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Abstract

We study systemic risk in a network model of the interbank market where the asset
returns of the banks in the network are correlated. In this way we can study the
interaction of two important channels for systemic risk (correlation of asset returns
and contagion due direct financial linkages). We carry out a simulation study that
determines the probability of a systemic crisis in the banking network as a function of
both the asset correlation, and the connectivity and structure of the financial network.
An important observation is the fact that the relation between asset correlation and the
probability of a systemic crisis is hump-shaped; in particular, lowering the correlation
between the asset returns of different banks does not always imply a lower probability
of a systemic crisis.

Keywords: Systemic risk, Contagion, Financial Networks, Asset Correlations

1 Introduction

The availability of modern risk-transfer tools enables banks to diversify away idiosyn-
cratic risk concentrations in their portfolios. However, diversification at the level of indi-
vidual banks might lead to more similar asset positions across banks and thus to a higher
correlation of bank’s asset returns. This has sparked a debate on the impact of increasing
asset return correlations on financial stability. Prior to the financial crisis risk transfer
between banks and diversification at the individual bank level was generally regarded as
something positive. This view is for instance embodied in the following quote from a 2002-
speech of Alan Greenspan (then chairman of the FED) to the council of foreign relations,

see Greenspan (2002).
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[In the past year] I, particularly, have been focusing on innovations in the man-
agement of risk and some of the implications of those innovations for our global
economic and financial system. The development of our paradigms for contain-
ing risk has emphasized dispersion of risk to those willing, and presumably able,
to bear it. If risk is properly dispersed, shocks to the overall economic systems
will be better absorbed and less likely to create cascading failures that could

threaten financial stability.

Note that Greenspan explicitly entertains the idea that the default of any given financial
institution may result in “cascading failures” of other banks via a network of direct credit
relationships. Reducing idiosyncratic risk concentrations may thus be beneficial as it reduces
the likelihood that individual banks default in the first place.

After the financial crisis, diversification at the level of individual-bank level and the
potential increase in the correlation of banks’ asset portfolios were seen much more critical.
For instance, Wagner (2010) argues that while diversification may indeed reduce the default
probability of individual banks, the ensuing rise in asset correlations increases the likelihood
of a systemic banking crisis (an event where many banks fail simultaneously). However,
in his analysis network effects and direct business links between financial institutions are
neglected. Other contributions criticize a high level of correlation between banks’ asset
portfolios on different grounds. In particular, Acharya and Yorulmazer (2007) argue that
banks have an incentive to engage in herding to induce possible government bailouts.

Given these different views, in the present paper we study the impact of correlated asset
positions on financial stability in a network model for financial institutions. The network
represents direct business links between banks such as a borrower-lender relationship. This

Lin a single model:

permits us to include two important sources for a systemic banking crisis
first we consider correlation between the asset positions of different banks (the so-called
correlation channel for systemic risk); second we consider a contagious spreading of defaults

through the financial network (the so-called contagion channel for systemic risk). We find

that the correlation channel and the contagion channel are tightly connected; in particular,

! There are many different definitions of systemic risk. For our purposes, a systemic crisis is considered
as an event where a significant proportion of financial institutions in the system default. The risk of such
an event happening is then referred to as systemic risk.



the impact of an increase in asset return correlation on financial stability is ambiguous and
depends on the structure of the financial network. It turns out that the stability of the
system decreases with its density as well as with the asset return correlation only up to a
certain threshold. After that, increasing the level of correlation of external assets as well
as increasing the borrower-lender network density becomes beneficial in terms of financial
stability. This is due to the role that connections play in our model. They represent direct
credit transfers, such that if a bank goes bankrupt initially, it can cause further defaults in a
contagious cascade. Therefore, as external assets become more correlated in terms of their
portfolio holdings, the probability of observing isolated incidents of these initial defaults
decreases. In a perfectly correlated system, where everybody holds the same portfolio, we
either observe no defaults or a full systemic failure. In such case, the network amplification
channel is completely eliminated. This line of reasoning can explain the contagion puzzle
by a simple interplay of the two channels. Where both correlation and contagion might
be insufficient to cause systemic crisis on their own, their joint effect can be potentially
devastating.

We use a simulation approach for our analysis. We randomly draw a financial network
from a set of networks with given probabilistic characteristics that reflect stylized facts
observed in real-world interbank networks. Subsequently we generate a set of asset returns
for the banks in the network. We assume that a bank defaults if confronted with a large
enough negative asset return. In that case all its creditor banks suffer a loss. If this loss
is sufficiently large, some of the creditor banks default as well, which then leads to further
losses and possibly to a whole cascade of contagious defaults. The use of randomly generated
networks serves to robustify our analysis with respect to the details of the network topology.
This is important since the exact structure of real-world financial networks is hard to observe
due to a shortage of relevant data on financial linkages.

Despite this inconvenience, we were able to obtain the interbank exposure data for the
Austrian market. We show the viability of our framework on this dataset and show that
both the qualitative and quantitative aspects of our results stay unchanged.

The present paper contributes also to the growing literature on network models and

contagious defaults. The vast majority of papers in this area uses a two-step procedure. In



the first step, they arrive at a network either by direct observation or by estimation on the
basis of disclosed financial statements. Alternative approaches for network generation rely
on micro-founded formation games (see Tardos and Wexler (2007)), asymptotic derivations
for large and homogeneous networks (see Battiston et al. (2012)) or on simulation methods
(see Hurd et al. (2014) or Hurd and Gleeson (2011)). In the second step, it is assumed that
an exogenously chosen set of banks (called initially defaulting banks) fails, and the effect
on the system is analyzed. Models of this type are frequently used by regulators. Examples
include Elsinger et al. (2006) (Austria), Upper and Worms (2004) (Germany), ? (UK)
Degryse and Nguyen (2007) (Belgium), Blavarg and Nimander (2002) (Sweden), Mistrulli
(2007) (Italy) or Lubldy (2004) (Hungary). Our setup differs from these contributions since
we generate the set of initial defaulting banks by an economically relevant mechanism and
since we study the interaction of the asset correlation channel and of the direct contagion
channel.

Influential early papers in the academic literature on contagion and financial networks
include Allen and Gale (2000) and Eisenberg and Noe (2001). Moreover, network models are
becoming increasingly more popular in other areas of economics; see for example Braumolle
et al. (2014) or a paper by Elliott et al. (2014) where the authors model crossholdings via

a network model applied to European sovereign debt data.

2 Model and methodology

2.1 An example

Before we unveil the full scope of our model, we present a simple example on four banks
to highlight the mechanics. By considering only four banks for this exercise, we are able to
explain how correlated shocks and contagion interact together in a simple setting. Assume

the following:

e Initially, bank k& € {1,2,3,4} receives a return 7 on its investment where r; is a
weighted sum of a market return rj; and a bank-specific idiosyncratic return eg:

ri = prar + (1 — p)ex. Assume the same p for every bank and that r,, €1, €9, €3, €4 are



uniformly distributed on {-1,0,1}. Therefore, it is equally likely that a given return

will be positive, negative, or zero.
e We say that a bank suffers a fundamental default if r, < 0.

e We further assume that banks are connected in a network of their loans. If a bank
defaults, it spreads the shock to all its creditors in a contagious fashion. If more
than half of bank’s debtors default, so does the bank itself. We call this a contagious

default.

This simple framework serves as an introduction to the general setup from Section 2.2.
There, we consider an arbitrary number of institutions, continuous return distribution and
a full balance sheet structure for each bank in the system. Still, this simplified setting
already allows us to observe how fundamental defaults give rise to contagious defaults and
how this process depends on the structure of the system. For the purpose of this stylized
setting, we always assume that network is symmetric, e.g. bank A is a debtor of bank B if
and only if bank B is a debtor of bank A?. We consider all possible loan networks that can

arise on a set of four banks as depicted in Figure 1.
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Figure 1: All possible loan network structures on a set of four banks.

We say that we observe a systemic crisis in the system if more than 50% of the banks
in the system (which means 3 or 4 banks) are in default (fundamental or due to conta-
gion). Since we know the distribution of market- and idiosyncratic returns, it is possible
to quantify the probability of such event. For example, in network (d), probability of crisis

in zero asset correlation case (p = 0) is 0.4074. To obtain this number, one needs to see

2This assumption will be relaxed in the general setting where asymmetric loan structures are considered.



that to get more than two defaults (our definition of systemic crisis), there are only two
options. Option one: bank in top left corner defaults and contagiously spreads the default
to banks in top right and bottom left corners. Option two: banks in top left and bottom
right corners default simultaneously, forcing bank in the top left corner to default as well.
Probability of the first scenario is 1/3, probability of the second is (1/3)*(1/3)=1/9 (zero
correlation means that fundamental defaults are independent) and their joint probability is
(1/3)*(1/3)*(1/3)=1/27. Therefore, the probability of systemic crisis is 1/3 4+ 1/9 - 1/27
v 0.40743. In Table 1, probability of systemic crisis is evaluated in the same spirit for all
networks (a)-(j) and values of rho equal to 0 (no asset correlation), 0.5 (intermediate level
of correlation) and 1 (full correlation). Parameter C in the second column represents the

average number of connections of a bank in the given network.

Table 1: Probability of systemic crisis as a function of network topology (see Figure 1) and
return correlation.

C p=0 p=05 p=1

0 01111 0.2346 0.3333

0.5 0.3086 0.3663 0.3333
0.3086  0.3663 0.3333

1 04074 0.4074 0.3333

1.5  0.5062 0.4733 0.3333
1.5 0.2593 0.3333 0.3333
2 0.3580 0.3992 0.3333
0.2099 0.3004 0.3333
2.5 04074 0.4321 0.3333
3 04074 0.4321 0.3333
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We observe that for most network structures, there is a hump-shaped behavior in the
correlation dimension. This is not true for an empty network, as we will see also in our
general setup. The reason for this observation is the fact that without the network structure
as an amplification channel, it is extremely unlikely to observe many fundamental defaults
happening at the same time. This is the main point of the paper. By introducing the
contagion channel, it is suddenly possible to observe large crises even for much lower level
of asset correlation. In other words, intermediate levels of asset correlation are the most

31t is obvious that in this simplified setting, initial return is only important to determine whether a bank
experiences a fundamental default or not. However, in the general framework, the level of initial return will

affect a bank’s capital buffer, therefore making it vulnerable to future shocks even in the case it survives
initially.



dangerous. The rationale behind this observation is simple: In the case of a perfect asset
correlation (p = 1), the loan network does not play a role and if we observe a systemic
crisis, then it automatically means that everybody has suffered a fundamental default.
This happens with probability 1/3, when the market return realization is -1. However, in
the case of imperfect correlation, it is more likely that at least one of the banks in the system
experiences a fundamental default. As a consequence, this bank can spread the shock in
a wave of contagious defaults. Apparently, the worst case arises when these two channels
interact (p = 0.5). In this case, banks’ returns are somewhat correlated, but not perfectly

such that the contagion channel still plays a role. This is also the point of our general setup.

2.2 The Model

The financial network. We will represent the network of interbank exposures by a
directed graph G consisting of N nodes. Each nodes represents an unspecified financial
institution, while edges between them represent their (directed) credit exposures. Alas, an
edge from bank i to bank j means that bank j has a credit exposure towards bank . *

The graph® G is described by an adjacency matrix Eg with elements ej; satisfying:

1 if 7 is a debtor of j,
€ij = (1)
0 if 4 is not a debtor of j.
We use the following notation to describe the balance sheet of the banks in the network. The
total asset value of bank k by is denoted Aj; the nominal value of the loans made to other
banks in the system is denoted by AéB (short for interbank); the external assets (e.g. loans
to non-banks) are denoted by AkEX ; finally, L,ICB and LEX represent the interbank liabilities
and the external liabilities (e.g. customer deposits) of bank k, so that total liabilities are
equal to L = LéB + LkEX. The equity of bank £ is then given by Ey = Ay — Ly and Ej /Ay

is the capital ratio of the bank. These quantities are illustrated in Table 2.

4There are different possible interpretations for the role of connections in our model, ranging from direct
debt to derivative exposures.

5Throughout the paper we use the terms graph and network. When talking about a graph, we are
concerned with the structure of financial linkages, whereas when referring to a network, we mean not just
connections themselves but also balance sheet quantities of individual banks.



Table 2: Balance sheet of bank &

assets liabilities
interbank assets AiB interbank liabilities LiB
external assets AEX external liabilities LEX
equity Fj
total assets Ay, total liabilities Ly,

Following assumptions allow us to create the financial network from a given adjacency

matrix Fg.

Assumption 1 All loans in the system are of the same size, normalized to one.

Under Assumption 1 bank £’s interbank assets AéB are given by the number of its debtors

and the interbank liabilities LéB are equal to the number of its creditors, that is

N N
A,ICB = Zeik and L,ICB = Zekj, (2)
i=1 j=1

where e;; are elements of Eg as described in equation (1).
The next assumption can be viewed as a stylized version of the risk capital requirements

imposed under the current Basel regulations.

Assumption 2 The capital ratio Ey /Ay of every bank is equal to an exogenously given

constant y, < 1.

Finally, we make an assumption on AiB /Ag, the ratio of bank k’s interbank assets and
of its total assets; following the language of Elliott et al. (2014) we refer to this ratio
as the level of integration of bank k into the network. Loosely speaking we assume that
the level of integration is equal to an exogenously given constant x > 0 or, equivalently,
that A, = }{AiB . However, under Assumption 2 this is not always consistent with the
requirement that the external liabilities are nonnegative. In fact, the requirement that

LkEX > 0 gives that

YAy = E, = Ay — LiP — L~ < A, — L5,

SEquivalently, one could relax the assumption of equal loan sizes, assuming equal balance sheet size
instead. These two models are identical from the technical point of view.



and hence the inequality Ay > LIB/(1 —~;). Motivated by these considerations we make

the following assumption on Ay.

Assumption 3 The total asset value of the banks in the network is given by’.

1 1
Akzmax{ AIB L,QB}, k=1,...,N. (3)
Kl T— %

1

__ . In that case
Yk

For typical parameterizations of the model Hlk is significantly larger than
if AIP ~ LIP the first term from (3) is binding so that x4, = AIP. If LIP is much larger
than AiB the second inequality is binding and ensures that the total balance sheet size is
not lower than the sum of interbank liabilities and equity

The external assets (liabilities) are finally given by the difference between total assets

(liabilities) and interbank assets (liabilities plus capital buffer). This gives
AEX = A, — AP and LEX = Ay — B, — LI = (1 — )L, — LiB. (4)

To summarize, we have created a balance sheet structure from a given adjacency matrix

Eg along the following steps:

1. Assign the value of interbank assets AéB and liabilities L,iB of every bank in the

network according to equation (2).
2. Determine the asset value A, k =1,..., N, of the banks according to (3).

3. Define AFYX and LEY according to equation (4).

Initial defaults. We randomly draw the return on bank ks external assets, denoted ry,
from a given distribution. Consequently, a sufficiently negative return can force a bank to

default which we refer to as the initial default. Specifically, an initial default occurs if the

"In a special case where a bank has no connections at all, we assume that it puts a portion s of its
total assets into some riskless investment (such as government bonds) and 1-x into risky external assets.
We also assume that the size of the balance sheet Ay is 1. This is completely harmless since a bank with
no connections cannot spread contagion to the rest of the system. This is a purely technical workaround:
otherwise, according to the definition, we would see that banks without connections have their balance sheet
size equal to zero.



bank k asset value after the return realization is lower than the liabilities of bank k, that is
if

AéB =+ AkEX(l + Tk) < Lk .
Since Ly = Ay — Ex, = Ap(1 — ), an initial default thus occurs if rp, < —fyAk/AkEX.

For banks with level of integration equal to k (the typical case) this can be rewritten as

r < —v/(1 = &K).

Correlation of asset returns. We assume that the random variables ry,...,ry follow

the following simple one-factor model:

rk=,u—|-\/p7’M—|-\/(1—p)ek, 1<k<N. (5)
Here 7™ is a market return that is common for all banks in the system and e is an
idiosyncratic return that differs across banks. We assume that ™ and €, ..., ey are inde-

pendent and normally distributed with mean zero and standard deviation o = 0.2v/dt with
dt = 1/252. The parameter p in equation (5) is set equal to pu = 0.05d¢

Under the factor model (5) the correlation between the asset value change 7 and r; of
two different banks is equal to p; in particular, for p = 0 the sensitivity of any bank to the
market return is zero such that its solvency is only driven by its own idiosyncratic return.
On the other hand, for p = 1 there are no individual shocks and every bank faces the same
return on its external assets. Note that (5) implies that the marginal distribution of r; and
hence the probability of an initial default is not affected if the correlation parameter p is
varied. This is in stark contrast to the analysis of Wagner (2010), where a higher level of
correlation of different banks is associated with a lower volatility of banks’ asset returns and
hence with a lower probability of initial defaults. We come back to this issue in Section 77
below.

Table 3 illustrates the impact of p on the distribution of initial defaults. We see that
lowering the value of p has two effects: the probability of observing at least one initial
default is increased, while the probability that a large fraction of the banks in the system

default decreases. These effects are well-known in the literature on portfolio credit risk

10



p=0 p=03 p=05 p=09
P(k is in default) 0.024% 0.024%  0.024%  0.024%
P(at least one default) 2.40% 1.97% 1.39% 0.25%
P(at least 20% in default) 4.9 10713% 0.0043% 0.0077%  0.0088%

Table 3: Individual default probability of bank k, probability of observing at least one initial
default and probability that more than 20% of the banks in the system default initially for
varying correlation parameter p (N = 100 banks, v = 0.035, k = 0.2).

models; see for instance Frey and McNeil (2003).8

2.3 The Contagion Channel

We assume that a defaulted bank is unable to fulfill its obligations, which results in a
reduction of the interbank assets of its creditors. If these losses are big enough it may cause
some of the creditors to default as well. For simplicity we assume zero recovery on defaulted
interbank loans.”.

For a financial network with given adjacency matrix Eg, balance sheet quantities

AéB,AEX,LéB,LEX,Ak,'yk and given return realization r; for every bank k, the mech-

anism that (potentially) generates a default cascade is described as follows:
1. Shock the external assets AEX of each bank k£ by the return realization ry,.

2. If any of the banks defaults, propagate the shock to the asset side of its creditors. The

new amount of interbank assets satisfies: AI”(new) = AP (old)—Y", €ik1{i is in default}

3. If the total value of bank k’s assets falls below its liabilities, that is Ay < Ly, bank k

defaults.

4. Repeat steps 2 and 3 until there are no further defaults.

8We have also conducted all of our simulations on a set of multivariate ¢-distributed returns to account
for tail risk. The probability of a systemic crisis has a different magnitude in this case, but the qualitative
results stay the same as in the normally distributed returns scenario.

9Thanks to this assumption, there is no need for a settlement algorithm in the spirit of Eisenberg and
Noe (2001). Assuming non-zero recovery rate on distressed loans would however not change the overall
quantitative nature of our results.

11



2.4 Simulation procedure and network generation

We conduct a two-layer Monte Carlo analysis. In the inner layer, we generate K = 500
return realizations that follow the factor model (5). This whole layer is embedded in the
outer layer where 1000 random networks are created. For this we use two different prob-
abilistic models, namely a homogeneous FErdos-Renyi random graph and a inhomogeneous

model that generates graphs with a core-periphery structure!?.

2.4.1 Homogeneous (Erdos-Renyi) random graphs

In the Erdos-Renyi model, a random graph is generated such that the probability that
there is an edge between any two nodes in the graph is a constant number pgpgr; or put
differently, every Erdos-Renyi random graph is parameterized only by two numbers - the
number of nodes in the graph N and the probability pgr that any two of them are connected.
As a result, connections are formed independently, such that the elements e;;, 1 <i,j < N
of Eg are iid Bernoulli random variables. For ppr = 1 we get a complete directed graph in
which every bank is connected to every other bank and vice versa, while for ppr = 0 there

are no links between the banks in the system.

2.4.2 Inhomogeneous (core-periphery) random graphs

According to Soraméki et al. (2006), Bech and Atalay (2010), Iori et al. (2008) and
others, a typical financial network exhibits a significant degree of so-called disassortativity,
that is small banks tend to be connected to large ones and vice versa. An interpretation
of this finding is that large banks act as intermediaries for smaller ones. This structure
is in contrast to the structure of social networks that tend to be assortative (people with
few friends tend to be connected with other people having a small number of friends). To
account for the observed disassortativity, we extend the Erdos-Renyi setting by making each
bank belong either to a group called core with probability p.ore or to a group called periphery

with a probability 1 — peore. The difference between these two groups of institutions lies in

10A core-periphery structure is a typical scenario for a banking network structure which includes bigger
banks connected heavily amongst themselves and smaller banks connected to bigger banks only. Then the
set of tightly connected banks is referred to as the core, while the set of smaller, less connected banks is
referred to as periphery.

12



the probability of forming connections with other banks. A core bank has a large probability
of establishing a connection both with other core banks and with other peripherals while a
connection between two peripherals is less likely. In this paper we take the probability of
a connection between two core banks equal to poc = 0.9; the probability of a connection
between two peripheral banks is set to ppp = 0.005; the probability of a connection between
a core bank and a peripheral in either direction is set to pcp = ppc = 0.5. Given the type
of the banks in the system, connections are formed independent of each other. In this
way we end up with an assortative network that we refer to as a core-periphery structure.
The resulting network exhibits a star shape with few banks tightly connected in the center
and the rest on the periphery. In financial terms core banks can be interpreted as (large)
dealer banks that act as an intermediary for the other banks in the network. The difference

between an Erdos-Renyi and a core-periphery network is illustrated in Figure 2.

(a) Erdos-Renyi random graph (b) Core-periphery random graph

Figure 2: One realization of a random graph for N = 100 banks; left panel Erdos-Renyi
network; right panel core-periphery network.

Note that since a core bank has on average more connections than a peripheral bank
a higher value of p... leads to a higher density of the ensuing network. In particular,
for peore = 1, the whole network is formed by core banks so we actually get a very dense
Erdos-Renyi setting (identical to the case where ppr = 0.9) whereas for peore = 0, every
bank is peripheral. Since peripherals are connected with probability ppp = 0.005, we get
a sparse Erdos-Renyi setting (corresponding to pgr = 0.005). Therefore, an intermediate

level of peore corresponds to a network which lies between two homogeneous Erdos-Renyi

13



extremes. In the Monte Carlo simulations, the probability p.ore of belonging to the core is

varied between 0 and 20%.

3 Results

We now present the results of a simulation study that illustrates the impact of the asset
return correlation and of the density/connectivity of the network on financial stability.
We measure the density of a given network by the expected number of counterparties

of a randomly chosen bank in the system.'!

From now on, we will call this quantity
connectivity and denote it by C. In the Erdos-Renyi random graph, connectivity is given
by C' = ppr(N — 1); in the case of a core-periphery network, connectivity is easily seen to

be

C= (N - 1)(1930%1900 + pcare(l - pcore)(pC’P + pPC) + (1 - pcore)szP)-

The output variable in our analysis is the relative frequency of scenarios in the simulation
in which a systemic crisis occurred. Here a scenario is viewed as one realization of random
network together with one realization of random returns, and a systemic crisis is defined as
a scenario where more than 20% of all banks in the network are in default at the end of the
default cascade. In the sequel we will call this relative frequency simply the probability of
a systemic crisis. Note that the exact value of the threshold in the definition of a systemic
crisis (20% or different) is irrelevant. In fact, for all but very small values of the connectivity
parameter C we observed a dichotomous behavior: in a given scenario there are either very
few defaults or the network is wiped out (almost) entirely. This behavior was observed for

both network types and for all values of p.

3.1 Erdos-Renyi networks.

The results for Erdos-Renyi random networks are illustrated in Figures 3a and 4a.
Figure 3a gives the probability of a systemic crisis for fixed p and varying C; Figure 4a

depicts sections for fixed C' and varying p.

1n graph theoretic literature, this is known as the average graph degree.

14
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(a) Erdos-Renyi network (b) Core-periphery network

Figure 3: Probability of systemic crisis for both network structures on N = 100 nodes as a
function of network connectivity C' for particular levels of correlation p. Bank equity ratio
~ = 0.035 and integration x = 0.2.
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(a) Erdos-Renyi network (b) Core-periphery network

Figure 4: Share of scenarios with systemic crisis for both network structures on N = 100
nodes as a function of asset correlation p for particular levels of connectivity C. Bank equity
ratio v = 0.035 and integration x = 0.2.

Connectivity. First we discuss the impact of variations in network connectivity C (see
Figure 3a). Here we observe a hump-shaped behavior: for small values of C, the probability
of a systemic crisis is small. Intuitively, this is due to the fact that in a very sparse network
the contagion channel is inactive since there is almost no opportunity for shock propagation.
As C increases the likelihood of a systemic crisis increases up to a maximum at which
the system is most vulnerable. Beyond that maximum the probability of a systemic crisis
decreases again, and banking networks with a high connectivity appear to be fairly resilient.

This resilience is due to enhanced hedging opportunities of the institutions in the system
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(if a bank has more counterparties, the loss caused by its default is borne by more banks).
Finally we see that for p close to one the probability of a crisis is relatively insensitive with
respect to network connectivity. This is due to the fact that for p large the occurrence of
a systemic crisis is determined to a large extent by the realization of the common return

factor rM

, independent of the structure of the financial network.
Note finally that the hump-shaped form of the relation between C' and the probability
of a systemic crisis in Erdos-Renyi graphs is in line with findings from other recent papers

in the network literature, see for instance Hurd et al. (2014), ?, or Elliott et al. (2014).

Correlation. Next we consider the impact of varying the asset return correlation p (see
Figure 4a.) For medium and high values of C' we observe a hump-shaped behavior. For p
close to zero the probability of a systemic crisis is increasing in p. This is of course due
to the fact that by increasing p we increase the probability that a large part of the system
defaults initially, see Table 3. However, if p exceeds a certain threshold p, the probability of
a systemic crisis is decreasing in p. In order to understand this behavior we make recourse to
the argument of Greenspan (2002) mentioned in the introduction of the paper: with direct
links between banks there can be default cascades during which the initial default of a few
financial institutions spreads through a large part of the financial system. Such a cascade
is more likely if many of the “initial survivors” are also close to default because they were
hit by a negative shock on their asset returns. This is in turn more likely for p large since
in that case a negative market-return shock substantially weakens all banks in the system.
In fact, for p sufficiently high a single initial default may be enough to generate a systemic
crisis via the contagion channel. Moreover, we know from Table 3 that the probability of
observing at least one initial default is decreasing in p. Taken together, these arguments
explain the hump-shaped nature of the relation between p and the probability of a systemic
crisis. For low values of C' the network is very fragile (recall our discussion of Figure 3a),
so that the ”Greenspan effect” (the fact that a higher p may decrease the probability of a
systemic crisis) kicks in already for relatively low values of p; in the extreme case C' =1 the

probability of a systemic crisis is even decreasing in p for all values of p.
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3.2 Core-periphery networks.

We repeat the same analysis for core-periphery networks. The results are depicted in
Figures 3b and 4b. As in the Erdos-Renyi case the probability of a systemic crisis is a
nonlinear function of p and C. The relation between p and the probability of a systemic
crisis is of the same hump-shaped form as in the Frdos-Renyi network, with a similar
interpretation (compare Figures 4a and 4b.) In the core periphery networks the probability
of a systemic crisis is generally lower than in the Erdos-Renyi case. These findings are in
line with the general claim that heterogeneous network structures are relatively resilient, see
for instance Gai et al. (2011) and Simon (1962). Moreover, they lend support to regulatory
attempts to generate networks with a high degree of connectivity, for instance by limiting
the amount of direct lending between any two financial institutions.

We also consider a variant of the model where the equity capital ratio v.ore of core insti-
tutions (institutions that have many links and that can therefore be regarded as systemically
important) is higher than the equity ratio of peripherals. We found that this modification
significantly reduces the probability of a systemic crisis, which obviously supports proposals

to regulate systemically important institutions more tightly.

4 Empirical Analysis

In addition to our theoretical findings, we also provide an application of our framework
on the real world data. For this purpose, we are using the data generously provided by the
Austrian National Bank (OeNB). It contains quarterly observations of interbank exposures
across 800 biggest Austrian banks which we aggregate to a single network. For further
details about the dataset, please refer to Puhr et al. (2014).

We keep all assumptions in our model unchanged and run our contagion algorithm for
this particular network structure. Naturally, since we are dealing with a given network
structure, we do not need to resort to any network generating algorithms as we did before.
Consequently, we can only observe the effect of correlated assets on the probability of crisis,
the network effect is no longer relevant.

Figure 5 shows the structure of the network both as an adjacency matrix as well as
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Figure 5: Adjacency matrix for the OeNB, consisting of 2952 edges represented as dots
(a) and a graphical representation of the network snapshot for the nodes with at least one
connection (b).

a graphical representation. As expected, we can observe that it exhibits a core-periphery
structure which is typical for financial networks.

With the network structure given, we only run a single layer of the Monte Carlo sim-
ulation to generate random returns as explained in Section 2.2 (Eq. 5). Again, we look
at the probability of systemic crisis and plot the results in Figure 6. It should not come
as a surprise that we again observe the same hump-shaped behavior as in the case of our
simulated networks. The order of magnitude of crisis probability stays unchanged which
strengthens the robustness of our results. With additional data on bank asset correlation,

one could use our framework to estimate this probability with even higher precision.

o o =3
o o =)
N} = >

Probability of crisis

o o o o
5 o o o o
g 8 8 8 3o
N S [} (==} -

Figure 6: Share of scenarios with systemic crisis for the Austrian interbank market as a
function of asset correlation p. Bank equity ratio v = 0.035 and integration x = 0.2.
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5 Conclusion

We have presented a simulation study that is concerned with the joint effect of correlated
asset positions and of the network structure of a banking system on financial stability.
Both a simple case of a homogeneous Erdos-Renyi network and a more realistic scenario of
inhomogeneous core-periphery network structure were examined in the process.

We conclude that in order to judge the implications of correlation on the magnitude
of systemic risk, one needs to take the underlying network structure into account. Most
dangerous are homogeneous networks of intermediate density since they are dense enough
to propagate shocks but not dense enough to hedge off potential risk. Moreover, we found
that lower values of asset correlation do not always reduce the probability of a systemic
crisis Furthermore, we present results for the more realistic case of core-periphery networks.
There, the probability of a crisis is generally lower than in the homogeneous Erdos-Renyi
network, which indicates high resiliency of such networks. This is further documented on
the dataset of actual interbank exposures in Austria where same conclusions can be drawn

with respect to the level of correlation among financial institutions.
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