conjugate priors are
used to simplify MCMC sampling.

Component weights

For the component weights 7t a Dirichlet prior is assumed with a single
parameter eg:

7 ~ Dirichlet(ey, . . ., ).

Rousseau and Mengersen (2011) show that e is an influential parameter if an
overfitted mixture model is estimated. Based on their results Malsiner-Walli
et al. (2016) propose the sparse finite mixture model where an overfitting
mixture with &, the number of components, much larger than the number of
latent classes is fitted together with the specification of a very small and fixed
value for ey, e.g., e = 0.0001. Under this prior setting the posterior of an
overfitting mixture asymptotically concentrates on the region of the parame-
ter space where superfluous components have negligible component weights
instead of including duplicated components.

Standard prior for the component specific parameters

In Bayesian LCA one assumes that a-priori the parameters of the variables
are independent within components. This implies that for each variable ;5 and
component k the component specific parameter vector 6, ; a-priori follows a
Dirichlet distribution:

6y ;. ~ Dirichlet(a;).

The value for a; is selected to regularize the likelihood which in the case of
an LCA model is often multi-modal, contains spurious modes and might have
modes at the boundary of the parameter space.
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Shrinkage prior for the component specific parameters

To shrink irrelevant variables towards a common Dirichlet parameter a hi-
erarchical prior is specified on a;. For this purpose the Dirichlet parameter
is re-parameterized into a mean and precision parameter plus a regularizing
additive constant:

a; = ap; + o;1;, p; ~ Dirichlet(m;), V7,
1

¢; = T Vi, Aj ~ Gamma(vy, 1), Vj.
J

Following Malsiner-Walli et al. (2016) we suggest to use v; = 15 = 0.5.
Furthermore we use uniform priors for ag j and p;,1.e., a9 ; = land m; = 1.

2.2. MCMC estimation

Estimation of the Bayesian latent class model consists of approximating
the posterior distribution of (7r, ®) using MCMC methods. Diebolt and Robert
(1994) suggested to use data augmentation to facilitate MCMC estimation by
adding the class memberships of the observations to the sampling scheme.

Standard prior for the component specific parameters

The sampling scheme is given by:

1. Draw the class memberships .S; for all observations 7z = 1, ..., n:
Lj
S; ~ Multinomial(1, p;), Dig O Tk H H 925%7;]‘:”.
j=11=1

2. Conditional on S = (.5;);=1...., draw 7r from a Dirichlet distribution:

geeesy

7 ~ Dirichlet(eg + n1, ..., eo + ng),

np=y 1Si=k Vk=1. K
=1
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3. Conditional on S = (.5;);=1,._,, draw 8, ; from a Dirichlet distribution:

.....

0]{37]'_ ~ Dirichlet(aﬂ + Nk 1, - - - ,CLij + nk;7ij),

g =y _1(S; =k)L(y; =1) Vkj,1.
=1

In each MCMC iteration the class memberships S induce a partition of
the observations into K| classes, i.e., the number of non-empty components
for this draw. In the overfitting mixture setting with K much larger than the
number of classes and ey very small K, < K and the posterior distribution of
K, can be used to estimate the number of classes. Malsiner-Walli et al. (2016)
proposed to use the mode as suitable point estimate.

Shrinkage prior for the component specific parameters

An additional sampling step is required to sample the hyperparameter val-
ues:

4. Conditional on ©®, sample pt; and \; for all j.
Model specification in BUGS and estimation using JAGS

The BUGS (Bayesian inference Using Gibbs Sampling; Lunn et al. 2009)
model description language allows the specification of a Bayesian model based
on a directed acyclic graph which contains the data as well as all parameters
as nodes and where the edges are implied by the hierarchical specification of
the Bayesian model.

For a Bayesian finite mixture models which is estimated using data aug-
mentation the model specification not only includes the data y and the param-
eters (7r, ®) but also the class memberships S. The BUGS model specifica-
tion for the model including the shrinkage prior is given in Figure 1. Note that
for the standard prior the parameter a[j, 1:L[j]] is fixed and the four lines
of code defining the relationships for a, mu, phi and 1ambda are dropped.

The model is estimated within R using package rjags. Only a list contain-
ing the data in an array Y, the dimensions n, J, L and the parameters needs
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model {
for (i in 1:n) {
for (j in 1:J) {
Y[i, 1:L[3], j] ~ dmulti(thetalS[il, j, 1:L[j11, 1)
}
S[il ~ dcat(pil1:K1)
}
for (j in 1:J) {
for (k in 1:K) {
thetalk, j, 1:L[j]1] ~ ddirch(alj, 1:L[j11)
}
alj, 1:L[j1]1 <- a0[1:L[j1] + phil[j] * mulj, 1:L[j]]
mulj, 1:L[j]1] ~ ddirch(m([1:L[j]])
phil[j] <- 1 / lambdalj]
lambdal[j] ~ dgamma(nul, nu2)
}
pil1:K] ~ ddirch(eO[1:K1);
}

Figure 1. BUGS model specification for the sparse latent class model with
shrinkage priors.

to be specified. Note that Y needs to be given as an array of dimension n X
max(L;) x J containing zeros and ones to indicate the observed values. n
corresponds to the number of observations, J to the number of variables and L
is a vector containing the number of categories for each variable. In addition
the parameters specified are the number of components K and a vector e of
length K containing ey. Furthermore, for the standard prior a is a vector of
ones of length max(L;), whereas for the shrinkage prior, m and a0 are two
vectors of ones of length max(L;), and nul and nu2, the parameters of the
Gamma prior on the shrinkage parameter A, are both set equal to 0.5.

Then the model is defined using jags.model() and samples are drawn
using jags.samples () while monitoring the parameters of interest using the
argument variable.names.

For the presented results the call to jags.model () included an inits ar-
gument to set a specific random seed for reproducibility and an n.adapt ar-
gument to increase the number of iterations for adaptation to 5,000. Then
jags.samples is called using 100,000 number of iterations with a thinning
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of 10.
2.3. Post-processing

The number of filled components K, are determined for each draw and an
estimate K 1 1s obtained using the mode of the posterior distribution. If there
is a distinct class structure in the data the MCMC sampler usually converges
quickly to this number of classes and a clear mode can be identified (see
Malsiner-Walli et al. 2016).

Conditional on the number of classes selected the draws are post-processed
in the following way to obtain an identified model with suitable class specific
parameter estimates as well as class assignments of the observations.

1. Discard all draws where K, # K 4
2. Discard all parameter draws 6, for empty components.

3. For each draw relabel the components to minimize the misclassification
rate between the class assignments of this draw and the class assign-
ments of the last draw.

Note that this is a very simple strategy to obtain an identified model which will
only work if the data has a clear class structure. More elaborate approaches to
deal with label switching have been proposed and might be required in more
complicated settings to obtain good results (see Papastamoulis 2016).

3. Analyzing the Hungarian heart disease data

The Hungarian heart disease data consists of 284 patients on 5 categorical
variables. For more details on the categorical variables with their levels see
Table 1. Dean and Raftery (2010) analyzed this data set with LCA. They used
maximum likelihood estimation in combination with the BIC to perform a
joint approach for variable selection and determining the number of classes.
They compared the classification results obtained with LCA to the known di-
agnosis of heart disease (angiographic disease status) available in the data set.
The known diagnosis has two categories: “< 50%” indicating less than 50%
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Variable Level Class 1 Class 2
Chest pain type Typical Angina 0.06 (0.02) 0.01 (0.01)
Atypical Angina  0.57 (0.06) 0.07 (0.04)
Non-anginal pain  0.26 (0.04) 0.08 (0.04)
Asymptomatic 0.10 (0.07) 0.84 (0.06)
Exercise induced No 0.95(0.03) 0.33(0.11)
Angina Yes 0.05(0.03) 0.67 (0.11)
Gender Female 0.36 (0.04) 0.15(0.04)
Male 0.64 (0.04) 0.85(0.04)
Resting Normal 0.81 (0.03) 0.77 (0.04)
Electrocardiographic ST-T wave 0.15(0.03) 0.21 (0.04)
results Estes’ criteria 0.04 (0.02) 0.02 (0.01)
Fasting blood sugar  False 0.94 (0.02) 0.90 (0.03)
>120 mg/dl True 0.06 (0.02) 0.10 (0.03)

Table 1. Posterior mean (and posterior standard deviations) of the class spe-
cific parameters for the identified 2-class sparse LCA model.

diameter narrowing and “> 50" indicating more than 50% diameter narrow-
ing in any major vessel.

3.1. Sparse finite mixture model

An overfitting mixture model is estimated using ey = 0.0001 and K = 10.
In addition a uniform prior is assumed for the class specific parameters, i.e.,
ax,ji = 1. The posterior distribution of the number of non-empty components
K has a clear mode at 2 with 99.7% of the samples having 2 non-empty
components. The remaining samples had 3 non-empty components (0.2%).
Using the samples with 2 non-empty components to identify the model results
in a posterior mean estimate for the component weight of the larger class m
of 0.579 with a posterior standard deviation of 0.075.

The class specific parameters for the categorical variables are given in Ta-
ble 1. These results can be compared to those in Dean and Raftery (2010)
who reported the maximum likelihood estimates for the parameters of a two-
class latent class model. The posterior mean and the maximum likelihood
estimates are similar. However, the Bayesian approach also provides uncer-
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Figure 2. Posterior distribution of the class specific parameters for the vari-
able “Chest pain type”.

tainty estimates as given by the posterior standard deviations and the full pos-
terior distributions which are visualized in Figure 2 for the variable “Chest
pain type”. In particular for parameter values which are estimated to be close
to the boundary the posterior is non-normal and the full posterior allows to
estimate suitable credible intervals for these parameters.

Observations can also be classified to the class they are most often as-
signed to during MCMC sampling after model identification. This partition
is compared to the clinical partition contained in the data (see Table 3 on the
left). The congruence between these two partitions is very high and results
are similar to those reported in Dean and Raftery (2010).

3.2. Sparse finite mixture model with shrinkage prior

An overfitting mixture model is estimated using ey = 0.0001 and K = 10.
In addition the shrinkage prior is imposed on the class specific parameters.
The posterior distribution of the number of non-empty components K, has a
clear mode at 2, with 99.9% of the samples having 2 non-empty components.
The remaining samples had 3 non-empty components (0.2%). Using the sam-
ples with 2 non-empty components to identify the model results in a posterior
mean estimate for the component weight of the larger class 7 of 0.572 with
a posterior standard deviation of 0.068. The class specific parameters for the
variables are given in Table 2 and the congruence between the partitions in
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Variable Level Class 1 Class 2
Chest pain type Typical Angina 0.06 (0.02) 0.01 (0.01)
Atypical Angina  0.57 (0.06) 0.07 (0.04)
Non-anginal pain  0.26 (0.04) 0.08 (0.04)
Asymptomatic 0.10 (0.07) 0.83 (0.06)
Exercise induced No 0.94 (0.03) 0.34 (0.10)
Angina Yes 0.06 (0.03) 0.66 (0.10)
Gender Female 0.36 (0.04) 0.15(0.04)
Male 0.64 (0.04) 0.85(0.04)
Resting Normal 0.81 (0.03) 0.79 (0.04)
Electrocardiographic ST-T wave 0.16 (0.03) 0.19 (0.04)
results Estes’ criteria 0.03 (0.01) 0.02 (0.01)
Fasting blood sugar  False 0.94 (0.02) 0.91 (0.03)
>120 mg/dl True 0.06 (0.02) 0.09 (0.03)

Table 2. Posterior mean (and posterior standard deviations) of the class spe-
cific parameters for the identified 2-class sparse LCA model with shrinkage
prior.

Standard prior ~ Shrinkage prior
<50% >50% <50%  >50%
Class 1 139 15 135 14
Class 2 42 88 46 89

Table 3. Estimated versus clinical partition for the identified 2-component
sparse LCA model with standard or shrinkage prior.

Table 3 on the right. Overall similar results are obtained for the two different
component specific priors. However, using a shrinkage prior reduces the risk
of overfitting heterogeneity and thus allows to obtain more precise estimates
in case irrelevant variables are identified. Figure 3 shows the posterior distri-
butions of the shrinkage parameters A for each variable. Small values indicate
that a variable is identified as not being relevant for distinguishing between the
two classes and that similar parameter values are estimated for both classes.
These results confirm those by Dean and Raftery (2010) who concluded that
the variables “Resting Electrocardiographic results” and “Fasting blood sugar
>120 mg/dl” are irrelevant.
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Figure 3. Box plot of the shrinkage parameter \ for each variable.

4. Conclusion

Suitable priors for Bayesian LCA are presented which regularize the likeli-
hoods to avoid boundary solutions, induce sparse solutions with respect to the
number of classes as well as shrinkage to perform implicit variable selection.
Their application is demonstrated on the Hungarian heard disease data which
was previously analyzed based on maximum likelihood estimation. This data
set contains a clear structure with respect to the number of classes as well
as the relevance of variables for clustering. Suitable priors for such a setting
were proposed. Future research needs to investigate how these priors perform
and need to be adapted in more challenging settings.
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