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1 Introduction

Simple textbook models of perfect competition and monopoly markets, and their

corresponding solutions of equilibrium prices and quantities provide only crude de-

scriptions for the forces at hand that drive the microeconomic behavior of agents in

many markets. Consequently, alternative and more detailed approaches need to be

developed. This thesis is rooted within this �eld of research and studies two phe-

nomena that are not satisfactorily explained by classical textbook models: �rstly,

market entry and competition for a duopoly considering the underlying geometrical

and spatial market structure, and secondly, the existence and determinants of price

dispersion using empirical data from the Austrian retail gasoline market.

What are the limitations of the textbook models and why are phenomena such as

spatial competition and price dispersion not accounted for? The common model of

perfect market competition explains observed market prices and produced quanti-

ties by the concept of an equilibrium state where supply matches demand based on

consumers' preferences and �rms' production technology. In this model it is well un-

derstood that supply and demand rest upon an aggregation of individual preferences

and budget endowments as well as individual production and cost curves. Since the

number of �rms and consumers is assumed to be su�ciently high, for each individual

�rm and consumer it is impossible to have an impact on the equilibrium outcome.

Put di�erently, the achieved price and quantity are given for each agent and strate-

gic interaction between any of the many agents can be considered negligible for the

equilibrium state (and would therefore not occur). A further implication is that the

traded product in a perfectly competitive market would have to be perfectly homo-

geneous with respect to its physical characteristics and utility for consumption. That

is, each individual product needs to be a perfect substitute, otherwise a �rm would

have arbitrage opportunities and the competitive forces exempli�ed by the equilibri-

um price would not be e�ective. Moreover, the model requires free entry and exit for

�rms into the perfectly competitive market. The intuition is again to avoid arbitrage,

and that for the competitive market forces to work swiftly consumers should be able

to switch between di�erent suppliers without any cost.

Now, consider the �rst of the research interests of this thesis: to model the economic

behavior of two �rms located at di�erent retail outlets and competing for consumers

distributed over a geographical area consisting of a road network the basic conjectures
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Chapter 1. Introduction

of perfect market competition have to be adapted. Firstly, the concept of an equilib-

rium as a result of an aggregation of individual economic parameters (and interests)

can not be sustained in a duopoly. Clearly, the strategic interaction between �rms

represents a determinant for the market outcome. The pro�t-maximizing price deci-

sions of each agent have to consider the optimal decision of its rival. Consequently,

the derivation of an equilibrium outcome requires a detailed examination of possible

strategies a �rm could devise accounting for mutual dependencies, that is for the ri-

val's response and consecutive actions to be taken. Secondly, since sellers are located

at di�erent places their products can not be considered as homogeneous anymore. A

reasonable assumption in a spatial market setting is that consumers located closer to

a particular retail outlet enjoy an advantage in consumption compared to remotely

located consumers. Thus, the geographical proximity to sellers' premises serves as a

characteristic that di�erentiates their products. In this case products are considered

to be horizontally di�erentiated since the valuation of characteristics depends on the

particular consumer.1 The instance of horizontal di�erentiation is linked to the third

assumption since the notion of product heterogeneity is linked to transportation costs

incurred by the consumers which are proportional to the distance traveled. Moreover,

location and relocation costs for �rms are likely to be prohibitively high on certain

markets such that free entry and exit as well as free relocation choices may not be

generally justi�ed.

Turning to the second research interest of this thesis, the existence of price dispersion

breaks with the assumption that in a perfectly competitive market equilibrium one

distinct price occurs. Rather, empirical evidence suggests that price dispersion of ho-

mogeneous goods is widespread and signi�cant. One important explanation for price

dispersion are information asymmetries suggesting that market demand does not

consist of perfectly homogeneous consumers. Rather, the asymmetric dissemination

of information and the existence of di�erent consumer groups may help to explain

the phenomenon of price dispersion. This motivates our work for an investigation of

price dispersion with data for the retail gasoline market in Austria.

Besides the common source of the idealized textbook model of perfect market com-

petition, how are the two di�erent research interests of this thesis connected? In a

seminal paper in the discipline of industrial economics Salop (1979) showed that a

number of di�erent sellers who are located in a symmetrical pattern around a cir-

cle all charge the same pro�t-maximizing price (above marginal cost). In his model

sellers are located at di�erent locations but due to the symmetry a unique price

level in equilibrium obtains. Furthermore, Economides (1993) demonstrates that for

a number of sellers on a bounded line (in a variant of the original model of Hotelling

(1929)) a symmetrical location pattern yields a convex, symmetric, U-shaped equi-

librium price structure. His explanation rests upon the fact that as a result of the

1For further explanations on the de�nition of a product space see Tirole (2003), p. 96�.
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Chapter 1. Introduction

geometrical environment sellers have a di�erent degree of market power. In particu-

lar, the closer a �rm is located to the edge of the market the more it is able to exploit

its monopoly power and therefore charges a higher price. In general, it can be con-

cluded from these studies, �rstly, that di�erences in the spatial distribution of sellers

critically impact their optimal price decision and thus the overall price distribution

in the market, and secondly, that the geometrical set-up is also a determinant for the

spatial competition and �rms' price decision. This, in a nutshell, de�nes the 'game

plan' of this thesis. In the �rst part the research interest focuses on the explanation

of �rms' location decision in the geometrical setting of intersecting roads. As it can

be expected that the price distribution shows special characteristics in such a market

environment, the second part studies the empirical price distribution on the gasoline

market which serves as a representative example for the sort of spatial competition

investigated in the theoretical part.

A formal requirement for this thesis is that the research output shall be presented at

relevant scienti�c conferences. This requirement has been achieved. The developed

sequential two-stage price-location model has been presented at the 8th Internation-

al Research Meeting in Business and Management (IRMBAM) on 5th of July 2017

held at the IPAG Business School in Nice, and the XXXII Jornadas de Economia

Industrial on 7th of September 2017 held at the University of Navarra in Pamplona.

The empirical study on the gasoline price distribution for Austria has been presented

at the XXVI Jornadas de Economia Industrial on 16th of September 2011 held at

the University of Valencia in Valencia, and at research seminars at the School of Ge-

ographical Sciences of the Arizona State University (ASU) on 14th of April 2012 and

at the Rijksuniversiteit Groningen in September 2011 in the cause of scholar visits

supported and organized by the Network for European and United States Urban and

Regional Studies (NEURUS).

To sum up, this thesis examines the e�ects of an extension of the assumptions of the

classical model of perfect market competition. In particular, a spatial competition

model for a duopoly with two �rms competing under horizontal product di�erentia-

tion is explored, and an empirical investigation of price dispersion for a market with

horizontal product di�erentiation is conducted. Generally, the outcomes stress that

a closer look at the supply side in terms of the strategic interaction between �rms,

and a closer look at the demand side in terms of heterogeneous consumer groups

proves to be valuable to gain insights on determinants of market equilibrium states.

More detailed �ndings are as follows.

The �rst essay provides an introduction into the literature of spatial competition

models and studies their predictions on the degree of horizontal product di�eren-

tiation. For this purpose a selection of articles, mainly from the game theoretical

strand of the literature, is re-examined in which each model extends and modi�es

basic parameters of the original model of Hotelling (1929). The selection is based on
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Chapter 1. Introduction

a representation of characteristic determinants to explain spatial product di�erenti-

ation.

The main determinants are considered to be: consumers' reservation price, trans-

portation costs, the number of �rms, the timing and further speci�cs of the price-

location game, characteristics of the consumer distribution, and the market geometry.

Furthermore, the literature survey emphasizes that markets consisting of intersecting

roads represent a particular fruitful subject of future research. The nature of com-

petition in this market setting is di�erent compared to the linear city exempli�ed by

the importance of asymmetrical location patterns. Consequently, the strategic inter-

action, �rms' pro�t-maximizing behavior and potential equilibrium outcomes under

sequential entry in a market with intersecting roads remain to be an interesting �eld

to study.

The second essay addresses this research gap and based on the work of Anderson

(1987) studies a two-stage market entry game in a spatially extended Hotelling's

duopoly. Particularly, the e�ect of a demand dependent centrality bonus Z dis-

tributed in the middle of the linear city is examined on the reaction functions of

an incumbent �rm and the strategic entry decision of an entrant �rm. A solution is

provided for an entry accommodating scenario where both players optimize pro�ts

over their strategic variables and the center Z is taken by the incumbent �rm. The

results further suggest that the entrant is not capable of capturing Z. In addition,

the model implies a lower degree of product di�erentiation as Z increases.

A comparison with the literature shows that these results are well in line with An-

derson's model for Z = 0. In a business strategy view the outcome supports the

thesis of Gelman & Salop (1983), coined by the term 'judo economics', since the en-

trant earns highest pro�ts by committing himself to a distant location and charging

a comparatively lower price than the incumbent.

The third essay analyzes the price distribution of diesel in the Austrian retail gasoline

market and tests predictions of the impact of the fraction of informed and uninformed

consumers on the mean price and price variance. Further, introducing two measures

of spatial competition, the relation of local competition between stations and the

mean and variance are examined.

In a pooled cross-section analysis a two step approach is followed. Initially, price lev-

els are estimated with respect to the in�uence of competition, search costs, stations'

location and further station-speci�c characteristics. Controlling for these observable

price characteristics, the residuals are used in the second step to investigate the

behavior of the price variance. In addition to OLS, to account for spatial spillover

e�ects a Spatial Error Model (SEM) is applied to estimate the price function. Addi-

tionally, tests on model speci�cation and robustness checks using di�erent weighting

matrices, search cost proxies and dispersion measures are carried out.

The results reveal a negative (positive) correlation between the fraction of informed
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Chapter 1. Introduction

(uninformed) consumers and the mean price. Further, price variance shows an in-

verse U-shape with the fraction of informed consumers. Thus, the variance initially

increases as the proportion of informed consumers increases and starts to decline

after the share of informed exceeds a threshold of roughly 43%. These �ndings are

in line with predictions of classical search models, most notably Stahl (1989), and

empirically support the meaning of consumer search in the context of oligopolistic

pricing. Further, the mean price decreases as competition intensi�es whereas the price

variance increases under increased entry competition (Janssen & Moraga-Gonzalez

(2004), Carlson & McAfee (1983)). This suggests stations' tendency to focus more

strongly on the lower price segment as competition increases.

5



2 Centrality and Spatial Di�erentiation

- A Literature Survey

2.1 Introduction

The Hotelling model is an established tool to analyze spatial competition in various

market settings. It is appealing because of its analytical tractability and the intu-

itive predictions that can be deducted. Therefore, the literature that �ows from the

Hotelling model is vast.

Previous surveys aim at providing a comprehensive overview of the diverse strands

of the literature that is linked to spatial competition modeling. For instance, Biscaia

& Mota (2013) classify respective articles into groups di�erentiating the type of com-

petition (Bertrand competition vs. Cournot competition), the shape of the market

(circular vs. linear markets), and the existence of incomplete information. Another

survey that accounts for a wide range of determinants for product di�erentiation is

provided by Brenner (2001). The categories he de�nes to distinguish the literature

cover the topics of price competition, spatial price discrimination, demand charac-

teristics (price elasticity, customer distribution), the number of �rms, collusion, as

well as multiple product dimensions.

Comparable to the study of Graitson (1982) and in contrast to the more recent con-

tributions, the present survey has the goal to de�ne a narrow sphere and focus on the

basic parameters of the Hotelling model according to its original formulation. The

narrow scope de�nition is justi�ed �rstly, by the goal to keep the review tractable

and to avoid o�cious complexity, and secondly, by the ambition to take a deep dive

into the mechanical details of the models in order to disclose their economic argu-

ments and gain insights into their predictions on spatial product di�erentiation.

The selection of articles is admittedly a subjective issue. Inspired by the study of

numerous contributions in the �eld, the choice of the research papers for this survey

is motivated by picking out representative articles (mainly with a game theoretical

focus) that highlight characteristic determinants of spatial product di�erentiation

which will be summarized in the concluding section. According to this outline, par-

ticular streams of the literature that would be interesting to study in detail, however,

are not part of the scope. Speci�cally, in this survey only models with deterministic

6



Chapter 2. Centrality and Spatial Di�erentiation - A Literature Survey

and one-dimensional characteristics are considered. Thus, multidimensional product

spaces, models where the strategic variables price and location follow probabilistic

measures as well as two-dimensional markets with an areal problem set are not ex-

plicitly examined.

Essentially, the unique contribution of this survey is two-fold. Firstly, the impact of

market geometry and of the distribution of consumers on market equilibrium out-

comes shall be highlighted. In particular, markets consisting of intersecting roads

deserve our attention since they represent an important link between theoretical

models and their predictions on the one side and empirical analyses and suitable

econometric methods on the other side. Consequently, in addition to the theoretical

model survey a section is included that presents evidence from empirical studies to

reveal the consistency between these two �elds of research. Secondly, intuition for

the importance of the strategic interaction of players for the determination of market

equilibria shall be developed. Applying considerations on the strategic interaction to

the market setting of intersecting roads leads us to identify an interesting research

gap in the present state of the �eld.

In the examination each research paper is analyzed regarding (i) its basic research

question, (ii) its methodology and mathematical arguments, and (iii) its predictions

on spatial product di�erentiation and �rms' optimal location decision. In subsec-

tion 2.2 articles on the Hotelling model and its extensions with respect to the basic

model assumptions are presented. Subsection 2.3 deals with articles concerning dif-

ferent market shapes. To start the examination and provide a concise overview in

comparison with linear markets the case of circular markets is presented in subsec-

tion 2.3.1. In subsection 2.3.2 models emphasizing the position of a market center

either by introducing variations in the consumer distribution or by imposing an al-

ternative market geometry are considered. Subsection 2.4 presents examples from the

empirical literature, and in subsection 2.5 a brief overview on models of economic

agglomeration is given. Eventually, Subsection 2.6 closes with concluding remarks.

2.2 Spatial di�erentiation in the Hotelling model

The purpose of this section is to give a thorough overview on the Hotelling model

and provide intuition for its possible rami�cations. Starting from the original version

of Hotelling in 1929 a couple of papers from the classical stream of the literature on

the Hotelling model will be re-examined with respect to similarities and di�erences

to the original model structure. Special attention is given to the results of these

papers concerning market equilibrium states for sellers' prices and locations and the

determinants of respective market equilibria. Thus, the model predictions on sellers'

tendency to locate in a cluster or disperse in the market as well as explanations

7
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on the challenges of the existence for equilibrium con�gurations and the di�erent

strategies to solve these issues are presented.

The seminal paper of Hotelling (1929) introduces the notion of oligopolistic market

competition in space, even though space is only one of various product characteristics

to determine the mechanics of economic decisions. Hotelling motivates his work with

the question on the possibility and the conditions of a stable market equilibrium in

terms of produced quantities and prices for a few number of sellers that serve a com-

paratively large consumer base. The point of departure for his model is Cournot's

duopoly with quantities as sellers' strategic variables leading to a state of equilibri-

um given by price levels above marginal cost and a state of mutual readjustment in

production if one seller changed his decision for the amount produced. The common

critique of the Cournot equilibrium focuses on prices and not quantities as strategic

variables. In particular, a price undercutting strategy of one seller proves to be prof-

itable leading to a downward pricing spiral �oored with sellers' marginal costs which

represent the level of equilibrium prices describing the outcome of a Bertrand price

competition game.

Hotelling's basic idea is to set up a model which avoids discontinuities, i.e. a situ-

ation where all buyers in the market switch to the seller with the lowest price, but

rather provide an explanation of the continuous variation in prices and quantities

and the corresponding variation in consumer demand. This leads to the prototype of

a monopolistic competition model. A seller does not gain or lose the whole market

with a strategic decision on price or quantity, despite of more or less profound price

di�erences sellers are able to exercise a certain degree of monopoly power determined

by the unique features of their product. Every competitor serves a de�ned consumer

base and market competition is described by a continuous transition of demand

which Hotelling interprets as a degree of stability. This 'stability in competition' is

attributable to frictions in the market caused by the unwillingness of certain con-

sumers to switch to the cheapest seller who assess certain product characteristics as

particularly valueable, most illustratively the geographical proximity to the seller's

store.

Methodologically, equilibrium prices, quantities and pro�ts are determined �when

the quantity sold by each is considered as a continuous function of the di�erence in

price.� (Hotelling (1929), p. 44). Input parameters for the optimization are the total

size of the market (number of consumers), switching costs (i.e. transportation costs

per unit distance), marginal cost of production (normalized to zero), sellers market

position, and perfect price inelasticity. Local monopoly regions are divided by the

indi�erence condition comparing product prices and incurred transportation costs.

Equilibrium conditions are determined by sellers' pro�t maximization. The case is

exempli�ed for a duopoly in the well-known setting of a linear city of length l and

8
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sellers' location given by the distances of a and b from respective ends of the line.

Equilibrium pro�ts reduce to Π1 = c
2(l+ a−b

3 )2 and Π2 = c
2(l− a−b

3 )2 and are derived

under ceteris paribus conditions, thus mutually assuming arbitrary but �xed values

for the price of the respective competitor. Subsequently, Π1 and Π2 imply that each

seller is inclined to gravitate towards his rival which is referred to as the principle of

minimum di�erentiation (PMD). Thus, the Hotelling model suggests that sellers ag-

glomerate in a central position of the market and predicts �the tendency to make only

slight deviations in order to have for the new commodity as many buyers of the old

as possible, to get, so to speak, between one's competitors and a mass of consumers.�

(Hotelling (1929), p. 54)

Naturally, a leap forward from the Hotelling model is achieved by relaxing the un-

derlying critical assumptions. The condition of perfectly inelastic demand at every

point of the market leads to the PMD and gives away one of the major conclusions

as regards sellers' location patters. This �nding is challenged by Lerner & Singer

(1937) who scrutinize the case of inelastic demand over a price range extending from

zero to an upper bound. Smithies (1941) extends the previous approaches assuming

a linear elastic demand function over the whole market area and three di�erent con-

jectural hypotheses on the reaction of the competitors to each other's optimal price

and location decision. This enables him to investigate the impact of a variation in

the transportation cost per unit of distance (i.e. freight rates) on the market equilib-

rium and derive critical values for a transportation cost parameter1 that determines

sellers' tendency to locate towards the center. The critical assumption says that �at

every point of the market there can be only one price, and there are identical lin-

ear demand functions relating price to quantity sold per unit of time at that point.

Thus, the total amount sold at any point is supplied by the competitor charging the

lower delivered price at that point.� (Smithies (1941), p. 425) Clearly, this implies

that the demand in competitors' hinterlands reacts to changes in location due to a

corresponding variation in freight rates which in turn impacts pro�ts. In a nutshell,

this marks the main di�erence to the Hotelling model where each seller enacts 'abso-

lute' monopoly power over his hinterland passing on the entire freight rates without

a�ecting pro�ts.

In particular, Smithies proposes three states of competition, �rstly, sellers choosing

the exact same price and location, secondly, sellers choosing the exact same price

but compete in locations, and thirdly, competition occurring in price and location

excluding the case of market deterrence strategies. For each of these, equilibrium

prices, pro�ts and locations are derived. In the �rst case sellers choose the quartiles

of the city so as to maximize their pro�t. Locating closer to the center does not yield

higher pro�ts since then sellers' hinterlands can not be exploited optimally which

1The parameter s is de�ned as the ratio of the unit transportation cost parameter to the price
intercept of the linear demand curve. (cf. Smithies (1941), p. 432)
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is attributable to comparatively higher freight rates. By contrast, when introducing

competition in locations in the second case the dominant strategy is to locate close

to the center. Given equally charged prices, for each seller gains in his hinterland are

lower when remaining at the quartile position compared to an increase in demand

due to the expansion of his territory.2 Thus, the pro�t maximizing equilibrium results

in equal seller locations closer to the center than the quartile positions and pro�t

maximizing prices below the equilibrium prices of the quartile solution due to higher

average freight charges. Finally, in the third case the notion of price competition

intensi�es sellers' tendency to locate towards the center. As prices decrease the ad-

vantage of an advance in each sellers' territory increases, moreover, each competitor

has to face the price decision of his rival. Ceteris paribus, i.e. under the same level of

freight rates, an equilibrium results with equal prices lying below and equal locations

closer to the center than respective values in the second case of sole competition in

locations. (cf. Smithies (1941), table 1, p. 435) Put di�erently, the threshold for sell-

ers tendency to agglomerate at the center in terms of the freight rate is higher under

full competition.3

In sum, Smithies major �nding concerning the location patterns in spatial markets

is that in a setting of elastic demand the level of transportation costs is crucial for

determining sellers' tendency to agglomerate at the center. The reason is that sellers

are not free to pass on transportation costs without any cost but rather balance

the chance of achieving territorial gains with the necessity to impose higher freight

charges on their hinterlands. Higher transportation costs imply that sellers are in-

clined to behave more like local monopolists or as Smithies puts it �imagining the

extreme case of an insuperable wall erected at the center of the market.� (Smithies

(1941), p. 434f) By contrast low transportation costs support competitive behavior

and emphasize the tendency to locate at the center. Further by distinguishing three

conjectural hypotheses, Smithies illustrates that sellers' strategic decision is depen-

dent on the type of market competition.

The paper of Eaton & Lipsey (1975) represents an important building block in the

literature on spatial competition models. Except for the structure of the market de-

mand4 the authors challenge the critical assumptions underlying the Hotelling model,

derive conclusions on the range of application of the PMD, and provide further princi-

ples on the issue of equilibrium location settings in oligopolistic markets. Particularly,

they investigate cases with more than two sellers, consider bounded and unbounded

market areas, scrutinize the e�ect of di�erent consumer density functions on the lo-

2Consider also that a retreat for one competitor from the equilibrium position towards the edge
of the city is not pro�table since the same reaction can not be expected by his rival.

3Setting sellers' relative distance to zero Smithies achieves critical values of s = 4
7
and s = 8

11
for

location competition and full competition respectively.
4This is dealt with, for instance, in Lerner & Singer (1937) and Smithies (1941).
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cation equilibrium, and on top, extend the analyses to two-dimensional spaces. This

makes it necessary to apply simplifying assumptions on other aspects of the model.

These are, �rstly, that all �rms set the same mill price, and secondly, two types of

strategic reaction functions (conjectural variation) are assumed: (i) that �rms do not

react to the location decision of a competitor and retain their own location (zero

conjectural variation, ZCV), and (ii) that a change in location of one �rm causes a

maximum possible loss to one competitor. Thus, in their pure location model the

impact of competitors' strategic price setting on the location patterns is not of in-

terest.

The following summarizes their treatment of four models in one-dimensional markets:

• Model 1 represents the setting of the linear city with ZCV and evenly distribut-

ed consumers. The argument is made for two conditions de�ning location equi-

libria, namely, �(1.i) no �rm's whole market is smaller than any other �rm's

half market� and �(1.ii) the two peripheral �rms are paired� (Eaton & Lipsey

(1975), p. 29). Intuition suggests that concerning condition (1.i) there is always

the fallback-option for one �rm of locating in�nitesimally close to the nearest

neighbor. As for condition (1.ii) a peripheral �rm whose market boundary on

one side borders to the edge of the city has the dominant strategy of increas-

ing its market area by shifting its location in�nitesimally close to its nearest

neighbor and forming a pair.

As a consequence, for two �rms the PMD is ful�lled with both locating at the

center. By contrast, for three �rms no equilibrium is achieved since both pe-

ripheral �rms want to form a pair with the interior �rm, and clearly, no player

accepts to take the interior position.5 Comparable to the duopoly, four �rms

form two pairs where in equilibrium each player's market is maximized equally

dividing up the market with pairs at the quartiles. For �ve �rms two pairs

remain, in the equilibrium con�guration the stand-alone player locates in the

center and the pairs at 1
6 and 5

6 of the market respectively. In this case the in-

terior �rm bene�ts from the fact that pairs are formed due to the inward move

of each peripheral �rm. A further inward move of the pairs towards the center

leads to an increase in the hinterlands of the peripheral �rms at the expense of

the market area of the centrally-faced, paired �rms and thus does not represent

an equilibrium state. Finally, for six players no unique equilibrium but a con-

tinuous range of equilibrium states exists. The dynamics in this con�guration

are attributable to the two interior �rms. In the extreme cases, these minimize

their distance and form a third (interior) pair resulting in equally distributed

market shares or maximize their distance taking the double market size of the

remaining four competitors (two pairs each comprising one peripheral �rm).

5Formally, condition (1.i) is violated.
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In sum, this leads to the general conclusion that �(1) no �rm can have a mar-

ket more than twice as large as any other �rm's market; and (2) no �rm can

have a market smaller than the market length of the �rms in the peripheral

pairs� (Eaton & Lipsey (1975), p. 31). The respective bounds for equilibrium

market sizes for interior and peripheral �rms are a decreasing function in the

number of �rms. Interestingly, the socially optimal equilibrium con�guration

corresponds to the state where the di�erence or the inequality of the distribu-

tion in the market sizes between the interior �rms and the �rms of the outer

pairs is greatest, i.e. a state with the interior �rms spread evenly. Moreover, it

is concluded that the location equilibria critically depend on the spatial char-

acteristics of the market which is illustrated by applying the calculus from the

linear city to a circle.6

• Model 2 investigates the setting of the linear city under the competitive scenario

that the location choice of one �rm is made under the conjecture of incurring

maximum losses, i.e. that a competitor will form a pair on the long side of

its market. As a result, the dominant location strategy of each player is to

maximize the short side which is established by choosing the middle position

in one's market area. For the two peripheral �rms this implies that they locate

at a distance of one-third of the distance from the city edge to their rival (with

a total market area of two-third of this distance), the interior �rms choose the

midpoint of the distance between their competitors. In the unique equilibrium

with n players an equidistant location con�guration with market areas of 1
n

obtains which minimizes the overall transportation costs and thus corresponds

to the socially-optimal state. Moreover, the authors mention only one exception

to this result highlighting that a distinction between new market entry and

moves of existing �rms only matters for the case of a duopoly. (cf. Eaton &

Lipsey (1975), p. 33) If two players anticipate that no entry occurs they locate

at the center and the PMD applies, thus in this particular case no di�erence in

the results between the case of ZCV and maximum losses obtains. By contrast,

if the duopolists know of a third �rm to enter the market their dominant loss-

minimizing strategy is to take the quartile positions.

• Model 3 uses ZCV but deviates from the assumption of evenly distributed

consumers. Consumer density is modeled with the consumer density function

c(X) with X denoting the distance from the geometrical market origin, e.g.

one of the market's edges. In comparison to model 1 the obvious consequence

of introducing c(X) is that the equilibrium conditions apply with respect to

the consumer distribution and not with respect to the market geometry. Thus,

the critical measure of gaining half of the market and subsequently condition

6This case is more extensively treated in chapter 3.1 of this survey.
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(1.i) has to be generalized to the principle (3.i) that �no �rm's whole market

is less than another's long-side market� (Eaton & Lipsey (1975), p. 33).7 The

principle that peripheral �rms form a pair remains.8 Furthermore, two addi-

tional principles to de�ne the equilibrium state are considered. The �rst is that

for interior �rms the value of the consumer density function at the left- and

right-handed market boundaries has to be equal (cp. Eaton & Lipsey (1975),

condition 3.iii, p. 34), and the second is that for paired �rms the value of the

consumer density function at the short-side of the market has to be greater

or at least equal to the respective value at the long-side (cp. Eaton & Lipsey

(1975), condition 3.iv, p. 34). Intuitively, in equilibrium incentives to move must

not prevail, i.e. each interior �rm locates at the density-related midpoint of its

respective market, and paired �rms do not move away from their peripheral

neighbor towards regions of higher density. The mathematical explanation is

rooted in a comparison of cumulative probabilities if the location is varied by

a unit distance.9

In sum, the four principles lead to the following conclusions for equilibrium

con�gurations. Firstly, the PMD persists in a duopoly with the two �rms lo-

cating at the median of the distribution. Secondly, there exists no equilibrium

for three �rms since peripherals are inclined to form a pair which is at odds

with condition (3.i). Thirdly, the general principle applies that in equilibrium

the number of �rms is restricted by the structure of the distribution, particu-

larly, the number of modes must match (or be greater) than half of the number

of �rms. This is a direct consequence of (3.iii) and (3.iv) which imply that in

the market area of every interior �rm a mode has to be located, and that for

one �rm of any pair the market area must also include a mode. If the number

of �rms equals twice the number of modes all �rms are paired (otherwise no

equilibrium is achieved). For a smaller number of �rms the equilibrium state de-

pends on the characteristics of the distribution. Moreover, the principle makes

clear that a strictly monotonic unimodal density function never provides an

equilibrium for a market with more than two �rms which is attributable to

(3.iv).10

• Model 4 represents a combination of model 2 and model 3 incorporating a

7The long side consistently being de�ned as the market side with the higher number of consumers.
8The dominant strategy for a peripheral �rm to extend its market area by forming a pair is
independent of the consumer distribution since no territory is lost by moving inwards.

9The market area for an interior �rm i at position Xi is expressed as the di�erence of the cumu-
lative distribution at the right- and left-handed boundaries: Mi =

∫Xi

BL
c(X)dx+

∫ BR

Xi
c(X)dx =

C(BR)− C(BL). Optimizing Mi w.r.t. Xi yields the equivalence relation:
∂Mi
∂Xi

= 0⇒ c(BR) =

c(BL). The analogous argument applies for paired �rms with short- and long-sided boundaries
leading to ∂Mi

∂Xi
> 0 if c(Bshort) < c(Blong).

10The authors give an example for this case in �gure 4 (cp. Eaton & Lipsey (1975), p. 34).
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variable consumer density function c(X) under the conjecture of players' loss-

maximizing strategic behavior. Recall that the dominant strategy of each player

then is to maximize the short-side of its market. An equilibrium state is de�ned

as regards moves of a �rm with respect to its nearest neighborhood (local

equilibrium) and with respect to the whole market area, i.e. �rms consider

the whole city to be a feasible location area (global equilibrium). For states

of local equilibrium two types of equilibrium conditions are de�ned. The Type

I conditions demand �rstly that the cumulative consumer density in a �rm's

market is divided by its location Xi into two equal parts,11 and secondly that

the value of consumer density at Xi exceeds (or matches) half of the value at

the respective boundary of the short-side of its market12. Under a violation of

each of these conditions a �rm increased the short side and thus gained a higher

number of consumers, if it changed its location. As a consequence, the Type

I equilibrium reveals the same result as under an even distribution function

(model 2), namely that each �rm locates at the middle of its market, i.e. the

distribution median. Now, states occur where �rms are centrally located but

2c(Xi) < c(Bshort). This gives rise to Type II equilibrium conditions which �x

c(Xi) to the respective value at the short-sided boundary. (cf. Eaton & Lipsey

(1975), conditions 4.iii a-b and 4.iv a-b, p. 37) Concerning the existence of global

equilibria no particular conditions are derived, respective con�gurations depend

on the structure of c(X).

The signi�cance of the paper by Eaton & Lipsey (1975) is attributable to the gen-

eralization of the framework in spatial competition modeling techniques. As regards

projections on the PMD in one-dimensional markets, they con�rm that in a duopoly

�rms locate at the, consistently de�ned, center of the city unless the two �rms antic-

ipate the entry of a third rival under the assumption of a loss maximizing behavior.

The general implication of their model is that �rms are inclined to form pairs in

a wide range of equilibrium and disequilibrium states. In particular, they illustrate

that an increase in the number of �rms contradicts with the tendency to locate at the

center with the interesting result of a continuum of equilibria for six �rms and more

under ZCV and a rectangular distribution. Also, the authors show that the assump-

tion of a loss minimizing strategy is at odds with sellers' preference to locate at the

center. Finally, it is made clear that the characteristics of the consumer distribution

function are critical for determining the equilibrium in locations.

11
∫Xi

Bleft
c(X)dx =

∫ Bright

Xi
c(X)dx (cf. Eaton & Lipsey (1975), condition (4.i), p. 36)

12This pins down to the condition 2c(Xi) ≥ c(Bshort). For any �rm i the market boundaries

are given by BL =
Xi−1+Xi

2
and BR =

Xi+Xi+1

2
with the market value Mi =

∫Xi

BL
c(X)dx +∫ BR

Xi
c(X)dx = C(BR) − C(BL). Thus, considering the chain rule a move towards the right-

handed boundary changes the market by a rate of 1
2
c(BR)−c(Xi) (for the right-handed market),

and c(Xi) − 1
2
c(BL) (for the left-handed market). The argument applies to the two peripheral

and the interior �rms (cf. Eaton & Lipsey (1975), conditions (4.ii. a-c), p. 36f).
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The paper of Hay (1976) stresses a feature in spatial competition modeling that has

not received attention in the previous studies. In particular, he drops the assump-

tion that the relocation for �rms is costless and investigates the existence of market

equilibria when �rms choose their most pro�table location in a sequential order.13

Comparable to Smithies (1941), his model rests on Hotelling's linear city under price

elastic and identical linear demand curves. The linear city is not explicitly restricted

in size and corresponds to an in�nte line. His major assumption, however, is the

irrevocability of the location choice, i.e. �once the �rm has located itself, its capi-

tal equipment is immobile. [...] A consequence of this is that the plant must have a

long planning horizon in taking location decisions. [...] So in locating his plant the

entrepreneur will seek to secure a su�cient market to give him an adequate return

at least over this period.� (Hay (1976), p. 243) The starting point of the analysis is

to set up the demand and pro�t functions. Speci�cally, qx = y(a − b(P + x)) refers

to the positive linear demand function for an arbitrary �rm at a distance x with P

as the price at the point of sale (mill price), and y as the population density (num-

ber of consumers) at any point in the market. Subsequently, for a market boundary

of z to each of the two nearest neighbors the total demand function is de�ned as

q = 2
∫ z

0 qxdx = 2yz(a− bP − b
2z). The cost function is postulated as C(q) = kq+X,

and the pro�t function follows with Π = Pq−kq−X. A �rm chooses between the two

strategic variables of setting a pro�t-maximizing price P and occupying a territory

of z to one neighbor, according to the �rst order condition these are negatively pro-

portional.14 Further, due to the linear demand function the maximum market area

z for any P requires z = a
b − P (i.e. the highest possible price is capped at a

b ). This

implies that for the pro�t-maximizing price P ∗ the boundary z∗ = 2
3(ab − k) obtains

and that a �rm always wants to expand its market boundary to z∗ since ∂Π(P ∗)
∂z > 0

requires z < z∗.15

The subsequent analysis of sequential entry distinguishes between the two scenarios

of locating in the neighborhood of two competitors and settling down in a vacant

space of the market where no other rivals have located yet.

In the �rst case the maximum critical distance between two �rms is evaluated such

that an entrant �rm may still locate between the two incumbents. (cf. Hay (1976),

appendix 2, p. 255f) Recall that �rms' locations are assumed to be immobile; addi-

tionally, �rms react to entry by setting a post-entry mill price denoted as Pc. The

13His model corresponds to model 2 in Eaton & Lipsey (1975), however, they lay out the assumption
that there are no costs of relocation. (cf. p. 28). Furthermore, Eaton & Lipsey (1975) do not
provide a treatment of a sequential entry game. In Hay (1976) the number of �rms is determined
by the corollary of monopolistic market competition that entry occurs until excess pro�ts vanish
and the market demand curve of each �rm is tangential to the cost curve.

14Setting ∂Π
∂P

= 0 yields P ∗ = a
2b

+ k
2
− z

4
.

15The minimum for z is determined by the condition Π(P ∗) > 0 such that the arbitrary parameters
a, b, k and X at least allow for a tangential relationship between the demand curve and the cost
curve. (cp. Hay (1976), p. 254f)

15



Chapter 2. Centrality and Spatial Di�erentiation - A Literature Survey

initial market boundary between the incumbents is given at a distance Zc, where-

as the total (minimum) market covered by the entrant (within the area of 2Zc)

adds up to 2Zm. Consequently, incumbents' post-entry pro�ts comprise of a piece

attributable to the market towards the entrant's location and one piece contingent

upon the market on the far side: Π = (Pc − k)(Zc − Zm)(a − bPc − b
2(Zc − Zm)) +

(Pc−k)Zc(a−bPc− b
2Zc)−X.16 Applying the �rst order condition ∂Π

∂Pc
= 0 yields the

optimal incumbents' post-entry price P ∗c as a function of Zc and Zm, the entrant's

pro�t-maximizing price is given by P ∗m = a
2b + k

2 −
Zm
4 (cf. footnote 14 above). An

expression for the critical spacing is obtained by leveling the entrant's and incum-

bent's price at the market boundary: P ∗c + Zc − Zm = P ∗m + Zm, which reduces to
Zc
Zm

= 2.215. Thus, for any Zc below 2.215Zm it is not pro�table for the entrant to

locate between the incumbent �rms.17

The second case emphasizes that the optimal market size for a �rm choosing a re-

mote place is in fact given by twice the size of its minimum market area which in

turn leads to an orderly spacing of �rms. As Hay (1976) argues qualitatively, this

outcome critically depends on the �rms' interaction since subsequent entrants are

required to locate at the minimum distance to the initial �rm (and act preemptively

to entry). Accordingly, irregularities from a general equidistant equilibrium pattern

for the whole market are expected if the location patterns of two distant neighbor-

hoods from di�erent edges of the city collide which generally can not be outruled.

(cf. Hay (1976), p. 247)

Eventually, Hay (1976) analyzes two further aspects of market dynamics: an increase

in the total market demand by a constant growth rate and a variation in consumer

density. Clearly, as the total market size increases the entrant is confronted with

the intertemporal trade o� that locating closer to a competitor reduces pro�ts in the

short run but increases pro�ts in the long run as entry is prevented for a comparative-

ly longer time period. (cf. Hay (1976), p. 248) Then obviously, the location decision

results from the maximization of the present value of future pay-o�s. More precisely,

under ceteris paribus conditions, e.g. identical discount rates, the equidistant equilib-

rium spacing from the static analysis is con�rmed. The e�ect of a change in consumer

density is shown leveling the general pro�t function at the pro�t-maximizing price

Π(P ∗) = 0 and evaluating the partial derivative of y against the minimum market

for entry zm. (cf. Hay (1976), p. 251) From the bijective relation between y and zm

over the relevant range it is concluded that an increase in consumer density causes

the size of the minimum market to decrease, or ∂zm
∂y < 0. Additionally, it is demon-

strated that a rise in y leads to an increase pro�ts. This meets the intuition that

�those segments of the market with a higher y o�er larger pro�ts even though the

16Consumer density is normalized to y=1.
17The critical distance is greater than 2Zm (twice the minimum market size) since the incumbents

also serve the opposite side of their market (up to the distance of Zc) and thus charge a lower
mill price than the entrant.
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centres will be closer together� (Hay (1976), p. 251), and thus, represents a model

that suggests spatial clusters contingent upon the consumer density distribution in

conjunction with �rms' locating according to entry deterring strategies.

In sum, the work of Hay (1976) predicts that under a constant number of consumers

and both in a static and dynamic market scenario the assumption of immobile loca-

tions leads to regular location patterns where �rms tend to be spread out evenly over

the whole market area by a measure of the minimum distance zm. Consequently, as a

result of sellers' commitment to a �nal location decision the PMD is discarded. The

variation in consumer density, however, allows for the emergence of spatial clusters.

Comparable to the work of Hay (1976), Prescott & Visscher (1977) provide an analy-

sis of a strictly sequential location process. The model structure is that only one �rm

enters at a time, where each player is confronted with prohibitively high relocation

costs. For the optimal location decision a �rm accounts for the pro�t-maximizing

decisions of all competitors who have already taken a position, and importantly, also

those �rms who will enter later in the sequence: �Each �rm is assumed to choose

the pro�t maximizing market position based on the observed choices of �rms already

located and the location rules that subsequent, equally rational entrants and potential

entrants will use. Thus, each �rm takes into consideration the e�ect of its location de-

cision upon the ultimate con�guration of the industry.� (Prescott & Visscher (1977),

p. 379) Now, this method is applied to di�erent settings.

Firstly, the case of the Hotelling city is investigated. The assumptions comprise a

linear market with unit boundaries [0; 1], a rectangular consumer density distribu-

tion (the number of consumers is N), exogenously given and equal prices for every

seller, and a �xed number of n �rms to enter the market. Firms' optimal locations

are determined by an algorithm based on the principle of backward induction. To il-

lustrate the argument, the last �rm n as a pro�t-maximizing agent devises a decision

rule to choose the most pro�table location based on the present market con�gura-

tion. In turn, �rm n − 1 accounts for �rm n's decision rule as well as for the given

market structure of the remaining n − 2 �rms when setting up his own location

decision rule. This process is followed up to the �rst entrant �rm 1 who considers

all pro�t-maximizing decision rules of his competitors when taking his optimal po-

sition. Clearly, for two players the equilibrium with both locating back-to-back at

the center obtains since �rm 1 knows that the best reaction is to maximize his short

side as �rm 2's dominant strategy is to locate as closely as possible on �rm 1's long

side.18 Moreover, consider the case of three �rms. As was argued by Eaton & Lipsey

(1975) in a simultaneous game no equilibrium exists. By constrast, Prescott & Viss-

cher (1977) provide an equilibrium solution for the sequential case. (cf. Prescott &

Visscher (1977), p. 382) In a nutshell, �rms' decision rules suggests to locate in the

18This supplements the predictions of Eaton & Lipsey (1975) in their model 1 and model 2 for a
duopoly.
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most vacant spaces accounting for di�erent cases that consider all potential locations

of their rivals.19 The equilibrium yields �rm 1 and 2 to be located at the quartiles

and �rm 3 at 1
2 .

In the second setting, the assumption of a �xed number of �rms for the linear city

is dropped, that is, market entry is endogenized. The underlying calculus rests upon

a function w to quantify the market share for an arbitrary pro�t-maximizing �rm

in an equilibrium industry structure. The market share is, evidently, dependent on

the distance z to the nearest neighbors.20 (cf. Prescott & Visscher (1977), equations

(1)-(3), p. 383f) The purpose of w is to determine the expected value for entry, thus,

to set the condition for pro�t maximization. Clearly, a higher distance implies higher

market shares and consequently higher pro�ts, however, the extension of the market

area is limited by upcoming entrants and, as the analysis in �gure 1 (Prescott &

Visscher (1977), p. 384) illustrates, is capped by the amount of the �xed costs α. As

a result, the optimal location x suggests a �rm to locate from a distance of α from

the respective ends of the city and to choose vacant middle markets and locate at a

distance of 2α from the nearest neighbor. (cf. Prescott & Visscher (1977), equation

4, p. 384) The number of �rms is restricted by 1
α , in case that 1

α ≥ 4 is not an integer

an additional �rm enters and locates at a remaining interval exceeding the value of

2α. In sum, the location algorithm leads to an uniform market structure with �rms

spaced out evenly by a distance of 2α subject to 1
α being an even integer, otherwise

one irregularity in the location pattern emerges.

In conclusion, Prescott & Visscher (1977) provide a comprehensive treatment of a

sequential location model that, in extension to previous works (e.g. Hay (1976)), ex-

plicitly accounts for future expectations on the location choice of subsequent �rms to

enter the market. Furthermore, they derive a solution for the equilibrium state when

entry is endogenized. As regards the PMD the results of Prescott & Visscher (1977)

are in line with Hay (1976), �rms' dominant location strategy under costly sequen-

tial entry leads to a location distribution with �rms spacing out which is at odds

with a general tendency to agglomerate at the market center. In addition, Prescott

& Visscher (1977) show that the location choice is also dependent on the level of

entry costs. Particularly, in the case where the number of �rms is restricted to n ≤ 3

a lower level of �xed costs leads the �rst two entrants to locate closer even when

the entry barrier still prohibits the third �rm to enter. This illustrates that location

19W.l.o.g. �rm 1's location is restricted to one half of the city, i.e. x1 < 1
2
(left half), then the

decision rules for �rm 3 are: locate to the right of �rm 2 if it is also settled in the left half (case
(i)), locate to the left of �rm 1 if it is located far right in his half and �rm 2 is in the right half
(case (ii)), locate to the right of �rm 2 if it is located far left in the right half (case (iii)), and
locate between �rm 1 and 2 if the middle market is large (case (iv)). Firm 2's decision rules
require to locate closer to �rm 1 if it is close to the edge and to choose a remote location if it is
positioned more centrally.

20Note that a distinction between locations at the edge of the city with only one nearest neighbor
and between the case of two nearest neighbors has to be made.
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acts as a strategic instrument to forestall further entry expressed by the counterin-

tuitive result of higher pro�ts and prices under comparatively higher �xed costs. (cf.

Prescott & Visscher (1977), table 2, p. 389) Finally, it has to be noted that Prescott &

Visscher (1977) emphasize that the Hotelling model does not provide a complete set

of noncooperative Nash equilibrium prices: �The di�culty with this solution concept

[...] is that when locations in Nash are su�ciently close, Nash equilibrium prices will

not exist. The nonexistence of equilibrium is a problem that frequently arises when

reaction functions are [...] discontinuous. The source of the discontinuity in the price

reaction function here is that a lower price by one of the �rms does not always gain

the �rm market share in a smooth continuous fashion. A price su�ciently low can

capture the entire market, whereas a price slightly higher loses the rival �rm's entire

hinterland.� (Prescott & Visscher (1977), p. 386) However, it was not until the in�u-

ential note of d'Aspremont et al. (1979) to mathematically prove the nonexistence

of Nash price equilibria at every point in the market.

Fifty years after the publication of Hotelling's famous paper d'Aspremont et al.

(1979) challenge the general prediction of the PMD and prove that in the simulta-

neous price competition a Nash equilibrium does not exist over the whole range of

the linear city. Speci�cally, they show that for close locations no equilibria obtain.

In their proof the usual assumptions apply, distances a and b are de�ned from the city

edges (line of length l), and �rms A and B charge p1 and p2, unit transportation costs

are denoted with c. The demand functions q1, q2 are derived from the position of the

indi�erent consumer and pro�ts π1, π2 obtain as a function of price di�erences, thus,

π1, π2 reveal two discontinuities when sellers' prices are undercut.
21 (cf. d'Aspremont

et al. (1979), p. 1145f) Now, �rstly, it is justi�ed that a price equilibrium can only

occur in the competitive region of the pro�t function, i.e., the price di�erence is re-

stricted to |p∗1−p∗2| < c(l−a−b). Intuitively, outside the range any seller could in any
case increase his pro�ts by adapting his price.22 It follows that equilibrium prices are

derived from the parabolic parts of the pro�t function applying the �rst order condi-

tion which yields p∗1 = c(l+ 1
3(a−b)) and p∗2 = c(l+ 1

3(b−a)). Furthermore, applying

the de�nition of the Nash equilibrium23 it follows that the equilibrium is ful�lled

only for restricted intervals of locations a and b. Intuitively, pro�ts gained under p∗1
must exceed pro�ts under an undercutting strategy. For symmetric locations (a = b)

21The seller who undercuts his rival gets the whole market l, the undercut �rm earns zero demand
and pro�ts. Since linear transportation costs are assumed (following Hotelling (1929)) a seller
captures the whole market if the price cut shifts the market boundary to the rival's mill, thus
the conditions for the discontinuities are derived setting q1 = 1− b and q2 = a respectively.

22The undercut �rm would decrease his price, moreover condition |p∗1−p∗2| = c(l−a−b) implies that
a seller who captures a fraction of the market is inclined to drop his price to the undercutting
level.

23p∗1 maximizes π1(p1, p
∗
2) over the whole domain of possible price strategies, and for �rm B vice

verser. (cf. d'Aspremont et al. (1979), p. 1146)
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the quartiles mark the threshold for the Nash equilibrium condition.24 Additionally,

the authors conduct the analysis with quadratic transport costs and show that Nash

price equilibria p∗1 = c(l − a − b)(l + 1
3(a − b)) and p∗2 = c(l − a − b)(l + 1

3(b − a))

hold for all a and b on the line.25 Furthermore, Nash pro�ts π1(p∗1, p
∗
2) and π2(p∗1, p

∗
2)

increase with decreasing a and b respectively. Thus, under quadratic transportation

costs pro�t-maximizing sellers maximize their distance and locate at the ends of the

city.

To sum up, d'Aspremont et al. (1979) provide evidence that a general PMD, as sug-

gested by Hotelling (1929), is invalid which is attributable to the structure of the

pro�t functions under the linear transportation cost scheme. Moreover, their note

suggests a contrary principle of maximum di�erentiation for the location decision

when applying quadratic transportation costs. Using quadratic transportation costs

proves advantageous since then a Nash equilibrium in prices (for a simultaneous

pricing game) exists for all locations on the city domain.

According to the negative result achieved by d'Aspremont et al. (1979) it would have

not been surprising to accept the conclusion that the PMD in the Hotelling model

should be �nally discarded. However, the con�icting evidence spurred more research

activities. Exemplarily, the papers of Economides (1984), Economides (1986), and

Economides (1993) illustrate that the level of consumers' reservation price, the func-

tional form of transportation costs and the number of competitors critically deter-

mine the equilibrium in prices and location for the Hotelling model.

In these works, the existence and the solutions for price and location equilibria are

scrutinized for a two stage game where in the �rst stage �rms simultaneously choose

locations and in the second stage a simultaneous price competition takes place (for

previously determined locations). To begin with the Hotelling model is restated in a

generalized form. In particular, the utility function of consumer ω purchasing a unit

of the di�erentiated product x is de�ned by Uω(x,m) = m+Vω(ω)−f(d(x, ω))−Px
with m standing for the budget (endowment with a Hicksian composite good),

Vω(ω) = k the constant reservation price for all consumers, f(d(x, ω)) a function

for the disutility of traveling in space from ω to a �rm's mill at x (for f(d) = d and

24Formally, for any ε > 0: π1(p∗1, p
∗
2) = 1

2t
(p∗1(p∗2))2 > l(p∗2 − c(l − a − b) − ε). The same argument

applies for �rm 2. Then after a little algebra this yields the two conditions l2 +(a−b
3

)2 ≥ 2l(a+b)
and l2 + ( b−a

3
)2 ≥ 2l(a+ b) (these correspond to equations (1) and (2) on p.1146). To complete

the proof see that out of these conditions follows ( |a−b|
3

)2 ≥ 2l(a+ b)− l2 = 2l(a+ b− l
2
), further

evaluating |p∗1 − p∗2| < c(l − a − b) leads to |a−b|
3

< 1
2
(l − (a + b)). Thus, a consistent solution

with respect to the upper and lower bound requires 5
2
l( l

2
− (a+ b)) + 1

4
(a+ b)2 ≥ 0 which is not

ful�lled for all a and b on the domain, e.g. a = b = 1
2
.

25Traveling a distance x to a seller a consumer incurs transportation costs of cx2. Thus, the utility
of consuming at �rm A and B (with a su�ciently high surplus s) is uA = s− p1− t(x− a)2 and
uB = s− p2 − t(1− x− b)2. For the indi�erent consumer between A and B set uA = uB which
yields the demand and pro�t functions. (cf. d'Aspremont et al. (1979), p. 1148) Furthermore,
proofs for the uniqueness of the price and location equilibrium for quadratic transportation costs
are provided in Neven (1985).
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f(d(x, ω)) = |x−ω| this corresponds to linear transportation costs) and Px the price

of x.26 (cf. Economides (1984), p. 347 and 349f) From the total utility the disutility

function gx(ω) = f(d(x, ω)) + Px can be separated. Thus, consumers' optimization

problem is to minimize gx(ω) for given k, that is depending on the constant reserva-

tion price a consumer will travel to the nearest seller. Firms' locations are taken both

from the zero edge of the city with unit length and w.l.o.g. x < y (for a duopoly),

the indi�erent consumer z between the two �rms lies at z and represents also the

most disadvantaged consumer since his value for g among consumers in the middle

market is the highest.27 Then, Nash prices in a duopoly are P ∗x = 1
3(2 + x+ y) and

P ∗y = 1
3(4−x−y) with an equilibrium state only if: x2 +y2 +2xy−8x+28y−20 > 0

and x2 + y2 + 2xy − 32x + 4y + 4 > 0.28 (cf. Economides (1984), proposition 2 on

p. 352, and p. 353)

Now, in Economides (1984) the assumption that every buyer purchases one unit of

the di�erentiated product is dropped.29 As a consequence, sellers' demand and pro�t

functions comprise of three parts segmented by di�erent price bounds. (cf. Econo-

mides (1984), p. 354�) This is rooted in the critical consumers who are indi�erent

between buying and not participating in the market and who are now not located at

the market edges z = 0 and z = 1 anymore. Their behavior is characterized by the

condition k = gx(z) and k = gy(z) respectively, that is the reservation price equals

their total disutility of consumption. Formally, for these two conditions four solutions

obtain, i.e. the locations for four indi�erent consumers, two for each seller one on the

right and the left side of the mill: z1,3(Px) = x∓(k−Px) and z2,4(Py) = y∓(k−Py).
Then, the �rst part of �rms' pro�ts refers to the instance that undercutting one's

rival is a viable strategy, the remaining �rm (e.g. product x) serves the market as

a monopolist with the undercutting price Px = Py − (y − x) and demand by the

amount of twice the distance to the indi�erently reluctant consumer: 2(k−Px). The

second part describes the competitive scenario where the rivals establish a market

boundary at z in their middle market (see above). Then, each seller takes demand

determined by the distance from their market edge to z (e.g. for product x that is

z − z1). The respective (upper) price bound is de�ned by the price to capture the

reluctant indi�erent consumer to the right of z (e.g. z(Px) = z3(Px)) The third part

allows both �rms to stay in the market as a local monopolist, clearly, then their

market areas are not connected. Formally, demand corresponds to part one of the

26Likewise Uω(y,m) = m + Vω(ω) − f(d(y, ω)) − Py for consuming one unit of the di�erentiated
good sold at the second mill at y.

27To determine z set: gx(z) = gy(z)
28This recaps the results of d'Aspremont et al. (1979). Demand is Dx = z, Dy = 1 − z. Then,

gx(z) = gy(z) yields z = 1
2
(Py − Px + y + x). Pro�ts are Πx = DxPx, Πx = DyPy applying the

�rst order condition and solving for Px and Py yields the Nash prices. The undercutting prices
are obtained setting z = y and z = x or Px = Py − (y − x). For an equillibrium Πx(P ∗x ) >
Πx(P ∗y − (y − x)) must hold and analogously for the second good y.

29Note that in Economides (1986) it is retained (cf. second paragraph on p. 67).
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pro�t function and the upper price bound is, of course, the reservation price k. To

sum up, the distinct feature of the total demand curve is a kink at the transition

from part two to three and a discontinuity at the transition from part two to one

due to the undercutting behavior. (cf. Economides (1984), Fig. 4, p. 355)

Subsequently, the Nash price equilibria and equilibrium pro�ts are determined for

all three parts and the consequences of the underlying demand structure are drawn

for the existence of equilibria. For the case of local monopolies (either for one or two

�rms) and the competitive case unique price equilibria are derived, at the kink a

continuum of price equilibria ('touching' Nash equilibria30) exists. (cf. Economides

(1984), Theorem 1, p. 359f) The equilibrium con�guration critically depends on the

level of the reservation price k, therefore for given k according to their existence

conditions all Nash price equilibria can be assigned to de�ned sets for the location

of the mills x and y.31 To derive the solutions of the location game for all three cas-

es the derivatives of the corresponding pro�t functions Π∗x(x, y, P ∗x (x, y), P ∗y (x, y))

and Π∗y(x, y, P
∗
x (x, y), P ∗y (x, y)) with respect to x and y respectively are evaluated.32

The result is that in the case of competitive Nash price equilibria and the case of

'touching' Nash equilibria the two players move towards the edges of the city, if local

monopolies are established no incentives to move prevail.

In sum the model of Economides (1984) con�rms the intuition that for a large dis-

tance y − x and comparatively low reservation prices, a Nash price equilibrium in

two local monopolies obtains. As the distance decreases and the reservation price

increases the price equilibrium is realized for a continuum of prices ('touching' Nash

equilibrium at the kink of the demand for Px + Py = 2k − (y − x)). Subsequently,

for closer distances and higher reservation prices a price equilibrium is established

in competition and if �rms approach even further undercutting strategies prohibit

a Nash price equilibrium. Location preferences clearly suggest a tendency for sell-

ers to separate from each other, in the case of local monopolies, however, �rms do

not move unless their respective market cannot fully be exploited. Put di�erently,

Economides (1984) consolidates the results of the previous literature that is at odds

30These result from the discontinuity of the derivative of the pro�t function. The economic inter-
pretation of the Nash price continuum is that the value of the reservation price is such that
the indi�erent and most disadvantaged consumer in the middle market is at the same time the
critical consumer for both �rms to opt out of the market. He has equal utility for purchasing at
one of both �rms and for not consuming at all. (cf. Economides (1984), p. 357f)

31In equilibrium the Nash prices yield maximum pro�ts and the price has to lie within the respective
price bounds of the distinguished segment of the demand and pro�t function. Speci�cally, for the
local monopolistic case with both players in the market the existence condition is k < y−x. (cf.
Economides (1984), p. 356) For the competitive scenario the existence of the Nash equilibrium
additionally requires that pro�ts at the local peak in the price interval have to exceed pro�ts
at the left corner referring to the undercutting pro�ts. In sum this corresponds to equations (6)
and (7) summarized in (8) on p. 357. For the 'touching' Nash equillibria the existence conditions
are given in equations (10) and (11) summarized in (13) on p. 358.

32Pro�t functions are abbreviated by Π∗x and Π∗y. Thus, the location equilibrium demands
∂Π∗x
∂x

=
∂Π∗y
∂y

= 0.
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with the PMD (e.g. d'Aspremont et al. (1979), Prescott & Visscher (1977)) in a two

stage price-location game for the linear city and provides evidence in favor of a Nash

equilibrium in locations �at a 'local monopolistic' con�guration with the �rms choos-

ing to produce very di�erent products.� (Economides (1984), p. 366). Essentially, the

fact that sellers are not able to exploit the whole market area towards the city edges

is the explanation for this outcome. Moreover, based on d'Aspremont et al. (1979)

he shows that Nash price equilibria are not principally inexistent if �rms settle to

close, rather the location threshold for a Nash price equilibrium to be discarded is a

function of the level of reservation prices.

The purpose of the second paper (Economides (1986)) is to scrutinize the e�ect of

transportation costs on sellers' pro�t-maximizing location decisions in a Hotelling

duopoly.

This is achieved by extending consumers' utility function with a �xed but arbitrary

exponent α (with 1 ≤ α ≤ 2) in the transportation cost term, i.e. set f(d) = dα which

leads to the utility function Uz(x,m) = m+k−|x−z|α−Px when consuming x. (cf.

p. 68) Subsequently, �rms' pro�t functions accounting for the Nash price equilibrium

in the second stage are set up and the 'zero relocation locus' ∂Π∗x
∂x = 0 is determined.

It is important to note that the location equilibrium is derived under the assumption

of symmetric locations, i.e. y = 1− x. (cf. Economides (1986), p. 69) Inserting equi-
librium prices into the pro�t function and evaluating the pro�t derivative yields the

derivative as a function of α, i.e. ∂Π∗x
∂x ≤ 0 only if x ≥ x(α) = 5

4 −
3
4α which implies

that for values of α < 5
3 �rm x relocates to x as the pro�t-maximizing locus and

that for α > 5
3 the pro�t-maximizing location is x = 0 (since then x < 0).33 Thus as

stated in proposition 1, for a solution in the price game, the symmetric equilibrium

in the location game is x = x(α) and y(α) = 1−x(α). (cf. Economides (1986), p. 69)

Now, what is the range of validity for the location equilibrium? Clearly, the bound-

ary is determined by the relation of undercutting pro�ts to the Nash pro�ts. For this

purpose the function f(x, α) = ΠUC
x − Π∗x is used.34 Then, for f ≤ 0 the area of

subgame perfect symmetric location equilibria is de�ned, and for f > 0 undercutting

is pro�table and no Nash price equilibrium exists and the location equilibrium is not

de�ned. Subsequently, the boundary for equilibrium con�gurations is determined by

33Recall that x < y, the indi�erence condition is Px − Py = |z − y|α − |x − z|α where z denotes
the solution for the location of the indi�erent consumer. For Πx = PxDx = Pxz this leads
to ∂Πx

∂Px
= z + Px

∂z
∂Px

. Using ∂Px
∂z

from the indi�erence condition yields the Nash price P ∗x =

αz((z−x)α−1 +(y−z)α−1) and similarly P ∗y = α(1−z)((z−x)α−1 +(y−z)α−1). Consequently:

Π∗x = αz2((z−x)α−1 + (y− z)α−1). For further details on the evaluation of
∂Π∗x
∂x

see Economides
(1986) footnote 4 on p. 69.

34In the derivation of the pro�t functions y = 1−x and P ∗x and P ∗y are used. Further, note that for
a symmetric location equilibrium z = 1

2
. Then P ∗x = α( 1

2
− x)α−1 and Π∗x = 1

2
P ∗x , and similarly

for Π∗y. Undercutting pro�ts are ΠUC
x = PUCx . The undercutting price ful�lls the indi�erence

condition PUCx + (1 − x)α = P ∗y + (1 − y)α, that is, �rm y sets the Nash price and �rm x
undercuts and takes the whole market by shifting the indi�erent consumer to the edge z = 1.
Then, PUCx = α( 1

2
− x)α−1 + xα − (1− x)1−α. (cf. Economides (1986), p. 70)
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the solution for f = 0 and denoted with x(α). It follows that the intersection of

x(α) with x(α) yields a critical value for the exponent of the transportation costs

(α) above which a symmetric equilibrium under a Nash price equilibrium is reached.

Below α no locational equilibria exist since then the optimal location x falls into the

region where f > 0. (cf. Economides (1986), Fig. 1 on p. 69)

The crucial �nding is that α ≈ 1.26 and together with the de�nition of x this im-

plies that �rms are not inclined to maximally di�erentiate their products and take

the extreme positions at the city edges. Particularly, for transportation costs with
5
3 > α ≥ α they will take equilibrium positions on the line and charge Nash prices.35

In sum, this result generalizes the �ndings in d'Aspremont et al. (1979) where a prin-

ciple of maximum di�erentiation is suggested for α = 2 and the indeterminate case

for the Hotelling model if α = 1. Essentially, it can be concluded that the equilibrium

con�guration, speci�cally the location equilibrium, is determined by the transporta-

tion cost scheme.

In the third paper (Economides (1993)) the two-stage location-price game is gener-

alized from a duopoly to a setting with n �rms competing on the linear city.

Firms' strategic variables are captured in the price and location vectors p = (p1, ...pn)

and x = (x1, ...xn) with Πj(p
∗
1, .., p

∗
j−1, pj , p

∗
j+1, ..., p

∗
n|x) ≤ Πj(p|x) ∀j = 1, . . . , n as

the consistently de�ned Nash price equilibrium. (cf. p.305f) In addition, marginal

and �xed production costs (m,F ) are introduced into the model. Also note that the

linear transportation cost coe�cient is denoted with λ. Then, the solution to the sec-

ond stage price game reduces to the expression p∗ = A−1y where A is a nxn matrix

(with well behaving properties) consisting of fraction numbers and the elements of y

are a function of the locations xj(j = 1, . . . , n).36 As a result, equilibrium pro�ts are

for interior �rms Πj =
(p∗j )2

λ , and for �rms closest to the market edges Πj =
(p∗j )2

2λ .

(cf. Economides (1993)), Proposition 1, p. 307f) These pro�t functions constitute the

objective functions for the derivation of the optimal locations in the �rst stage of

the game. (cf. Economides (1993)), p. 308) Since λ is a constant the signs of
∂Πj
∂xj

and
∂p∗j
∂xj

are equivalent and from the structure of A−1 it follows that
∂p∗j
∂xj

= A−1 dyj
dxj

.

According to the structure of y the respective derivative reduces to expressions in

λ, thus
∂p∗j
∂xj

∀j = 1, . . . , n depends on real numbers (following from the elements

(ainv)i,j from A−1) and λ. The relationship between the terms of the (ainv)i,j in the

derivative expression can be further evaluated which leads to the important condi-

35For instance, in Fig. 1 (cf. Economides (1986), p. 69) it is illustrated that at α and slightly above,
�rms even locate closer than the quartile positions.

36This generalizes the solution for the price equilibrium in a duopoly (cf. (Economides (1984))).
In particular, p∗ represents the solution for the case of pure price competition which requires
that consumers reservation prices are su�ciently high, i.e. k ≥ pj + m + λ|w − xj | and that
undercutting is not pro�table, i.e. zj ≥ xj−1. (cf. Economides (1993), p. 306) Consequently,
setting up expressions for �rms' market boundaries and pro�t functions, and applying the �rst
order condition leads to the algebraic equilibrium equation. The properties and the existence of
the inverse of A are shown in lemma 1 and corollary 1. (cf. Economides (1993), p. 307)
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tion
∂p∗j
∂xj

> 0 (< 0) only if n+1
2 > j (< j) in lemma 2. (cf. Economides (1993), p. 309

and the proof on p. 318f) Clearly, this implies that for every �rm j located to the

left of the centrally located �rm(s) (j < n+1
2 ) an increase in its location increases

its pro�ts (and equilibrium price), likewise every �rm located to right (j > n+1
2 ) can

increase its pro�ts (and equilibrium price) by decreasing its location. Thus, there is

a dominant strategy for every not centrally located �rm to move towards the central

�rm(s). Consequently, given equilibrium prices p∗ there exists no subgame perfect

equilibrium for the choice in locations if �rms compete.37

Subsequently, more details on market equilibrium properties are given. Firstly, the

intuition is con�rmed that as �rms move inwards the e�ects of the location change on

the equilibrium prices and pro�ts on the other �rms decreases with distance and is

thus strongest on the nearest neighbors. Ceteris paribus, prices and pro�ts decrease

for neighboring �rms in the direction of the centrally spaced �rm(s) and increase

for more distant neighbors as one �rm adapts its location. (cf. Economides (1993),

Proposition 3, p. 310 and the proof on p. 319) Secondly, by a violation of the non-

undercutting condition it is ruled out that a state where all �rms in the market gain

the same pro�ts serves as an equilibrium since di�erences in the levels of equilibrium

prices suggest that peripheral �rms are undercut by their neighbors. (cf. Economides

(1993), p. 308) Thirdly, the location scenario of an equidistant spacing is scrutinized

where d denotes the distance of interior �rms and c the distance from the edges, and

c < d
2 . (cf. Economides (1993), p. 310 and footnote 5) Nash prices are p∗j = λ(d+cej)

and ej is a variable determined by elements of A−1. The main result is that by

the properties of ej equilibrium prices reveal a strictly convex, symmetric, U-shaped

structure over the line [0, 1]. (cf. Economides (1993), Proposition 4, p. 310 and the

proof on p. 319) Thus, in an equidistant setting the peripheral �rms exploit the high-

est degree of monopoly power and charge the highest prices, by contrast the centrally

located �rms set the lowest prices. Due to �rms' market sizes it is then the second

(and n − 1st) �rm who make the highest pro�ts, depending on the level of c the

peripherals could be the second most pro�table (c ≈ d
2 , n ≥ 5) or the least pro�table

�rms (c = 0). (cf. Economides (1993), p. 311) Finally, it is shown that the suggested

pricing structure (in an exogenously imposed equidistant spacing structure) repre-

sents a competitive price equilibrium for n ≥ 4 if reservation prices are su�ciently

high, and also an equilibrium for n = 3 provided that c is bounded (c < 0.435d). This

can be interpreted as a generalization of the critique of d'Aspremont et al. (1979)

on the existence of Nash price equilibria in the Hotelling duopoly for oligopolistic

37Recall from the duopoly case in Economides (1984) that consumers' reservation price k determines
the type of market interaction, for high k �rms compete, for low k �rms form local monopolies
and not all consumers are served, and for intermediate k kink solutions obtain. This characteristic
remains in the oligopolistic model with n players. The number of local monopolists is bounded
by k and an equidistant spacing allows for the largest number of �rms. There are no relocations
incentives for local monopolists. (cf. Economides (1984), p. 312f) Additionally, as in the duopoly,
at the kink multiple equillibria exist. (cf. Economides (1984), p. 314)
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market structures (n ≥ 3). (cf. Economides (1993), p. 312 and Theorem 2)

The study of Economides (1993) sends a key message in terms of �rms' tendency to

locate at the center or the periphery of the linear city: there is no perfect equilibrium

for n �rms in a simultaneous two-stage price-location game under linear transporta-

tion costs and provided that the whole market is served. The location of the central

�rm(s) represents an 'attractor' and rivals have a dominant strategy to locate away

from the city edges. Furthermore, it is interesting that an equilibrium state for n

�rms with identical pro�ts does not exist, thus, depending on the location con�gura-

tion an order in �rms' pro�tability obtains. A special case is made for an equidistant

spacing pattern where it is shown that a price equilibrium implies a strictly con-

vex, U-shaped structure over the line. For this equilibrium the condition to cover

all consumers in the market (i.e. for su�ciently high reservation prices) restricts the

peripheral �rms to control a smaller market than the interior �rms.

In a two stage sequential entry game in the Hotelling model with �rms choosing

their position in the �rst stage and selecting a pro�t-maximizing price in the second

stage the application of quadratic transportation costs comes with the bene�t of a

well-de�ned set of Nash equilibrium prices for every location.38 Thus, with quadrat-

ic transportation costs a perfect subgame equilibrium in locations can be examined

which is exploited in the papers of Neven (1987), Economides et al. (2004) and Goetz

(2005). The goal of these studies is to scrutinize location equilibrium con�gurations

and determinants for market deterrence in the linear city.

The important feature of the underlying model is the assumption of �xed entry costs

F and a sequential entry process while prices are chosen simultaneously in the sec-

ond stage. Otherwise the classical assumptions of the Hotelling model apply: line

of unit length, uniform consumer distribution, constant and zero marginal costs of

production, and a constant consumers' reservation price. Moreover, analogous to the

principle in Prescott & Visscher (1977), �rms' subgame perfect location decisions are

derived under the assumption of perfect foresight with respect to subsequent location

decisions of other competitors.39 Following the notation of Neven (1987), the demand

function Di for �rm i is de�ned by the locations of the indi�erent consumers in the

middle markets to its left and right side, in sum demand equals a �rm's total market

area.40 Pro�ts are Πi = PiDi−F (i = 1, ..., n). In addition, as was previously shown

for a duopoly in Neven (1985), the model implies that the simultaneous price game

38Quadratic transportation costs are convex and guarantee concave pro�t functions, thus second
order conditions are satis�ed and a noncooperative price equilibrium is obtained. Here, once
again, Economides (1984) proves to be a valueable source (see proposition 1 and p. 350�).

39For an illustrative example of the calculus see Economides et al. (2004), section 4 on p. 11f.
40Assume n �rms, then Di = max(0,minR − maxL) =: max(0, αi − αi) where L is the set of

all possible market boundaries (α) with all neighbors to the left of i (including the city edge
0), and R is the corresponding set to the right, formally: L = [0, αi,k, k = 1, ..., i − 1] and
R = [1, αi,k, k = i+ 1, ..., n] (cf. Neven (1987), equation (3), p. 422f)
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in the second stage yields a unique equilibrium also for n �rms. (cf. Neven (1987),

p. 432f) Thus, a perfect subgame in locations can be played.

In Neven (1987), the results for the case of an exogenously given number of �rms

yield the monopolist locating at the center (x1 = 1
2), and in a duopoly the two

players locating at the opposite ends maximally di�erentiating their product. Fur-

ther, it is mentioned (Neven (1987), p. 425) that the outcome of sequential entry in

a duopoly is fully in accord with the result of a simultaneous location decision (cf.

Neven (1985)). The equilibrium for three �rms reveals an asymmetric pattern with

the �rst �rm located centrally (but not at 1
2) and the subsequent competitors close

to the edges. The asymmetry follows directly from the backward induced calculus,

in particular, it proves to be more pro�table for the second entrant to divert from

a regular location pattern if the �rst �rm took the center (and the third �rm acted

accordingly)41, in turn, this implies that the optimal decision of the �rst �rm is to

locate asymmetrically with respect to the central position. For four �rms a higher

degree of symmetry prevails, the �rst two entrants balance the advantages from a

central position with increasing market sizes (and locating farther apart). In sum,

the equilibrium for n = 4 reveals a �rst-mover advantage with the �rst �rm locating

more centrally than the second and thus gaining the highest pro�ts. Furthermore, it

is concluded that the �rst-mover advantage and thus the asymmetry in the equilib-

rium location pattern decreases as the number of �rms increases.

Next, let us turn to the results in Neven (1987) for the case of entry deterrence.

In this case the number of �rms and �rms' location is endogenized and entry re-

sults from the level of �xed costs and the location choice of the incumbent �rms.

Clearly, the higher F , the lower n. Furthermore, the level of F determines �rms'

strategic behavior. As expected, for the monopoly case the �rst entrant locates at

the center, in a duopoly with comparatively high �xed costs both �rms maximal-

ly di�erentiate. However, if �xed costs are further reduced the two players apply a

deterrence strategy and move inwards. The outcome then is a symmetric location

pattern, and a continuum of unique possible equilibrium locations dependent on the

level of �xed costs obtains with the extreme location pair given at 0.31 and 0.69. (cf.

Neven (1987), table 2, p. 429) Similarly for three players, the market con�guration

starts with the unconstrained case for a de�ned interval of �xed costs.42 As �xed

costs further decrease deterrence strategies are devised and equilibrium locations re-

sult contingent on F . Speci�cally, the �rst �rm locates close to the center and the

second and third entrant choose an entry deterring position on each of its sides. For

decreasing F the location pattern becomes more symmetric with the extreme case of

�rm 1 at 1
2 and the other players locating symmetrically at a position slightly below

41The second and third �rm would locate at 1
8
and 7

8
respectively.

42Con�rm that the locations in table 1 (Neven (1987), p. 425) and table 2 for 0.0245 < F < 0.0255
(Neven (1987), p. 429) are the same.
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the quartiles indicating an advantage for the �rst entrant. For four �rms it is �rstly

observed that, in contrast to the previous cases, the unconstrained equilibrium can

not be supported, and secondly, later entrants bear the cost of entry prevention. For

a comparatively higher level of �xed cost (e.g. F = 0.007) the �rst entrant locates

close to the center, and for low F (e.g. F = 0.004)) locations close to the city edges

are more pro�table for the early entrants. Additionally, the location pattern is sym-

metric for the boundary case such that a new �rm is indi�erent in which market slot

to enter.

Economides et al. (2004) provide further details and consolidate Neven's �ndings.

For a �xed number of �rms the location equilibrium con�gurations for n = 1, 2, 3 are

con�rmed. Furthermore, the principle that the pro�ts decrease with the consecutive

order of entry, in particular, that the �rst mover locates centrally and gets the highest

pro�ts is supported. In contrast to Neven, however, in the case of n = 4 the results

of Economides et al. (2004) suggest the second entrant locating not centrally but

between the �rst �rm and the left corner of the city (cf. Economides et al. (2004),

table 3, p. 9 and Fig. 1, p. 7).43

In addition, as regards the entry deterring game a couple of di�ering points to Neven's

study deserve attention. Firstly, Neven (1987) claims that in a duopoly both �rms

simultaneously move towards the center as �xed costs decrease leading to a sym-

metric pattern.44 By contrast, Economides et al. (2004) show that initially only the

�rst �rm actively prohibits entry by moving inward. Clearly, then an asymmetric

location equilibrium over the �xed cost range results. (cf. Economides et al. (2004),

p. 13 and Fig. 2, p. 14) Moreover, this �nding is also con�rmed by Goetz (2005) (cf.

Goetz (2005), p. 253 and Fig. 1, p. 252).45 The second point pertains to the case

where n = 3. Neven (1987) emphasizes that deterrence costs are mostly borne by

the second and third entrants with an equilibrium for the boundary of a forth �rm

to enter at (0.255, 0.5, 0.745).46 On the contrary, the results of Economides et al.

(2004) yield an evenly spaced out boundary equilibrium (0.25, 0.5, 0.75) (cf. Econo-

43Indeed the unconstrained case with the prede�ned number of four entrants in Economides et al.
(2004) seems to resemble the outcome of the free entry game in Neven (1987) for F = 0.007 (cf.
Neven (1987), paragraph (vi), p. 430 and table 2, p. 429).

44�[...] the duopolists will deter entry of a third �rm. They will both move inside, to an extent such
that the second �rm will have to choose symmetric location to deter entry. This is a situation in
which the burden of entry deterrence is shared equally between two �rms.� (Neven (1987), p. 429)

45Note also that in Goetz (2005) the pro�ts of the �rst entrant increase as he takes on the task of
entry deterrence and increases his location. This marks an important distinction of his model
where equilibrium locations are calculated for changes in market size. Technically, his demand
function is supplemented by the total population in the market denoted with N , formally:
Di = max(0, N(minR −maxL)). (cf. Goetz (2005), p. 251) Thus, a variation in entry costs is
modeled by changes in N keeping �xed costs in the pro�t function constant, e.g. for increasing
N entry costs fall. By contrast, in Economides et al. (2004) and Neven (1987) �xed costs are
variable.

46�It is noticeable that [...] the burden of entry deterrence is mostly carried by the second and third
�rms which are being constrained.� (Neven (1987), p. 430) The numbers are from table 2 on
p. 429.
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mides et al. (2004), table 6, p. 21). Again, Goetz (2005) provides similar results. (cf.

Goetz (2005), paragraph x, p. 257) Furthermore, Economides et al. (2004) stress the

fact that when comparing pro�t losses due to entry deterrence with the scenario of

a �xed number of �rms the �rst entrant bears the highest costs of the prohibitive

action. Therefore, no clear sign of an advantage for the �rst �rm in the deterrence

game if n = 3 is recognizable. Thirdly, for the case of four active �rms as for the

triopoly Neven (1987) suggests that the �rst entrant unambiguously bene�ts from

the entry deterring e�orts of the later entrants.47 The results of Economides et al.

(2004) are in striking contradiction to this prediction of a �rst-mover advantage since

they �nd that in certain ranges of �xed costs the order of pro�ts does not correspond

to the order of entry anymore (as in the unconstrained case). Particularly, regions

are observed where pro�ts of the second entrant are larger than of the �rst mover,

and even pro�ts of the third �rm increase those of the �rst �rm which leads them

to conclude that late entry in a free entry game is pro�table. (cf. Economides et al.

(2004), p. 22 and Fig. 16, p. 23)

Goetz (2005) picks up the notion of advantages for late movers under free entry and

focuses on the case of n = 3. He �nds a third-mover advantage where pro�ts of the

third entrant exceed those of the second in a de�ned �xed cost range. Consider the

following explanation. As the �rst �rm takes the burden of entry deterrence it moves

to the center. However, this implies that the advantage of the second �rm against

the third diminishes since, for a given location of the �rst �rm, when taking his turn

the second �rm can always choose the 'better' side. Only when the �rst �rm locates

in a small interval around 1
2 this strategic advantage vanishes which in turn gives

a bene�t to the third entrant.48 Subsequently, the second �rm bounces back when

it starts to locate more centrally participating with the �rst �rm in entry deterring

actions which kicks o� at the particular value of the market size for equilibrium loca-

tions of the simultaneous game at (1
8 ,

1
2 ,

7
8). (cf. Goetz (2005), paragraphs vi and vii,

p. 255f) Eventually, the entry deterring behavior of the �rst and second �rm leads to

a discontinuity in the equilibrium locations for increasing market sizes (decreasing

�xed costs) since it becomes pro�table for the �rst �rm to switch from the center to a

more remote position. However, note that the pro�t function of the �rst �rm remains

continuous. (cf. Goetz (2005), Fig. 4 and Fig. 5, p. 256 and paragraph ix, p. 257) This

�nding is in contrast to the predictions given in Economides et al. (2004).

Now, what is to conclude from these studies of market entry dynamics with regards

to the PMD? In sum, the papers argue that �rms' location choice implies the strate-

gic element of entry deterrence. It is illustrated that as market conditions become

47�As observed in the case of three �rms, the �rst entrant is able to use the entry deterring behavior
of further entrants to its own advantage.� (Neven (1987), p. 431)

48Note that Economides et al. (2004) already provided an analogous result but did not give a
thorough explanation. (cf. Economides et al. (2004), p. 18f and the �xed cost range [0.020, 0.022]
in Fig. 10, p. 19)
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more competitive, that is under decreasing levels of �xed costs (and increasing mar-

ket size), �rms move together and bear the cost of entry prevention. Consequently,

�xed costs (and market size) and consecutive strategic decisions imply an attract-

ing potential for �rms' location even under quadratic transportation costs (which

otherwise are an indicator of repellent forces for equilibrium locations). Generally,

location con�gurations and thus the tendency to locate at the center are dependent

on the level of entry costs revealing symmetrical and asymmetrical equilibria. In

particular, examples are provided for boundary solutions with symmetric location

patterns49 which speci�es previous �ndings of Hay (1976) and Prescott & Visscher

(1977). Moreover, the sharing of the cost of entry prevention depends on the market

structure, but predictions in the studies di�er. The state of the �eld suggests that in

de�ned parameter ranges late entry in free entry games can be bene�cial for markets

with three and four �rms.

A way to circumvent the problem of the existence of Nash price equilibria and perfect

subgame location equilibria in the Hotelling model is to apply a Stackelberg leader-

follower structure in the price and location subgame. This approach is analyzed in

Anderson (1987) for a duopoly where in the �rst stage one �rm is the leader and the

other the follower in choosing the location, and in the second stage a price leader-

follower game is played. Subsequently, the goal of the paper is to determine the

order of �rms' actions, speci�cally, to endogenize the pricing decisions (since the

assumption is that one �rm will always be the �rst to locate in the market).

The setting is the linear city with linear transportation costs and the game is solved

by backward induction. Thus, initially and w.l.o.g., the price reaction function for

player A is derived, that is �rm B is to be taken as the price leader. The price

reaction covers the possibility to undercut B if he sets a price pB > pB, react to

an undercutting of B who charges pB < p̃B by an adaptive price just to stay in the

market, and set the pro�t-maximizing price if pB ∈ [p̃B, pB]. The set of A's pricing

responses is dependent on the location pair (a, b). (cf. Anderson (1987), proposition 1,

p. 373f)50 Subsequently, �rm B's leadership prices as a function of a and b are derived.

(cf. Anderson (1987), proposition 2, p. 379�) If the competitors are located fairly

close, i.e. for 1 − a ≤
√
b, B's best decision is to set the price p̂B for which A is

indi�erent between undercutting and playing defensively. For greater distances B

has three pro�t-maximizing pricing strategies which all lead to A optimizing the

49Neven (1987), table 2, p. 429: (n = 2, F = 0.0255), (n = 3, F = 0.009) and (n = 4, F = 0.004).
Economides et al. (2004), table 5−7, pp. 17, 21 and 25: (n = 2, F = 0.025857), (n = 3, F = 0.009)
and (n = 4, F = 0.00435). Goetz (2005), pp. 254 and 257: (n = 2, F = 0.0258(N = 967.6)) and
(n = 3, F = 0.00892(N = 2804.0)).

50As �rms get relatively close, the region of pro�t maximization M collapses and the price reaction
is solely characterized by a discontinuous behavior. (cf. Anderson (1987), �gures on p. 376f)
Technically, the price intersections of the pro�t functions corresponding to the three di�erent
strategies are evaluated. The location regions for the applicability of the strategies follow from
the order of the price intersections. (cf. ibid, paragraph (d) in proof of proposition 1 on p. 391f)
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quadratic part of his pro�ts over the price. For B these are the corner solutions p̃B

and pB as well as the price where the quadratic part of his pro�ts is maximized.51

Based on the solution for �rms' optimal price setting behavior with B as the price

leader and A as the price follower their location reaction functions are determined.52

The distinct feature is that if both players locate very close at one of the city edges

(either for b ≤ 1
2(45 − 7

√
41) ≈ 0.089 and b ≥ 1

2(7
√

41 − 43) ≈ 0.911) then �rm

A's repellent move is de�ned by the reaction function a(b) = 1 −
√
b and a(b) =√

1− b respectively. However, for any other b, a continuum of favorable locations

for A obtains, that is his location reaction function consists of a set of di�erent

combinations (a∗, b) yielding the same pro�ts.53 For �rmB a de�ned location reaction

function obtains dependent on which side of 1
2 his rival locates. Considering �rm A's

pro�ts along B's location reaction function yields the highest value for a = 1
2 , that

is given B's location reaction �rm A has the incentive to locate at the center. (cf.

Anderson (1987), p. 397) Now, two scenarios are compared.

1. Firstly, �rm A is the location leader, �rm B the follower. The price leadership

retains with B. Clearly, A then picks the center and B locates according to his

reaction function for a = 1
2 at the equilibrium location b∗ = 0.131 and 0.869

respectively. Since A is the price follower he sets a lower price than B to expand

his market area whereas B charges a higher price to maximize his pro�ts. In

sum, this yields the highest pro�ts for A as the location leader, given the

structure of the Stackelberg pricing game. (cf. Anderson (1987), proposition 5,

p. 384f)

2. Secondly, �rm B is the location leader and A the follower. The price leader-

ship retains with B. Since B is the location and price leader he takes a remote

position according to his location reaction function allowing him to charge a

high price. To derive the highest possible pro�ts for B it is assumed that a = 0

since the set of indi�erent locations for A also allows for other less pro�table

outcomes. In sum, this yields the highest pro�ts for B as the location lead-

51For an illustration see �gure 8 (Anderson (1987), p. 382). If both players are located close to the
city edges, B wants to expand his market area with the the lowest possible price p̃B such that
A remains accommodating (region 2b). If B locates more centrally and comes not too close,
a high price strategy is the best reply where pB represents the highest price such that A has
no incentive to undercut. (region 2a) For distant locations of B and A locating centrally the
pro�t-maximizing price is the best choice (region 2c).

52For �rm A the algebraic conversions involve for every of the four cases (p̂B , p̃B , pB) as well as B's
pro�t-maximizing price the evaluation of the reduced form price reactions, i.e., insert pB into
the corresponding price reaction of A. Subsequently, the resulting pA is inserted into A's pro�t
function and the corresponding market demand is calculated. Finally, pro�ts are di�erentiated
by a. (cf. Anderson (1987), proof of proposition 3, pp. 392-394) Analogously, prices and demand
for �rm B are derived for every of the four strategies and the partial derivative of his pro�t
function by b is evaluated. (cf. Anderson (1987), proof of proposition 4, pp. 395-397)

53This is due to A's pro�t function evaluated at pB which results as Π∗(pA(pB), pB) = 2t(1−
√
b)2

and is thus independent of a. (cf. Anderson (1987), p. 392f)
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er, given the structure of the Stackelberg pricing game. (cf. Anderson (1987),

proposition 6, p. 385f)

The �nal argument of the paper is concerned with the price leadership decision (and

not with the location leadership decision). It is to prove that the �rst scenario yields

an equilibrium, that is to show that price followership by the early entrant (�rm

A) is supported by the later entrant (�rm B). Therefore consider that the di�erence

between the location leaders in the two scenarios is their role in the Stackelberg game

in prices. A comparison of respective pro�ts yields the price follower in an advan-

tageous position. This means that �rm A prefers to be the price follower. But does

�rm B act accordingly? Indeed, this is the case since for �rm A locating at 1
2 , that

is for given locations in the �rst stage, �rm B earns higher pro�ts as a price leader

than as a price follower.54 (cf. Anderson (1987), proof of proposition 7, p. 387)

To conclude, in terms of the PMD the study of Anderson (1987) o�ers a new per-

spective where in the cause of a sequential price setting game an equilibrium is found

with the �rst entrant locating at the city center and taking the role of the price fol-

lower. The location reaction of the second �rm, however, suggests to locate distantly

(b∗ = 0.131 and 0.869) such that repelling forces in the location strategy dominate.

Furthermore, the second entrant's dominant pricing strategy then is to take the po-

sition of the leader. Two aspects characterize the equilibrium outcome. Firstly, the

sequential order in choosing price and location leads to a strategic advantage for the

�rst �rm exempli�ed by the taking of the central position and higher pro�ts and

lower prices. Secondly, the threat of being undercut leads the second player to take

a secure market position with comparatively lower pro�ts and a lower market size

but charging higher prices than the incumbent �rm.

More recently, Fleckinger & Lafay (2010) study a two stage game in the Hotellling

model where in contrast to the previously presented papers the assumption of irrevo-

cable product choices is relaxed. Instead, they introduce catalog competition, that is

they examine equilibrium states in a duopoly where each �rm decides for the product

position (location) and price in one stage of the game. Consequently, the structure

is such that in the �rst stage �rm A (leader) chooses its strategic variables, and in

the second stage �rm B (follower) decides on his.

In their model the usual assumptions apply.55 To recap, one consumer's problem

located at x is to minimize his disutility (p+C(x−a), q+C(b−x)) where C shall be

convex, monotonically increasing and di�erentiable. Thus, the indi�erent consumer

54Pro�ts for B as a leader in the �rst scenario are 0.428t, pro�ts as a follower are derived using the
follower pro�t function considering the optimal price-follower location, i.e. �rm A's pro�ts for
b = 1

2
which yields 0.172t.

55These are: unit interval (x ∈ [0, 1]), even consumer distribution f(x), zero production costs,
su�cient reservation price. Note that locations a, and b are measured by their distance from
zero.
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between the two �rms at position y shall be characterized by p+C(a−y) = q+C(b−y).

The set (p, q) denotes the product prices and (a, b) the locations where the pair (p, a)

denotes the calls of the leader and (q, b) those of the follower. The consecutive �nd-

ings essentially rest upon two propositions. Firstly, it is proved that the follower

always gains (weakly) higher pro�ts than the leader.56 This con�rms the intuition

that the follower has two pro�t-maximizing choices, he could either undercut and

kick the leader out of the market, or he could accommodate the leader. In the case of

accommodation, it is secondly proved that the follower locates at the position of the

indi�erent consumer b = y and that he charges a strictly higher price than the leader

along consumers' disutility function, i.e., q = p+C(b−a) > p.57 In what follows, these

results are applied to the Hotelling model, i.e., set C(x) = t|x|. Then, accommoda-
tion yields pro�ts of ΠAcc

B = q(1− b) = (p+ t(b−a))(1− b). Evaluating ∂ΠB
∂b = 0 and

using q = p+ t(b−a) yields the optimum pair (b∗ = 1
2(1 +a− p

t ), q
∗ = t

2(1−a+ p
t )).

Undercutting pro�ts are ΠUC
B = p. Pro�ts for �rm A in the accommodation case

are ΠAcc
A = pb∗ which shall be maximized subject to ΠAcc

B ≥ ΠUC
B . Evaluating this

constraint yields a∗ = 1 + p
t − 2

√
p
t . Subsequently,

∂ΠAccA (a∗)
∂p = 0 leads to p∗ = 4

9 t. In

sum, for a ≤ 1
2 the catalog solutions (a∗, p∗, b∗, q∗) = (1

9 ,
4
9 t,

1
3 ,

2
3 t) obtain. (cf. propo-

sition 4, p.64) Walking through the same principles for quadratic transportation

costs C(x) = tx2 the equilibrium is found for the set (a∗, p∗, b∗, q∗) = (0, 1
4 t,

1
2 ,

1
2 t).

(cf. Fleckinger & Lafay (2010), proof of proposition 5, p. 68)

In conclusion, due to set up and the particular timing structure of choosing a cat-

alog for the strategic variables price and location, Fleckinger & Lafay (2010) derive

di�erent results for the Hotelling model with linear transportation costs compared

to Anderson (1987). In terms of the location it is revealing that �rms share a com-

paratively shorter distance on one side of the market (a = 1
9 , b = 1

3 for a ≤ 1
2) under

catalog competition. It is then the leader's strategy to choose a remote location with

a low price while the follower bene�ting from the potential undercutting threat can

decide on a more centralized location and charges a higher price. This emphasizes

that players have to commit themselves di�erently under di�erent circumstances

which may turn out for their advantage or disadvantage. In Anderson (1987) the

�rst entrant commits himself by his location and draws an advantage from the irre-

56The indirect proof initially assumes that ΠB < ΠA with corresponding equilibrium pairs (a∗, p∗)
and (b∗, q∗). Since �rm B is free to undercut A with p∗ − ε this leads to a contradiction. Thus,
ΠB ≥ ΠA. (cf. Fleckinger & Lafay (2010), proof of Proposition 2, p. 67)

57By symmetry assume a ≤ 1
2
. If �rm B accommodates, he does not undercut, thus q > p for

b ≥ a. Since q > p �rm B exploits the consumers to its right market side. Thus, the goal is to
minimize y. Applying ∂

∂b
to the indi�erence condition yields: ∂C(y−a)

∂b
= ∂C(b−y)

∂b
→ C′(y−a)y′ =

C′(b− y)(1− y′) or (C′(y − a) + C′(b− y))y′ = C′(b− y). Two cases have to be di�erentiated.
Firstly, y ≤ b which leads to y′ > 0 and a decrease in b causes y to decrease. Then �rm B
seeks to minimize b. Secondly, y ≥ b implying y′ < 0 and an increase in b leads to a decrease
in y. Then �rm B seeks to maximize b. The optimum is, of course, to locate at b = y. The
pro�t-maximizing price follows directly from the indi�erence condition under consideration of
the best location choice: q = p + C(b − a). (cf. Fleckinger & Lafay (2010), proof of lemma 1,
p. 67)
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vocability of this choice by becoming the price follower. By contrast, in Fleckinger

& Lafay (2010) the commitment of the leader to set the strategic catalog leads to a

disadvantage. It is interesting to see that the nature of the product and the market

characteristics is the source for this asymmetry.58 Market peculiarities that imply

the requirement to chose the location (product position) and price simultaneously

give the second entrant the credible power of an attrition strategy. As the follower

he can wait for the leader to post his price before he chooses his position (and price).

However, if the circumstances are binding only for the location and allow for �exi-

bility in the pricing decision, then the �rst mover is far better o�. As the presented

models convincingly demonstrated, this instance has profound consequences for �rms

equilibrium locations and their respective distance.

Departing from the study of Economides (1984) the paper of Hinloopen & van Mar-

rewijk (1999) investigates the impact of a variation of consumers' reservation price

in a two stage sequential Hotelling game where location and price are each simulta-

neously chosen in one stage. Hinloopen & van Marrewijk (1999) re-examine previous

results on sellers' tendency to disperse in the market and develop a general frame-

work to analyze the e�ect of the reservation price on Nash equilibrium prices and

equilibrium locations.

The common model structure of a Hotelling duopoly under linear transportation

costs is used with locations of �rm A and B taken from the respective edges of the

interval [0, l] and denoted as ha and hb. Throughout it is assumed that �rms locate

symmetrically, i.e. ha = hb. The reservation price is variable but shall be the same

for all consumers in the market denoted as v. As a distinct model parameter α is

introduced. (cf. Hinloopen & van Marrewijk (1999), p. 737) α measures the market

size relative to the e�ective reservation price v
t with t de�ned as the transportation

cost for traveling one unit distance. Thus, total market length can be expressed as

l = αvt . Keeping l constant, it is obvious that a high value of α corresponds to a low

value of v and vice verser. Subsequently, the task is set to �nd equilibrium sets for

the price-location pair for the range of intermediate reservation prices 8
7 < α < 2

since the case of high reservation prices α < 8
7 is covered in Hotelling (1929)59 and

the case of low reservation prices α > 2 is dealt with in Economides (1984)60.

The subsequent analysis is separated into two parts that consider comparatively low

58Fleckinger & Lafay (2010) provide some examples for �exible catalogs. See their discussion section
on p. 65f.

59For the primary reference to check for this dependency see Hinloopen & van Marrewijk (1999),
p. 738 and their reference section.

60Recall that in Economides (1984) the market equilibrium for the duopoly is determined by two
local monopolists whose market areas do not intersect and who both completely serve their local
markets implying that a fraction of consumers (between the boundary and the city edge) are not
served. Thus for given l, the market size of the local monopoly is determined by the reservation
price v

t
= l

α
(which essentially accounts for the indi�erent consumer at the boundary). Since

the city shall allow both monopolies to thrive this implies 2 v
t
< l or α > 2.
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reservation prices (4
3 < α < 2, cf. Hinloopen & van Marrewijk (1999), pp. 738-742)

and high reservation prices (8
7 < α < 4

3 , cf. ibid., pp. 742-747).

• Part 1: Two cases have to be distinguished, �rms locating below the quartiles

ha = hb <
l
4 and between the center and the quartiles. For hi <

l
4(i = a, b) two

local monopolies exist. Now, a �rm could set a price such that the consumer

at the city edge has a positive net utility of purchasing which is equivalent to

his reservation price exceeding the total cost of buying (price plus transporta-

tion cost). Then demand comprises of hi plus the area extending to the most

distant consumer located at x = 1
t (v − pi) who is indi�erent between buying

or not. Alternatively, a �rm could charge a price such that the indi�erent con-

sumer sits at the city edge. Clearly, demand then extends the area twice of

the �rm's distance to the edge, i.e., 2hi. Based on this demand function the

pro�t functions are set up, using ∂Πi
pi

= 0 equilibrium prices p∗i and equilibri-

um pro�ts Π∗i = Π(p∗i ) are derived. From
∂Π∗i
∂hi

> 0 it follows that sellers are

inclined to move towards the quartiles (if they are located at hi <
l
4).

61 For
l
4 < hi <

l
2 demand and pro�ts correspond to Economides (1984), p. 355. How-

ever, since now a comparatively higher v is considered (that is for α < 2) two

supplementary remarks concerning the derivation of Nash price equilibria and

respective price bounds are made.62 (cf. Hinloopen & van Marrewijk (1999),

p. 741) Nevertheless, these do not modify the prediction on sellers tendency to

61The �rst demand-subcase yields Πi = pi(hi + v−pi
t

), setting the �rst derivative zero gives p∗i =
1
2
(v + thi). To be consistent recall that p∗i < v − thi (also charging the Nash price gives the

consumer at the city edge a positive net utility) which is equivalent to hi <
v
3t
, and for v

3t
< l

4

we get 4
3
< α. To prove sellers' relocation tendency, see that

∂Πi(p
∗
i )

∂hi
= 1

2
(v + thi) > 0 and

h∗i = − v
t
leading to Π∗i = − (p∗i )2

t
. In the second demand-subcase x = hi, thus p

∗
i = v− thi, and

Π∗ = 2hi(v − thi), and ∂Π∗

∂hi
= 2v − 4thi. Clearly, the maximum is h∗i = 1

2
v
t
. The market area

must su�ce 2hi <
l
2
, and ∂Π∗

∂hi
> 0 requires h∗i >

l
4
which is equal to α < 2.

62The �rst remark speci�es the range of α where the model of Economides (1984) can be applied
without restrictions which is for α exceeding an approximate value of 1.884. (cf. Hinloopen & van
Marrewijk (1999), equation (A.4), p. 750) This threshold indicates that by undercutting one's
rival the complete market can be served, that is the indi�erent consumers with their reservation
price leveling total buying costs on both sides of the mill are served. For instance, for higher
v (and lower α) the indi�erent consumer to the left of �rm A (locating ha from zero) falls out
of the city and would be located in the negative range. (cf. ibid, Fig. 3b, p. 740) The critical
condition for all to remain in the market is given by hi <

1
t
(v − pUCi ). Thus, for α < 1.884

the validity range for the price equilibria have to be adapted (see ibid., equations (6b) and
(6c), p. 742). The second remark states that the 'touching' Nash price equilbrium of Economides
(1984) on p. 357f does not necessarily exist. The existence is subject to a value of α > 12

7
. As

�rms move away from the center (i.e. equilibrium locations decrease) Nash prices increase. A
touching equilibrium will not exist if, starting from the competitive Nash price equilibrium pca,
a price (smaller than the Nash price of the 'touching' equilibrium pta) is reached such that the
indi�erent consumer at the city edge is served (this price is found in the 'competitive equilibrium
with full supply', cf. Hinloopen & van Marrewijk (1999), Fig. 4, p. 741). This happens to be the
case for comparatively high values of v (horizontal line for v is shifted upwards). By contrast,
the touching equilibrium is reached if the price for a competitive equilibrium in full supply lies
below pca which occurs for comparatively smaller values of v.
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move outwards if they are located at hi >
l
4 . Bringing these results together

for 4
3 < α < 2 the equilibrium location results with h∗i = l

4 .
63

• Part 2: Again the two cases hi ≤ l
4 and l

4 < hi <
l
2 have to be analyzed.

If locations are below the quartiles, already a competitive situation arises.

The economic interpretation is that as v increases (and α decreases) more

consumers are inclined to purchase which leads both rivals - even though they

are located comparatively far apart - to compete for the indi�erent consumer

at the market center at 1
2 .
64 It is clear that then p∗i = 1

2(v+ thi) (the consumer

at x = 0 enjoys a net utility surplus), and that the market area comprises

l ≤ [ha + v−pa
t ] + [hb + v−pb

t ].65 Further, pro�ts are Π∗i = p∗i
l
2 , and from part 1

follows
∂Π∗i
∂hi

> 0 which implies both �rms locating towards the quartiles (if they

are located at hi <
l
4). Next consider locations above the quartiles and the case

of market competition. Then, no net utility surplus obtains, thus p∗i = v− thi,
and Π∗i = p∗i (

l
2 + (hi−hj)).66 Subsequently for symmetrical locations,

∂Π∗i
∂hi

= 0

yields h∗i = v
t −

l
2 = l( 1

α −
1
2). Then, h∗i ≥ l

4 reduces to α ≤ 4
3 which illustrates

that under price competition �rms will locate within the market quartiles if
4
3 ≥ α ≥

8
7 .
67 Clearly, for higher v (and lower α) both �rms locate towards the

center with the closest locations for α = 8
7 at hi = 3

8 l and hj = 5
8 l which equals

a minimum distance of one quarter of the city length.

In conclusion, Hinloopen & van Marrewijk (1999) provide evidence that �rms in a

Hotelling duopoly have the tendency to agglomerate at the city center. However for

the assumption of symmetrical locations, they emphasize that �rms' optimal location

decisions are crucially dependent on the level of consumers reservation price. In

particular, they specify the corresponding bounds for which the Nash price-location

equilibrium to solve the underlying two stage simultaneous game exists such that

every consumer in the market is served. Accordingly, the closest �rms could get is a

quarter of the market length. Furthermore, in their model the economic intuition is

63Then the equilibrium price is given by the corner solution p∗i (h
∗
i ) = v − thi = v(1 − 1

4
α). (cf.

Hinloopen & van Marrewijk (1999), lemma 1, p. 742)
64Recall that if v is low in the limiting case α > 2 �rms only serve the customers in their local

monopoly region and some consumers close to the edges are not served at all which is originally
dealt with in Economides (1984). Also recall from part 1 in the �rst bullet above that for
intermediate values 4

3
< α < 2 no competition for hi <

1
4
occurs.

65Consequently, inserting pro�t-maximizing prices yields 2l− 2 v
t
≤ ha +hb, and for ha, hb ≤ 1

4
this

reduces to ha + hb ≤ l
2
. Consistency demands 2(l − v

t
) ≤ l

2
or α ≤ 4

3
.

66Pro�ts are described in a general form to show the location reaction function hi(hj). Demand
equals l

2
plus an additional term if �rms would locate asymmetrically. (cf. Hinloopen & van

Marrewijk (1999), p. 745)
67The lower bound is derived by ruling out the possibility of undercutting one's rival. The undercut-

ting price demands to take the whole middle market, thus pUCi = p∗j −t(l−hi−hj) = v−tl+thi.
Undercutting gives total demand of l and is discarded if ΠUC

i ≤ Π∗i which reduces to
l( v

2t
− l) ≤ v

t
(hi − hj) − h2

i + hihj − 3
2
lhi, and for symmetrical locations to hi ≤ − v

3t
+ 2

3
l.

Combining h∗i with the undercutting threshold gives v
t
− l

2
≤ 2

3
l − v

3t
or 8

7
≤ α.
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con�rmed, suggested by Hotelling and continuously revised by subsequent studies,

that �it is then pro�table for a �rm to move towards the market centre in order to

strive for a larger market share, but never so much that undercutting will be pro�table.

But the closer �rms locate (or, the more homogeneous the products are), the �ercer

competition will be, and hence, the lower the price the �rms can quote.� (Hinloopen

& van Marrewijk (1999), p. 747)

Recent work on the application of the Hotelling model analyzes the e�ects of entry

regulation measures on price and location equilbria as well as on consumer surplus.

Elizalde et al. (2015) motivate their work empirically by government action in the

Spanish province of Navarra where between 2001 and 2007 restrictive and relaxing

measures regulating the number of pharmacies have been enacted. For the authors

this raised the question whether the regulatory decisions have been e�cient in terms

of social welfare. In particular, two ways of regulation, �rstly, concessions on the

number of licenses, and secondly, minimum distance rules between �rms' locations

have been investigated in a Hotelling duopoly with quadratic transportation costs

and under a variation of the reservation price k.

For the �rst policy measure of conceding licenses a simultaneous choice of locations

and a sequential entry game are studied (prices are assumed to be always chosen

simultaneously after the location decision is made). The concession of licenses refers

to a �xed number of �rms constituting the market con�guration, thus the results of

Elizalde et al. (2015) have to be assessed in the context of the models of Economides

(1984) and Hinloopen & van Marrewijk (1999) for the simultaneous location game,

and Neven (1987), Economides et al. (2004) and Goetz (2005) in case of sequential

entry. Now, the �ndings of Elizalde et al. (2015) for a duopoly under simultaneous

entry reveal that the transportation cost scheme (linear or quadratic) does not make

signi�cant di�erences in terms of �rms' equilibrium locations in the range of low

reservation prices. (cf. Elizalde et al. (2015), p. 20f) Particularly, the results show

that according to d'Aspremont et al. (1979) for su�ciently high reservation prices

maximum di�erentiation obtains. As k decreases the demand e�ect dominantes the

price e�ect and �rms move towards the center. For further decreasing k �rms remain

at the quartiles. For very low k no pure location equilibrium obtains. In a duopoly

under sequential entry the same pattern as under simultaneous entry is observed.

Concerning the second policy measure, the impact of a variation in the minimum

distance d in the range [1
4 ,

1
2 ] at di�erent levels of reservation prices k is evaluated

in a sequential location subgame. For high k and over a comparatively high range

of k an asymmetric location equilibrium is observed. For d = 1
2 both �rms locate at

the city edges, as d decreases �rm 1 moves towards the center while �rm 2 remains

at its remote position. At a value of d = 1
3 the location pattern reverses and �rm 2

turns to the center while �rm 1 locates towards the city boundary. Due to the more
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central position �rm 1 gains higher demand and charges higher prices, thus taking

away a higher pro�t than �rm 2. Furthermore, the characteristic feature is an entry

deterring behavior, that is �rms' distance is kept at 2d and their distance to the

city boundaries does not exceed d. (cf. Elizalde et al. (2015), p. 22f) For low k no

�rst mover advantage pervails and �rms choose the quartiles, as k further decreases

the whole market can not be served. In terms of social welfare, consumer surplus is

higher under the minimum distance rule provided that k is high (and that demand

is inelastic), for low k no respective signi�cant di�erence between the two policy

measures is observed.

In a nutshell, the paper of Elizalde et al. (2015) contributes to previous work concern-

ing equilbrium location patterns by emphasizing the impact of regulatory measures

such as a minimum distance rules. It is revealing that under consideration of quadrat-

ic transportation costs a decrease in the minimum distance measure spurs the �rst

entrant to locate towards the center leading to an asymmetric location equilibrium.

Furthermore, a decrease in the reservation price increasingly levels the �rst mover

advantage. In sum, these �ndings complement the results of the previously presented

location models (e.g. Hinloopen & van Marrewijk (1999), Economides et al. (2004)).

To summarize this section, the general conclusion can be drawn that Hotelling's

original proposal that sellers tend to agglomerate at the market center which is re-

ferred to as a principle of minimum di�erentiation (PMD) can not be unilaterally

supported for pure Nash price equilibria. Notably, it has been shown that this con-

clusion depends on particular parameter assumptions. For instance, for quadratic

transportation costs pure Nash price equilibria emerge and subsequently location

equilibria for di�erent oligopoly settings can be analyzed. Furthermore, the level of

consumers' reservation price proved to be an important determinant for equilibrium

location patterns in a duopoly with �rms locating closer the higher the reservation

price, i.e. the more inelastic demand in the market. Particularly, for oligopolistic mar-

ket with more players (n ≥ 3) no perfect equilibrium in a simultaneous two-stage

price-location game exists which is due to �rms' inclination to move away from the

city edges. In addition, the literature suggests that the type of the underlying game

impacts the equilibrium outcome, that is whether simultaneous and sequential entry

under �xed cost is considered, or a Stackelberg setting is imposed on the strategic

variable decision, or that the revocability of the product choice and the �exibility

of the pricing strategy is assumed. Finally, evidence is provided for the impact of

regulatory measures concerning �rms' location choice on equilibrium results.

The limitations of this survey have already been mentioned in the introductory note.

At this stage it should be subsequently remarked that under modi�cations of the

Hotelling model that generalize the deterministic model structure and introduce
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probabilistic measures further conclusions concerning �rms' optimal location decision

can be drawn. More speci�cally, in models with heterogeneous consumer preferences

and multiple product characteristics the PMD can be restored. Pioneering work has

been contributed by de Palma et al. (1985) who relax the original assumption of a

�xed reservation price and conjecture that consumers have speci�c and varying asser-

tions about the o�ered products about which �rms are only informed on an aggregate

level. Consequently, the utility function is modeled by a probabilistic measure. This

implies that for su�ciently large heterogeneity in consumers' preferences, modeled

by the parameter µ in the logit function, �rms locate at the center in a location Nash

equilibrium. (cf. de Palma et al. (1985), proposition 1 and 2, p. 774f) In a consecutive

paper Rhee et al. (1992) extend the notion of heterogeneous consumer valuation to

unobservable product characteristics and thus model uncertainty in the buying de-

cision. They show that for su�cient heterogeneity minimum di�erentiation results.

Furthermore, Irmen & Thisse (1998) introduce multiple dimensions in which �rms

di�erentiate and suggest that the PMD holds for all dimensions except for the par-

ticular dimension which is weighted most importantly. Additionally, in an interesting

extension for the case of multi-dimensional product di�erentiation in an evolutionary

model Hehenkamp & Wambach (2010) provide evidence for the restoration of the

PMD when �rms play a dynamic game and optimize their strategy between o�ering

already established products and new products.

2.3 The E�ect of Market Shapes

2.3.1 Models with Circles

First insights on location equilibria for markets with circular shapes are established

by Eaton & Lipsey (1975).68 The immediate implication of the circular shape is that

the market is not bounded, thus, no �rms at the market periphery exist and all �rms

face the equal optimization problem locating in a neighborhood with two nearest

neighbors.

As a consequence, for Eaton and Lipsey's model 1 with ZCV di�erent results in com-

parison with the linear city are derived. In particular, equilibrium con�gurations on

68For a detailed description of their four model speci�cations refer to chapter 2 of this survey.
Moreover note that in footnote 4 on p. 33 Eaton & Lipsey (1975) make reference to a previ-
ous discussion on location equilibrium patterns in circular markets that is concerned with the
minimization of transportation costs and the existence of a socially e�cient outcome. (cf. Grace
(1970) and Samuelson (1970)) At least two points are of interest in this debate and cast a shadow
on upcoming studies. Firstly, emphasis is given to the signi�cance of relocation costs and its im-
pact on regulatory issues and policy planning. Secondly, provided that transportation costs are
increasing in distance traveled, it is shown that regardless of the functional form an equidistant
spacing leads to an e�cient location outcome in terms of minimal total transportation costs (for
the proof see Samuelson (1970), p. 342).
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the circle yield multiple equilibria. For instance, duopolists are not inclined to form

a pair at 1
2 since due to the unbounded spatial characteristic of the market for every

seller location total demand is split in halves, that is each player shares a market

boundary to his left and right and in sum sellers' distances are equally divided. As

for n = 3 a set of possible equilibrium locations for the third �rm obtains on the long

side of the other two competitors' markets. (cf. Eaton & Lipsey (1975), Fig. 3, p. 32)

Generally, locations are chosen according to the principle that no �rm holds a market

smaller than half of the market of any other �rm (i.e. condition 1.i). In contrast to

the linear city the socially optimal con�guration with an equidistant spacing of �rms

locating at a distance of 1
n is part of the equilibrium solution set for the circle in

model 1 since no peripheral �rms exist whose dominant strategy is to move inwards

and form a pair. (cf. Eaton & Lipsey (1975), p. 31f)

In model 2 (with a maximum loss conjecture) the socially optimal con�guration yields

the unique equilibrium for the circle since �rms' dominant strategy is to maximize

the short side of their market. (cf. Eaton & Lipsey (1975), p. 32f) The only deviation

from the 1
n -solution obtains for the case of a monopoly and a 'pure' duopoly (with

no anticipation of a third player entering) where in contrast to the line multiple

equilibria exist, that is �rms' locations can not uniquely be determined. In addition,

models 3 and 4 with variable consumer densities under ZCV and the maximum loss

conjecture respectively do not produce di�erent outcomes for the circle compared to

the bounded line. (cf. Eaton & Lipsey (1975), pp. 36 and 39)

In a nutshell, the di�erence in market shapes between a bounded line and a circle

in the models of Eaton & Lipsey (1975) (under a simultaneous location game and

no price competition) implies that the central position at 1
2 on the line loses its

importance. Consequently, multiple equilibria for the circle obtain whereas in the

linear city, for instance, the duopolists locate at the center and no equilibrium for

three �rms can be achieved. In addition, it becomes clear that the socially optimal

con�guration with 1
n -spaced �rms becomes more important in the treatment of cir-

cular market shapes and is, for instance, part of the solution set of model 1 under

ZCV. Furthermore, the following papers represent particular examples for the case

of equidistant location patterns in circular markets.

Pioneering work on spatial competition in a circular market is provided by Salop

(1979). His goal is to apply the mechanics of monopolistic competition to the di�er-

entiated product market on a circle and study the equilibrium properties under free

entry. Since two classes of products are considered and consumers either purchase

one unit of the di�erentiated good on the circle (according to their positive net utility

of consumption) or spend the remaining income on a homogeneous 'outside' good

the model can be considered as an extension of a monopolistic competition model a
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la Chamberlin.69

The set up follows a two stage order. In the �rst stage a set of potential entrants

simultaneously chooses to enter the market, in the second stage they simultaneously

compete in prices. The important assumption is that �rms' locations are exogenous-

ly given by an equidistant spacing along the circle. As a consequence, this reduces

�rms to charge an uniform price p in equilibrium and lays emphasis on the equil-

librium number of �rms n that can be still supported by the market under a zero

pro�t condition. Thus, technically the goal is to �nd the symmetric zero-pro�t Nash

equilibrium. (cf. Salop (1979), p. 145)

The optimization problem of the L evenly distributed consumers per unit distance

on the circle with unit circumference is to maximize their net utility v− c|li− l∗|−pi
with v as their reservation price70, pi and li as the price and location of �rm i, l∗

as the most preferred brand speci�cation (the consumer's location), and c as the

constant marginal rate of transportation. Evidently, linear transportation costs are

assumed. (cf. ibid.) Subsequently, the case of a monopoly region and a competitive

region are distinguished.71 Contingent upon v a monopolist captures consumers up

to a maximal distance of xm = v−p
c on its right and left side, thus gains total demand

of qm = 2Lxm. By contrast, if �rms compete an indi�erent consumer is located at

xc = 1
2c(pi ± pi∓1 + c

n) and total demand is qc = 2Lxc. This translates into a total

demand curve where the monopoly region exhibits a smaller slope than the compet-

itive region and a kink marks the spot where the monopoly regions of two neigh-

boring �rms touch.72 (cf. Salop (1979), Fig. 1, p. 143) Now, the market equilibrium

requires the two standard conditions that, �rstly, marginal revenue equals marginal

cost ∂Π
∂q = ∂AC

∂q = m, and secondly, price equals average cost p = AC = m + F
q

(with F as the level of �xed costs). Further note that provided all consumers in the

market are served equidistant spacing requires q = L
n . Then, the price and number

of �rms in equilibrium are determined as pm = m + c
2nm

and nm =
√

cL
2F for the

monopoly region and pc = m + c
nc

and nc =
√

cL
F for the competitive region.73 (cf.

Salop (1979), p. 147) At the kink the tangent to the average cost curve is not de�ned,

however, since the kink marks the interaction point of the monopoly regions of two

�rms the monopolistic demand function qm evaluated towards the direction of one

69For an introduction into Chamberlinian models see for instance chapter 7.2 in Tirole (2003).
70Consumption of the di�erentiated product only occurs if v > 0 which is equivalent to the utility

from consuming the di�erentiated product exceeding the utility from consuming the outside
good u > s. (cf. Salop (1979), p. 142)

71The case of a 'supercompetitive' region refers to an undercutting strategy and proofs not to be
pro�table since the equilibrium price does su�ciently exceed marginal cost. (cf. Salop (1979),
p. 148f)

72Limits and possibilities of equilibria at kinks in the Hotelling model (bounded [0, 1]-line) are
studied in Economides (1984) and Economides (1993).

73Π = p(q)q yields ∂Π
∂q

= p′q + p, use ∂p
∂qm

= − c
2L

and ∂p
∂qc

= − c
L
to determine the prices, and the

de�nition of average costs and q = L
n
to determine n.
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nearest neighbor (i.e. qm = Lxm = L
n ) can be used to express the equilibrium price

pk = v − c
n . Subsequently considering p = AC, the equilibrium number of �rms at

the kink follows with v − m = nk
F
L + c

nk
. (cf. Salop (1979), p. 148) These results

establish the economics of monopolistic competition for product di�erentiation on

the circle. Firms price above marginal cost with zero pro�ts. The mark up declines

as the number of �rms rises, in terms of the exogenous variables the mark up is a

positive function of transportation costs c and �xed costs F and a negative func-

tion of the market size L (number of consumers per unit distance). Corresponding

relations obtain for the equilibrium number of �rms. Furthermore, Salop emphasizes

the counterintuitive equilibrium behavior at the kink solution where an increase in

average costs leads to a decrease in equilibrium prices.74 The economic argument

is given that higher costs cause pro�ts to become negative, as a result some �rms

exit the market and the remaining competitors enjoy higher demand and economies

of scale leads them to charge lower prices in the subsequent equilibrium. (cf. Salop

(1979), p. 149)

The �nal part of the paper is concerned with welfare implications. Firstly, it is shown

that a local monopolist provides a positive net surplus which implies that the entire

circular market should be served.75 (cf. Salop (1979), p. 150f) Secondly, the number

of �rms that maximizes total market surplus is derived and found to be lower than

the equilibrium number of �rms.76 (cf. Salop (1979), p. 151f)

The paper of Salop (1979) represents a classical study of monopolistic competition

in a circular market providing solutions for equilibrium prices and the equilibrium

number of �rms in the case of local monopolies, market competition as well as the

boundary case of touching local monopoly markets. To keep his analysis tractable,

however, he does not endogenize �rms' location choice in his model but rather im-

poses an equidistant spacing pattern.

74Graphically the AC-curve moves to the right and the kink solution slides down the monopoly
part of the demand function. (cf. Salop (1979), Fig. 8, p. 150)

75The proof proceeds in two steps. (1) The net surplus of a �rm is given by the value of its
production (quanti�ed by the product price p) subtracting respective costs (m,F ). Recall that
the di�erentiated product is sold to all L consumers over a distance x up to the indi�erent
consumer (located at x∗) whose reservation price v equals transportation costs cx and price of the
product p. The �rm sells to this consumer at the lowest possible price, thus x∗ = v−m

c
. Generally,

p and thus net surplus B can be stated as a function of the distance x. Total net surplus sums up
the value of the sold products up to the critical distance where the indi�erent consumer is located:

B = 2L
∫ x∗

0
(p(x)−m)dx−F = 2L

∫ x∗
0

(v−cx−m)dx−F = 2Lx∗(v−m−cx∗+ 1
2
cx∗) = L

c
(v−m)2.

Then, B ≥ 0 reduces to v −m ≥
√

cF
L
. (2) Monopoly pro�ts are Πm = (p(qm) −m)qm − F =

(v− c
2L
qm −m)qm −F . Let qmaxm solve the �rst order condition, then Πm(qmaxm ) ≥ 0 reduces to

v −m ≥
√

2cF
L
. Thus, Πm ≥ 0 always guarantees B ≥ 0.

76In sum n �rms serve 2n local markets with the indi�erent consumer located at the market
boundary 1

2n
. Recall that L is the number of consumers per unit distance. Thus, accordingly to

the preceding footnote, total surplus for the whole circle is W = 2n
∫ 1

2n
0

(p(x)−m)Ldx− nF =

2n
∫ 1

2n
0

(v − cx − m)Ldx − nF . Solving the integral and evaluating ∂W
∂n

= 0 gives n∗ = 1
2
cL
F
.

Clearly, n∗ = 1
2
nc and n

∗ < nm.

42



Chapter 2. Centrality and Spatial Di�erentiation - A Literature Survey

The study of Economides (1989) serves to demonstrate the existence of equilibri-

um states for prices and location choices in circular markets and vindicates Sa-

lop's assumption of an equidistant location pattern by endogenizing �rms' opti-

mal location decisions. In particular, he develops a model that proceeds in three

stages. Firstly, �rms choose to enter, secondly, they simultaneously take their opti-

mal location, and thirdly, given the resulting location setting they simultaneously

choose their pro�t-maximizing prices. Consumers' utility function is taken to be

Uω = m − pj + Vω(xj) = m − pj + k − (xj − w)2 and comprises a budget endow-

ment m, a constant reservation price k as well as the disutility covering the product

price pj and the transportation cost term.77 Transportation costs are assumed to

increase quadratically in distance traveled. Furthermore, consumers are assumed to

be distributed uniformly with density µ over the circumference and �rms incur total

production costs of Cj = F + cj(qj) with an increasing marginal cost function, i.e.,
∂cj
∂qj
≥ 0. (cf. Economides (1989), p. 180f)

Now, each stage is separately analyzed following the principle of backward induction.

The starting point for the treatment of the price game are the demand functions (ex-

emplarily for �rm j) for a local monopoly DM
j = 2µ

√
k − pj and for the case of price

competition between nearest neighbors Dj =
pj+1−pj

2(xj+1−xj) +
pj−1−pj

2(xj−xj−1) +
xj+1−xj−1

2 .78

Based on these the total demand curve for a �rm proves to be concave leading to a

unique noncooperative equilibrium for the price subgame that depending on the level

of the reservation price k yields a solution for an equilibrium of local monopolists

(�rms' markets do not overlap and not all consumers are served), a competitive equi-

librium (�rms' markets overlap), and kink equilibria (�rms' markets touch).79 (cf.

Economides (1989), p. 180�) The solution to the price game is denoted with p∗(x)

where vector element j stands for the equilibrium price of �rm j and each p∗j is a

function of the �rms locations x = (x1, ...xn). Subsequently, to solve the location

game in the second stage for each �rm j the objective function Π̂j(x,p
∗(x)) has to

be maximized. It is shown that for the case of a competitive price equilibrium (suf-

�ciently high k) and constant marginal costs c the symmetric equidistant location

77The model structure is analogous to previous work, e.g. Economides (1984), see chapter 2 of this
survey.

78Monopoly demand accounts for the consumer who is - contingent upon his reservation price k
- indi�erent between buying or not, i.e. pj = Vω(xj), with the position of this consumer at
x∗j =

√
k − pj . Demand under price competition is the sum of the expressions for the location

of the consumer who has equal utility between buying at nearest competitors j and j − 1 and j
and j + 1 respectively, that is the sum of the market boundaries of �rm j to its right and left
side.

79Exemplarily, the case of price competition between j and j + 1 is considered. The price bounds
between nearest neighbors lie on the monopoly curve. The graphical representation is that the
monopoly demand curve engulfs the linear demand curves for all potential competition between
neighboring �rms. Thus, the total demand curve generally comprises sections of the concave
monopoly demand curve and sections of decreasing linear demand curves. In sum a concave
structure obtains. (cf. Economides (1989), Fig. 1, p. 182) In addition, the uniqueness of the
equilibrium is linked to the second derivatives of the pro�t function. (cf. Economides (1989),
Lemma 1, p. 190)
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pattern where �rms are separated by a distance d leads to equal equilibrium prices

p∗j = p = c+d2 and further maximizes Π̂j . (cf. Economides (1989), p. 186f) Based on

the expression of the objective function Π̂j and equilibrium prices and locations equi-

librium pro�ts for each �rm Π∗ = µ
n3 −F as a function of the number of �rms, �xed

costs and the marked size obtain. This allows the number of �rms to be endogenized

by demanding Π∗(n∗) ≥ 0 and Π∗(n∗ + 1) < 0. Thus, the equilibrium number of

�rms is given by the integer of the root 3

√
µ
F . (cf. Economides (1989), p. 187) Finally,

concerning welfare issues Salop's �nding is vindicated that the equilibrium number

of �rms n∗ under free entry exceeds the number of �rms that maximizes total surplus

(cf. Economides (1989), p. 188f).

In conclusion, Economides (1989) proves that in a three stage price-location entry

game on the circle the setting of symmetrical equidistant locations with identical

prices above marginal cost is an equilibrium with the number of �rms proportional

to the ratio of the market size with the level of �xed production costs. In comparison

to the linear city it is striking that the use of quadratic transportation costs allows

for an equidistant pattern. However, it is noted by the author that the model is

restricted to the instance that �the existence of other locational (varietal) structures

as prefect equilibria, although unlikely, cannot be ruled out.� (Economides (1989),

p. 185)

Finally, in a more recent study Madden & Pezzino (2011) provide an example for a

model of product di�erentiation on the circle with an additional �rm located at the

center of the circle and o�ering a homogeneous product. The focus of their work are

the resulting welfare implications where a comparison with the results of the Salop

model highlights the impact of the central �rm.

The model proceeds in three stages. In stage 1, a �rm from a set of potential candi-

dates chooses to take the central position, in stage 2, N �rms enter the market and

take equidistant positions on the circumference, and in stage 3, all �rms compete si-

multaneously in prices. (cf. Madden & Pezzino (2011), p. 7) Furthermore, the model

assumes uniformly distributed consumers on the perimeter with unit length, demand

is su�ciently inelastic so that every consumers purchases one unit of the good, the

location pattern is exogenously imposed and symmetric, transportation costs on the

perimeter are linear in distance and the coe�cient is set to be t = 1. Moreover,

transportation costs to purchase at the central �rm are δ > 0, entry costs for the

perimeter �rms are F and for the central �rm G. Prices of the perimeter �rms are

denoted with Pi, i = 1, ..., N and of the central �rm with Pc. (cf. Madden & Pezzino

(2011), p. 4)

To derive the market equilibrium (following backward induction) demand and prof-

it functions are set up based on the position of the indi�erent consumer on the

perimeter. In addition, to account for the central �rm the indi�erence condition
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Pi+z = Pc+δ is considered for a consumer at the closest location z to the perimeter

�rm i. As a result, the Nash equilibrium prices are contingent upon the number of

perimeter �rms N . For small N perimeter �rms and the central �rm have positive

Nash prices (P ∗i , P
∗
c > 0), for intermediate N the central �rm charges the competitive

price (P ∗c = 0,Πc = 0) and does not gain market share, however its presence creates

competitive pressure on the prices of the perimeter �rms, and �nally, for large N

the central �rm is outperformed (Πc = 0) and the Salop price equilibrium obtains.

(cf. Madden & Pezzino (2011), Lemma 2, p. 9) The pro�t functions for the equilibri-

um Nash prices are continuous in N and allow to solve for the zero pro�t condition

Π(c,N) = F (c = 0 if no central �rm exists and c = 1 if a central �rm has entered).

In line with the solution of the equilibrium Nash prices the equilibrium number of

perimeter �rms for c = 1 is distinguished for three regimes according to the level of

�xed costs, obviously for c = 0 the solution of the Salop model obtains. (cf. Madden

& Pezzino (2011), p. 10) Using the equilibrium number of perimeter �rms from the

second stage, the decision to take the position of the central �rm in the �rst stage is

solved. Intuition is con�rmed that for su�ciently high �xed costs G or for low levels

of �xed costs for perimeter �rms F entry of the central �rm is deterred, and for

su�ciently low G (and F intermediate or high) a central �rm enters the market. The

corresponding threshold for G is an increasing function in F and further determined

by δ. (cf. Madden & Pezzino (2011), Theorem 2, p. 10 and Fig. 2, p. 11)

Finally, according to the welfare analyses social optima80 consist of two exclusive

states, that is the market should either be served only by perimeter �rms (N 6=
0, c = 0) or only by a central �rm (N = 0, c = 1). (cf. Madden & Pezzino (2011),

p. 6) A comparison of the social optima with the market equilibrium yields the stan-

dard result of excessive product di�erentiation provided that G is su�ciently high

and F is low. In addition for high F , the cases where the social optimum suggests

c = 1 but the market equilibrium either reveals N > 0 and c = 0 (for high G), as well

as N > 0 and c = 1 (for low G) are covered. The striking result emerges for a com-

bination of low entry costs G and F . As F is low the social optimum suggests that

only perimeter �rms should serve the market and the standard result is reproduced

(the equilibrium also covers the central �rm). However, for intermediate F it turns

out that the number of perimeter �rms is too low compared to the social optimum

which is in contrast to the standard result. (cf. Madden & Pezzino (2011), p. 13)

In sum, the study of Madden & Pezzino (2011) illustrates the example for an intro-

duction of a measure of centrality into markets with a circular shape. Subsequently,

the paper demonstrates the impact of such an extension on market equilibrium prices

and the equilibrium number of �rms. In addition, the e�ects on welfare and the emer-

gence of potential market failures are shown. Insights on the determinants of location

80In accordance with Salop (1979) social optima represent market con�gurations that minimize
total costs due to entry and transportation. (cf. Madden & Pezzino (2011), p. 5)
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patterns, however, are not provided since, as in Salop (1979), a symmetric location

con�guration is assumed.

To sum up this subsection, one important common property of spatial competition in

bounded linear and circular market geometries is the notion of localized competition.

For instance, according to Mulligan & Fik (1989) equilibrium prices are predom-

inantly determined by the locations and marginal production costs of the nearest

neighbors. Moreover, when assessing the in�uence of further neighboring �rms, a

dominant distance decay e�ect on equilibrium prices is inherent for spatial compe-

tition under linear transportation costs. However, di�erences between the bounded

linear and the circular city lie in the determinants of equilibrium prices. Whereas

on the circle equilibrium prices obtain as a function of the relative distance between

�rms, in the linear city the spatial boundary conditions lead to a dependence of the

price on the length of the market as well as on �rms' locations. (cf. Mulligan & Fik

(1989))

As regards the location equilibrium, issues on the existence of a perfect subgame

equilibrium for the linear city have already been addressed in section 2 of this sur-

vey. For circular market shapes the unique existence appears to be challenging to

prove, however, as was demonstrated in Economides (1989) a symmetrical location

con�guration serves as the prominent candidate for a subgame perfect equilibrium.

As is demonstrated in the seminal paper of Salop (1979), a consequence of the notion

of localized competition is that �rms retain monopoly power and set prices above

marginal costs. As the number of �rms increases the markup and pro�ts decrease,

in the limiting case of a zero pro�t condition �rms still act as local monopolists.

However, this prediction does not generally hold regardless of the market shape as

will be presented - among other things - in the next subsection.

2.3.2 Models with Market Centers

2.3.2.1 Non-uniform consumer distributions

First �ndings on the impact of the consumer distribution on �rms' location decision

in the Hotelling model are provided in Eaton & Lipsey (1975). The optimal location

of a �rm is critically determined by the structure of the distribution which is exem-

pli�ed by the relation of modes to the number of �rms. As a result, �rms maximize

their market area according to the shape of the distribution, in a special case they

form pairs.81 Eaton & Lipsey (1975) did not, however, analyze how the consumer

distribution a�ects price and location competition. This is, for instance, to be done

81For details refer to Eaton & Lipsey (1975) pp. 33-39 and chapter 2 of this survey.
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in the paper of Neven (1986) where in a simultaneous two-stage price-location game

with two players under quadratic transportation costs on the unit line (x ∈ [0, 1])

the market equilibrium contingent upon the density distribution c(x) (and the cu-

mulative density C(x)) is examined.82 Speci�cally, c(x) is assumed to be continuous,

di�erentiable and symmetric with one mode at the center x = 1
2 . (cf. Neven (1986),

p. 122) As usual, the indi�erent consumer sits at α = p2−p1

2(x2−x1) + x1+x2
2 , then de-

mand and pro�ts respectively for �rm 1 follow with Π1 = p1C(α), and for �rm 2

Π2 = p2C(1− α).

To derive the solution for the game three propositions are made. Firstly, it is shown

that under the given pro�t functions a Nash price equilibrium requires c(x) to be con-

cave. The intuition is that the concavity of c(x) is linked to the existence of a single

peak. A single peak of c(x) in turn requires pro�ts to be concave and single-peaked

(e.g. for �rm 1 ∂2Π1

∂p2
1
> 0 and ∂3Π1

∂p3
1
< 0 over the range α ∈ [0, 1

2 ]) which reduces to

c′′(x) < 0. (cf. Neven (1986), p. 123) Clearly, the set of possible concave distributions

is bounded by the two extremes of a rectangular and a triangle distribution.83 Sec-

ondly, the unique price equilibrium for symmetrical locations x1 = 1− x2 is derived

with p∗1 = p∗2 = 1−2x1

c( 1
2

)
.84 Moreover, the uniqueness for the symmetrical case is proved

by showing that the convex price reaction functions intersect in one de�ned point.

(cf. Neven (1986), p. 123f) Thirdly, pro�ts Π1(p∗1) and Π2(p∗2) are maximized with

respect to x1 = 1 − x2 which reduces to the location equilibrium x∗1 = 1
2 −

3
4

1
c( 1

2
)
.

(cf. Neven (1986), p. 124f) This proves that for the concave family of consumer dis-

tributions and provided that �rms locate symmetrically the optimal locations are at

the city edges if 1 ≤ c(1
2) ≤ 3

2 , and optimal locations continuously move towards the

center for increasing values of c(1
2) in the interval 3

2 ≤ c(1
2) ≤ 2. Thus, the closest

position is at x∗1 = 1
8 and x∗1 = 7

8 under a triangular distribution.

In conclusion, the study of Neven (1986) shows that in a duopoly �rms tend to lo-

cate where consumer are concentrated. This is exempli�ed by the comparison of the

contracting forces due to quadratic transportation costs and the attracting forces

due to an agglomeration of consumers at the city center. In particular, he provides a

unique solution for a two-stage price location game under the restriction of symmet-

rical locations and concave distributions. The balance of gaining higher demand and

being exposed to �ercer price competition is described by equilibrium locations as a

function of the density peak with the extreme solutions of maximally di�erentiating

(and con�rming results of d'Aspremont et al. (1979)) or coming as close as 3/8 to

the market center (x∗1 = 1
8 , x

∗
1 = 7

8).

82Demand is assumed to be perfectly inelastic.
83It follows that the maximum value of c(x) is bounded by [1, 2]. The mass must equal one, thus,

for a rectangular distribution c(x) = 1 for all x on the domain, and for a triangular distribution
the peak is at c( 1

2
) = 2.

84 ∂Π1
∂p1

= C(α)−p1
c(α)

2(x2−x1)
= 0, thus p1 = 2(x2−x1)C(α)

c(α)
, similarly, ∂Π2

∂p2
= C(1−α)−p2

c(1−α)
2(x2−x1)

= 0

and p2 = 2(x2 − x1)C(1−α)
c(1−α)

. In equilibrium, p∗1 = p∗2 which equals α = 1
2
, and then C( 1

2
) = 1

2
.
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The study of Tabuchi & Thisse (1995) scrutinizes equilibrium states in a Hotelling

duopoly under a triangular consumer density distribution (in comparison to a uni-

form density) in both a simultaneous, and a sequential location game. Their paper

stresses the importance of asymmetric location equilibrium patterns.

As in Neven (1986) quadratic transportation costs are assumed and prices are cho-

sen simultaneously after locations are taken. Moreover, an important assumption

in their model is that �rms are not restricted to locate on the interval [0, 1] and

can choose any position on the real line. For locations x1, x2 (taken from the city

origin) and prices p1, p2, pro�ts are Π1 = p1F (x̂) and Π2 = p2(1 − F (x̂)) with, as

expected, the indi�erent consumer at x̂ = p2−p1

2(x2−x1) + x1+x2
2 and f(x) denoting the

density distribution and F (x) the cumulative density. Speci�cally, for x ∈ [0, 1] the

triangular density can be expressed by f(x) = 2− 2|2x− 1| and the uniform density

is, of course, f(x) = 1.85 (cf. Tabuchi & Thisse (1995), p. 215) The price game and

�rst order conditions are analogue to Neven (1986), thus Π∗1 = 2(x2 − x1)F
2(x̂)
f(x̂) and

Π∗2 = 2(x2 − x1) (1−F (x̂))2

f(x̂) . Note that x̂(p∗1, p
∗
2) has to be distinguished for the trian-

gular density for the regions x̂ < 1
2 (or x1 + x2 < 1) and x̂ > 1

2 (or x1 + x2 > 1). (cf.

Tabuchi & Thisse (1995), p. 217)

To solve the location game the �rst order conditions at p∗1 and p
∗
2 with respect to x1

and x2 are used.86 For the simultaneous location game the solution for the uniform

distribution is obtained by solving the two equations Π∗1(p∗1, p
∗
2) and Π∗2(p∗1, p

∗
2) in

the two variables x1 and x2.
87 This yields a symmetric location equilibrium in the

outside quartiles of the [0, 1]-city and gives the 'real' solution of the maximum di�er-

entiation result of d'Aspremont et al. (1979). (cf. Tabuchi & Thisse (1995), p. 218)

The interesting result for the triangular distribution is that in a simultaneous loca-

tion game symmetric equilibria do not exist.88 The economic rationale is that due to

the demand e�ect players can increase their pro�ts by moving towards the center if

they are located far apart, and owing to the price e�ect pro�ts can be increased by

moving outwards if they are located closely. An asymmetric location equilibrium ex-

ists and assigns one �rm a location on [0, 1] and the other a location outside [0, 1].89

85It is evident that the triangular distribution comprises two branches, for x ∈ [0, 1
2
] f(x) = 4x,

and for x ∈ [ 1
2
, 1] f(x) = 4(1− x).

86Exemplarily:
∂Π∗1
∂x1

= ∂
∂x1

(2(x2 − x1)F
2

f
) = −2F

2

f
+ 2(x2 − x1) ∂

∂x1
(F

2

f
) = −2F

2

f
+ 2(x2 −

x1)[2F ∂F
∂x1

∂x̂
∂x1

1
f
− F2

f2
∂f
∂x1

∂x̂
∂x1

] = −2F
2

f
+ 2(x2 − x1)[2F ∂x̂

∂x1
− F2

f2
∂f
∂x1

∂x̂
∂x1

]. (cf. Tabuchi & Thisse

(1995), equation (8a), p. 217)
87Recall that f = 1 and F = x̂. (cf. Tabuchi & Thisse (1995), equations (10a) and (10b), p. 218)
88In the proof small deviations from symmetric locations are considered and pro�ts for these loca-

tions are compared to the pro�ts under symmetric locations. In any case deviations from the
symmetric pattern yield higher pro�ts. This also becomes clear from the structure of the density
distribution since at the center x = 1

2
it shows a peak, thus f ′(x = 1

2
) is discontinuous and

therefore the location reaction functions are discontinuous. (cf. Tabuchi & Thisse (1995), p. 219f
and Fig. 1)

89The exact Nash equilibrium locations are x∗1 = 1 − 5
√

6
18
≈ 0.319 and x∗2 = 1 +

√
6

9
≈ 1.272, and

by symmetry x∗1 = −
√

6
9
≈ −0.272 and x∗2 = 5

√
6

18
≈ 0.680 respectively.
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(cf. Tabuchi & Thisse (1995), Proposition 3, p. 220) In comparison with the uniform

distribution equilibrium pro�ts under the triangular distribution for both �rms are

lower. This indicates the impact of the price e�ect. Even though �rms move com-

paratively closer towards the region where consumer density is concentrated, price

competition drives pro�ts down. (cf. Tabuchi & Thisse (1995), p. 221) The solution

for the sequential location game also yields an asymmetric location equilibrium. As

intuition suggests, the �rst entrant enjoys a �rst-mover advantage and irrespective

of the distribution (uniform or triangular) chooses the central place for his location

x∗1 = 1
2 whereas the second entrant locates outside of [0, 1].90 Again a comparison

of pro�ts between the uniform and the triangular distribution suggests higher price

competition in the latter case. (cf. Tabuchi & Thisse (1995), p. 222)

To conclude, the paper of Tabuchi & Thisse (1995) shows that irrespective of the

timing of the location game a higher concentration of consumer density around the

center leads �rms to locate close by. Moreover in conjunction with the results of

Neven (1986), it is illustrated that the speci�c form of the distribution critically

impacts the market equilibrium. In particular, a triangular distribution implies an

asymmetric location con�guration and rules out the existence of symmetrical con�g-

urations. As will be shown by the next paper, this argument also applies to convex

and log-concave density functions whereas as was shown in Neven (1986) concave

and symmetric densities allow for symmetric location equilibria.

In the paper of Anderson et al. (1997) a rigorous examination of the impact of the

consumer distribution on location equilibria in the standard simultaneous two-stage

price-location game for a duopoly is conducted. They provide general expressions for

the perfect market equilibrium dependent on the consumer distribution and condi-

tions for the existence and uniqueness of the perfect subgame location equilibrium

states. Thus, an important contribution of the study is to determine the properties

for the density function f(x) such that (symmetric or asymmetric) location equilibria

emerge.91

The model of Anderson et al. (1997) is the standard model with quadratic trans-

portation costs utilized in previous studies (e.g. d'Aspremont et al. (1979), Neven

(1986), Tabuchi & Thisse (1995)). The critical assumption, however, is to impose

the condition of log-concavity on the density f(x) in order to easily set up the equi-

librium of the price subgame. (cf. Anderson et al. (1997), Assumption 1, p. 106)

90The equilibria for the uniform case are x∗1 = 1
2
and x∗2 = 3

2
(and by symmetry x∗2 = − 1

2
), and for

the triangular case x∗1 = 1
2
and x∗2 = 1.443 (and x∗2 = −1.443). (cf. Tabuchi & Thisse (1995),

p. 222)
91Tabuchi & Thisse (1995) already anticipate that restrictions on the density functions to provide

the existence and nonexistence of symmetrical location equilibria are lacking: �a symmetric
equilibrium might not exist even with a smooth consumer density if this density increases very
sharply near the center. Clearly, more work is called for here to determine the conditions under
which symmetric equilibrium never arises.� (Tabuchi & Thisse (1995), p. 220)
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Exploiting the �rst order conditions (f.o.c.) of the pro�t functions Π1 = p1F (ξ) and

Π2 = p2(1 − F (ξ)) reveals that a unique solution for the location of the indi�er-

ent consumer given the pro�t-maximizing prices (that solve the f.o.c.) denoted with

ξ := ξ(p1, p2) exists. This is a consequence of the log-concavity assumption. (cf. An-

derson et al. (1997), equation (2.3), p. 107) It follows that the f.o.c. in the �rst stage

location game reduce to an expression in terms of f(ξ) and F (ξ) and to derive the

optimal location pair (x∗1, x
∗
2) a solution ξ∗ for this expression has to be obtained.

(cf. Anderson et al. (1997), equation (2.8), p. 108) Thus, the subgame perfect equi-

librium (x∗1, x
∗
2, p
∗
1, p
∗
2) is a result of the properties of f and F (that determine ξ∗)

and is generally determined by the shape and the modes of f . (cf. Anderson et al.

(1997), Proposition 1, p. 109) In the special case of a symmetric distribution with the

median at x = 0 the location equilibrium is symmetric and prices are identical (cf.

Anderson et al. (1997), corollary 1, p. 116), and the comparative static results are in

line with the predictions of Neven (1986). A higher density at the center f(M = 0)

leads to higher price competition and lower prices, and to agglomeration and lower

values for x∗1 and x∗2. Furthermore, as the variance of f increases in the symmetric

example equilibrium prices and locations rise, that is tighter distributions lead �rms

to cluster at the center. (cf. Anderson et al. (1997), p. 110f)

To prove the existence and uniqueness of the subgame perfect equilibrium (in ad-

dition to the log-concavity of f) two conditions are required. (cf. Anderson et al.

(1997), Proposition 2 and the proof, p. 115) Firstly, for given f there must not be

an incentive for one �rm to change its location and jump over to its rival's side.92

Secondly, the degree of concavity of f is bounded.93 This implies that if f is, for

instance, symmetric and log-concave this is not su�cient for an (symmetric) equi-

librium to exist, rather f must not be 'too' concave.94 In addition, given that f

ful�lls the restriction on the concavity for densities with a high degree of asymmetry

a subgame perfect equilibrium does not exist since then the straddle condition is

violated.95 Thus, in sum the degree of concavity and asymmetry of the density f

determines the existence of the location equilibrium and the perfect subgame equi-

librium.

A further interesting point is raised by generalizing the results of Tabuchi & Thisse

(1995) who demonstrated the nonexistence of symmetric location equilibria for a

92According to Anderson et al. (1997) this is stated as the 'straddle condition'. (cf. ibid., p. 113f)
93More precisely, an auxiliary functionH(x) determined by f and F shall be strictly pseudoconcave.

(cf. Anderson et al. (1997), Assumption 2 and equation (4.1), p. 114) Moreover, the example is
provided that for a symmetric distribution f with medianM the requirement of pseudoconcavity
of H(x) reduces to the condition that the measure for the normalized concavity of f is restricted

by − f ′′(M)

(f(M))3
< 8. (cf. ibid., equation (4.2), p. 114)

94IfH(x) is strictly pseudoconcave then ξ∗ is unique. Moreover, ifH(x) is not strictly pseudoconcave
multiple equilibria obtain (see the examples of the logistic density on p. 116 and the Laplace
density on p. 122).

95In general, the impact of the asymmetry of f has to be analyzed numerically on a case by case
basis. An example is provided for the Weibull density. (cf. ibid., p. 117)
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triangular density. Anderson et al. (1997) reduce the stability of the location equi-

librium to the concavity properties of f .96 (cf. Anderson et al. (1997), Proposition

3, p. 118) This implies that for symmetric, log-concave densities with moderate con-

cavity (− f ′′(x)
(f(x))3 < 8) a symmetric location equilibrium is unique and stable, for

intermediate concavity (8 < − f ′′(x)
(f(x))3 < 24) the symmetric location equilibrium is

not stable and unique, and multiple equilibria obtain where potentially asymmetric

location equilibria coexist; eventually, if concavity is high (− f ′′(x)
(f(x))3 > 24) symmetric

equilibria cease to exist, and asymmetric equilibria possibly obtain (if they ful�ll the

straddle condition).97 The economic rationale behind this in�uence of the shape of

f is that asymmetric locations reduce competition and allow to charge comparative-

ly high prices in cases where consumer density is highly concentrated at the market

center (i.e., for highly concave f), whereas symmetric locations intensify competition

for the indi�erent consumer at the point of concentration if f is symmetric.

In conclusion, Anderson et al. (1997) demonstrate the in�uence of the properties

of the density distribution f on the market equilibrium and provide the critical

conditions for its existence. Economically, the tendency of �rms to agglomerate is

explained by the concentration of demand which is attributable to the concavity

properties of f . They demonstrate that under mild market conditions symmetric

location equilibria exist, subsequently competition can be attenuated by choosing

asymmetric locations; �nally, under harsh market conditions equilibria do not exist.

Two recent studies illustrate the relationship of a modi�ed uniform consumer distri-

bution, and of a location cost distribution with �rms' pro�t maximizing strategies

in the Hotelling model. They serve as particular interesting examples since they do

not directly test variations in the speci�cs of the density distribution on the market

equilibrium but o�er alternatives to model these e�ects. In particular, these studies

demonstrate that nonlinear variations in market characteristics that subsequently

in�uence the structure of market demand (and make certain market areas more

attractive than others) have impacts on �rms' pro�ts and their pro�t-maximizing

behavior.

96In particular, they formulate an expression of the steady state point (i.e. the location equilibrium
x∗i ) to which the location of a �rm according to the best response dynamics of its reaction
function converges. Take for instance player 1, in general his reaction function R1 depends on
x∗2 which is described by Ω1 := R1(R2). For an arbitrary starting point of the iteration process
s0 > x∗1 the best response is to decrease the location and move towards x∗1 provided that
s0 > Ω1(s0). (cf. Anderson et al. (1997), Fig. 1, p. 119) Thus, the condition for a steady state is
Ω(x∗1) = x∗1. Then the properties of Ω1(x) at the equilibrium x∗i are determined by the concavity
of the density f . (cf. ibid., equation (4.5), p. 118). In the extreme of a very concave density the
reaction function is discontinuous. (cf. ibid., Fig. 2, p. 120)

97They provide the example for fα(x) = N(α)(α −
√

1 + (α2 − 1)2x2) with x ∈ [−1, 1], α > 1
and N(α) as a numerical constant such that

∫
fα(x)dx = 1. The triangular density converges

to fα(x) for α → ∞. (cf. Anderson et al. (1997), p. 120) Unique symmetric location equilibria
exist for α <≈ 5.3, symmetric and asymmetric equilibria coexist for ≈ 5.3 < α <≈ 20, and
asymmetric equilibria solely obtain for α >≈ 20. (cf. ibid., Fig. 3, p. 121)
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Thomadsen et al. (2013) address the question of the e�ects of a decrease in the

number of consumers and the market size on the equilibrium prices and pro�ts if

�rms compete with a horizontally di�erentiated product. They make the, at �rst

sight, surprising proposition that a decline in market size caused by a drain of con-

sumers who are not particularly committed to the consumption of the di�erentiated

product leads to an increase in equilibrium prices and pro�ts. Thus, under speci�c

circumstances but leaving the general market characteristics unchanged (number of

competitors, cost structure, transportation cost scheme) a declining market leaves

�rms better o�.

The framework of their analysis is the Hotelling duopoly with linear transportation

costs98, a uniform consumer distribution and constant marginal costs normalized to

zero. Speci�cally, consumer j's utility for a de�ned location when purchasing at �rm

i is uij = V − pi − dij with V as the reservation price, pi as the product price and

dij the traveling distance. Two important assumptions underly �rms' locational set-

ting. Firstly, their locations are exogenous, secondly they locate symmetrically with

relative distance 2D and a distance of 3
5V −

2
5D from the respective ends of the city.

In addition, it is assumed that the reservation price V is small enough such that not

for every location con�guration the whole market is served. (cf. Thomadsen et al.

(2013), p. 1001)

A variation in the market size is examined in three di�erent settings. In the �rst

scenario the variation is such that consumers located around the city edges exit the

market. That is the market is truncated symmetrically from both sides leaving the

�rms with a remnant hinterland of an amount denoted by K.99 Comparing equilibri-

um prices and pro�ts before and after the exit yields a well-de�ned range for K such

that pro�ts for both �rms after the exit exceed pro�ts before the exit, as well as a

range for K such that an increase in pro�ts results from a decrease in K, i.e. for a

decrease of the peripheral market size.100 (cf. Thomadsen et al. (2013), Theorem 1,

p. 1002) The economic interpretation is evident, as �rms need not attract consumers

with comparatively low utility from the edges they are able to exploit their local

98The robustness of the results is tested under quadratic transportation costs. (cf. Thomadsen et al.
(2013), p. 1004)

99The distance from �rms' location to the edges after the exit is K. (cf. Thomadsen et al. (2013),
Fig. 1, p. 1002)

100Before the exit the hinterland is d = 3
5
V − 2

5
D, then equilibrium prices are derived from the

utility function p = V − d and demand and pro�ts are q = d + D and Πbef = pq. Note that in
equilibrium there is no competition in the region between the �rms. After the exit assuming that
all consumers in K are captured (p < V −K) the pro�t function is Πi = pi(K+D+ 1

2
(pj−pi)),

applying the �rst order condition yields p = 2(K+D) and a transition obtains solving 2(K+D) <
V − K for K. For K above the pro�t function is Πi = pi(V − pi + D + 1

2
(pj − pi)). Then

however, a higher price than the pro�t-maximizing price can be charged which is the kink
solution p = V − K. Thus, in equilibrium pro�ts after exit are Πafter = (V − K)(K + D).
Setting Πafter > Πbef and solving for K yields the lower bound on K for the level of pro�ts,

and
∂Πafter

∂K
< 0 the respective bound for changes in pro�ts. Note that presumably they made a

mistake for the undercutting case where setting undercutting pro�ts < 0 reduces to K > V −2D
and not K > V − 4D. (cf. Thomadsen et al. (2013), proof on p. 1006)
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monopoly power by charging higher prices. In sum, the price e�ect dominates the

demand e�ect and pro�ts increase under consumer exit. Comparative statics con�rm

this intuition, equilibrium prices (at the kink) rise with decreasing K. Moreover,

undercutting is ruled out, therefore �rms' dominant strategy is to complement the

rival's pricing behavior. The limit of this phenomenon is set by a lower bound on

K, if this is breached a declining market size is not o�set by a high price strategy

anymore. The second scenario assumes an asymmetric truncation of the market size

only on one side. The qualitative �ndings and the proceeding are analogous to the

previous symmetric case. (cf. Thomadsen et al. (2013), Theorem 2, p. 1003) In the

third case consumers exit from the market center at 1
2 around a distance of G and

by a fraction f . As before conditions for an increase in �rms' pro�ts compared to the

pre-exit state are provided such that a price equilibrium is guaranteed. (cf. Thomad-

sen et al. (2013), Theorem 3, p. 1004)

In conclusion, Thomadsen et al. (2013) do not provide new insights on determinants

of �rms' location decision since locations are imposed exogenously. Nevertheless,

their model represents an interesting case where it is demonstrated that the seem-

ingly disadvantageous decline in market size does not lead to shrinking pro�ts and

a decline in prices as a desperate reaction to retain one's customer base. Rather, a

counterintuitive change in the pricing strategy leads �rms to a more pro�table sit-

uation. Put di�erently, the model illustrates that given �xed absolute locations and

thus no �exibility in one strategic variable, the optimization of the remaining strate-

gic variable (product price) su�ces to be pro�table and absorb fundamental changes

in the market environment that cause, for instance, relative locations to change.

Fairly recently, Hinloopen & Martin (2017) introduce a cost of location function

for a Hotelling duopoly that imposes a cost for each �rm to set up their mill that

varies according to the chosen location on the unit line. This introduces an addition-

al degree of freedom in �rms' optimal decision in a classical simultaneous two-stage

price-location game. Subsequently, conditions are provided and the properties of the

cost of location function are examined such that a perfect subgame equilibrium can

be established.

The model of Hinloopen & Martin (2017) is essentially the model of d'Aspremont

et al. (1979) with the only notable exception that the pro�t function accounts for

the term of the location cost function c(y) where the argument y is de�ned as �the

distance from the �rm's location to the nearest end of the line (y = a for �rm A,

y = b for �rm B).� (Hinloopen & Martin (2017), p. 120) Thus, c(y) has to be de-

�ned for y ∈ [0, 1
2 ] and c(y) is symmetric. Now, the inclusion of c(y) and subsequent

equilibrium conditions are analyzed for linear and quadratic transportation costs.

In the linear case d'Aspremont et al. (1979) gives the conditions for the subgame

price equilibrium. (cf. d'Aspremont et al. (1979), equations (1) and (2), p. 1146, and

Hinloopen & Martin (2017), equations (1) and (2), p. 120) Equilibrium prices p∗A
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and p∗B remain unchanged, pro�t functions, however, are ΠA = 1
2t(p

∗
A)2 − c(a) and

ΠB = 1
2t(p

∗
B)2 − c(b). As the price equilibrium is de�ned, conditions for the location

equilibrium are set up which are (i) that undercutting is not pro�table compared

to equilibrium pro�ts, (ii) the �rst order condition in a and b, (iii) the second order

condition in a and b, and (iv) that equilibrium pro�ts are positive. The fact that

the pro�t function contains c(a) and c(b) respectively implies that the location cost

function and its �rst and second derivatives are part in all equilibrium conditions.

(cf. Hinloopen & Martin (2017), Proposition 2, p. 121) Evaluating the �rst order

conditions for �rm A and B yields the solution of symmetric locations (a∗ = b∗),

and since c′(a∗), c′(b∗) > 0 and c′′(a∗), c′′(b∗) > 0 the location cost function has to

increase at an increasing rate towards the center at 1
2 . The increase of the location

cost and therefore the particular solution for a∗ and b∗ is due to the speci�cation of

c(y). The example for the case c(y) = yβ is presented where for low values of β ≥ 1

location costs increase rapidly and for β = 1 the equilibrium locations are at the city

edges, and for high values of β ≤ 2.43 locations costs increase moderately and for

β = 2.43 �rms locate at the quartiles. (cf. Hinloopen & Martin (2017), p. 123f and

Fig. 3)

In the case of a quadratic transportation cost scheme again the results of d'Aspremont

et al. (1979) for the price game are exploited by the authors. Since there are no re-

strictions on the location choice due to undercutting the conditions for the existence

of a location equilibrium are (i) the �rst order conditions, (ii) the second order condi-

tions, and (iii) that equilibrium pro�ts are positive. (cf. Hinloopen & Martin (2017),

Proposition 3, p. 125) As in the linear case the solution to the �rst order conditions

is a symmetric location equilibrium. However, in contrast to the linear case, the �rst

order conditions reveal c′(a∗), c′(b∗) < 0 and according to the second order condi-

tion c′′(a∗) and c′′(b∗) can be positive or negative. Thus, a location equilibrium under

quadratic transportation costs requires the location cost function to decrease towards
1
2 or to increase towards the city edges. Again the particular solution for a∗ and b∗

results from c(y) with the general �nding that for rapidly decreasing functions �rms

are inclined to locate towards the center and thus a principle of maximum di�eren-

tiation would not generally hold.

To conclude, the paper of Hinloopen & Martin (2017) illustrates that possible per-

fect subgame location equilibria in a simultaneous two-stage price-location game are

critically determined by the cost of location modeled by a cost distribution c(y).

The intuition is con�rmed that, similar to respective variations of the consumer dis-

tribution (e.g. Neven (1986), Tabuchi & Thisse (1995)), the location cost function

creates incentives to locate in particular regions of the market such that a subgame

perfect equilibrium is guaranteed. A prominent example is provided with the case

of quadratic transportation costs in which location costs are required to increase

towards the city boundaries, and thus �rms would not maximally di�erentiate but
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rather tend to agglomerate at the center.

2.3.2.2 Intersecting roadways and networks

Intersecting roadways represent the case of two (or more) intersecting lines and

spatial competition in this setting can be explained by applying the principles of the

Hotelling model. In the standard formulation with uniformly distributed consumers

one distinguishable feature of this market setting is that the intersection connects two

markets and makes locations close by more attractive since a larger customer base

can be potentially served. Consequently, intersecting roadways may be interpreted as

a market setting in which a certain degree of centrality pervails that is exogenously

imposed by the market geometry. As in the case of the linear city general interests

arise concerning the conditions on the existence and the properties of price and

location equilibria.

In Braid (1989) it is demonstrated that a perfect subgame equilibrium does not exist

since �rms always have an incentive to relocate towards the center.

The model assumes an arbitrary number of n = 1, ..., N in�nite roads radiating from

a center at x = 0 where on each spoke an arbitrary number of �rms i is located at

positions xn,i charging prices pn,i. Transportations costs increase linearly in travel

distance by rate k. Furthermore, the assumption is made that the center is taken

by �rm 0 with x0 = 0. Excluding undercutting strategies the solution to the sec-

ond stage price game is straightforward. For an arbitrary �rm i on spoke n market

demand is derived by the location of its indi�erent consumers on the centrally ori-

entated and peripheral side (zn,i−1 and zn,i respectively). The pro�t function, �rst

order conditions and consecutive pro�ts for pro�t-maximizing prices Πi and Π0 are

derived. (cf. Braid (1989), p. 108f) The strategic advantage of a central position is

exempli�ed by a comparison of the pro�t functions where a factor of N2 indicates that

on every spoke consumers are served by the central �rm and in case of an equidis-

tant spacing (and equal equilibrium prices) this clearly leads to higher pro�ts. (cf.

Braid (1989), equations (6) and (7), p. 109) To show the nonexistence of the loca-

tion equilibrium it is considered that all �rms but one hold their location and the

concerned seller moves towards the center (w.l.o.g. �rm 2 on spoke 1 which implies

∆x1,2 < 0). Subsequently, the e�ects of the relocation on equilibrium prices of all

�rms are evaluated.101 In particular, the e�ect of the price change for the moving

101Speci�cally, the �rst order conditions of the price game are expressed in terms of variations of the
prices and locations. This leads to a set of equations where on spoke n = 1 only the price changes
of the neighboring �rms i = 1 and i = 3 result as a function of ∆x1,2 < 0 (see equations (12)
to (14)). The solution for the zero-set equations of the price changes for i > 3 on spoke n = 1
and for i > 0 for all other spokes are given in equations (17) and (18). They are obtained by
evaluating the recursive relationships and solving a quadratic equation for the coe�cient of the
∆p's (which is not explicitly carried out in the article). The proceeding is described on p. 110f
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�rm on its pro�ts are provided for the case of two, three and four spokes. (cf. Braid

(1989), p. 111) It is revealing that for the case of the unbounded linear city (N = 2)

no advantage due to the inward move obtains. This is explained by equivalent price

changes of the neighboring �rms as a result of ∆x1,2 (the closer located neighbor de-

creases his price, the more distant neighbor increases his price by the same amount).

In sum, the equilibrium price of the moving �rm does not change and neither do the

positions of the indi�erent consumers, then clearly, ∆p1,2 = 0 does not e�ect pro�ts

∆Π1,2 = 0. By contrast, for N = 3 and N = 4 the centrally located neighbor does

not decrease his prices by the same amount as the peripheral neighbor increases his

price (|∆p3| > |∆p1|). The asymmetry is due to the best reply of the central �rm.

At the center the price reaction does not directly respond to the stimulus of one

particular spoke, rather �rm 0's optimal behavior accounts for competition on all

spokes which has a dampening e�ect on the price drop due to the inward move of

only one �rm.

In sum, the paper of Braid (1989) demonstrates that road intersections are a deter-

minant for �rms' optimal location decision. The prediction that �rms agglomerate

at the center is in line with previous studies on the subject of nonuniform consumer

distributions (Anderson et al. (1997), Tabuchi & Thisse (1995), Neven (1986)). As a

result of the underlying market geometry intersecting roadways can be interpreted as

a limiting case of a highly concentrated consumer distribution that collapses at the

intersecting point (provided that consumers are uniformly distributed on the lines).

In this sense the nonexistence of a perfect subgame equilibrium �ts in well with the

�ndings of the previous literature.

The study of Braid (1993) extends the market setting with one intersection and

bridges the gap between models with one-dimensional intersecting lines on the one

hand and spatial competition models in two dimensions on the other hand. The goal

is to determine the Nash equilibrium of a simultaneous pricing game and conditions

for its existence given a network of roads spread over a two-dimensional plane. In

addition, the paper also considers the notion of a varying consumer distribution by

including demand concentrations at the grid points.

The market geometry consists of a square grid with side length R. Three types of

consumers are served by �rms that are assumed to be located at every grid point,

thus �rms' locations are an exogenous variable. The �rst type of consumers is evenly

distributed over the plane with density D, the second type is evenly distributed on

each road of the network with density G, and thirdly, consumers are distributed with

density N at each node of the grid. Consumers' transportation cost increases by a

linear rate k when traveling on the network (travel costs to approach the main roads

are assumed to be negligibly small) and demand for every consumer of each type is

and in the appendix p. 112.
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assumed to be perfectly inelastic. (cf. Braid (1993), pp. 189 and 191) To determine the

Nash price equilibrium the derivation of the demand function of a �rm is required. For

this purpose the location of the indi�erent consumer is set up for each customer type.

(cf. Braid (1993), p. 191f) Firstly, the N consumers concentrated at a grid point all

purchase by assumption, consecutive demand is qspot = N . Secondly, concerning the

consumers distributed on the lines, for each �rm in sum four indi�erence points, thus

two linear market areas exist. Between each �rm (grid point) the indi�erent consumer

locates at R
2 if equal prices are charged, under price competition the position is d =

R
2 +

pi−pj
2k , thus in sum total demand on the roads for a �rm is qroad = 4dG. Thirdly,

the indi�erence condition for the road customers also applies to the customers on

the plane (who take a costless trip to access the main road). Applying this argument

in four directions leads to a market area of 4d2, thus, a total demand on the plane

of qplane = 4d2D. In sum, this yields pro�ts for each �rm of Π0 = (p0 − c)(qspot +

qroad + qplane) with c as the marginal cost of production. In a Nash equilibrium all

�rms charge equal prices which reduces the price di�erences in Π0 to zero. According

to the �rst order condition the Nash price (net of production cost) obtains as a

function of the consumer densities N , G and D, the transportation cost coe�cient

k, and the distance between the grid points R: pE = c+kR
1
2
N+GR+ 1

2
DR2

GR+DR2 . (cf. Braid

(1993), p. 192) The condition for the existence of a price equilibrium rules out the

case of undercutting and of a high price strategy such that only the customers at the

gird point are exploited. (cf. Braid (1993), equations (5) and (6), p. 193)

Addressing the comparative statics the Nash price equilibrium reveals the following

properties: (i) pE increases in k and R which expresses the local monopoly power

of each �rm on its consumer base, (ii) pE decreases in D (consumer density on the

plane) which highlights that an increase in the global population of the market leads

to higher competition between �rms, and (iii) pE increases in N which illustrates the

signi�cance of the consumer point concentrations at the road intersections, as these

locations become signi�cant incentives to attract and compete for consumers from the

periphery vanish. In the limit an excessive increase in N causes the price equilibrium

to break down and �rms to devise a high price strategy or an undercutting strategy. It

is interesting to follow the author's argument that the nonexistence of the equilibrium

is a direct result of the impact of N and, importantly, existence can not be restored

by changing to a quadratic transportation cost scheme. (cf. Braid (1993), p. 200)

In conclusion the paper of Braid (1993) emphasizes the role of the market geometry,

and in particular consumer concentrations on the road network, in the determination

of the price equilibrium. This marks a di�erence to the predictions of models for

linear bounded markets (e.g. d'Aspremont et al. (1979)) and circular markets (e.g.

Economides (1989)). Furthermore, the symmetric price equilibrium pE is in line with

�ndings of other articles in the �eld of intersecting roads and networks (cf. examples

in Braid (1993), p. 194f). For the case of purely intersecting roadways (N = D = 0)
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pE = c+ kR reproduces the price equilibrium in Braid (1989) and hints at the more

general results of Fik & Mulligan (1991).

The study of Braid (2013) departs from the concept of Braid (1989) and develops a

model to examine the location patterns in a network of intersecting roads with �nite

distance of unit length where on each road one �rm chooses its optimal location pro-

vided that the center is taken by an incumbent �rm.102 Put di�erently, this model

refers to a set of linear cities where one �rm is located at one end of the city and

simultaneously competes (given its �xed location) with all other �rms that optimize

in the second stage over price and in the �rst stage over location.

The model follows the 'classical' approach in the fashion of d'Aspremont et al. (1979)

with the assumptions of quadratic transportation costs, uniformly distributed con-

sumers with density normalized to 1, and completely inelastic demand. All of these

apply to each of the n unit road segments. Generally, there are n + 1 �rms (and n

roads) charging prices Pi but the main focus of the paper lies on the case n = 4. (cf.

Braid (2013), p. 794)

The derivation of the Nash price equilibrium assumes that a particular �rm (�rm 1)

locates at a distance a from the center where �rm 0 has settled, while the remaining

�rms (indexed with subscript 2) locate at b. The positions of the indi�erent con-

sumers for �rm 1 (z1) and the remaining players (z2) follow, and consequently the

pro�t functions of all �rms Π0, Π1 and Π2. The �rst order conditions (f.o.c.) de�ne

the pro�t-maximizing prices, clearly, the f.o.c. for the central �rm is a function of

all n �rms locations (a, b) and prices (P1, P2), while the f.o.c. of the peripheral �rms

capture only the interaction with �rm 0. (cf. Braid (2013), p. 795) The set of these

three equations can be solved for P0, P1, P2, these are reinserted into the pro�t func-

tions which in turn are the objective functions for the location game. Focusing on

�rm 1 and setting ∂Π1
∂a = 0 under the assumption of symmetric locations (a = b) the

pro�t-maximizing locations obtain as a sole function of the number of spokes n. (cf.

Braid (2013), equation (15), p. 796) Subsequently, setting n = 4 equilibrium loca-

tions a = b = 5
9 are derived which demonstrates, for this particular case, the general

�nding that in a symmetric equilibrium with n ≥ 3 �rms locate closer to the center

than the social optimum would suggest.103 (cf. Braid (2013), Propositions 3 and 5,

p. 797f) The crucial part of the analysis is that a perfect subgame equilibrium is not

generally de�ned. For the case n = 4 the existence of the Nash price equilibrium

requires the location of �rm 1 to be distant from the center while the other three

102Note that in contrast to Braid (1989) the roads have a �nite distance and there is only competition
with the central �rm, and in contrast to Madden & Pezzino (2011) locations are endogenized
and �rms are allowed to move on a dimension connecting the circular periphery and the center.

103The social optimum is de�ned as the con�guration that minimizes total transportation costs for
all consumers in the market. The optimum is found in a symmetric setting with �rms locating
at a distance of 2

3
, then the maximum distance for a consumer to travel to a �rm is 1

3
. (cf. Braid

(2013), Proposition 1, p. 794)
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players are located at their equilibrium location (b = 5
9), i.e. formally a > a∗ ≈ 1

4 and
2
9 < a∗ < 1

3 must hold. (cf. Braid (2013), Appendix, p. 806) Breaching this restriction

implies that the central �rm is undercut by �rm 1. Moreover, the point is made that

for n > 4 a Nash price equilibrium �might fail to exist even if a (sic!) assumes its

equilibrium value [...] In fact, this is almost certainly the case in the limit that n goes

to in�nity.� (Braid (2013), p. 806f)

In addition, the comparative statics of the model suggest that as the number of

�rms (and spokes) increases �rms move towards the center and equilibrium locations

decrease. The argument is essentially the same as in Braid (1989) and draws up-

on the optimal price setting behavior of the central �rm which is dependent upon

the competition with all �rms on all spokes and therefore price responses against

one particular peripheral �rm are alleviated (in comparison with the case of 'direct'

competition). Also, equilibrium prices and �rms' pro�ts decrease as n increases. (cf.

Braid (2013), Proposition 6, p. 798)

In sum, the model of Braid (2013) tackles a simultaneous two-stage price-location

game in a general setting of intersecting roads where each of the roads represents

a Hotelling city with unit length. A straight-forward solution to the game suggests

symmetrical locations and prices for the peripheral �rms, the comparative statics

suggest sellers' tendency to agglomerate at the center for an increasing number of

�rms. Moreover, the spatial di�erentiation of oligopolistic markets in equilibrium

does not represent a social optimal outcome. However, issues with the existence of

the subgame perfect equilibrium remain.

A further example of an oligopolistic market model that makes use of intersecting

roads is provided in the paper of Chen & Riordan (2007). Their study is related to

the literature of nonlocalized monopolistic competition104 and by imposing the net-

work geometry in a market with n players they establish an equilibrium for spatial

competition in a nonlocalized framework. (cf. Chen & Riordan (2007), p. 898) Since

�rms' market areas are connected over a central hub, their model implies that opti-

mal pricing decisions are a result of direct competition between all sellers in contrast

to localized market competition where equilibrium prices are derived from competi-

tion with nearest neighbors.

Their setting consists of a network of N spokes with length 1
2 intersecting at a center.

Firms' locations are assumed to be at the end of the spokes, in contrast to the pre-

viously presented studies no �rm is located at the center. The total number of �rms

is n and only one �rm shall be allowed to be located on a spoke. Generally, some

spokes remain vacant, i.e. n ≤ N . Locations are assumed to be given exogenously,

thus, variations in �rms' locations are not subject to the examination. Additional as-

sumptions of the model are that consumers are distributed uniformly over the lines,

104For an introduction see Tirole (2003) pp. 287f and 298�.
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the number of consumers on a spoke is normalized to one, consequently consumer

density on a spoke is 2
N .

105 Moreover, transportation costs are assumed to be a linear

function in traveled distance (with t = 1). (cf. Chen & Riordan (2007), p. 901)

Two critical assumptions underly the spokes model. Firstly, consumers' reservation

price v is �nite. Secondly, optimizing their utility from consumption consumers only

choose between two alternatives.106 (cf. Chen & Riordan (2007), p. 903) Together

with the market geometry, this implies that the demand function (exemplarily for

a �rm j) is a result of three di�erent categories of consumers.107 The �rst category

refers to the standard case of a consumer who is indi�erent between purchasing at

�rm i or �rm j and whose location is a function of the price di�erential.108 More-

over, �rm j competes in the same way with all �rms in the market, by assumption a

consumer prefers �rm j with a probability of 1
N−1 and �rm j could maximally gain

N − 1 of these indi�erent consumers (cf. Chen & Riordan (2007), second equation

on p. 902). The second category considers the indi�erent consumer on the spoke of

�rm j who is according to his reservation price indi�erent between buying at �rm

j or buying an outside good (the type of these consumers would purchase from a

�rm that has not yet located on a spoke). Again the outside good is preferred with a

probability of 1
N−1 (cf. ibid., third equation on p. 902). The third category accounts

for consumers on vacant spokes that choose �rm j as their preferred seller with prob-

ability 1
N−1 or buy an outside good. If the vacant spoke is occupied by a seller these

consumers then fall into category 1 (cf. ibid., forth equation on p. 902). This illus-

trates that the level of v is critical for �rms' demand function, and subsequently for

the level of equilibrium prices and pro�ts.

Evaluating pro�t functions and �rst order conditions by cases yields the symmetric

price equilibrium p∗ as a monotonic function in v (over the range of interest). (cf.

Chen & Riordan (2007), equation (3), p. 904 and for the derivation pp. 917-919) In

the limiting case for high v (and high p∗) surplus from consumption is positive and

more �rms generate more intense competition which drives prices down.109 As v de-

creases the indi�erence condition for consumers on vacant spokes becomes binding,

thus, �rms charge their prices according to the corresponding marginal consumer.

For decreasing v the willingness of the marginal consumer to buy declines and to

105Density equals the number of consumers divided by the market length. There are 1
N

consumers
on one spoke of length 1

2
.

106These could be purchasing at two di�erent sellers in the market, or buying at a seller and buying
an outside good which is not buying at all. See explanations below.

107�There are three relevant categories of consumers: consumers for whom brand j is preferred,
and whose two preferred brands are both available; consumers for whom brand j is the �rst
preferred brand, whose second preferred brand is not available; and consumers whose �rst brand
is unavailable and for whom brand j is the second preferred brand.� (Chen & Riordan (2007),
p. 901)

108Locations are �xed, the distance is measured from the end of a spoke (towards the direction
of the center) and utility from consuming at �rm j is uj = v − pj − xj , and at �rm i: ui =
v − pi − (( 1

2
− xj) + 1

2
).

109There is no dependence on v here: p∗ = 2N
n−1
− 1.

60



Chapter 2. Centrality and Spatial Di�erentiation - A Literature Survey

catch up �rms decrease their price and stay on the kink.

As v further decreases the discrepancy between 'pure' competition with other �rms

for the indi�erent consumer with two buying preferences for the di�erentiated good

on the one hand, and the goal to capture the indi�erent consumer on the vacant

spokes on the other hand becomes eminent. The result is that the marginal con-

sumers on the vacant spokes drive the price reaction and, importantly, the respective

demand function reveals a higher price elasticity than demand from 'pure' competi-

tion. Now, if the number of �rms increases, the number of vacant spokes decreases

and competition intensi�es. This leads to a relative increase of the 'pure' competition

segment in the total demand function. Since demand from the vacant spokes is more

price elastic, the price elasticity for the total demand decreases. As a consequence,

equilibrium prices rise for an increasing number of competitors. (cf. Chen & Riordan

(2007), Corollary 1, p. 905)

Concerning equilibrium pro�ts the comparative statics further demonstrate the im-

pact of n and v. As n increases it is clear that demand from consumers on the

vacant spokes declines. This implies a reduction in pro�ts. This e�ect is compara-

tively stronger for high levels of v since then a larger part of total demand is made

up by the vacant spokes. In sum equilibrium pro�ts decrease, despite rising prices

(as argued above). Likewise, if v is relatively low, initially pro�ts decrease (i.e. for

increasing n at low levels), however, as n becomes su�ciently large the price e�ect

takes hold since only small fractions on the vacant spokes are lost and rising prices

lead pro�ts to rise. (cf. Chen & Riordan (2007), p. 906f)

In conclusion, the model of Chen & Riordan (2007) illustrates the critical impact

of market geometry on the determinants and the behavior of a price equilibrium

for spatial competition in oligopolistic markets. Essentially, their paper stresses the

importance and the di�erences in the outcomes of localized competition and non-

localized competition which in their model results from the linkage over a central

node in the spatial market. Contrary to the predictions of the models with circular

shape (Salop (1979), Economides (1989), Madden & Pezzino (2011)) and of network

models with a central �rm (Braid (2013)), the example is stated that under speci�c

parameter con�gurations an increase in the number of �rms leads to an increase

in equilibrium prices and ambiguous e�ects on equilibrium pro�ts. As the authors

emphasize, this is particularly noteworthy, since other determinants for the price set-

ting behavior such as imperfectly informed consumers or mixed pricing strategies are

explicitly excluded from the analysis. (cf. Chen & Riordan (2007), p. 900, footnote 8)

Finally, two studies shall be presented that incorporate network e�ects in a spatial

price model and investigate the e�ect of market geometry on the price equilibrium

under di�erent exogenous pricing conjectures.110

110In his introductory note Mulligan (1996) characterizes two strands in the literature of spatial
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The paper of Fik & Mulligan (1991) departs from the classical assumptions of the

Hotelling model: (i) uniformly distributed consumers on the line with unit densi-

ty throughout the market, (ii) linear transportation cost scheme with coe�cient t,

(iii) perfectly inelastic demand, and additionally assumes (iv) a cost function with

�xed costs F and marginal costs k. (cf. Fik & Mulligan (1991), p. 81) Evidently,

the market area of an arbitrary interior �rm i follows using the locations of the in-

di�erent consumer to its left where competition with �rm 1 shall take place (ai1)

and to its right with the nearest neighbor �rm 2 (ai2). In sum, market demand is

Ai = ai1 +ai2 = 1
2t(pi1 +pi2−2pi+t(Di1 +Di2)) where Dij is the distance of �rm i to

any �rm j. Essentially, network e�ects are captured by assuming that �rm i can have

ni nearest neighbors which leads to Ai =
ni∑
j=1

aij = 1
2t(

ni∑
j=1

pij−nipi+t
ni∑
j=1

Dij). Then,

�rm i's pro�t-maximizing prices are determined by the �rst order condition with the

underlying pro�t function Πi = (pi−ki)Ai−Fi.111 (cf. Fik & Mulligan (1991), p. 82)

The term for the partial derivatives
∂pij
∂pi

= φij is the price conjectural parameter and

accounts for the price change of neighbor j to a price variation of �rm i, throughout

it is assumed that price changes of i are equal towards all neighbors.112 (cf. Fik &

Mulligan (1991), p. 83) Given a particular conjectural scheme the �rst order condi-

tion connects �rm i's optimal prices (pi) with the prices of its nearest neighbors (pij),

and with transportation costs (tDij) and marginal costs (ki). The multiplicative and

additive structure of the equation allows to separate the di�erent factors and write

the solution for the price equilibrium in algebraic form as p∗ = C−1X where p∗ is

the vector of equilibrium prices of all �rms in the market, the nxn-matrix C incor-

porates the more or less complex topological structure113, and the vector X includes

competition models. (cf. p. 155f) One stream focuses on a game theoretical approach that sep-
arates location and pricing decisions and is extensively presented in this survey. The other is
dedicated to a general form of the price reaction function and leaves open di�erent forms about
the type of price reaction (a description is provided in footnote 112 below). The studies of Fik &
Mulligan (1991) and Mulligan (1996) are two examples that use the latter approach and apply
the assumptions to network structures whereas for instance the work of Braid (2013) falls into
the �rst of his categories. Also recall that in an earlier stage the study of Eaton & Lipsey (1975)
considers two di�erent conjectures (zero conjectural variation and the minmax-conjecture) un-
der which �rms optimize their location decisions. Moreover, in the article of Capozza & Order
(1978) the common price conjectures are considered and the characteristics of price equilibria
under spatial competition subject to a zero pro�t condition are scrutinized. Subsequently, they
provide conditions under which an increase in the number of sellers leads to an increase in the
equilibrium price.

111Precisely, the equation is ∂Πi
∂pi

= 1
2t

[pi(
ni∑
j=1

φij − ni) +
ni∑
j=1

pij − nipi + t
ni∑
j=1

Dij − ki(
ni∑
j=1

φij − ni)].

(cf. ibid., equations (10) and (11), p. 82)
112However, note that price conjectures among di�erent �rms, that is for di�erent i, can vary.

Generally, φij can take three values. Under Loeschian competition (φij = 1) price movements are
alike which implies the assumption that the market area of every �rm is �xed. Under Hotelling-
Smithies competition (φij = 0) nearest neighbors do not respond to price variations which
implies that prices of competitors are �xed and market area and demand vary corresponding
to price movements. Under Greenhut-Ohta competition (φij = −1) each �rm assumes that the
price at the market boundary is �xed. (e.g. Capozza & Order (1978), p. 898)

113Formally, the variable ni measures the degree of connectivity. If �rm i is located at a node and
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distances and marginal costs. (cf. Fik & Mulligan (1991), p. 83)

Subsequently, di�erences in equilibrium price levels between the market setting of

a linear city with equidistant locations and a modi�ed linear city where the second

�rm competes with three nearest neighbors are examined. Firms' locations and the

location pattern are exogenously imposed. (cf. Fik & Mulligan (1991), tables 1 and

2, and Fig. 1 and 2, pp. 83 and 86f) The corresponding results show that the exis-

tence of a node at the location of �rm 2 in the network market leads to comparably

lower equilibrium prices for all �rms under di�erent pricing conjectures. Moreover,

it is demonstrated that the degree of connectivity in terms of ni implies lower price

levels, that is, �rm 2 and �rm 4 in the network market have the highest number

of links and charge lower prices in equilibrium than the three peripheral �rms (the

e�ect is predominant under pricing conjectures that support competition).

In sum, this highlights the importance of market geometry for the determination

of the price equilibrium and suggests that higher connected markets imply a higher

degree of price competition for centrally located �rms.

In Mulligan (1996) the model of Fik & Mulligan (1991) is used to generalize the

analysis and incorporate �rms' location to characterize the market equilibrium. The

basic assumptions remain the same concerning linear transportation costs, perfectly

inelastic demand, and the production cost function. The price reaction functions are

derived from the �rst order conditions by setting up the demand and pro�t functions

based on the position of the indi�erent consumer. In particular, the case is made for

interior �rms (to investigate circular markets) and exterior �rms sharing a market

border with the end of the bounded market (to investigate linear bounded markets).

(cf. Mulligan (1996), p. 158)

The general solution for a circular and a linear bounded market geometry with n �rms

follows from Y ∗ = C−1Z where Y ∗ contains the locations and prices in equilibrium,

the 2nx2n-matrix the price and location coe�cients accounting for the interactions

in the market topology and Z covers the exogenous variables. (cf. Mulligan (1996),

pp. 160 and 162) The information for this equation is deduced from the �rst order

conditions in prices and from two assumption on �rms' location behavior. Firstly,

it is proposed that interior �rms choose their location according to a principle of

maximal di�erentiation.114 Secondly, exterior �rms' location behavior is character-

competes with more than two neighbors (ni > 2), in row i and column i of C the corresponding
elements cij and cji represent the connection between �rm i and neighbor j and are nonzero
since the �rst order condition of �rm i contains all pj of the nearest competitors. Thus, in general
the number of nonzero o�-diagonal elements for a particular row (column) in C indicates the
number of nearest neighbors. (cf. Fik & Mulligan (1991), example of �rm 2 in equation (16) and
Fig. 2, p. 83f)

114An arbitrary �rm i locates at the position of the indi�erent consumer between his nearest neigh-
bors �rm i − 1 and i + 1. (cf. Mulligan (1996), equation (7), p. 159) Mulligan argues that this
location pattern is obtained for the case of elastic demand functions (see for instance Hay (1976)).
Subsequently, he argues that in a limiting case of completely inelastic demand this assumption
also holds.
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ized by a principle of spatial aggression, that is, their location is assumed to lie in

0 ≤ X1 ≤ X1,max (for the left-sided �rm 1) andXn,min ≤ Xn ≤ Z (for the right-sided

�rm n, and Z denoting the city length). The interval bounds X1,max and Xn,min are

determined by the condition to prohibit the undercutting of the respective nearest

neighbor and the particular location choice is subsequently parameterized by λ (or

µ).115 From this the results for �rms' equilibrium prices, locations and pro�ts for

the case of the circular city (cf. ibid., equations (13), (14) and (16), p. 161) and the

linear bounded city (cf. ibid., equations (20), (21), (24), (25), (29) and (30), p. 162�)

follow. The comparative static analysis shows that pro�ts and prices increase as the

density of �rms decreases while a variation in the spatial aggression parameter λ

(or µ) leads to opposing e�ects on �rms' equilibrium prices in the linear bounded

market. As the two peripheral �rms move towards the center their equilibrium prices

increase whereas the prices of interior �rms decrease, thus, the corresponding price

ratio increases as λ (or µ) rises. Moreover, it is also interesting to see that the dif-

ference between the equilibrium prices in terms of the price ratio increases as seller

density increases. (cf. Mulligan (1996), p. 167)

Finally, the model is extended to a network market consisting of four nodes and �ve

links. (cf. Mulligan (1996), Fig. 1, p. 170) In the examination of the market equilib-

rium the proceeding assumes that a spatial leader anticipates his optimal location,

subsequently, the competitors choose their position according to the principle of max-

imal di�erentiation and all �rms charge their price contingent on the price conjecture.

By backtesting the results the outcome is compared with the initial expectation to

check on the existence of an equilibrium.116 (cf. Mulligan (1996), p. 169) The calcu-

lations show that the market is characterized by the existence of multiple equilibria.

(cf. ibid., table 4, p. 171) Generally, equilibrium prices and pro�ts vary across �rms

and are a function of the market geometry (the length of the links). This highlights

the interrelation of the geographical and economical properties of markets. Since

pro�ts across �rms are a function of the geometrical properties, these in combina-

tion with the level of entry costs determine the number of �rms and subsequently

the location pattern in equilibrium. (cf. Mulligan (1996), p. 172)

To summarize this subsection, the literature shows that the market characteristics

and the geometry of the Hotelling model can be extended by modifying the con-

sumer distributions and by introducing intersecting roadways and road networks.

115Consequently, the location parameter λ (or µ) is also bounded by a value λ < λmax. The bounds
are derived by setting up the problem for the case of the exterior �rms behaving maximally
aggressive and solving for their equilibrium price. Subsequently, this price is set equal to the
equilibrium price of an interior �rm, λmax decreases as the number of �rms n increases. (cf.
Mulligan (1996), appendix, p. 175)

116This approach re�ects the methodology of sequential entry with perfect foresight by Prescott &
Visscher (1977).
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Both approaches have in common that speci�c regions in market space become more

attractive with profound implications on the equilibrium outcome for prices and loca-

tions. For instance, if the assumption of a uniform consumer distribution is dropped

and more consumers are concentrated at the middle point of the Hotelling line (i.e.

the region of the market center is valorized), the market share e�ect gains impor-

tance and �rms have increased incentives to agglomerate at the center. However, it

is shown that under nonuniform distributions the existence of symmetrical location

con�gurations is not guaranteed and asymmetrical location equilibria are likely to

emerge (e.g. Neven (1986), Tabuchi & Thisse (1995)). In general, the properties of

the consumer distribution (the degree of symmetry and log-concavity) determine the

particular equilibrium outcome (e.g. Anderson et al. (1997)). Additionally, it is sug-

gested that alternative forces such as a nonlinear decline in the consumer distribution

(e.g. Thomadsen et al. (2013)), and the introduction of a cost of location distribution

(e.g. Hinloopen & Martin (2017)) impact �rms' behavior.

For the case of intersecting roadways and networks the existence of market centers at

the intersections implies more complex interaction patterns. Even though nonuniform

consumer distributions impact pro�t-maximization, competition remains localized.

By contrast, in the case of intersecting roads the nature of competition is funda-

mentally changed. This is attributable to the node in the market geometry allowing

for spatial rami�cations in price and location competition. Since linear submarkets

are connected through a single point competition becomes nonlocalized and pricing

and location decisions become relevant for a greater number of nearest rivals. This

instance is demonstrated in di�erent studies where a �rm located at the intersec-

tion is subject to competition with all �rms located on adjacent spokes (e.g. Braid

(1989), Braid (2013)), and also for the case where the intersection remains unoccu-

pied but price competition is transmitted over the node from one �rm to all other

competitors in the market (e.g. Chen & Riordan (2007)). Furthermore, according to

the empirical papers which are presented in the next subsection, it is revealing that a

central location in a local market (close to the intersection) implies an asymmetrical

location pattern and endows the central �rm with more market power. This in turn

leads to di�erent outcomes of the price game compared to a symmetrical location

setting in the local market (e.g. Firgo et al. (2016)). In addition, two selected articles

from the spatial network literature illustrate that the particular geometrical shape

of a spatial network constitutes an important determinant for the price equilibrium

in oligopolistic markets (e.g. Fik & Mulligan (1991), Mulligan (1996)). To generally

conclude, it is forcefully shown in the literature that the extension of the geometry

from a line to a setting with two intersecting lines changes the equilibrium outcome

and introduces di�erent roles for the market players.
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2.4 Empirical Evidence for Price and Location Decisions

In this section some examples of the empirical literature concerning determinants

of �rms' price and location decisions as well as the implications of �rms' tenden-

cy to locate at a central point in a local market shall be presented. In particular,

recent studies dealing with retail gasoline markets are considered since these mar-

kets exhibit the driving forces for price and location decisions in a fairly pure form.

Concerning sellers' locations, as has been shown in the theoretical studies, a market

share e�ect leads �rms to agglomerate at market centers and a price competition ef-

fect implies a tendency to locate far apart. Retail gasoline markets serve as a fruitful

example to study the causes of price and location patterns due to the homogeneity

of the purchased good which allows to control for alternative product di�erentiation

characteristics easily as well as the intensity of price competition as a result of the

transparency of mill prices.

In Netz & Taylor (2002) data on station-level characteristics for 4,000 gasoline sta-

tions in the metropolitan area of Los Angeles between 1992 and 1996 are used. Based

on �rms' geographical position the degree of spatial di�erentiation between two com-

petitors is measured by their Euclidean distance where the local market of each seller

is assumed to be of a circular shape with a prede�ned radius. Competition is prox-

ied by the number of rivals in the circular local market. Moreover, gasoline stations

are distinguished by their type of brand to capture e�ects due to perceived sellers'

di�erences. To account for the e�ect of the spatial consumer distribution main roads

are considered as areas with a high concentration of consumers and speci�cally a

station's spatial characteristic of being as close to a main road as 0.25 miles is con-

sidered in the estimation. Further, the percentage of each station's rivals that are

located near a major road is used as a proxy for the number of intersections in a

local market. (cf. Netz & Taylor (2002), p. 167)

The empirical model is represented by a regression equation with the average dis-

tance of a station to its competitors in the local market as the dependent variable,

and the competition variables (number of sellers, number of sellers squared117), a

vector of station characteristics (e.g. brand, convenience store, car wash etc.) and

other variables to control for demand and market characteristics (e.g. median house-

hold income, median value of housing) as the explanatory variables.118 (cf. Netz &

117The squared termi is used to account for a decreasing e�ect on �rms' distance as the number
of stations increases which is particularly the case if the number of sellers in a local market is
comparatively high. (cf. Netz & Taylor (2002), p. 168)

118Location choices can be restricted by zoning laws, in addition there are entry costs for new sellers
coming into the market. The proxies that account for these two e�ects are (i) the proportion
of stations (in a local market) requiring prepayment, (ii) the proportion of housing (in a local
market) that is rented rather than owner-occupied, (iii) the median value of housing, and (iv)
the median household income. (cf. Netz & Taylor (2002), p. 166) In addition, zoning e�ects are
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Taylor (2002), equation (1), p. 164) To address potential spatial relations between

the observations and errors a spatial lag model and a spatial error model are applied.

Estimations are carried out for two di�erent data samples (entry stations and sta-

tions that are permanently present) and for di�erent sizes of the local market (half

a mile, a mile or two miles). The results show that (ceteris paribus) �rms locate

farer from one another as competition intensi�es, that is, as the number of sellers

increases, as the proportion of independent stations increases, and as the fraction of

stations with the same brand as the central station in the local market increases.

Moreover, the results illustrate that �rms are inclined to locate closer to main roads

and intersections which serves as an indication to con�rm theoretical predictions that

�rms tend to locate where consumers are concentrated.

In the paper of Pennerstorfer (2009) the e�ect of a gasoline station's brand on the

price level is examined and it is highlighted that two con�icting e�ects characterize

competition for gasoline retailers in a local market. Firstly as in Netz & Taylor (2002),

according to the competition e�ect price levels decrease as competition intensi�es and

as the number of unbranded stations increases. Secondly, due to perceived quality

di�erences between branded and unbranded stations an increase in the number of

unbranded sellers implies an increase in the local monopoly power of branded stations

and causes an incentive to increase their price (composition e�ect). (cf. Pennerstorfer

(2009), p. 138)

The statistical analysis is based on cross section data of 400 stations in Lower Austria

from 2003 comprising price data and data on station level characteristics as well as

statistical data of the municipalities from 2001. In the regression model the price

level is estimated as a function of competition variables, station characteristics (incl.

brand) and variables capturing local demand and market characteristics (e.g. size

of the municipality, population density, speed limits). Competition is measured by

the number of sellers in the local market. Comparable to Netz & Taylor (2002) each

local market is de�ned by a circular shape but with di�erent radii of 15.5 kilometer

and 20 kilometer respectively owing to the rural characteristics of the spatial area.

To examine the composition e�ect the fraction of unbranded stations among the

number of competitors in a local market is considered. Dependent on whether the

central �rm is branded or unbranded two corresponding variables are included in

the regressions. To control for spatial autocorrelation a spatial lag model is utilized,

furthermore the spatial distribution of unbranded sellers is explicitly accounted for

and spatial e�ects of other explanatory variables are included by applying a spatial

weight matrix.119

captured by using �xed e�ects on the the level of municipalities. (cf. ibid., p. 168)
119To measure the distance decay e�ect an element wij of the spatial weight matrix equals the

reciprocal value of the Euclidean distance of �rm i and j. Rows are standardized to one. (cf.
Pennerstorfer (2009), p. 143)
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The results indicate positive and highly signi�cant e�ects of the brands as well as the

spatially lagged price on the price level. Thus, unbranded stations charge on average

lower prices and due to the positive spatial correlation lower prices of unbranded

stations cause the prices of branded stations to decline. By contrast, the fraction

of unbranded stations in a local market with a branded central �rm (after spatial

weights) is positively correlated with price levels implying that an increase in the

fraction of unbranded direct competitors in the local market of a branded station

leads to an increase of its average price. Further evidence for the existence of this

composition e�ect is provided by results of numerical simulations. (cf. Pennerstorfer

(2009), p. 148�) In sum the paper of Pennerstorfer (2009) suggests that an increase

in competition by unbranded stations does not necessarily lead to a decrease in

price levels of branded stations since the total price e�ect is composed of a 'pure'

price competition e�ect (regardless of the brand) and of a composition e�ect that

is driven by perceived quality di�erences. Thus, evidence is found that a station's

brand represents an important characteristic for product di�erentiation and has to

be considered as a major determinant of gasoline price levels.

In the study of Pennerstorfer & Weiss (2013) the relationship of spatial clusters of

stations with gasoline price levels is examined. Subject to the research interest is

the intuition that - as a consequence of localized competition - nearest neighbors

along a road which belong to the same brand and form a spatial cluster are exposed

to less competition compared to a situation where each neighbor serves its product

under a di�erent brand. In particular the paper scrutinizes the case of a merger of

gasstations in the Austrian retail market that a�ected the composition of brands and

spatial clusters.

The data on station characteristics (including geographical location) covers the cross

section of all 2.814 gasoline stations in Austria. Price data is available from 2000 to

2005 in quarterly observations in an unbalanced panel and covers the date of the

merger of 98 stations by a major brand in 2003. Moreover, data on local market

and demand characteristics is used (e.g. population density, land price, number of

tourists). Spatial cluster of stations with the same brand are modeled by an index

based on the concept of Thiessen polygons.120 The index characterizes the local

market of each station and is constructed by the total number of nearest competitors,

the number of neighboring stations that form an adjacent cluster, and the cluster

size (i.e. the total number of �rms that form an adjacent cluster). (cf. Pennerstorfer

& Weiss (2013), p. 665) Correspondingly, an increase in the index value refers to an

120Thiessen polygons are a two-dimensional representation for spatial competition between two
stations along a road and de�ne the local market of a station in relation to its nearest neighbors.
Conceptually, the position of the indi�erent consumer based on stations' location is marked by a
perpendicular line and the set of intersecting perpendiculars forms the polygon. (cf. Pennerstorfer
& Weiss (2013), Fig. 1, p. 663)
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increase in the number of stations forming a (brand) cluster, and therefore, to an

increase in the cluster size which implies a potential increase in market power for

these stations as a result of a lower degree of price competition. Now, due to the

take-over of 98 stations of a major brand the structure of spatial competition and

of spatial clusters changed which is measured in movements of the index. The price

e�ects are estimated with a 'di�erence-in-di�erence' model. Accordingly, price levels

are estimated (in a panel) as a function of station- and time-dependent variables,

time- and station-�xed e�ects, and as a function of the spatial clustering index as well

as two supplementary dummy variables to capture the merger e�ects.121 The results

reveal a signi�cant and positive correlation of price levels with the spatial clustering

index variable and on average an increase in prices by 0.14 cent is observed for

stations which were directly a�ected by the take-over. (cf. Pennerstorfer & Weiss

(2013), p. 668)

In sum the �ndings of Pennerstorfer &Weiss (2013) shed light on the interdependence

of stations' location patterns with their price levels. In particular, it is demonstrated

that a take-over of stations in the Austrian market caused a change in the spatial

structure which in turn implied a decrease in price competition and in the price levels

in the corresponding local markets.

The study of Firgo et al. (2015) highlights the empirical relationship of the degree

of centrality that characterizes stations' locations and the level of gasoline prices.

Theoretical predictions for their estimations are drawn from a model of intersecting

roads (combining features of Chen & Riordan (2007) and Braid (2013)) under linear

transportation costs and perfectly inelastic demand. Speci�cally, stations' locations

are assumed to be exogenously given and each spoke is occupied by one player. Im-

portantly, an asymmetric location pattern is imposed with one �rm locating closer

to the intersection than its rivals and the center is assumed to be a vacant spot.

Then, from the expressions of market demand, the pro�t functions, and the �rst

order conditions (in prices) of the centrally located station and the peripherals it

follows that the price reaction of a remote station (to a price change of the central

station) is stronger than the price reaction of the central �rm (to a price change of a

peripheral station). (cf. Firgo et al. (2015), Proposition 1, p. 82). This proposition is

in line with the �ndings in Braid (1989) and Braid (2013) and extends the argument

to an asymmetrical location pattern in a setting of intersecting roads. Additionally,

conditions are provided such that the price of the central station exceeds the price

of a remote station which highlights the countervailing forces of a price competition

e�ect if the number of remote stations is high and they locate comparatively close,

and of a market share e�ect if the central �rm locates close to the intersection and

121These are �rstly a dummy that measures whether the price of the merged station varies, and sec-
ondly whether the price of a nearest neighbor in the radius of 1.5 miles varies. (cf. Pennerstorfer
& Weiss (2013), p. 667)
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holds a large market share. (cf. Firgo et al. (2015), Proposition 2, p. 83)

The empirical investigation uses data for gasoline prices for the metropolitan region

of Vienna in an unbalanced panel for 22 points in time between 1999 and 2005, and

station speci�c data for all stations surveyed in 2003 as well as local market and de-

mand characteristics.122 The degree of centrality is measured based on the number

of times a station is a direct neighbor to another station.123 (cf. Firgo et al. (2015),

equation (6), p. 85) Subsequently, a diagonal centrality matrix C is constructed with

diagonal elements cii expressing the degree of centrality for station i.

The regression equation speci�es as the dependent variable the price and as the

explanatory variables (i) the spatially lagged price, (ii) the spatially lagged price ac-

counting for the degree of centrality, (iii) the degree of centrality (as a sole variable)

and (iv) a set of explanatory variables relating to station and local market charac-

teristics.124 (cf. Firgo et al. (2015), equation (7), p. 85) In addition, the speci�cation

includes spatially lagged error terms using binary spatial weights. As estimation

methods Maximum Likelihood estimation and the inclusion of instrumental vari-

ables are used. The results reveal a signi�cant positive correlation of market prices

with the spatially weighted prices of centrally located stations while the relationship

with the spatially lagged price vector is not signi�cantly di�erent from zero. This

con�rms the prediction that changes in the price levels in local markets are critically

determined by variations of the price decisions of the central player. Moreover, the

regression coe�cient for the centrality measure is not signi�cantly di�erent from zero

which implies that the absolute price level is not explained by the degree of centrality.

Thus, on average the price of a centrally located station does not exceed the market

price suggesting that no evidence in favor or against the price competition e�ect or

the market share e�ect for the central station is found. In addition, based on the

regression coe�cients simulations illustrate that an exogenous price shock imposed

on a central station leads in total (after consideration of direct and indirect feedback

e�ects) to higher price levels for the central station as well as to a higher average

market price as the degree of centrality increases. (cf. Firgo et al. (2015), p. 88f)

In conclusion, the paper of Firgo et al. (2015) provides evidence for the interrela-

tion of asymmetrical location patterns with the price level in retail gasoline markets.

Speci�cally, controlling for spatial dependencies among stations their results imply

a statistically signi�cant relationship between the price of a centrally located sta-

122Initially conducted tests (variance ratio tests, two-way �xed e�ects estimation on station and
time �xed e�ects, rank reversal tests) reveal that the price variation in the cross sections does
not follow random movements. (cf. Firgo et al. (2015), p. 84)

123A matrix G is constructed with all stations spawning the rows and columns. Then, an element
gij equals one if station i and j are nearest neighbors and zero otherwise.

124The spatial weight matrix accounts for distance decay e�ects and contains reciprocal values of a
distance measure between stations' locations. It is constructed based on a circular radius of 5
minutes driving time which implies that for stations farer away respective matrix elements are
zero.
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tion and the average local market price. The importance of the spatial dependence

between market players and asymmetric location patterns is further illustrated in

shock simulations where a higher degree of centrality implies that exogenous shocks

have stronger impacts on prices of the centrally located �rm as well as on the average

local market price.

Recently, the paper of Firgo et al. (2016) corroborates previous �ndings of econo-

metric analyses on the importance of central locations for the determination of price

levels. They use data on station and local market characteristics for the Austrian

gasoline market, and unbalanced price data available for 23 points in time between

1999 and 2005. Local markets are de�ned based on the average driving time to near-

est competitors. Consistency requires that the shortest driving time to a station

outside a local market always exceeds the shortest driving time to the closest rival

within. Moreover, the market center is de�ned as the point which minimizes the sum

of distances to all stations in the local market. (cf. Firgo et al. (2016), p. 80)

Two regression models are examined (cf. Firgo et al. (2016), equations (2) and (3),

p. 81). Firstly, controlling for station and local market characteristics the relation-

ship of the spatially lagged price with the market price for markets with three, four,

�ve and six stations is estimated. Secondly, by including diagonal matrices to select

central and remote stations the e�ect of the price of a central station on remote

stations, the e�ect of a remote station's price on the central station as well as the

coe�cient of the price interaction between remote stations is estimated for the same

variation in market size as in the �rst case.

The results show that for the �rst model - where stations are assumed to have equal

(symmetric) market power in terms of their proximity to the center - the spatially

lagged price is signi�cantly and positively correlated with the market price. This con-

�rms previous results (e.g. Pennerstorfer (2009), Firgo et al. (2015)) and indicates

that on average stations increase prices if their nearest neighbors increase prices.

Moreover, the regression results reveal that this interaction continuously declines as

the market size increases from three to six players. For the second case evidence is

provided that the asymmetric location pattern critically impacts the price interaction

between stations. For markets with three stations the �ndings of the �rst regression

model is con�rmed. However, as the number of stations in the local market increases

the coe�cient of the central station on its rivals' prices increases (compared to the

case with three stations) whereas the coe�cient indicating the in�uence of the remote

station on the central competitor as well as the coe�cient measuring the interaction

between remote stations continuously decrease.

In sum, Firgo et al. (2016) provide clear-cut evidence for the in�uence of a central

location on the pricing behavior in local markets. Their results indicate that as the

market size in terms of the number of competitors increases the importance of a
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central market position increases. For growing market sizes remote stations are less

in�uenced by the prices of nearest rivals and more likely to follow the price setting

behavior of the centrally located station.

2.5 Models of Economic Agglomeration

Models of economic agglomeration use a more general approach to describe loca-

tion patterns of �rms compared to game theoretically based price-location models.

These sort of models are rooted in the �eld of economic geography and address the

fundamental questions of why economic activities of agents (households and �rms)

agglomerate in certain places in space, and consequently try to identify the deter-

minants of agglomeration and dispersion forces. Typically cities represent central

points in space and clearly the size and signi�cance of cities widely di�er. Therefore,

a particular stream of the research activities is concerned with the functional and

locational characteristics of cities to provide explanations for their existence and de-

velopment as well as their hierarchical order.125

The goal in this subsection is to give a very brief overview on topics that are dealt

with in agglomeration models. Intuition shall be developed for the research topics

of regional economics that can have rami�cations in very di�erent �elds of the eco-

nomic literature such as growth and development theories or urban planning. For

this reason this subsection �rstly draws largely on the literature review of Fujita &

Thisse (1996), and secondly presents the seminal paper of Eaton & Lipsey (1982)

and a more recent article of Tabuchi & Thisse (2011) in greater detail.

In the preceding chapters of this survey it was made clear that �rms' tendency to ag-

glomerate or disperse in a linear and bounded market is the result of interdependent

pro�t-maximizing decisions concerning price and location. In short, agglomerative

and deglomerative forces emerge from spatial competition that is inherently strate-

gic. According to Fujita & Thisse (1996) in the context of economic behavior and

125The origins of economic geography models date back to the work of Johann Heinrich von Thue-
nen. His approach yields concentric circles around a central place (city). Depending on speci�c
characteristics such as price, transportation cost and the production technology he argues that
it is pro�table to produce only one type of product in a certain spatial region with respect to
the center. Furthermore, the geographer Walter Christaller developed the prototype of a model
of central places. His model implies the existence of di�erent central places distinguished by
a degree of centrality which is de�ned by the amount and quality of services rendered to its
population. Assuming a regular transportation network connecting a system of places, a basic
outcome is that in order to distribute the areas between the centers with goods and services a
triangular pattern of central locations emerges where the adjacent areas to each central place
form a regular hexagonal spacing. Conditions for this pattern to emerge are, �rstly, that �rms
need to sell at least to a minimum demand to remain pro�table, and secondly, that consumers
need to be close enough to a central place and be willing to incur transportation costs. Moreover,
Christaller's hierarchy model implies that the goods and services only �ow in one direction from
a city with higher centrality to less central places. (cf. Mulligan (1984), p. 9f)

72



Chapter 2. Centrality and Spatial Di�erentiation - A Literature Survey

decision making in space two further general determinants have to be considered

to explain agglomeration and dispersion forces which are (i) externalities, and (ii)

increasing returns.

The standard approach for the �rst determinant is to introduce information exter-

nalities and explain agglomeration as a result of informational spillover e�ects among

�rms. (cf. Fujita & Thisse (1996), pp. 348-351) The intuition behind this idea is that

�rms share di�erent types of information and mutually bene�t from public good

characteristics of information �ows. Since close proximity fosters the use of commu-

nication channels and stimulates economic activity �rms tend to settle at a central

location. On the other side a higher concentration of �rms in one area leads to an

increase in the commuting distances of its employees that live in the surrounding

neighborhoods, thus, in turn to higher wage rates and land rents in the agglomer-

ation area. An equilibrium for the spatial distributions of �rms and households is

reached if these countervailing e�ects are balanced.

Formally, �rms' pro�ts are an increasing function in the aggregate bene�t from ex-

changing information and a decreasing function in the amount of the two production

factors land and labour (cf. Fujita & Thisse (1996), p. 349, equation 2.2). On the

side households' income and total budget comprises of distance-dependent commut-

ing costs (with a unit transportation cost coe�cient) as well as the costs for the

consumption of land and a composite good. The aggregate information bene�t as

well as land rates, wage rates and commuting costs are a function of the agents'

locations. In equilibrium the land and labour markets are cleared and all households

achieve an optimal level of consumption (utility) and all �rms an optimal level of

pro�ts. Within this setting research interests focus on the impact of the functional

form of the aggregate information bene�t function (e.g. linear or exponential decay

factor) on the characteristics of the equilibrium state and are associated with the

prominent works of the Japanese regional economist Masahisa Fujita (for corresond-

ing references see Fujita & Thisse (1996), p. 350f). Depending on the parameter

ranges and the functional form of the bene�t function either unique con�gurations

(one city with a center) or multiple equilibria (polycentric cities) obtain. Moreover,

in an extension of the model with costly intra�rm communication, solutions obtain

that cover the case of a city with a central business district surrounded by residential

areas in which �rms' back units are located. This demonstrates that these sort of

agglomeration models are capable of relating communication technologies and �rms'

intra-organizational structures with their spatial distribution and the structures of

modern cities characterized by the dichotomy of a central business district and resi-

dential areas.

The second determinant of increasing returns refers to the notion of monopolis-

tic competition and input di�erentiation. (cf. Fujita & Thisse (1996), p. 352�) The

prototype of this sort of model assumes a population of homogeneous consumers
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distributed in space who choose among a homogeneous product and a variety of n

di�erentiated goods. For a continuum of di�erentiated goods the utility is described

by a constant elasticity of substitution (CES-type function). Likewise, �rms' produc-

tion function shall be of a CES-type. Formally, utility is U = (z0)α(
∫ n

0 [z(ω)]ρdω)
1−α
ρ

and produced output x = (z0)α(
∫ n

0 [z(ω)]ρdω)
1−α
ρ where z denotes the consumption

goods and the input factors respectively (with z0 as the homogeneous good and the

homogeneous input), ρ is a measure for the degree of substitution and di�erentiation

respectively (0 < ρ < 1), and α is a scaling factor. Furthermore, it is assumed that

labor represents the only input factor with a �xed labor requirement and a variable

part in the production function (i.e. the marginal labor requirement a). Addition-

ally, transportation costs shall be increasing in distance and strategic price setting

of �rms shall be ruled out, i.e. the standard assumption of monopolistic competi-

tion holds with a considerable number of di�erentiated products as substitutes and

thus no �rm having a signi�cant impact on market price and total consumption. In

sum, this model implies increasing returns to scale (through ρ), isoelastic demand

curves, and an aggregate demand being independent of the spatial distribution of

consumers.126 In equilibrium the price for a �rm is given by the marginal produc-

tion cost of labor with equilibrium wages W (x) varying in space times a mark-up

which increases with the degree of product di�erentiation: p∗(x) = aW (x)
ρ . The basic

intuition for an equilibrium state in which agents agglomerate and form a city is

that a higher density of �rms attracts more consumers to satisfy their needs for a

greater variety of goods. Likewise, a higher density of consumers attracts more �rms

since they expect higher demand. Firms tend to agglomerate since they specialize in

production to increase pro�ts, and consumers tend to agglomerate since they prefer

a greater variety of goods to increase utility. Repulsive forces are represented by a

higher degree of competition in denser areas. Indeed the literature yields equilibrium

states with bell-shaped distribution functions, however, to dissolve repulsive forces

a certain degree of di�erentiation has to prevail. (cf. references in Fujita & Thisse

(1996), p. 354)

A further stream of the regional economics literature, which is associated with the

Nobel laureate Paul Krugman, applies the monopolistic competition model on a two

sector economy and explains the emergence of core-periphery structures. (cf. refer-

ences in Fujita & Thisse (1996), p. 355�) As suggested above, two types of goods are

in the economy: a homogeneous agricultural good produced by an immobile labor

force and traded with zero transportation costs, and a continuum of di�erentiated

industrial goods produced by a mobile work force with distance-dependent trans-

portation costs and sold on a monopolistically competitive market. Agglomeration

126Intuitively, since buying from a more distant seller proportionally decreases utility and no �rm
applying certain pricing strategies the elasticity of an individual demand at a certain location
is the same throughout the whole spatial area.
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forces emerge due to real income e�ects. As �rms agglomerate price competition

intensi�es generating an increase in real incomes which leads to a migration of the

mobile industrial workers, in turn causing more �rms to locate at the central place etc.

By contrast, the immobile workers and production of the agricultural good remain

in the periphery. In sum this yields a core-periphery structure with the production of

the di�erentiated industrial goods concentrated in one region. In the literature it is

shown that the existence of an equilibrium depends on the degree of transportation

costs, the degree of di�erentiation, and the share of the industrial sector to the econ-

omy. Moreover, it is emphasized that the equilibrium is not stable suggesting that

the initial state of a regional economy plays a critical role in its development path.

Extended versions of this model consider a totally mobile work force and generally

positive transportation costs. In this case, a single city surrounded by agricultural

regions represents an equilibrium state subject to the degree of di�erentiation and

transportation costs as well as the total population of workers. Intuitively, the smaller

the degree of di�erentiation, i.e. if products become closer substitutes, more incen-

tives exist to locate at the periphery. Finally, consider that this model type is capable

of explaining hierarchical structures in regional patterns (as in the earliest works on

the subject by Walter Christaller). This is achieved by introducing di�erent groups

of di�erentiated industrial goods with di�erent transportation rates. Then, higher

ordered cities provide a greater amount of groups of di�erentiated goods. However,

in contrast to Christaller the �ow of goods also comprises reverse transactions from

less central to more central cities.

An example for an agglomeration model that exempli�es the e�ect of a particular

type of externality is provided in the seminal article of Eaton & Lipsey (1982). They

motivate their work by developing a spatial model for �rms' location decision that

is based on their pro�t-maximizing behavior. The question that the paper tries to

answer is �why, in other words, do �rms retailing di�erent goods tend to cluster to-

gether?� (Eaton & Lipsey (1982), p. 58) This stands in contrast to previous models

of central places, most prominently the Christaller model, which explains the hier-

achical pattern of agglomeration spots by geometrical arguments.

The model of Eaton and Lipsey assumes that households consume two goods (A

and B) with a constant rate over time normalized to one. The market is the one-

dimensional line with unit length and uniformly distributed consumers with density

D. After each time period households assess their stock and decide to go on a shop-

ping trip where they are allowed to buy either a bundle of good A consisting of 1
α

units, a bundle of good B with 1
β units, or both bundles. On their trip consumers

minimize transportation costs which are increasing in traveled distance. Then, the

probability to consume A in one period is α, and to consume B in one period is β.

On the supply side �rms are distinguished into respective groups A and B. They

face �xed costs of KA and KB, marginal costs are assumed to be zero. Moreover,
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prices are exogenously given (pA, pB), for the choice of the location each �rm assumes

zero conjectural variation, and it shall be allowed for more than one �rm to locate

on the exact same spot. Finally, for an equilibrium to prevail three conditions shall

hold: �rstly, locations are optimal (i.e. guarantee maximal pro�ts), secondly, there

is no exit (i.e. revenues must exceed �xed costs), and thirdly there is no entry. To

characterize equilibrium states these three conditions are exploited.

Using the pro�t-maximizing condition, it follows that in equilibrium only central

places of order two (i.e. a seller of type A and a seller of type B are located at the

same place), or central places of order two and groups of sellers with the same type

(A or B) exist, or there could be a con�guration with groups of sellers of type A and

B only if they are separated by a central place of order two. (cf. Eaton & Lipsey

(1982), proposition 1 and 2, p. 62) In short, there will never exist an equilibrium

where a �rm of type A is a neighbor of a �rm of type B, rather they must form a

central place of order two. The intuition is that the two alternatives for �rm A (to

forming a pair with B) do not constitute an equilibrium since then pro�ts for all

players are not maximal.127

Using the exit condition the second main argument of the paper is that multiple

equilibria obtain such that only one group of �rms (A or B) and central places of

order two emerge in the market, or such that only central places of order two prevail.

Essentially, for one group of �rms to exist the relation of �xed costs (e.g. KA) to the

expected revenue (i.e. αpADY )
128 must stay within de�ned boundaries. Formally,

the necessary conditions for �rms of group A and �rms of group B can not be ful-

�lled simultaneously which rules out a state where they are located simultaneously.

(cf. Eaton & Lipsey (1982), proposition 4, p. 64 and the verbal arguments on p. 65)

The model of Eaton & Lipsey (1982) earns its signi�cance by establishing the ex-

istence of central places based on �rms' pro�t-maximizing decisions. It represents a

generalization of traditional central place models and emphasizes that central places

attract consumers who purchase two di�erent goods and therefore steal demand from

neighboring �rms. In other words, there arise negative demand externalities for �rms

producing one type of product due to central places at which two types of prod-

ucts are served. Therefore, central places require larger market areas for neighboring

�rms to stay in the market. Moreover, the paper stresses that the equilibrium is not

uniquely de�ned and that it depends on the transportation costs and the relative

volumes of multipurpose and single-purpose shopping. (cf. Eaton & Lipsey (1982),

p. 66f)

127The �rst alternative is that the �rm of type A (�rm Ai) remains at its initial location ai, then
however, it could move towards �rm B and increase pro�ts by gaining more consumers who
want product A and B. The second alternative is to locate at the spot of its nearest A-type
neighbor �rm Ai−1 at ai−1, this leads to optimal pro�ts for the migrant �rm Ai but only if the
local market for consumers who solely purchase good A is big enough. This condition, however,
leads the neighboring �rm Ai−1 to move to the left of Ai. (cf. Eaton & Lipsey (1982), p. 63)

128Y denotes the length of the required market area such that a �rm bears �xed costs.
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The article of Tabuchi & Thisse (2011) serves as an example for the second determi-

nant for agglomeration and presents a model of monopolistic competition in space.

Within an economy of di�erent industrial sectors under monopolistic competition

it describes the linkage between transportation costs and spatial equilibrium con�g-

urations. The intuition behind the model is to provide the theoretical background

for the empirical observation that a substantial decrease in transportation costs over

the past decades is correlated with an increase in the population of major cities in

OECD countries.

The economcy consists of a homogenous (agricultural) good and a set of di�erentiat-

ed goods each produced in a speci�c industry (i = 1, ..., I). Each industry is subject

to monopolistic competition and comprises a continuum of varieties (v ∈ [0, n]). The

spatial setting is a circumference with length 1. The model can be considered as a

general equilibrium model and deploys a two-stage procedure that unfolds by back-

ward induction. In the �rst stage the distribution of workers is dealt with, workers

are assigned to an industry and a city and the individual choices correspond to a

maximum level of utility. In the second stage, the prices, demand functions and wage

rates of the industries are derived.

The starting point of the analysis is a CES-type utility function. Total utility results

from consuming industrial goods and the agricultural good, the intensity of compe-

tition is captured by the elasticity of substitution (σi) for each industry. (cf. Tabuchi

& Thisse (2011), equation (2), p. 242) Maximizing total utility subject to the budget

constraint (total consumption has its source from earned wages) yields the individual

demand at a particular location for a variety of an industrial good that is produced

at a particular location. Transport costs (τ) are assumed to be the same accross

industries. (cf. Tabuchi & Thisse (2011), p. 243) The speci�cation of the demand

functions and the introduction of transportation costs allows to de�ne a �rm's pro�t

assigned to a particular industry and located in a particular city where the solution

for the population of workers in the city is subject to stage 1. (cf. ibid., equation (4),

p. 243) Maximizing respecitve pro�t functions yields the equilibrium price for each

industry which hinges upon the amount of transportation costs (i.e. the distance to

travel from the production site in a city to the consuming worker) times a mark-up

that depends on the competitiveness of the industry. For each industry wages are

restricted by �rms' operating pro�ts. Based on the equilibrium price level the condi-

tion that all varieties can be produced in a city the equilibrium wage level is derived

which di�ers by industry and location since operating pro�ts are not equal across

cities and industries. (cf. Tabuchi & Thisse (2011), equation (7), p. 243)

The distribution of the population over the whole economy yields multiple equilib-

ria. Therefore, Tabuchi & Thisse (2011) focus on two equilibrium con�gurations to

scrutinize the role of transportation costs in the model. In the �rst case all cities are

of equal size and all industries are present in each city, but in every city di�erent
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varieties are produced. In the formal treatment of the �rst case an interval for the

level of transportation costs is speci�ed such that an equilibrium pattern of an even

number of cities which are symmetrically and equidistantly located around the circle

exists and is stable. The intuition for the condition to prove the existence is that an

equilibrium requires all industries to be equally represented in each city, i.e. to set

up an equilibrium industry share that is dependent on the elasticity of substitution

and the coe�cient in preference. (cf. Tabuchi & Thisse (2011), equation (12), p. 244)

It follows that the problem reduces to the positiveness of an auxiliary function g ≥ 0

which yields the threshold value for transportation costs. If transportation costs are

su�ciently low (beneath the threshold) then the number of cities in equilibrium

doubles compared to the opposite case. (cf. Tabuchi & Thisse (2011), Proposition 1,

p. 245)

The second case deals with a situation where cities have di�erent sizes and larger

cities o�er a larger set of industries. The corresponding section 4 in the paper deals

with the simpli�ed case of one di�erentiated industry (i = 1) and the case of mul-

tiple di�erentiated industries in the economy. It contains mathematical descriptions

of the development of spatial patterns starting with an initial equilibrium state of a

given number of cities and de�nes the conditions under which the evolution process

evolves. The basic intuition for the outcome of the analysis for the single industry

case is that the initial development state starts with a relatively high value of trans-

portation costs, given a steady decrease as a �rst threshold is passed the symmetrical

initial con�guration becomes unstable and the size of the cities �uctuates. For further

decreasing transportation costs bigger cities grow and smaller cities shrink. Eventu-

ally, the numer of cities is halved and the size of the remaining cities has doubled.

(cf. Tabuchi & Thisse (2011), p. 247)

In conclusion, the article of Tabuchi & Thisse (2011) represents a prominent and

demanding example for a recent model of economic agglomeration. It demonstrates

that the emergence of agglomerations is the result of an outcome of economic inter-

actions between workers and consumers respectively on the one side and �rms on

the other. The equilibrium states are not uniquely de�ned but pertain to the princi-

ples of pro�t- and utility-maximization. The main impact of the study is to provide

explanations for the evolution of spatial con�gurations as the level of transportation

costs decreases.

2.6 Conclusion

This survey tells the story of why di�erent �rms in a market would be likely to

position their product and settle their premise or retail outlet in a similar segment,

or why this would not be the case. Two arguments (and a �nal reference note) shall
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close the examination:

1. The selected articles show that the location determinants can be assigned to

groups representing the following di�erent economic impact factors (a summary

of the various model characteristics and predictions is provided in table 1):

• consumers' reservation price and elasticity of demand

• transportation costs incurred by consumers (t-costs)

• number of �rms n

• characteristic and timing of the game

� simultaneous and sequential entry

� relocation costs and entry costs

� revocability and commitment of the decision on the strategic variables

� assumptions on the reaction of rivals' strategic behavior to one's ac-

tions (conjectural variations / strategic foresight)

• characteristics of the consumer distribution

• market geometry

To wrap up the state of the �eld, generally two countervailing e�ects impact

�rms' locations. In a duopoly, the market share e�ect suggests to maximize

the hinterland and move towards the center whereas price competition in-

creases the closer the two rivals get. Since all consumers purchase by assump-

tion Hotelling (1929) introduced the proposition of an agglomerative behavior.

Smithies (1941), and later Economides (1984) and Hinloopen & van Marrewijk

(1999) focused their research questions on this assumption of perfectly inelastic

demand and an in�nite consumers' reservation price. If an increasing number

of consumers opt out of the market since their net utility of consumption be-

comes negative, intuitively no additional consumers can be gained by relocating

and price competition becomes the dominant force. Thus, Economides (1984)

argues for a repulsive location behavior and eventually for the emergence of iso-

lated local markets served by monopolists. Hinloopen & van Marrewijk (1999)

demonstrate that Hotelling and Economides studied extreme cases of location

patterns in terms of the value of the reservation price and shed light on the

intermediary transition process partially vindicating Hotelling's suggestion to

move towards the center.

A general proposition of minimized product and location di�erences can not
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be obtained in a subgame perfect price and location equilibrium since for close

distances an incentive to undercut exists. This is, of course, one of the main

insights of d'Aspremont et al. (1979). Moreover, they show that this instance

can be traced back to the underlying transportation cost regime. More specif-

ically, Economides (1986) de�ned the exact parameters for a transportation

cost function for which a subgame perfect market equilibrium exists. Within

certain parameter ranges lower transportation costs imply that �rms agglom-

erate in equilibrium which re�ects the signi�cance of the market share e�ect

due to a higher �exibility of consumers choosing their utility-maximizing prod-

uct. However, according to Economides (1993) who generalizes from a duopoly

to oligopolistic markets the proposition holds that for n ≥ 3 a subgame per-

fect equilibrium does not exist since the dominant strategy for remote �rms

relies upon the market share e�ect. This �nding anticipates the importance of

asymmetrical structures in spatial markets whose signi�cance became clearer

in more recent theoretical studies concerning nonuniform consumer distribu-

tions and intersecting roadways, and empirical studies on gasoline markets.

Furthermore, the literature suggests that location patterns are critically de-

termined by the strategic interaction between the players, and particularly,

by the role of the timing in the game, that is the question of the sequence in

which each player decides on his strategic variable(s). The contributions of Hay

(1976) and Prescott & Visscher (1977) are among the �rst to study sequential

entry games pinning down the strategic dependencies in the location choice

by introducing prohibitively large relocation costs. Generally, their studies ar-

gue for equidistant location con�gurations which con�rms the intuition that

the size of local markets has to correspond to the level of entry costs. Thus,

under sequential entry the market share e�ect loses its signi�cance. Then, the

dominant strategy is to identify market niches and to secure one's position

against later entrants. Subsequent research interests focus on the question how

location patterns vary contingent on the level of entry costs and which player

takes the most advantages out of the sequential entry order. Exemplarily, the

studies of Neven (1987), Economides et al. (2004) and Goetz (2005) show that

symmetric and asymmetric location patterns result from sequential entry and

that �rst-mover advantages exist, however, under certain parameter ranges al-

so late entry may be pro�table. Additionally, the studies of Anderson (1987)

and Fleckinger & Lafay (2010) include sequential interactions for price and

location decisions in a duopoly. They emphasize that particular product and

market characteristics cause players to commit themselves di�erently which

implies advantages for the �rst or the late mover in the game and subsequently

location outcomes either reveal a dispersed pattern or the two players locating

comparatively close.
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As the assumption of a uniform consumer distribution is dropped and the

market geometry is extended to a setting of intersecting roads the tendency is

observed that �rms are attracted to the region where consumers are concentrat-

ed. Generally however, the problem of characterizing the interaction patterns

and �nding an equilibrium for a price-location game becomes more complicat-

ed. For the case of nonuniform consumer distributions the studies of Neven

(1986), Tabuchi & Thisse (1995) and Anderson et al. (1997) illustrate that the

characteristics of the distribution determine the existence and the type of the

location equilibrium. For intersecting roads the studies of Braid (1989) and

Braid (2013) demonstrate that a subgame perfect equilibrium in a simultane-

ous price location game does not exist which is attributable to the inherent

asymmetry in the competitive relationship of the players related to the notion

of nonlocalized competition and the speci�cs of the market geometry.

Table 2.1: Model predictions on the location choice in spatial competition models a
la Hotelling

Spatial number model location location determinants

competition model of �rms assumptions tendency and outcomes

Uniform consumer

distribution:

Hotelling (1929) 2 s2S-P-L game129, linear t-

costs

(+)130 perfectly inelastic de-

mand, ZCV131 in price

and location

Smithies (1941) 2 location game solved for 3

types of competition, lin-

ear demand, linear t-costs

(+,−) ratio of t-cost coe�cient

and intercept (demand

curve)

Economides (1984) 2 s2S-P-L game, �nite reser-

vation price, linear t-costs

(−) �nite reservation price im-

plies emergence of local

monopolies

Hinloopen & van

Marrewijk (1999)

2 s2S-P-L game, �nite reser-

vation price, linear t-costs,

symmetric locations

(+,−) (+) for intermediate mar-

ket sizes ( 8
7
≤ α ≤ 4

3
)

and increasing reservation

prices

d'Aspremont et al.

(1979)

2 s2S-P-L game, in�nite

reservation price, linear

t-costs, price equilibrium

not subgame perfect

(−) quadratic t-costs yield

subgame perfect price

equilibrium

129simultaneous two-stage price-location game
130(+) indicates the tendency to agglomerate, (−) to disperse in space.
131zero conjectural variation
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Economides (1986) 2 s2S-P-L game, in�nite

reservation price, t-cost

exponent α, symmetric

locations

(+,−) (+) for decreasing α and

1.26 = α ≤ α < 5
3

Economides (1993) n ≥ 3 s2S-P-L game, in�nite

reservation price, linear

t-costs

(+) no subgame perfect loca-

tion equilibrium, distance

decay e�ects, exogenous

equidistant spacing yields

U-shaped Nash prices

Hay (1976) n ≥ 2 elastic demand, costly re-

location, sequential entry

(−) cost and demand parame-

ters

Prescott & Visscher

(1977)

n ≥ 2 costly relocation, sequen-

tial entry, prefect foresight

(−) n, endogenization of n,

�xed costs, endogeniza-

tion of mill price

Neven (1987), Econo-

mides et al. (2004),

Goetz (2005)

n ≥ 2 s2S-P-L game, quadratic

t-costs, sequential entry,

�xed costs

(+,−) �xed costs and market

size, entry deterrence,

symmetrical and asym-

metrical equilibria exist

Anderson (1987) 2 sequential game, one's

price and location chosen

at di�erent stages, linear

t-costs

(−) location leader takes cen-

ter and becomes price fol-

lower, �rst mover advan-

tage, second mover locates

remotely, irrevocable loca-

tion choice

Fleckinger & Lafay

(2010)

2 sequential game, one's

price and location chosen

at one stage, linear and

quadratic t-costs

(+) �rms locate on same side

of the market, second

mover advantage (location

closer to center), equal

�exibility of product and

price

Nonuniform cons.

distribution:

Neven (1986) 2 s2S-P-L game, quadratic

t-costs, symmetrical loca-

tions, symmetrical distri-

bution

(+) peak of symmetrical dis-

tribution c( 1
2
), consumer

concentration implies ag-

glomeration

Tabuchi & Thisse

(1995)

2 s2S-P-L game, quadratic

t-costs, simultaneous and

sequential location sub-

game, triangular distribu-

tion, unbounded line

(+) asymmetrical equilibrium,

�rst mover takes cen-

ter, consumer concentra-

tion implies agglomera-

tion

Anderson et al. (1997) 2 s2S-P-L game, quadratic

t-costs, log-concave distri-

bution

(+) convexity properties

determine symmetric or

asymmetric equilibrium,

consumer concentration

implies agglomeration
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Intersecting roads:

Braid (1989) n ≥ 2 s2S-P-L game, center oc-

cupied, linear t-costs

(+) no subgame perfect lo-

cation equilibrium, asym-

metric price reaction be-

tween central and remote

�rms

Braid (2013) n ≥ 2 s2S-P-L game, center oc-

cupied, quadratic t-costs,

symmetric locations

(+) no subgame perfect lo-

cation equilibrium, asym-

metric price reaction be-

tween central and remote

�rms, increase in the num-

ber of �rms leads to ag-

glomeration

2. From the state of the �eld it can be concluded that a complex set of determi-

nants has to be used to explain location con�gurations. The original setting

of the linear city has been subject to various analyses that bring di�erent im-

pact factors in sharper focus. By contrast, theoretical models for the setting of

intersecting roads allow for a wider range of research questions and still leave

interesting research gaps open. In particular, a model that examines the strate-

gic interaction in the price and location choice of an incumbent and an entrant

�rm in a setting of intersecting roads has not been developed yet. Clearly,

�ndings for a two-stage game where prices and locations are chosen simulta-

neously are provided in the studies of Braid (1989) and Braid (2013) yielding

the outcome that a subgame perfect equilibrium does not exist. Inspired by

the treatment of the linear city and the approaches of Anderson (1987) (and

Fleckinger & Lafay (2010)), however, it is interesting to apply a sequential

entry game to the market type of intersecting roads and investigate �rms' be-

havior and potential equilibrium outcomes. One of the considerable simplest

settings would be to treat the case of a duopoly and take the location of the

�rst entrant as exogenously given. This provides the case of a model for entry

into a local monopoly market with spatial characteristics where location costs

are prohibitively high (thus relocation does not occur). The strategic interac-

tion in this game focuses on the choice of the entrant on his price and location,

and the subsequent price reaction of the incumbent �rm. The dichotomous op-

tions for a reaction to entry would be to accept the competitor, or to undercut

him and deter entry. Consequently, conditions on the each of these have to be

speci�ed.
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Admittedly, this survey took a narrow (but deep) focus to re�ect the vast literature

on the Hotelling model. Therefore, it is natural that some aspects that are related

to model predictions on location decisions were not dealed with in greater detail. In

order to account for these further aspects the following streams of the literature can

be considered:

• Locations in mixed strategy equilibria

An interesting example for the case of mixed strategies in the Hotelling model is

provided in Gal-Or (1982). She demonstrates that a mixed strategy equilibrium

exists in a Hotelling duopoly with the two �rms picking prices randomly from a

continuous price distribution. The existence condition requires that the drawing

is from a de�ned price interval that decreases as �rms move towards the center.

Moreover, a general treatment of mixed strategy equilibria and conditions on

their existence is provided in Dasgupta & Maskin (1986) who show that in the

Hotelling model each subgame in prices has an equilibrium in mixed strategies.

A further important contribution is the study of Osborne & Pitchik (1987).

They characterize the set of mixed strategy price equilibria in the Hotelling

model subject to di�erent location combinations. Based on these results the

location choices are examined and a unique subgame perfect location equilib-

rium is derived with the �rms locating above the quartiles at 0.27. In addition,

they �nd a subgame perfect equilibrium with mixed strategies in locations.

Xefteris (2013) departs from Osborne & Pitchik (1987) but in contrast to their

model he assumes an in�nite reservation price. Subsequently, he proves that

a subgame perfect equilibrium exists with both �rms locating at the market

center.

• Cournot competition in the Hotelling model

Competition may take the form of price competition (Bertrand competition) or

via competition in quantities (Cournot competition). An example for Cournot

competition in the Hotelling model is given in the study of Anderson & Neven

(1991). They show that for a linear demand function Cournot oligopolists (n ≥
2) who spatially discriminate their price locate at the center of the market. Pal

(1998) con�rms the �nding that in a linear city model �rms agglomerate at the

market center and additionally �nds that in a circular market an equidistant

location pattern under Cournot competition obtains. Matsushima (2001) re-

examines his results for the circular market and shows that an agglomerative

location tendency is sustained in equilibrium with half of the �rms locating

at one point on the circle, and the other half locating at the opposite point.

More recently, Matsumura et al. (2005) relate the contradictory predictions of

84



Chapter 2. Centrality and Spatial Di�erentiation - A Literature Survey

the previous studies for the circular market to di�erences in the transportation

cost functions as well as to simultaneous and sequential location choices.
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3 Does Entry Pay O� in a Linear City

with a Center?*

3.1 Introduction

Every time a �rm considers entering a market it is confronted with the issues of

price setting and product positioning. Many examples illustrate that successful mar-

ket entry is based on a balanced approach where a business strategy is required

that di�erentiates the own product and de�nes the competitive space but also ac-

knowledges competitors' strengths and avoids thriftless head-to-head battles. Take

for instance the case of Capital One, which developed from a monoline credit card

company to one of the largest U.S. bank holding companies in less than a decade.

In 1994 there was little di�erentiation in the credit card industry which lead it to

develop statistical models to o�er custom-tailored products determining best com-

binations of product, price and credit limit. Key to success was not to aggressively

enter the market exposing itself to direct price competition taking on the incumbents'

uniform pricing strategies but to develop its own skills using analytics for product

customization.

Under a current market state characterized by a given set of incumbent �rms entry

is by its nature a sequential phenomenon. Balancing the costs and pro�ts the entrant

�rm determines his strategic variables, most importantly product and price, where-

as the incumbents separately choose for an appropriate reaction by means of their

strategic variables, which in a �rst reaction would be their price excluding the option

to reposition products in the short run.1 For the entrant to optimize his pro�ts and

make consecutive strategic decisions he has to address the following questions. What

*This paper was presented at the 8th International Research Meeting in Business and Management
(IRMBAM) on 5th of July 2017 held at the IPAG Business School in Nice, and the XXXII
Jornadas de Economia Industrial on 7th of September 2017 held at the University of Navarra
in Pamplona.

1The assumption that pricing decisions are more �exible than the choice of products can be disput-
ed. An interesting paper providing results where products and prices are chosen simultaneously
by one player is provided by Fleckinger & Lafay (2010). We stick to the classical approach to
study entry and assume that price setting is less costly than to reposition a product. A nonex-
haustive list of papers using this assumption are Goetz (2005), Lambertini (2002), Tabuchi &
Thisse (1995), and Prescott & Visscher (1977).

86



Chapter 3. Does Entry Pay O� in a Linear City with a Center?

is the most pro�table choice to design a new product accounting for the position of

the incumbent �rms' competing products with regards to consumers' preferences?

What is the best price considering the current incumbents' product prices and, more

importantly, the anticipated future price decisions as a reaction to market entry? In

sum, what is the combined optimal choice for a new product and its price such that

entry pro�ts are maximized and given the incumbents' price reaction to entry?

Based on and inspired by the paper of Anderson (1987) we pick up these issues

and develop a model that examines market entry in a two-stage game with an en-

trant �rm choosing his price and location in the �rst stage and one incumbent �rm

choosing his price in the second stage. Accordingly, the analysis is conducted within

the framework of a spatially di�erentiated market with a linear transportation cost

scheme where the only distinguishable characteristic between �rms' products is given

by �rms' location.

Our contribution to previous studies is two-fold. Firstly, we extend the original linear

spatial setting accentuating the central location and introduce an additional variable

Z which represents a node in the center and thus a measure of centrality in the mar-

ket. This enhances the strategic interaction between the players. Consequently, we

are interested in the impact the variable Z has on the pricing behavior, the decision

on the entry location, and the realized pro�ts of the players. Secondly, in the light

of the centrality bonus Z, we are interested if entry leads to a higher or lower degree

of product di�erentiation in the market. In terms of the taxonomy of Fudenberg &

Tirole (1984) we address the question whether a 'puppy dog' behavior of the entrant

�rm that entails choosing a di�erentiated product and applying a low price strategy

proves to be a reasonable outcome of the entry game.

As usual, a short description of the structure of the paper is given at the beginning.

In section 2 the assumptions of the model are depicted. In section 3 the strategic

decision set of the incumbent �rm is explained by sketching his reaction functions

dependent on the entry price and the entry location. In section 4 the strategic de-

cision of the entrant is scrutinized, based on the best replies of the incumbent, we

derive pro�table entry pricing strategies and pricing functions respectively, construct

pro�t functions for each strategy and examine their dependency on the entry loca-

tion. This drills down to a set of propositions on the entry decision in subsection

4.2.4. In section 5 we exemplify and interpret the results in three entry scenarios and

compare our formulas with the model of Anderson (1987). Eventually, we summarize

our results and provide conclusions.
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3.2 The Model

The analysis departs from the classic duopoly model of spatial competition developed

by Hotelling (1929). Consider two �rms, �rm I and �rm E, on a line of unit length

(l = 1), the linear city. Consumers are uniformly distributed on the line and each

consumer shall purchase one unit of a homogenous product. The total number of

consumers is normalized to N = 1. Further, �rms' marginal costs c are assumed to

be equal and set to c = 0. To extend the setting we assume that a spoke of length

Z is attached to the market at a distance of z = 1
2 taken from the respective ends

of the linear city. The uniform distribution and unit demand assumption shall also

apply for the Z consumers on the spoke.

Clearly, since competing �rms sell a good of identical properties they di�erentiate

themselves by two factors: price and location. Let pI and dI denote the price and

location of �rm I and pE and dE the respective quantities for �rm E. To be consistent

with the literature, locations dI and dE are de�ned as distances taken from respective

extremes of the city as depicted in �gure 3.1. Correspondingly, the market is divided

into two hinterlands attached to the respective seller and an intermediate market

consisting of the demand between the competing rivals 1− dI − dE plus the demand

given by Z concentrated in the market center at z = 1
2 . Consumers in the hinterlands

will always purchase at their dedicated seller, i.e. demand is perfectly price inelastic.

We now consider a two-stage sequential price-location game to study market entry.

Stage 1 : the entrant �rm E decides on his location dE and price pE

Stage 2 : the incumbent �rm I chooses his price pI and reacts to entry

The following general assumptions precede the analysis:

• Firm E does not incur any entry costs (f = 0).

• Consumer's transportation costs increase linearly with a constant factor t when

traveling one unit distance.

• The exogenous variable Z represents a measure for centrality in the market. The

player seizing the market center shall be rewarded by a shift in the demand for

his product. Consequently, all Z consumers from the additional spoke purchase

at the seller that captures the indi�erent consumer at x = 1
2 . This implies that

no transportation costs incur when traveling on the spoke. Without loss of

generality Z shall be restricted to 0 < Z ≤ 1
2 .

• Firm I's location dI shall be exogenously given, e.g. resulting from a former

market entry or a change in the regional market structure (length of the city).

Due to the symmetry of the problem the range of dI lies within [0, 1
2 ].
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• In the asymmetric case, i.e., dI <
1
2 the entrant principally has two options

to locate in the market. He could locate on the opposite end of the city with

respect to the incumbent's location. This implies that for dE < 1
2 the center

lies between the contenders (as depicted in �gure 1). Alternatively, the entrant

could choose his location such that the incumbent lies between the entrant's

mill and the city center. To reduce complexity and study the e�ect central-

ity has on the strategic decision of the incumbent �rm we restrict �rm E's

hinterland to be on the opposite spoke of �rm I's location and set 0 ≤ dE < 1
2 .

• Consumers' behavior is solely characterized by maximizing their utility, likewise

�rms' behavior is determined by pro�t maximization. The endogenous variables

of the model are �rms prices pE , pI and the entry location dE . These represent

the strategic variables of the game.

We solve the game by backward induction.

Figure 3.1: Illustration of the Hotelling model with a centrality bonus Z

Comment: At given locations �rm I and �rm E earn a hinterland of size dI and dE . In the market

center at z = 1
2
a spoke of length Z is connected with the linear city. In the given setting �rm I

captures the market center and the indi�erent consumer locates on the right hand side of the center

at x > z.

3.2.1 Demand and Pro�t Functions

The starting point of the analysis is consumers' utility indi�erence condition from

which the position x of an indi�erent consumer is derived. Since we apply the sim-

plifying assumption that consumers on the spoke bear no transportation costs when

traveling to the center at z = 1
2 the expression for x is the same as in the classi-
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cal Hotelling setting with linear transportation costs. Under a su�ciently positive

surplus s̄ the familiar relation obtains:

uI = uE (3.1)

s̄− pI − t(x− dI) = s̄− pE − t(1− dE − x) (3.2)

The indi�erent consumer is attracted by comparatively lower prices and reacts pro-

portionately to a change in �rms' locations:

x =
pE − pI

2t
+

1− dE + dI
2

(3.3)

Based on x(pI , pE , dI , dE) �rms' demand and pro�ts are contingent upon the relation

of prices pI , pE , and locations dI , dE , e.g. for the incumbent I four di�erent cases

have to be distinguished:

qI =



1 + Z pI ≤ pE − t(1− dI − dE)

x+ Z pI < pE + t(dI − dE), x > 1
2

x pI > pE + t(dI − dE), x < 1
2

0 pI > pE + t(1− dI − dE)

(3.4)

In the �rst case the incumbent undercuts the entrant and earns the whole market

1 +Z. We refer to this as the deterrence strategy and denote the respective price as

pDetI = pE − t(1− dI − dE). In the second case the incumbent accommodates entry

and earns the center Z by setting prices below the threshold of pE + t(dI − dE).

In particular two options exist, �rm I could either react modestly and choose to

set a price such that his pro�t function is maximized, i.e. the �rst order condi-

tion ∂ΠI(pI ,qI=x(pI ,pE ,dI ,dE)+Z)
∂pI

= 0 is ful�lled. Alternatively, he could react to an

aggressive entry behavior and defend his claim for the center Z by setting a price

that prohibits the entrant from taking the center. We refer to the �rst of these

options as the accommodation-Z strategy, the second option as the deterrence-Z

strategy, and denote the respective prices as pAccZI = 1
2(pE + t(1−dE +dI +2Z)) and

pDetZI = pE + t(dI − dE). The third case refers to the situation where �rm I accom-

modates entry but loses the center Z which occurs for prices above the boundary

pE+t(dI−dE). The best price the incumbent could set in this situation is derived from

the �rst order condition neglecting the centrality bonus Z. We refer to this as the ac-

commodation strategy and denote the respective price as pAccI = 1
2(pE+t(1−dE+dI)).

Finally, the incumbent may apply a defensive strategy avoiding being undercut and

charge a price only to defend his hinterland dI . We refer to this as the deference
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strategy and denote the respective price as pDefI = pE + t(1− dI − dE).

To sum up, the following pro�t function for �rm I obtains:

ΠI =



pDetI (1 + Z) pI ≤ pDetI

pAccZI (x+ Z) pDetI < pI < pDetZI , x > 1
2

pDetZI (1
2 + Z) pI = pDetZI − ε, ε→ 0

pAccI x pDetZI < pI ≤ pDefI , x < 1
2

0 pDefI < pI

(3.5)

3.3 Incumbent's Reaction Functions

3.3.1 The Price Reaction Function

The objective in the next subsections is to to examine the structure of �rm I's pricing

behavior with respect to the entry price pE and the entry location dE . The analysis

provides an understanding of �rm I's decision in the second stage of the game and

makes use of the prede�ned �ve strategies pDetI , pAccZI , pDetZI , pAccI and pDefI .

Lemma 1: Based on a comparative analysis of the pro�t functions and provided

that d/E < dE ≤ d.E the incumbent �rm prefers to charge his prices pI with respect

to �rm E's prices pE according to:

(I) for dI ≤ d/I

pI =



pDetI = pE − t(1− dI − dE) pE > pE

pAccZI = 1
2 (pE + t− tdE + tdI + 2tZ) p̂E < pE < pE

pDetZI = pE + t(dI − dE) p†E < pE < p̂E

pAccI = 1
2(pE + t(1− dE + dI)) p̃E < pE < p†E

pDefI = pE + t(1− dI − dE) pE < p̃E

(3.6)

(II) for d/I < dI < d.I

pI =



pDetI = pE − t(1− dI − dE) pE > pE

pAccZI = 1
2 (pE + t− tdE + tdI + 2tZ) p̂E < pE < pE

pDetZI = pE + t(dI − dE) p̌E < pE < p̂E

pDefI = pE + t(1− dI − dE) pE < p̌E

(3.7)
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(III) for d.I < dI

pI =


pDetI = pE − t(1− dI − dE) pE > pE

pAccZI = 1
2 (pE + t− tdE + tdI + 2tZ) p̂E < pE < pE

pDetZI = pE + t(dI − dE) pE < p̂E

(3.8)

with:

pE = t(3 + dE − dI + 2Z − 4
√
dE(1 + Z))

p̂E = t(1 + dE − dI + 2Z)

p†E = t(1 + dE − dI + 4Z − 2
√

2Z(1 + 2Z))

p̃E = t(3dI + dE − 1)

p̌E = t
(
dE + dI

(
1−2dI−2Z
1−2dI+2Z

))
d.E = 1

4(1+Z)

d/E = 3
√
Z(1

2 + Z)− 1
2(1 + 6Z)

d/I = 1
2 + Z −

√
Z(1

2 + Z)

d.I = 1
4(1− 2dE − 2Z +

√
4d2

E + (1− 2Z)2 + 4dE(1 + 6Z))

Lemma 2: The incumbent �rm maximizes his pro�ts for the accommodation-Z

strategy ΠAccZ
I in the market region x > 1

2 by charging pAccZI only if dE < d.E , and

maximizes his pro�ts for the accommodation strategy in the market region x < 1
2 by

charging pAccI only if dI < d/I .

Proofs: See the appendix.

The �rst thing to note is that the incumbent's pricing strategies follow a distinct

order dependent on the entrant's prices pE . For high values of pE the incumbent

kicks the entrant out of the marked by shifting the market boundary to his oppo-

nent's mill setting pDetI . For a decreasing pE maximizing pro�ts over his prices and

charging pAccZI becomes pro�table for �rm I while still being in charge of the center

Z (x > 1
2). Next, the accommodation-Z strategy is dominated by the deterrence-Z

strategy implying that the incumbent's best choice for a further decreasing pE is to

fence o� his opponent to take the center and push the market boundary onto �rm

E's spoke by charging pDetZI . Under speci�c locational settings and a low pricing

strategy of the entrant �rm the incumbent accepts the loss of the center Z (x < 1
2)

and chooses to set the pro�t maximizing price pAccI . Finally, for an aggressive pricing

behavior of �rm E the incumbent defends his position in the market by applying the

deference strategy and setting pDefI .
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Lemma 1 demonstrates that �rm I's pricing decision is a complex function of the

location parameters dI , dE , and the centrality bonus Z. This relation is best high-

lighted by comparing our results with the �ndings in Anderson (1987) where a re-

spective price reaction function is analyzed for the Hotelling case without the center

Z. In Anderson (1987) the existence of the accommodation strategy is dependent

on a sole relation between the locations. For market settings where the two players

locate fairly close, i.e., (1 − dI)2 < dE , the accommodation strategy is dominated

by the deterrence and deference strategy, and thus, is not a feasible option for the

incumbent �rm. By contrast if the intermediate market becomes large enough, i.e.,

(1− dI)2 > dE , �rm I optimizes his price pI according to his accommodation pro�t

function in a given price interval for pE . For high pE deterrence dominates accommo-

dation and for low pE deference dominates accommodation, but for an intermediate

pricing behavior the accommodation case proves feasible.

The existence of the centrality bonus Z increases the strategy options for the in-

cumbent and divides the market into two sections x > 1
2 and x < 1

2 . In particular,

Z causes a shift in �rm I's accommodation pro�t function splitting it into a part

for the area x > 1
2 where Z increases accommodation pro�ts (accommodation-Z

strategy) and a part for the area x < 1
2 where I does not occupy the center, i.e.,

Z = 0 (accommodation strategy). A comparison of �rm I's pro�t functions shows

that under consideration of all �ve strategy options no explicit relation between dI

and dE to specify the viability for an accommodating pricing behavior of �rm I ex-

ists (see proof 1). Instead the analysis demonstrates that a set of relations between

dE and Z for the part x > 1
2 , and between dI and Z for the part x < 1

2 obtains.2

As regards dE and Z intuition suggests that for an increase in Z the range for the

two players to locate in the market becomes smaller such that the accommodation-Z

strategy for �rm I yields the comparatively highest pro�ts which is highlighted by

the reciprocal relation d.E = 1
4(1+Z) . In line with this, a high value for Z corresponds

with a smaller space in which the entrant �rm could locate such that the incumbent

would not promptly change from an undercutting behavior to the deterrence-Z strat-

egy to defend the center. Put di�erently, if the entrant comes relatively close to the

center (dE > d.E) the accommodation-Z strategy is always dominated either by the

deterrence strategy or the deterrence-Z strategy. Since the pricing functions pDetI and

pDetZI do not intersect the switchover point is described by a discontinuity given by

the intersection of the respective pro�t functions at p×E = t(2+2Z−dE(3+4Z)−dI).
(cf. �gure 3.5 and 3.3) If the entrant remains below the critical distance (dE < d.E)

the incumbent plays the accommodation-Z strategy maximizing his pro�ts by charg-

ing pAccZI for prices pE in [p̂E , pE ]. Then, his pricing behavior is characterized by a

discontinuity at pE . (cf. �gure 3.4 and 3.2)

2In fact the existence of the accommodation-Z and the accommodation strategy in terms of the
thresholds d.E and d/I is not dependent on respective locations dI and dE .
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This �nding is supplemented by the behavior of dI contingent upon Z. Graphically,

an increase in Z shifts deterrence pro�ts, accommodation-Z pro�ts and deterrence-Z

pro�ts upwards whereas the accommodation and deference pro�ts are not a�ected.

In particular, if Z is small and �rm I loses the center the accommodation strategy

reveals the comparatively highest pro�ts only for locations below the threshold d/I .

Now, if Z increases the range for the incumbent to apply the accommodation strat-

egy shrinks and if Z exceeds (1−2dI)2

8dI−2 (which is equivalent to dI ≥ d/I) the incumbent
never accommodates entry when x < 1

2 but rather plays the deterrence-Z strategy.

Analogously, the pro�tability of the deference strategy is restricted to moderate val-

ues of Z or locations in the interval [d/I , d
.
I ] respectively. This implies that given �xed

values for dI and dE �rm I has a dominant strategy to defend the center and charge

pDetZI for Z ≥ (dE+dI)(2dI−1)
2(dE−dI) (equivalent to dI ≥ d.I). Put di�erently, given a �xed Z

the incumbent prefers the deterrence-Z strategy to the deference strategy as well as

the accommodation strategy for low pE when having a location close enough to the

center, i.e. when dI > d.I .

Table 3.1: Model parameters for the extended Hotelling model

Location parameters Intermediate markets

Z d/I d.E d/E d.E − d/E 1− 1
2
− d.E 1− d/I − d.E

0 0.5 0.25 −0.5 0.25 0.25 0.25
0.05 0.384 0.238 −0.153 0.238 0.262 0.387
0.1 0.355 0.227 −0.065 0.227 0.273 0.418
0.15 0.338 0.217 −0.013 0.217 0.283 0.445
0.2 0.326 0.208 0.022 0.186 0.292 0.466
0.25 0.317 0.2 0.049 0.151 0.3 0.483
0.3 0.310 0.192 0.070 0.123 0.308 0.489
0.35 0.305 0.185 0.086 0.099 0.315 0.510
0.4 0.3 0.179 0.1 0.079 0.321 0.521
0.45 0.296 0.172 0.112 0.061 0.328 0.531
0.5 0.293 0.167 0.121 0.045 0.333 0.540

An illustration of the relationships between dI , dE and Z is given in table 3.1

where the location parameters from lemma 1 and respective intermediate markets

(1 − dI − dE) are depicted. For equidistant and increasing values of Z the critical

values for d/I , d
.
E , and d/E are calculated. Recall that these are linked to di�erent

strategy options for �rm I, namely d/I expresses the viability of the accommodation

strategy (�rm I loses Z, x < 1
2), d

.
E indicates the viability of the accommodation-Z

strategy (�rm I gains Z, x > 1
2), and d

/
E marks a lower limit for the applicability of

the deference strategy3.

As expected an increase in Z leads to a decrease in the location parameters d/I and

d.E whereas d/E rises. This is also demonstrated by the size of the intermediate mar-

kets. Speci�cally, we can compare the intermediate market in the extended Hotelling

3The negative values imply that for Z < 1
6
the deference strategy is feasible for all dE < 1

2
(cf.

proof 1).
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setting for the case where the incumbent locates at the market center (dI = 1
2) with

the intermediate market for the same �xed dI in the classical Hotelling model ac-

cording to the relation dE = (1 − dI)2 (cf. Anderson (1987)). Clearly, the existence

of the center as well as an increase in Z implies a higher required distance between

the players for accommodation to still be a strategic option for the incumbent �rm.

Figure 3.2: Illustration of the incumbent's pro�t functions over pI for pE ≈ 1.86

Comment: The solid lines depict the viable pro�t ranges. For small pI the incumbent chooses the

deterrence strategy and charges pDetI . For pI > pE−t(1−dI−dE) he changes to the accommodation-Z

strategy and rides the curve until the pro�t maximizing price pAccZI ≈ 1.88 is realized. The maximum

is a feasible solution since �rm E's location lies below the boundary dE < d.E ≈ 0.19. For prices

pI > pE + t(dI − dE) the deterrence-Z strategy is preferred. The parabola below represents the

accommodation pro�ts for Z = 0. Parameter values are dI = 0.4, dE = 0.1, t = 1, and Z = 0.3.

Figure 3.3: Illustration of �rm I's pro�ts over pI for pE ≈ 1.00

Comment: The entrant's location lies above the threshold dE > d.E ≈ 0.19. As a result the pro�t

maximizing price pAccZI ≈ 1.35 depicted by the vertical dashed line exceeds the boundary value

pE + t(dI − dE) ≈ 1.10 and the accommodation-Z strategy is not viable. Parameter values are

dI = 0.4, dE = 0.3, t = 1, and Z = 0.3.
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Figure 3.4: Illustration of the incumbent's pro�t and price functions over pE

Comment: The solid lines depict the viable pro�t and price ranges. For high values of pE the

deterrence strategy yields the highest pro�ts. At pE ≈ 1.86 (�rst vertical dashed line) the incumbent

changes to the accommodation-Z strategy, the change in prices is described by a discontinuity. At

p̂E ≈ 1.3 (second vertical dashed line) accommodation-Z pro�ts intersect with deterrence-Z pro�ts,

the transition is described by a kink in the pro�t and pricing curves. Thus, for decreasing pE

charging pDetZI proves to be the most pro�table pricing strategy. Indeed the deterrence-Z strategy

dominates the accommodation and deference strategy (small dashed pro�t curves) over the whole

price range since dI > d.I ≈ 0.34 and dE > d/E ≈ 0.07. This scenario represents part (III) of the

reaction function in lemma 1. Parameter values are dI = 0.4, dE = 0.1, t = 1, and Z = 0.3.
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Figure 3.5: Illustration of the incumbent's pro�ts and price functions for the case dE > d.E

Comment: The entrant locates close to the center with dE > d.E ≈ 0.19. As a result the

accommodation-Z strategy is not viable and the incumbent directly changes from the deterrence

strategy to the deterrence-Z strategy. The intersection is given at p×E = t(2+2Z−dE(3+4Z)−dI) ≈
0.94 (�rst vertical dashed line). Additionally, the incumbent switches from pDetZI to the deference

strategy provided that pE < p̌E ≈ 0.1 (second vertical dashed line). The transitions in the pro�t

functions are described by a kink whereas the price changes are characterized by two discontinuities.

This scenario refers to part (II) of the reaction function in lemma 1 with the noticeable di�erence

that charging pAccZI is not a viable option for �rm I. Parameter values are dI = 0.4, dE = 0.3,

t = 1, and Z = 0.3.
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3.3.2 The Location Reaction Function

We set up the incumbent's best price response as a function of the entrant's location

choice for a de�ned price range. Analogous to the proceeding in lemma 1 a set of

expressions of the form pI(dE) obtains. Since we conduct a comparative analysis

of �rm I's pro�ts, as expected, analogous results with respect to the price reaction

function are derived. Additionally, for the low price range a particularity in the

location reaction is found. In the following, the reaction function is dissected into

a part corresponding to a remote location of the incumbent �rm in lemma 3 and a

part corresponding to a location close to the center of the city in lemma 4.

Lemma 3: Provided that dI ≤ d/I and for the price intervals p4E > pE > p5†E and

p4E > pE > p.E �rm I's location reaction function comprises of:

(I) for p4E ≥ pE > p/E

pI =

pAccZI = 1
2 (pE + t− tdE + tdI + 2tZ) 0 < dE < dE

pDetI = pE − t(1− dI − dE) dE < dE
(3.9)

(II.a) for Z > ζ and p/E ≥ pE > p.E , and

(II.b) for Z < ζ and p/E ≥ pE > p5†E

pI =


pAccZI = 1

2 (pE + t− tdE + tdI + 2tZ) 0 < dE < d̂E

pDetZI = pE + t(dI − dE) d̂E < dE < d×E

pDetI = pE − t(1− dI − dE) d×E < dE

(3.10)

(III.a) for Z > ζ and p.E ≥ pE > p5†E

pI =

pDetZI = pE + t(dI − dE) 0 < dE < d×E

pDetI = pE − t(1− dI − dE) d×E < dE
(3.11)

(III.b) for Z < ζ and p5†E ≥ pE > p.E

pI =



pAccZI = 1
2 (pE + t− tdE + tdI + 2tZ) 0 < dE < d̂E

pDetZI = pE + t(dI − dE) d̂E < dE < d†E

pAccI = 1
2(pE + t(1− dE + dI)) d†E < dE < d‡E

pDetI = pE − t(1− dI − dE) d‡E < dE

(3.12)
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Lemma 4: Provided that dI ≥ d/I and for the price intervals p4E > pE > p5‡E and

p4E > pE > p.E �rm I's location reaction function comprises of:

(I ) for p4E ≥ pE > p/E

pI =

pAccZI = 1
2 (pE + t− tdE + tdI + 2tZ) 0 < dE < dE

pDetI = pE − t(1− dI − dE) dE < dE
(3.13)

(II.a) for Z > ζ and p/E ≥ pE > p.E , and

(II.b) for Z < ζ and p/E ≥ pE > p5‡E

pI =


pAccZI = 1

2 (pE + t− tdE + tdI + 2tZ) 0 < dE < d̂E

pDetZI = pE + t(dI − dE) d̂E < dE < d×E

pDetI = pE − t(1− dI − dE) d×E < dE

(3.14)

(III.a) for Z > ζ and p.E ≥ pE > p5‡E

pI =

pDetZI = pE + t(dI − dE) 0 < dE < d×E

pDetI = pE − t(1− dI − dE) d×E < dE
(3.15)

(III.b) for Z < ζ and p5‡E ≥ pE > p.E

pI =



pAccZI = 1
2 (pE + t− tdE + tdI + 2tZ) 0 < dE < d̂E

pDetZI = pE + t(dI − dE) d̂E < dE < ď†E

pDefI = pE + t(1− dI − dE) ď†E < dE < ď‡E

pDetI = pE − t(1− dI − dE) ď‡E < dE

(3.16)

with:

d/I = 1
2 + Z −

√
Z(1

2 + Z)

dE = 5 + dI + 1
t pE + 6Z − 4

√
(pEt + 1 + dI + 2Z)(1 + Z)

d̂E = 1
t pE + dI − 1− 2Z

d×E =
2(1+Z)− 1

t
pE−dI

3+4Z

d†E = 1
t pE + (dI − 1− 4Z) + 2

√
2
√
Z(1 + 2Z)

d‡E = 5 + dI + 1
t pE + 4Z − 4

√
(pEt + 1 + dI + Z)(1 + Z)

ď†E = 1
t pE − dI

(
1−2dI−2Z
1−2dI+2Z

)
ď‡E = 1− dI − pE(1−dI+Z)

t(1+dI+Z)

p4E = t(3− dI + 2Z)

p/E = t
(

5+12Z+8Z2

4(1+Z) − dI
)
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p.E = t(1− dI + 2Z)

p5†E = t

(
5+18Z+16Z2−4dI(1+Z)−2

√
2
√
Z(1+2Z)(3+4Z)

)
4(1+Z)

p5‡E = t (1−2dI)(1+dI+Z)(1+2Z)
2(1−2dI+2Z)(1+Z)

p./E = 1
2 t(1− 2dI)

ζ ≈ 0.015503

Proofs: See the appendix.

Generally, the expressions in lemma 3 and 4 demonstrate that contingent on the

price level of pE di�erent strategy combinations for the incumbent obtain to react

to the entrant's choice for his location dE . For the high price range (part (I)) the

accommodation-Z strategy supports market entry, for the modest price range (parts

(II.a) and (II.b)) the accommodation-Z strategy and the deterrence-Z strategy con-

stitute the entry accommodating strategy set, and for the low price range (parts

(III.a) and (III.b)) entry occurs either when the deterrence-Z strategy or a strategy

triple (pAccZI , pDetZI , pAccI ) and (pAccZI , pDetZI , pDefI ) is used. Furthermore, in the ex-

amined price ranges deterrence is always part of �rm I's strategy set.

The location reaction function reveals the pattern that it is pro�table for the in-

cumbent to accept entry when the entry location lies below a threshold value and

that entry will be deterred when the entrant locates too far from his edge of the

city respectively. Particularly, for the parts (I), (II) and (III.a) the critical entry

locations where the incumbent switches to an entry deterring behavior are given

by the expressions dE and d×E . These represent �rm I's indi�erence conditions be-

tween the deterrence strategy and the accommodation-Z strategy as well as with the

deterrence-Z strategy. We see that dE and d×E increase and d̂E decreases with decreas-

ing pE which determines the range of the accommodation-Z strategy and �rm I's

pro�t maximizing behavior when being in charge of the center. Let us depart for in-

stance at the high price interval (part (I): pE > p/E) where �rm I optimizes his pro�ts

over pI setting p
AccZ
I when the entry location lies below dE and the transition in the

pricing behavior is described by a discontinuity. (cf. �gure 3.6) Now, in the modest

price interval (part (II): pE > p.E , p
5†
E , p5‡E ) the accommodation-Z strategy is only

pro�table for locations until the threshold of d̂E since charging pDetZI and defending

the claim for the center proves to be the best choice for locations exceeding d̂E . If

the incumbent charged pAccZI for locations dE > d̂E he would lose the center Z and

thus would not realize accommodation-Z pro�ts. Graphically, the pro�t function for

the deterrence-Z strategy is a tangent to the parabola of the accommodation pro�t

function at d̂E and the price transition is de�ned by a kink. (cf. �gure 3.7) Thus, for

d̂E < dE the deterrence-Z strategy �lls up the space between the accommodation-Z

strategy and deterrence, and the switchover point for entry deterrence is determined

by d×E .
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Figure 3.6: Illustration of the incumbent's pro�t and price functions over dE for part (I)
in lemma 3 and 4

Comment: The marked solid lines depict the viable pro�t and price ranges. For low values of dE the

accommodation-Z strategy dominates until the pro�t function intersects with the deterrence pro�ts

at dE ≈ 0.079 (marked by the �rst vertical dashed line). Thus, for dE > dE deterrence is the domi-

nant strategy. The transition in the price functions is described by a discontinuity. Additionally, the

tangential intersection of the accommodation pro�ts with the pro�ts for the deterrence-Z strategy

(dashed pro�t function) is given at d̂E = 0.8 (marked by the second vertical dashed line). The

pro�ts for the accommodation strategy are depicted by the dash-dotted function, and the pro�ts

for the deference case by the dotted function. Parameter values are dI = 0.4, pE = 2.0, t = 1, and

Z = 0.3.
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Figure 3.7: Illustration of the incumbent's pro�t and price functions over dE for part (II)
in lemma 3 and 4

Comment: The marked solid lines depict the viable pro�t and price ranges. For entry locations

dE < d̂E = 0.1 (�rst vertical dashed line) the accommodation-Z strategy yields the highest pro�ts

and dominates the other strategies (due to the small resolution of the graphs this e�ect is not

visualized). Since d̂E < dE ≈ 0.215 the deterrence-Z strategy is preferred for locations between d̂E

and the intersection of the deterrence-Z pro�ts with the deterrence pro�t function at d×E ≈ 0.214

(second vertical dashed line). For dE > d×E deterrence is the dominant strategy. The transition in

the pricing behavior from the accommodation-Z strategy to the deterrence-Z strategy is given by

a kink, the change between the deterrence-Z strategy and the deterrence strategy is described by a

discontinuity. Parameter values are dI = 0.4, pE = 1.3, t = 1, and Z = 0.3.
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The centrality bonus Z has di�erent e�ects on the location parameters. As argued

for the price reaction function, pro�ts for the accommodation and the deference

strategy are not a�ected by a change in Z whereas pro�ts for the deterrence, the

deterrence-Z, and the accommodation-Z strategy are shifted upwards and slopes

increase when Z rises. Consequently, as illustrated in table 3.2, an increase in Z

causes the switchover points dE and d×E to mount. Additionally, an increase in Z

implies that the pro�tability of the accommodation-Z strategy shrinks and causes

d̂E that marks the kink solution to decrease. Thus, for these three location parameters

an increase in Z shows the same impact on the location reaction as a decrease in

pE . In numbers, for pE = 1, Z = 0.2 and dI = 0.4 the accommodation-Z strategy

is not feasible anymore and the strategy set solely consists of pDetZI and pDetI which

corresponds to a transition of part (II.a) to part (III.a) in the reaction functions in

lemma 4, entry deterrence then occurs at the location d×E = 0.263. This reveals an

interesting result of the analysis: given the rise of dE and d×E when Z increases and

entry prices pE decrease the incumbent is less inclined to accommodate entry when

being in charge of the center (x > 1
2) as well as to deter entry, rather as intuition

might suggest the dominant strategy for moderate entry locations dE < d×E is to

defend the claim for the center and charge pDetZI . To turn this argument around

since, for instance, d̂E > dE in the high entry price scenario (pE = 2) in table

3.2 the accommodation-Z strategy proves to be more pro�table for all Z than the

deterrence-Z strategy.

Table 3.2: Model parameters of the location reaction function for dI = 0.4

pE = 2 pE = 1

Z dE d̂E d×E dE d̂E d×E

0 0.024 1.4 −0.133 0.203 0.4 0.200
0.05 0.032 1.3 −0.094 0.219 0.3 0.219
0.1 0.040 1.2 −0.059 0.235 0.2 0.235
0.15 0.049 1.1 −0.028 0.252 0.1 0.250
0.2 0.058 1.0 0.000 0.268 0.0 0.263
0.25 0.068 0.9 0.025 0.284 −0.1 0.275
0.3 0.079 0.8 0.048 0.301 −0.2 0.286
0.35 0.089 0.7 0.068 0.317 −0.3 0.295
0.4 0.101 0.6 0.087 0.334 −0.4 0.304
0.45 0.112 0.5 0.104 0.350 −0.5 0.313
0.5 0.124 0.4 0.120 0.367 −0.6 0.320

Secondly, the centrality bonus Z impacts the structure of the reaction function in the

parts (II) and (III) in lemma 3 and 4 where a distinction by two cases determined

by the numerical constant ζ has been made. Graphically, if Z shrinks the tangent

ΠDetZ
I to the parabola ΠAccZ

I �attens (increase in d̂E), simultaneously the critical

location for a switchover of the deterrence-Z strategy to the accommodation strategy

and the deference strategy respectively decreases (decrease in d×E) since the di�er-
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ence between the two parabolas ΠAccZ
I and ΠAcc

I constantly diminishes. Thus, there

exists a threshold for Z given by ζ where the accommodation-Z strategy and the

accommodation strategy (in (III.b)) as well as the accommodation-Z strategy and

the deference strategy (in (III.b)) are part of the same location reaction function.

Alternatively, this e�ect is found in the ambiguous relation of the price p.E with p5†E
and p5‡E respectively that mark the bounds for respective pricing strategies to exist.

Furthermore, lemma 3 and 4 illustrate for the low price range ((III.b) and (III.b))

that �rm I's pricing behavior hinges upon its location dI . In particularly, for Z < ζ

the accommodation strategy is part of the preferred strategy set for locations that lie

in a remote part of the city, i.e. dI ≤ d/I , and the deference strategy is included in the
reaction function when I locates close to the center or dI ≥ d/I . The expression for d/I
is derived by a comparative pro�t comparison of the accommodation and deference

strategy where the linear pro�t function for the deference case marks a tangential

solution to the accommodation pro�t function denoted as d̃E . Clearly, for locations

dE > d̃E charging pAccI is not pro�table since otherwise the incumbent would be

undercut at his own mill. The existence of accommodation is only established when

the intersection of deterrence-Z pro�ts with accommodation pro�ts (d†E) falls below

the tangential intersection d̃E , for d
†
E > d̃E accommodation is obsolete and deference

exists. Note that the bound for the accommodation strategy d/I is dependent on Z

and matches with the corresponding bound in the analysis of the price reaction in

lemma 1.

3.4 The Entrant's Optimization Problem

This section provides an analysis of the entrant's decision on the strategic variables

price pE and location dE . Based upon the price reaction function in subsection 2.2

our approach is to apply the calculus of a classical Stackelberg leader-follower game

to derive expressions for pE . (cp. chapter 3 in Anderson (1987)) These represent

solutions for de�ned sets of dI , dE and Z which subsequently enable us to endogenize

dE and derive expressions for an optimal entry set (p∗E , d
∗
E). Additionally, by means

of �rm I's location reaction function in subsection 2.3. the incumbent's reaction to

the suggested price-location combinations for entry is examined.

Lemma 1 demonstrates that the price reaction of the incumbent �rm dissects into

three di�erent parts. These are parts where the incumbent takes a strong, a moderate

and a weak market position in terms of his location dI with regards to the center.

Thus, we analyze the Stackelberg leader-follower game for each of these three parts.4

4According to the price reaction function in subsection 2.2 and proof 1 we assume d/I < d.I and
dE > d/E respectively (this order strictly holds for all Z ≤ 1

6
). For d/I > d.I which occurs for small

dI and dE that is when the players locate far from one another the deference strategy (pDefI ) is
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Also, it is evident only to consider the cases where the incumbent does not opt for the

deterrence strategy. Initially, we have to identify di�erent combinations of locations

dI and dE with the possible set of entry prices pE .

3.4.1 Derivation of location segments

Generally, the entrant's optimization problem is formulated as5:

max
pE ,dE

ΠE(pE , dE , pI(pE , dE)) (3.17)

Since we scrutinize a two-stage game �rm E's pro�ts and thus his optimization

problem is contingent upon �rm I's price. Now, let us analyze the case with the

incumbent setting pAccZI and seizing the center (x > 1
2). Clearly, �rm I then gains

demand in the amount of x+ Z and �rm E in the amount of 1− x. It follows:

ΠE(pAccZI ) =: ΠAcc
E = − 1

4t
p2
E +

1

4
(3 + dE − dI + 2Z) pE (3.18)

Applying the �rst order condition to ΠAcc
E yields �rm E's best price as a function of

the locations of the contenders dE and dI as:

pAccE =
1

2
t (3 + dE − dI + 2Z) (3.19)

The entrant chooses pAccE only for a de�ned set of dE and dI . The highest possible

price �rm E could set is pE where the incumbent is indi�erent to the deterrence

strategy or the accommodation-Z strategy. Subsequently, the corner solution pE is

preferred to pAccE only if
∂ΠAccE
∂pE

> 0, i.e. when pro�ts can be increased by a slight

price increase. Evaluating
∂ΠAccE
∂pE

∣∣∣∣
pE

> 0 reduces to:

dI > 3 + dE + 2Z − 8
√
dE(1 + Z) (3.20)

On the contrary, since for any price exceeding pE entry is deterred, the existence of

pAccE demands pE > pAccE which reduces to dI < 3 + dE + 2Z − 8
√
dE(1 + Z).

dominated by the accommodation strategy (pAccI ). The set dI ≤ d/I and dE < d/E implies p̃E < 0.
This is not dealt with in the cause of the price reaction function. For the argument to omit the
explicit treatment of this case refer to the pro�t comparison in subsection 3.2.3.

5By symmetry �rm E's demand and pro�t functions are the same as �rm I's only interchanging
subscripts and the term x with 1− x.
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The lowest possible price �rm E charges under pAccZI is given by p̂E marking the point

of indi�erence for �rm I between the accommodation-Z strategy and the deterrence-

Z strategy. Since pro�ts increase linearly in pE the corner solution p̂E is the best

price in this regard. Additionally, pAccZI demands 1 − x(pAccZI ) < 1
2 which reduces

to pE > p̂E . It follows that p
Acc
E must ful�ll this price restriction from which we derive:

dI > dE + 2Z − 1 (3.21)

Condition (3.21) is fully in accord with pAccE > t(1 + dE − dI + 2Z) derived from

pAccZI < pDetZI . By contrast, under pAccZI a price decrease is pro�table for �rm E for

the location set dI < dE + 2Z − 1 which follows from
∂ΠAccE
∂pE

∣∣∣∣
p̂E

< 0.

Finally, we have to consider the imposed restrictions from lemma 1. For dE we utilize

the boundaries d.E and d/E which both only depend on the value of Z, and for dI the

boundaries d/I and d
.
I have to be accounted for. Note that d.I is a function of dE and

Z whereas d/I is only determined by Z. Together with the expressions in (3.20) and

(3.21) these four terms de�ne sets of locations that are attached to �rm I's price

reactions according to his reaction function in lemma 1 and �rm E's pricing decision

based on ΠAcc
E .

Figure 3.8: Illustration of the location segments for t = 1

Comment: The downward sloping curve represents the condition for pE in equation (3.20), the

straight increasing line depicts the condition for 1 − x < 1
2
in equation (3.21), and the concave

increasing curve refers to the term d.I . All three functions are drawn for Z = 1
2
. The lines that

parallel the ordinate and abscissa depict the boundaries d.E and d/I , the dashed lines correspond to

Z = 0, and the dotted lines to Z = 1
2
. The boundary d/E is found at the intersection of d.I with d

/
I

at a maximum value of 3√
2
− 2 ≈ 0.121 for Z = 1

2
.
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The �ndings of the previous section on the comparative statics are illustrated in �gure

3.8. For any dE < d.E the incumbent can choose the accommodation-Z strategy, for

any dI > d/I the accommodation strategy is not applicable and both are decreasing

with growing Z. This is supplemented with the results of the inequalities in (3.20) and

(3.21). Accordingly, the entrant will optimize ΠAcc
E and charge pAccE for su�ciently

high values of dI . If Z increases the condition in (3.21) increasingly restricts the

location set such that the accommodating scenario with x > 1
2 between �rm I and

�rm E occurs. Particularly, the maximum is reached at dI = dE when Z = 1
2 , and

for Z ≤ 1
4 any set dI , dE ∈ [0, 1

2 ] implies that �rm E maximizes his pro�ts by a price

increase. As regards the condition in (3.20) an increase in Z leads to a corresponding

upward shift increasing the set of locations for the accommodating scenario. Note

also that these two restrictions intersect at the boundary location d.E and that d.I
collapses to the limit 1

2 when Z converges to zero.

3.4.2 Analysis of the Stackelberg leader-follower game in prices

3.4.2.1 Strong market position of the incumbent

This case assumes that the incumbent locates within a distance of d.I with respect to

the center and refers to part (III) of the price reaction function in lemma 1. Graph-

ically, this corresponds to the location set bounded by the concave function and the

limit dI = 1
2 in �gure 3.8. Now, consider �rm E's pricing options in a descending

order.

Let us begin with entry locations dE < d.E such that the accommodation-Z strategy

is applicable for �rm I. From the preceding subsection we can summarize that for

prices exceeding pE the entrant would be undercut by the incumbent. Subsequently,

for the location set de�ned by condition (3.20) and �ipping the inequality sign �rm

E's best response is to charge pAccE and the incumbent would respond with charging

pAccZI . In addition, the location set in (3.21) implies that under pAccZI a price decrease

in pE does not yield a pro�table outcome for the entrant. Indeed, diverting from the

accommodation scenario and charging p̂E is not pro�table for the entrant. Clearly,

the entrant could never take the center as the price leader since �rm I undercuts him

at x = 1
2 with pDetZI . Then the entrant's pro�ts would be 1

2 p̂E . Comparing ΠAcc
E (pAccE )

with 1
2 p̂E reveals that pro�ts are even only at dI = dE + 2Z − 1, for all other loca-

tion sets ΠAcc
E (pAccE ) yields higher pro�ts. Thus, in sum the increase in demand to

1− x = 1
2 does not compensate for the price drop to p̂E .

For entry locations dE > d.E the incumbent's reaction to entry consists of charging

pDetI and pDetZI . Entry then only occurs under the deterrence-Z strategy with pro�ts
1
2pE . The best price for the entrant in this case is given by p×E where the incumbent
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is indi�erent between kicking �rm E out of the market and defending the center.

For prices above p×E the entrant certainly is undercut, and prices below p×E are not

pro�table due to the linear increase in entry pro�ts with growing price levels. Re-

peatedly, the entrant has no chance to capture Z as the �rst mover in the game.

In sum �rm E's pricing behavior is described by the following options when �rm I

dominates the location setting with dI > d.I :

• choose pAccE if dI < 3 + dE + 2Z − 8
√
dE(1 + Z) and dE < d.E

• choose pE if dI > 3 + dE + 2Z − 8
√
dE(1 + Z) and dE < d.E

• choose p×E if dE > d.E

A variation in Z has the expected e�ects. The location set where pAccE represents the

best choice decreases whereas the set for p×E increases as Z grows since d.E declines.

In �gure 3.8 the functions for d.E and the condition in (3.20) are shifted towards the

point of origin as well as the condition in (3.21) moves upwards for an increase in Z.

3.4.2.2 Moderate market position of the incumbent

This case assumes that �rm I locates in a distance range of d/I < dI < d.I which for

Z = 1
2 is graphically illustrated in �gure 3.8 by the area below the concave function

and the horizontally dotted line. Part (II) in the price reaction function in lemma

1 enhances the previous analysis by the fact that the entrant can possibly charge

an aggressive price trying to undercut the incumbent at his own mill (p̌E > 0). The

incumbent would then react with the deference strategy charging pDefI to stay in the

market.

For dE < d.E the entrant sets pE for the location set given in (3.20) and charges

pAccE for the inverse. Also, the center is not accessible for �rm E with the location of

indi�erence between charging pAccE and p̂E at dI = dE + 2Z − 1. But does a further

decrease to p̌E now prove to be pro�table? Entry pro�ts in this case are given by

(1 − dI + Z)pE and increase linearly in prices. Thus, the best price �rm E can

charge when undercutting the incumbent is p̌E . It follows that we need to compare

the entry pro�ts for the deference case (1 − dI + Z)p̌E and the accommodation

scenario ΠAcc
E (pAccE ). This reveals that for dI , Z ∈ [0; 1

2 ] charging pAccE proves to be

more pro�table than charging p̌E (cf. proof 5a in the appendix). Put di�erently, the

necessary decline in prices and subsequent gain in demand to attack the incumbent

when entering the market does not o�set pro�ts earned in the scenario of a mutual

accommodating behavior of the two contenders.

For dE > d.E the incumbent reacts to entry by setting pDetI or pDetZI for high entry

price levels. Then the entrant would choose p×E as his best price. For low entry price
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levels �rm I chooses pDetZI or pDefI where �rm E's best option is to charge p̌E . Thus,

a comparison between pro�ts 1
2p
×
E and (1 − dI + Z)p̌E has to be made. It follows

that for locations d.E < dE < dsplitE the entry price p×E is preferred, and for locations

dsplitE < dE <
1
2 the entry price p̌E yields the highest pro�ts. The switchover point is

a complex function in dI and Z given by dsplitE =
2−7dI+8d2

I−4d3
I+6Z−4dIZ+4Z2+4dIZ

2

5−12dI+4d2
I+16Z−16dIZ+12Z2

(cf. proof 5b in the appendix). Thus, when an accommodating scenario between �rm

I and �rm E does not exist, an aggressive pricing behavior of the entrant �rm yields

a pro�table outcome only if he locates close enough to the center and the incumbent

respectively.

In sum �rm E's pricing behavior is described by the following options when �rm I

holds a moderate position in terms of his location with d/I < dI < d.I :

• choose pAccE if dI < 3 + dE + 2Z − 8
√
dE(1 + Z) and dE < d.E

• choose pE if dI > 3 + dE + 2Z − 8
√
dE(1 + Z) and dE < d.E

• choose p×E if d.E < dE < dsplitE

• choose p̌E if dE > dsplitE

In addition to the stated e�ects of the centrality bonus on �rm E's pricing behavior

in the previous subsection, a change in Z also impacts the pricing decision in terms

of the location dsplitE . Figure 3.9 illustrates that with increasing Z the critical location

to undercut the incumbent �rm also increases.

Figure 3.9: Illustration of the location boundary dsplitE against Z for t = 1

Comment: For dE > dsplitE the entrant prefers to charge p̌E to p×E . The solid line depicts the location

for dI = 0.35, the small dashed line for dI = 0.45, and the tiny dashed line for dI = 0.5.
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The higher Z the closer the entrant has to locate to the center such that a price

attack against the incumbent pays o� compared to setting p×E . Moreover, the e�ect

of a variation of dI is depicted. As intuition suggests, with growing dI the entrant

has to locate closer to the center for the undercutting strategy to be pro�table. An

initially better market position of the incumbent forces the entrant to match up with

his rival in terms of his own location.

3.4.2.3 Weak market position of the incumbent

This case refers to part (I) of the price reaction function in lemma 1 and assumes �rm

I's location to be restricted by dI < d/I which is illustrated by the location segment

below the horizontally dotted line in �gure 3.8. Concerning the situation where the

incumbent chooses the deterrence strategy, the accommodation-Z strategy, and the

deterrence-Z strategy we follow the preceding treatments. Subsequently, we show

that �rm E can not charge a pro�t maximizing price when being in charge of the

center and �rm I setting pAccI . Particularly, the best price the entrant can choose

under this scenario is given by pZE := t(1 + dE − dI) − ε, ε → 0. In addition, an

undercutting strategy with price p̃E is also not part of �rm E's strategy set.

Recall that if the incumbent holds a comparatively weak market position locating at

a distance below d/I from the center and given that pE ∈ [p̃E , p
†
E ] his best strategy

is to accommodate entry and optimize his pro�ts charging pAccI (with Z = 0). The

entrant then seizes Z and gains a demand in the amount of 1−x(pAccI )+Z. Respective

entry pro�ts reduce to:

ΠE(pAccI ) := ΠAccZ
E = − 1

4t
p2
E +

1

4
(3 + dE − dI + 4Z) pE (3.22)

Applying the �rst order condition yields �rm E's best price:

pAccZE =
1

2
t(3 + dE − dI + 4Z) (3.23)

We see immediately that pAccZE > pAccE for all dE , dI , Z. Clearly, 1 − x(pAccI ) > 1
2

must hold which reduces to pE < t(1 + dE − dI) = pZE . Setting p
AccZ
E < pZE yields

the restriction dI < dE − 1 − 4Z which results in an empty set for any Z ≥ 0 if dI

and dE are restricted to the interval [0; 1
2 ]. Note also that pAccI > pDetZI demands the

same price restriction on pE .

Why is the entrant unable to charge his pro�t maximizing price when being in charge

of the center? Indeed, the explanation is found in the existence of the bonus Z that

implies a higher price level between the contenders when both play according to an

entry accommodating scenario. For instance, see that pAccZI linearly increases in Z
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from which it follows from ΠAcc
E that pAccE grows linearly in Z as well. Now, if �rm

E takes the center and both players accommodate it is evident that �rm I's pro�t

maximizing price decreases (pAccZI > pAccI ). Subsequently, this implies that the cor-

responding pro�t-optimizing price of �rm E, i.e., pAccZE also has to decrease since a

higher demand certainly requires a lower price for �rm E. By contrast, since �rm E

holds the center pAccZE increases with growing Z. In particular, the di�erence between

pro�ts amounts to ΠAccZ
E −ΠAcc

E = 1
2pEZ, and prices di�er by p

AccZ
E −pAccE = tZ. The

counter e�ects could only be dissolved by a corresponding variation in locations dI

and dE , however, algebra shows no solution set in the feasible location range obtains.

As a consequence, the solution for �rm E when the incumbent charges pAccI is

given by pZE since it represents the highest price such that the entrant stays in

charge of the center. To reverse the argument, for every dI , dE ∈ [0; 1
2 ] the rank

pZE < pAccZE holds which also implies that p†E is no feasible price for the entrant.

This is obvious since p†E > pAccZE reduces to dI < dE − 1 + 4Z − 4
√

2Z(1 + Z) and

1− 4Z+ 4
√

2Z(1 + Z) > 1
2 for all Z ≥ 0. Also note that pZE < p̂E for all Z > 0. The

lower price bound is given by p̃E . As stated in the previous subsections the pro�t

function for an undercutting strategy increases linearly in prices, thus, p̃E refers to

the best price the entrant could set with respective pro�ts of (1 − dI + Z)p̃E . The

incumbent then reacts by setting pDefI . Also note that the rank p̃E < pZE remains

true for all dI ≤ 1
2 and any real dE .

A pro�t comparison for �rm E's pricing strategies yields the following results. Firstly,

charging p̃E is dominated by pZE for all locations dI , dE ∈ [0, 1
2 ]. Secondly, intersect-

ing entry pro�ts for the accommodating scenarios when �rm E is in charge of Z

and refrains from taking the center respectively, i.e., ΠAccZ
E (pZE) = ΠAcc

E (pAccE ) shows

that for moderate values of Z > 1
4

(
5− 2

√
6
)
pro�ts ΠAccZ

E (pZE) exceed ΠAcc
E (pAccE )

when the entrant locates closer to the center than a threshold value of dE > dZE :=

1+dI+6Z−4
√
Z + 2Z2. (cf. proof of proposition 1 in the appendix) Correspondingly,

the strategy to ride the pro�t function and leave the center to the incumbent is more

pro�table for distant locations, thus, when dE < dZE . Additionally, the pricing strat-

egy to charge pAccE dominates setting pZE for all Z < 1
4

(
5− 2

√
6
)
. Thirdly, provided

that the accommodation-Z strategy and pAccZI is not feasible (dE > d.E) charging

p×E yields higher pro�ts than pZE for small entry locations dE < dZ×E = 1+2dIZ
2(2+3Z) and

setting pZE leads to comparatively higher pro�ts for locations above dZ×E .

These results for the case pAccI complete the previous derivation of location segments

in subsection 3.4.1 for pAccZI . (see �gure 3.10) Rewriting the terms for dZE and dZ×E
yields the following two conditions that suggest for the entrant to pick the pricing

strategy of charging pZE compared to setting pAccE and p×E :

dI <
2 + 3Z

Z
dE −

1

2Z
(3.24)
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dI < dE + 4
√
Z(1 + 2Z)− 1− 6Z (3.25)

Note that for Z → 0 the r.h.s. of (3.24) converges to d.E = 1
4 . Further, condition

(3.25) shows the same behavior under a variation of Z for Z ∈ [0, 1
2 ] as condition

(3.21), particularly, for Z = 1
2 both reduce to dI = dE . Thus, for decreasing Z the

location set for pZE to be a pro�table pricing strategy also decreases.

Figure 3.10: Illustration of the location segments for di�erent pricing strategies for �rm E
when �rm I applies the accommodation strategy (pAcc

I )

Comment: Graphs in �gure 3.8 are enhanced by the restrictions given by dZE and dZ×E . The solid

lines depict the transitions in �rm E's pricing behavior in terms of dI and dE for Z = 1
2
and the

dashed lines dZE and dZ×E for Z = 1
4
. Parameter values are t = 1.

In sum �rm E's pricing behavior is described by the following options when �rm I

holds a weak position in terms of his location with dI < d/I :

• choose pE if dI > 3 + dE + 2Z − 8
√
dE(1 + Z) and dE < d.E

• choose pAccE if dI > dE + 4
√
Z(1 + 2Z) − 1 − 6Z and dI < 3 + dE + 2Z −

8
√
dE(1 + Z) and dE < d.E

• choose pZE if dI < dE + 4
√
Z(1 + 2Z) − 1 − 6Z and dE < d.E , and if dI <

2+3Z
Z dE − 1

2Z and dE > d.E

• choose p×E if dI >
2+3Z
Z dE − 1

2Z and dE > d.E
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3.4.2.4 Entry decision

So far our approach covered an analysis of the strategy options of the entrant �rm.

According to the Stackelberg leader-follower game in prices we �nd that �rm E's set

comprises of pE , p
Acc
E , p×E , p̌E , and p

Z
E . The �rst two prices pE and pAccE correspond to

the scenario with both players optimizing their pro�ts and �rm I gaining the center

Z, the next two p×E and p̌E refer to �rm E's best choice if the accommodation-Z

strategy is not feasible and if the entrant sets an aggressive pricing behavior, �nally

pZE represents �rm E's best reply to the case where the incumbent accommodates

entry but loses the center. Additionally, we derived conditions to establish the ranks

pE > pAccE > p̂E and pAccZE > pZE > p̃E . Moreover, we may state that the relations

pAccE > p̌E and pAccE > pZE hold for all dI , dE , Z ∈ [0; 1
2 ].

The next step is to evaluate �rm E's pro�ts regarding the suggested �ve pricing

strategies. Respective pro�ts then are dependent on dE , dI , and Z and essentially

determine �rm E's payo�s as a function of his location. As intuition suggests the best

choice for the entry set (pE , dE) depends on �rm I's location. Thus, pursuing our

previous approach we distinguish between the case where the incumbent has a strong

market position and locates relatively close to the center (dI > d/I), and the case of

remote locations (dI < d/I). Furthermore, it is evident that �rm E's behavior hinges

upon �rm I's strategy set where emphasis lies on the scenario that the incumbent

retains a strong market position and accommodates entry. Consequently, we have to

di�erentiate the case where �rm I's strategy set contains the pricing strategy pAccZI

or dE < d.E from the case where pAccZI is excluded or dE > d.E . We make the following

propositions:

Proposition 1: For the location range dE < d.E and dI > d/I the pro�t function

ΠAcc
E (pAccE ) yields the highest values.

Proof : See the appendix.

Proposition 2: For the location range dE < d.E and provided that dI > dcMax
I

�rm E's strategy is to charge pAccE for locations 0 ≤ dE ≤ dIntsE and to charge pE
for locations dIntsE ≤ dE ≤ d.E . Then the local maximum and the entrant's pro�t-

maximizing price-location pair is given by:

p∗E(dI , Z) = 2
9 t
(

25− 3dI + 22Z − Λ(dI , Z)− 6
√

(1 + Z) (23 + 3dI + 26Z − 2Λ(dI , Z))
)

d∗E(dI , Z) = 1
9 (23 + 3dI + 26Z − 2Λ(dI , Z))

with:

Λ(dI , Z) = 4
√

(1 + Z)(7 + 3dI + 10Z)

dcMax
I = 4Z+8Z2−1

4+4Z

dIntsE = 29 + dI + 30Z − 8
√

13 + dI + 27Z + dIZ + 14Z2
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Proof : See the appendix.

Proposition 3: For the location range dE > d.E and dI > d/I , and provided that dI >

dcMax
I �rm E's dominant strategy is to choose the pro�t-maximizing set (p∗E , d

∗
E) if

the restriction Z > κ ≈ 0.0305 is ful�lled.

Proof : See the appendix.

Proposition 4: As a result of �rm I's location reaction function in lemma 3 the

entrant �rm discards the strategy to charge pZE for any dE ∈ [0; 1
2 ].

Proof : See the appendix.

The propositions address all �ve possible pricing strategies for �rm E and their re-

spective relations. Essentially, we determine conditions under which a local pro�t

maximum given by the set (p∗E , d
∗
E) exists. (cf. proposition 2) The local equilibrium

is established in an accommodating market entry scenario. This scenario is char-

acterized by a modest behavior of the entrant �rm in terms of his optimal entry

location and entry price. Indeed, the characteristic feature of �rm E's choice is de-

scribed by a pro�t maximum that is reached at a particular location dMax
E = d∗E .

As regards the pricing strategy the entrant aims at charging the highest possible

price such that the incumbent refrains from an undercutting strategy given by pE .

Since the pro�t-maximizing location lies within the boundary of d.E the incumbent's

best reaction is to charge pAccZI and accommodate entry. Accordingly, the center of

the city is taken by the incumbent �rm. Furthermore, the condition for the pro�t

maximum to exist (dMax
E < d.E) is dependent on the location of the incumbent and

limits dI to exceed the threshold value of dcMax
I which is a positive function in Z.

In addition, a comparison with �rm I's location reaction function reveals that under

the entry price p∗E the incumbent would react by accommodating entry and charging

pAccZI if dE < dE or undercutting �rm E by setting pDetI if dE > dE . Evidently, we

�nd that d∗E is approximated by dE(p∗E) but never exceeds dE(p∗E) for 0 ≤ dI ≤ 1
2 .

An illustration of this market entry scenario is depicted in �gure 3.11. It is inter-

esting to see that initially � for entry locations dE < dMax
E � �rm E prefers the

accommodation pricing strategy pAccE . However, as dE increases the accommodation

price shows a corresponding increase and a maximum for pAccE ≤ pE is reached at

a critical location of dIntsE ≈ 0.14 depicted by the �rst vertical dashed line. (cf. also

equ. (3.20) in subsection 3.4.1) Certainly, higher pro�ts are gained sticking to the

accommodation price but are not feasible since otherwise �rm E would be under-

cut. As a consequence, the entrant switches to pE and increases his location until

the pro�t maximum is reached at dMax
E ≈ 0.17 (second vertical dashed line). A fur-

ther increase in dE leads only to decreasing pro�ts for �rm E and an adaption in

the pricing strategies of the two contenders. If dE increases the threshold location
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of d.E ≈ 0.18 (third vertical dashed line) the accommodating entry scenario breaks

down. For instance, if the incumbent locates close to the center (dI > d.I) he reacts

either by deterring market entry and charging pDetI or by undercutting the entrant at

the center setting pDetZI if �rm E locates at positions dE > d.E . (cf. lemma 1) Thus,

the entrant's best strategy is then to play p×E with decreasing pro�ts in dE . Addi-

tionally, if d/I < dI < d.I a further transition in the strategies of the two contenders

occurs at dsplitE ≈ 0.43 where an aggressive pricing behavior of the entrant becomes

pro�table and he drops prices from p×E to p̌E .

Subsequently, provided that the incumbent holds a strong market position (dI > d/I)

and comparing respective pro�ts in the location ranges dE < d.E and dE > d.E the

question arises which price and location pair yields the highest outcome. Is it most

pro�table for the entrant to behave modestly and optimize pro�ts under the implicit

constraints of �rm I as the second mover or does an aggressive behavior against his

rival and thus an undercutting strategy yield a higher outcome for �rm E as the �rst

mover? We admit not to provide a closed form solution but merely give an indication

of the relation between the pricing strategies pE and p̌E . This could be a point of

departure for future research on the subject. The scenario illustrated in �gure 3.11

suggests that the local maximum (p∗E , d
∗
E) represents also the dominant entry strate-

gy over the whole domain dE ∈ [0; 1
2 ]. In general the result depends on the parameter

con�guration and thus the variable set dI and Z. In our nonexhaustive treatment we

level the pro�ts of the pro�t maximum in (p∗E , d
∗
E) with the highest possible pro�ts

that can be gained under an aggressive pricing of setting p̌E and locating in�nites-

imally close to the center. (cf. proposition 3) It turns out that the condition for p̌E

to be a viable option restricts the centrality bonus to be comparatively small. This

suggests that a signi�cantly high value of Z reduces �erce competition in the market

and thus has a stabilizing e�ect on the market setting. Put di�erently, under a high

centrality bonus Z �rm E's strategy to impose a self restricting behavior in terms of

deliberately locating in a remote part of the city pays o� compared to an aggressive

entry behavior where the aim is to push the incumbent rival out of the market. It has

to be noted that this �nding is subject to a number of restrictions. However, under

speci�c assumptions for the parameters dI and Z we show that the incumbent reacts

adaptively to an undercutting of �rm E initially charging pDefI . As �rm E increases

his prices in accordance with his pro�t function Π̌E = (1−dI +Z)p̌E , the incumbent

switches to the deterrence strategy setting pDetI . This also suggests that the entrant

refrains from undercutting the incumbent for su�ciently close locations to the cen-

ter and thus supports stable market conditions. (cf. the remark in the appendix and

table 3.4 in section 4)

In proposition 4 �rm E's entry decision for the case of remote locations dI < d/I
is considered. The important feature in this location range is that according to his

pro�t structure the incumbent's reaction to entry requires him to accept the loss of
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the center and accommodate entry by charging pAccI . The prerequisite is that the

entrant takes a comparatively strong market position exceeding a de�ned location

d†E and that his prices ful�ll p5†E ≥ pE > p.E (cf. lemma 3 and the corresponding

proof). Then the best strategy for �rm E is to charge pZE and gain pro�ts ΠZ
E which

are an increasing function in dE . By a comparison of the threshold prices in the

location reaction function, most notably p5†E , with the entry price at the switchover

point for the pricing strategy pZE we show that the pricing strategy pZE yields no

pro�table result for �rm E. This �nding is a result of �rm I's reaction to entry. If

the entrant drops his prices to pZE �rm I does not react modestly and accommodates

the loss of the center, depending on the parameter con�guration of dI and Z �rm

I rather replies aggressively and defends his claim for the center (pDetZI ) or deters

entry (pDetI ).

Finally, we sketch the comparative static behavior of �rm E's feasible entry pro�ts

under a variation of Z and dI . As expected, an increase in �rm I's location leads to a

downward shift for the pro�t functions of the pricing strategies pE , p
Acc
E , p×E , and p̌E

over the whole domain dE ∈ [0; 1
2 ]. Particularly, for a �xed Z such that dI > dcMax

I

it follows that the pro�t maximizing location dMax
E shrinks as dI grows. As already

argued the impact of dI on Π̌E is determined by the functional form of dsplitE and

critically depends on the level of Z (cf. proof 5b and �gure 3.13 in the appendix).

Generally, we may state that Π̌E is shifted upward and the sensitivity of the pro�ts

to dE increases as the value of �rm I's location increases.

Regarding a variation in Z, the pro�t functions for the strategies pE and pAccE show

an upward shift as Z increases. In addition, for a �xed dI > dcMax
I see that the local

maximum dMax
E as well as the tangential intersection dIntsE increase with growing

Z. Pro�ts for the strategy p×E also increase as the centrality bonus Z increases and

according to the interaction term between dE and Z in the pro�t function the sen-

sitivity with respect to Z correspondingly rises. Eventually, mirroring the behavior

under a change in dI the pro�t function for p̌E shows a complex reaction to Z. In

particular, we observe that pro�ts move up and the sensitivity of the pro�t function

decreases with an increase in Z.
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Figure 3.11: Illustration of �rm E's pro�t function for di�erent pricing strategies against
his location dE

Comment: The solid lines depict the viable pro�t and price ranges. The �rst vertical dashed line

indicates the transition of the pricing strategy pAccE to pE at the location dIntsE , the second marks

the local pro�t maximum at dMax
E . The next transition occurs from the pricing strategy pE to p×E

at d.E . Both transitions are described by a kink. Finally, the price drop from p×E to p̌E at dsplitE

captures the last change in strategies. Parameter values are dI = 0.4, Z = 0.4 and t = 1.
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3.5 Interpretation and Comparison of Results

In this section we summarize and interpret the previous �ndings and give examples

of the prices and pro�ts for �rm E and �rm I in three selected scenarios depicted

in tables 3.3, 3.4 and 3.5. Moreover, we provide a comparison of our results and

implications with previous work on the subject by Anderson (1987).

Table 3.3: Summary of the entry accommodation scenario for dI = 0.4 and t = 1

Z d∗E p∗E Π∗E pAccZI ΠAccZ
I dcMax

I x

0 0.143 1.228 0.465 1.242 0.772 −0.250 0.621
0.05 0.147 1.277 0.501 1.315 0.865 −0.186 0.607
0.1 0.150 1.325 0.538 1.387 0.963 −0.118 0.594
0.15 0.153 1.373 0.577 1.460 1.066 −0.048 0.580
0.2 0.157 1.422 0.617 1.532 1.174 0.025 0.566
0.25 0.160 1.470 0.658 1.605 1.288 0.100 0.552
0.3 0.164 1.518 0.700 1.677 1.406 0.177 0.539
0.35 0.167 1.566 0.744 1.750 1.530 0.256 0.525
0.4 0.171 1.615 0.790 1.822 1.660 0.336 0.511
0.45 n.a. n.a. n.a. n.a. n.a. 0.417 0.497
0.5 n.a. n.a. n.a. n.a. n.a. 0.500 0.483

The �rst scenario represents the entry accommodation scenario described in proposi-

tion 2. Accordingly, �rm E chooses the pro�t-maximizing price-location pair (p∗E , d
∗
E)

in the �rst stage of the game provided that dI > dcMax
I or dMax

E < d.E respectively.

Consequently, �rm E discards the theoretical option to gain the centrality bonus Z

and the incumbent �rm reacts by accommodating entry and optimizing his resulting

pro�t function in the second stage. This scenario therefore expresses the advantage

of �rm I to charge his prices as the second mover of the game and brings about a

state of equilibrium. A change in price and location for the entrant does not increase

his pro�ts and induces the incumbent to adapt his accommodating strategy. Firstly,

if �rm E decreases his price, the resulting, comparatively low increase in market

share does not compensate for the decline in pro�ts. Furthermore, the incumbent is

inclined to change his pricing strategy and takes the center Z due to the second-

mover advantage. Secondly, an increase in �rm E's location leads to lower net pro�ts

since pE as the corresponding pricing function decreases in dE . Additionally, at the

respective price level the incumbent chooses to undercut the entrant for locations

exceeding d∗E . Thirdly, if �rm E decreases his location, he only gains lower pro�ts

compared to (p∗E , d
∗
E), and a price increase at the maximum is not possible in order

to avoid the incumbent to play the deterrence strategy.

It is important to note that the critical variable dcMax
I determining the condition

for the existence of the local maximum for �rm E's corresponding pro�t function

Π∗E = ΠE(p∗E , d
∗
E) positively depends on Z. Certainly, this implies that not for all
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combinations of dI and Z on the domain [0; 1
2 ] the local pro�t maximum is feasible.

For instance, in table 3.3 see that under an assumed value of dI = 0.4 for Z ex-

ceeding the threshold of 0.4 the local pro�t maximum does not exist. This is owed

to the reaction of �rm I, if �rm E locates at the corresponding location d∗E > d.E
charging pAccZI is not pro�table anymore and therefore entry is not possible in the

accommodation scenario. Additionally, the existence of �rm E's pro�t maximum is

re�ected in the market boundary where for dI < dcMax
I we obtain x < 1

2 which of

course is not reconcilable with an accommodating reaction of �rm I.

Furthermore, we observe the impact of the centrality bonus on pro�ts and prices of

the contenders. By construction a higher value for Z corresponds to a larger market

area. As expected, we con�rm that �rm I's pro�ts and accommodation prices in-

crease with increasing Z. As �rm I is not induced to confront the entrant it follows

that �rm E also bene�ts from an increase of the market size in terms of Z even

though he is not in the position to gain the center. In particular, see that both �rm

E's accommodation price p∗E as well as the optimal location d∗E increase as Z grows.

Table 3.4: Summary of the entry undercutting scenario for dI = 0.4 and t = 1

Z dsplitE p̌E Π̌min
E d×E Π̌th.

E pDefI ΠDef
I

0 0.267 0.667 0.400 0.311 0.427 1.000 0.400
0.05 0.339 0.473 0.307 0.384 0.336 0.700 0.280
0.1 0.375 0.375 0.263 0.419 0.293 0.550 0.220
0.15 0.396 0.316 0.237 0.440 0.270 0.460 0.184
0.2 0.410 0.277 0.221 0.454 0.256 0.400 0.160
0.25 0.420 0.248 0.211 0.463 0.248 0.375 0.143
0.3 0.427 0.227 0.204 0.470 0.243 0.325 0.130
0.35 0.432 0.210 0.199 0.475 0.240 0.300 0.120
0.4 0.436 0.196 0.196 0.479 0.239 0.280 0.112
0.45 0.440 0.185 0.195 0.482 0.239 0.264 0.105
0.5 0.443 0.176 0.194 0.485 0.240 0.250 0.100

The second scenario refers to the case of the entrant undercutting the incumbent at dI

in the �rst stage of the game and the incumbent defending his market position in the

second stage. Thus, this scenario covers the instance of a possible �rst-mover advan-

tage by considering that the entrant will take the center Z. In subsection 3.4.2.4 and

proposition 3 we argue that only for small values of Z the undercutting strategy p̌E

represents a viable option for the entrant. This is on the one hand linked to the com-

plex behavior and dependency of the pro�t function Π̌E = ΠE(p̌E(dE , dI , Z), dI , Z)

under a variation of dI and Z and on the other hand explained by the rise of p∗E and

Π∗E in the accommodation scenario under an increase in Z.

Now, table 3.4 provides further insights on the subject. Strikingly, the initial under-

cutting price p̌E taken at the switchover location dsplitE decreases as Z increases. This

implies that a higher bonus that could be grasped by the entrant requires him to set
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an increasingly lower undercutting price. This instance is con�rmed by the behav-

ior of the threshold dsplitE which increases in Z and thus expresses that the entrant

needs to take an increasingly stronger market position for the pricing strategy p̌E to

represent a viable option. As a consequence, corresponding pro�ts Π̌min
E evaluated at

p̌E and dsplitE decrease in Z and illustrate that a potential �rst-mover advantage by

the entrant is diminishing. Clearly, since the incumbent has to react adequately to

the price attack to hold his market position his behavior mirrors the entrant's with

prices pDefI (p̌E(dsplitE )) and corresponding pro�ts ΠDef
I decreasing for growing values

of Z.

The depicted pro�ts Π̌min
E in table 3.4 represent the minimum values the entrant

gains under the undercutting strategy p̌E since pro�ts monotonically increase in dE .

By contrast in column 4 the numbers for d×E provide the location maxima and thus

�rm E's preferred location taken at the switchover point dsplitE and corresponding

price p̌E(dsplitE ). According to �rm I's location reaction function entry is deterred

when �rm E locates at dE > d×E (cf. lemma 4). It is revealing that the situation

is characterized by a recursive relation since the entrant is inclined to increase dE

leading to an increase in p̌E to realize higher pro�ts whereas d×E decreases for growing

pE . To determine the theoretically highest pro�ts for the entry undercutting strat-

egy Π̌th.
E we evaluate the pro�t function at the lowest possible undercutting price

p̌E(dsplitE ) and the theoretical maximum location d×E . We con�rm that Π̌th.
E decreases

as Z grows. Additionally, we observe that the undercutting strategy is viable over

all Z since d×E exceeds dsplitE , however, in the provided example (dI = 0.4) a com-

parison of the theoretically highest undercutting pro�ts with corresponding pro�ts

for the accommodation scenario in table 3.3 shows that the accommodation strategy

(p∗E , d
∗
E) dominates.

Table 3.5: Summary of the entry undercutting-Z scenario for dI = 0.4 and t = 1

Z p×E(d.E) Π×E(d.E) p×E(dsplitE ) Π×E(dsplitE ) pDetZI ΠDetZ
I

0 0.850 0.425 0.800 0.400 1.000 0.500
0.05 0.938 0.469 0.614 0.307 1.100 0.605
0.1 1.027 0.514 0.525 0.263 1.200 0.720
0.15 1.117 0.559 0.474 0.237 1.300 0.845
0.2 1.208 0.604 0.442 0.221 1.400 0.980
0.25 1.300 0.650 0.422 0.211 1.500 1.125
0.3 1.392 0.696 0.408 0.204 1.600 1.280
0.35 1.485 0.743 0.399 0.199 1.700 1.445
0.4 1.579 0.789 0.393 0.196 1.800 1.620
0.45 1.672 0.836 0.389 0.195 1.900 1.805
0.5 1.767 0.883 0.387 0.194 2.000 2.000

The third scenario considers the possibility for �rm E to undercut the incumbent

�rm at the location x = 1
2 and seize the center Z. Referring to the pro�t-maximizing
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price-location set (p∗E , d
∗
E), we argue that an undercutting for the center is not a

pro�table strategy option.

To begin with, in table 3.5 we introduce the undercutting price p×E and corresponding

pro�ts Π×E at the transition locations d.E and dsplitE .6 Note that the entry price and

pro�t increase at d.E and decrease at dsplitE as Z grows. This re�ects on the one hand

the relation of the strategy p×E with the strategy set (p∗E , d
∗
E), and on the other hand

the relation of p×E and Π×E with the mill-undercutting price and pro�t. As already

argued, with increasing Z entry pro�ts under the pricing strategies pE and pAccE

increase. Since d.E marks the intersection of pE and ΠE with p×E and Π×E the latter

are shifted upwards. Additionally, due to the increase of Π̌E and p̌E under a decrease

of Z also Π×E and p×E increase at the intersection dsplitE . Moreover, the price and pro�t

of �rm I for the deterrence-Z strategy are depicted provided that �rm E chooses

p×E(d.E). Note that in this particular case, i.e. at dE = d.E , the defensive price p
DetZ
I

is independent of dI .

Turning to the subject of interest, why does the existence of Z not induce the entrant

to undercut the incumbent at x = 1
2? Why is the undercutting-Z strategy for �rm

E under speci�c circumstances not pro�table and thus feasible? Our answer is that

under consideration of �rm I's response charging p×E and p̂E is outperformed by

the accommodating pricing strategies pE and pAccE (cf. proofs for propositions 1 and

2). Additionally, we can show that the incumbent does not accept the loss of the

center in an accommodating scenario (cf. proof for proposition 4). Thus, regarding

the distribution of the centrality bonus Z our model suggests a clear second-mover

advantage on the side of the incumbent �rm.

In particular, for distant entry locations dE < d.E the entrant e�ectively has two

choices, he could concede Z to the incumbent and optimize his price setting behavior,

alternatively, he could challenge the claim for Z charging p̂E . As was shown, the

incumbent reacts to the �rst option by accommodating entry and in the second case

undercuts the entrant at x = 1
2 to retain the center (cf. proof of lemma 1). Note

that setting p×E if dE < d.E is ruled out since it does not represent an appropriate

undercutting price and proves not to be pro�table (cf. proof of proposition 2). For

close entry locations dE > d.E an accommodating reaction by the incumbent is not

feasible, thus, his reaction would either be to defend the center (pDetZI ) or deter entry

(pDetI ). Concerning �rm E, regardless of the strategy option p̌E , the best entry price is

therefore p×E . The characteristic feature then is that increasingly lower undercutting-Z

prices are required for increasingly closer entry locations which is highlighted in table

3.5 by a comparison of p×E evaluated at d.E and dsplitE . Intuitively, when aiming for the

bonus Z the entrant makes it also more di�cult to be undercut by the incumbent as

he locates closer to the center.

This leads to the following conclusion: under the pricing strategy p×E �rm E has a

6In the underlying demand function for �rm E we set Z = 0.
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clear preference to choose a distant location which is determined by the switchover

point d.E . This further implies that if the local maximum (p∗E , d
∗
E) exists the strategy

to choose this pro�t-maximizing price-location set dominates the strategy to opt

for the pair (p×E , d
.
E) = (pE , d

.
E), by contrast, if the local maximum does not exist

the best entry set is given by the kink solution (p×E , d
.
E) = (pE , d

.
E). To illustrate

the point, for a comprehensive solution the non-applicable �elds in table 3.3 are

substituted with the values of table 3.5 for Z = 0.45 and Z = 0.5. Moreover, we

con�rm that pro�ts Π∗E exceed pro�ts Π×E(d.E) over the assumed parameter range.

Our modeling approach is in full accord with the model of Anderson (1987). In

particular, the term for the pro�t-maximizing entry location d∗E in proposition 2 of

our paper represents a generalized form of the location reaction function b∗(a) for

a ≤ 1
2 accounting for the centrality bonus Z in his proposition 4 (cp. Anderson (1987),

p. 383). Consequently, the results for �rm B's entry location and corresponding prices

and pro�ts for both �rms in proposition 5 and 6 in Anderson's article (ibid., pp. 385-

387) match our results for the equivalent cases dI = 1
2 and dI = 0 if Z = 0. This is, of

course, not surprising since we also took account of �rm E's pro�t functions under

the most pro�table pricing strategies following a Stackelberg leader-follower game

in prices. In a nutshell, our main contribution and extension of Anderson's work is

two-fold. Firstly, we evaluated more pricing options for the entrant which is a direct

consequence of the introduction of the centrality bonus Z. Secondly, we determined

the conditions for the existence and nonexistence � or at least the maximum bound

in the case of the undercutting strategy p̌E � of di�erent entry states taking into

account not only �rm I's price reaction to �rm E's price setting but also the price

reaction to the choice of the entry location. However, due to the emphasis that is

given to the impact of Z we used a more simpli�ed approach compared to Anderson's

model re�ected in the instance that �rm I's location is not endogenized in our model.

3.6 Conclusion

In this paper we scrutinize a two-stage sequential market entry game between two

players, an incumbent �rm (�rm I) and an entrant �rm (�rm E) in the geographical

setting of a linear city a la Hotelling with linear transportation costs. The set up

is extended by a center in the middle of the city (x = 1
2) where additional demand

in the amount of Z can be gained. We focus on the resulting strategic interaction

between the players assuming that the incumbent already served the market in a

pre-monopolisitic stage which implies that his location (dI) is not disposable and,

thus, does not represent a strategic variable in the game. This leads us to provide a

solution set comprising the entry price and location (pE , dE) chosen in the �rst stage

of the game and the price charged by �rm I (pI) in the second stage.
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In the proceeding we �rstly provide relevant parts of the reaction function to the

entry price as well as to the entry location under consideration of �ve di�erent pric-

ing options for �rm I. These follow from the introduction of the demand dependent

centrality bonus Z and are: an undercutting strategy against �rm E to deter entry,

a deterrence strategy to defend the claim for Z, two entry accommodating strategies

where Z is either taken by the incumbent or the entrant, and a strategy to defend

the market position against an undercutting strategy of �rm E. In a second step,

based on the strategic set of �rm I the best prices of �rm E are derived. Subse-

quently, accounting for the corresponding demand these are inserted into �rm E's

pro�t function to analyze the dependency of di�erent entry pro�ts on the choice of

the entry location.

Our analysis highlights the interrelation of the players' locations with the centrality

bonus Z and generally shows that Z is crucial to determine the range for the pricing

strategies to be applicable and to describe the transition points between di�erent

pricing strategies. Particularly, we are for instance able to con�rm the intuitive as-

sumption that �rm I is less likely to apply the accommodation strategies for higher

values of Z (exempli�ed by d.E and d/I). The main �nding of the paper is that we

provide a solution for an entry accommodation scenario where both �rms optimize

the pro�t functions over their strategic variables and the entry solution set given by

(p∗E , d
∗
E). The center is retained by the incumbent �rm setting a higher price and

realizing higher pro�ts than the entrant who chooses a distant location. An increase

in Z increases prices and pro�ts but reduces the domain since the existence of the

equilibrium is bounded by �rm I's location with the threshold location (dcMax
I ) de-

creasing as Z grows. This result is in full accord with the model of Anderson (1987)

since for Z = 0 our solution matches �rm E's location reaction function in his paper.

In addition, our results suggest that �rm E has no chance to capture Z. Firstly, we

argue that an aggressive entry behavior aiming at undercutting the incumbent �rm

is not pro�table compared to the accommodating equilibrium. Intuitively, a higher

bonus Z requires even lower undercutting prices and leads to �ercer competition.

Secondly, a more modest entry strategy to refrain from undercutting the rival and

only capture the center Z is not feasible due to the second-mover advantage of �rm

I and the structure of �rm E's pro�ts. Thirdly, we exclude the case where �rm E

seizes Z in an accommodating scenario.

In the course of our paper we try to bridge a gap between the subject of sequential

entry in spatial modeling (Anderson (1987), Fleckinger & Lafay (2010)) and spatial

monopolistic competition in centralized markets (Braid (1989), Braid (2013), Chen

& Riordan (2007)). To the best of our knowledge explicit expressions of reaction

functions with respect to entry price and location taking account of a market center

have not been used previously in analyses of sequential entry games under a linear

transportation cost scheme. A distinct feature of our approach compared to, for in-
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stance, Anderson (1987) is that after deriving �rm E's best prices and corresponding

pro�t functions the preferred entry locations are checked with respect to the price

reaction of �rm I. Thus, we examine the incumbent's price reaction to both entry

price and location. This implies that our treatment therefore does not include a lo-

cation subgame where the incumbent optimizes dI with respect to �rm E's entry

decision in a prevenient stage. (cp. Anderson (1987), p. 384, Proposition 5)

The appealing feature of our approach, however, is that we drill down �rm I's re-

action to the most pro�table pricing decision and subsequently assess the market

structure as a result of �rm E's best reply. Clearly, in our model entry is not prin-

cipally deterred but occurs under particular circumstances, these being that the

entrant deliberately restricts himself to a modest market position in a distant loca-

tion to the center. This refers to a business strategy characterized by the term 'judo

economics' introduced in the seminal paper of Gelman & Salop (1983) where the

entrant improves his strategic position by credibly committing himself to a limited

capacity. If he were to break his credible capacity-limitation commitment, the incum-

bent �rm undercut the entry price and the entrant obtained no customers. In their

model the strategic variable of the incumbent only consists of his price. (cf. Gelman

& Salop (1983), p. 316) Our results are in line with this thesis in terms of the derived

location thresholds in �rm I's location reaction function, if these were exceeded, the

incumbent deterred entry. We may also note that the credibility of �rm E's decision

is supported by the construction of the spatial setting since product heterogeneity is

only attributed to the location in the city. Additionally, Fleckinger & Lafay (2010)

show that in a sequential entry game under catalog competition, that is two �rms

deciding in one stage on both strategic variables, price and location, a second-mover

advantage results as the leader's strategy is to choose a low-price and low-market

share strategy to avoid being undercut by the follower. Thus, we conclude that a

comparison with the literature shows that the implications of our model �t well into

the scholarly discussion.

Eventually, we may summarize shortcomings of our model as well as potential future

developments of it. For the price reaction function the case where the two contenders

locate very far from one another is not explicitly dealt with in the analysis, i.e., for

the range dE < d/E and dI ≤ d/I . However, with regards to the monotonicity of �rm

E's accommodation pro�ts in dE this does not a�ect the outcome of our analysis.

For the location reaction function the case of low undercutting prices charged by

the entrant is not explicitly analyzed, i.e., for the range pE < p.E , pE < p5†E , and

pE < p5‡E . The comparison of �rm E's undercutting strategy and accommodation

strategy is therefore subject to restrictions for dI and Z (cf. remark in the appendix).

Nevertheless, we are able to determine an upper bound solution that determines the

range of where the pro�t-maximizing set (p∗E , d
∗
E) dominates the undercutting strat-

egy (cf. proposition 3).
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Future developments could further consolidate our model with the work of Anderson

(1987) and Fleckinger & Lafay (2010). Potential enhancements comprise an endog-

enization of �rm I's location dI and subsequent analysis on the impact of Z with

respect to �rm I's location decision. Subsequently, referring to proposition 7 in An-

derson's paper (p. 386f) new insights could be gained assessing the timing structure

of the subgames in location and prices and to which extent Z determines �rst-

and second-mover advantages. Furthermore, it would be interesting to study catalog

competition as in Fleckinger & Lafay (2010) in the context of a spatially centralized

market.
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Appendix

Proof 1: Recapitulating the dependencies from equation (3.5) we de�ne:

ΠI(p
Det
I , 1 + Z) ≡ ΠDet

I = [pE − t(1− dE − dI)](1 + Z),

ΠI(p
DetZ
I , 1

2 + Z) ≡ ΠDetZ
I = [pE − t(dE − dI)](1

2 + Z),

ΠI(p
Def
I , dI) ≡ ΠDef

I = pEdI + tdI(1− dI − dE),

ΠI(p
AccZ
I , x(pAccZI ) + Z) ≡ ΠAccZ

I = α(pE)2 + βpE + γ, and

ΠAccZ
I (Z = 0) ≡ ΠAcc

I

with: α = 1
8t , β = 1

4(1−dE +dI +2Z), and γ = t
8(1+d2

E +d2
I)+ t

4(dI−dE−dEdI)+
t
2(Z2 + Z + dIZ − dEZ).

See that all pro�ts increase in pE . Deterrence pro�ts ΠDet
I show the highest linear

increase by the amount of 1 + Z, deterrence-Z pro�ts ΠDetZ
I increase comparative-

ly lower by the factor 1
2 + Z, and deference pro�ts ΠDef

I increase by the smallest

amount of dI (recall that dI ≤ 1
2). Pro�t functions for the two accommodation cases

ΠAccZ
I and ΠAcc

I are strictly convex and monotonically increasing on pE ≥ 0 since

the minimum pminE = −t(1− dE + dI + 2Z) < 0 for all dI , dE , Z ≥ 0. Clearly, Z > 0

implies that pminE (Z) < pminE (Z = 0) or that ΠAccZ
I > ΠAcc

I for all pE ≥ 0.

Next, we examine the pro�t intersections. For high values of pE the deterrence and

accommodation-Z strategy are preferable. Matching ΠDet
I with ΠAccZ

I yields the two

solutions pE = t(3 + dE − dI + 2Z − 4
√
dE(1 + Z)) and pE = t(3 + dE − dI +

2Z + 4
√
dE(1 + Z)). Further, we de�ne p�E as the intersection of the corresponding

prices pDetI (p�E) = pAccZI (p�E). See that the deterrence strategy is preferred to the

accommodation-Z strategy for every pE ∈ [pE , pE ] since pE < p�E for all dI , Z ≥ 0

and dE < 1 + Z. This corresponds to the �nding of Anderson (1987) in the original

setting of the linear city (i.e. for Z = 0).

Matching ΠAccZ
I with ΠDetZ

I we obtain the tangential solution p̂E = t(1 + dE − dI +

2Z). Likewise, p̂E proves to be the solution for the intersection of the price func-

tions pAccZI and pDetZI which is supported by
∂ΠAccZI
∂pE

∣∣∣∣
p̂E

= 1
2 + Z. This implies that

the accommodation-Z strategy is preferred for every pE > p̂E and the deterrence-Z

strategy is applied for pE < p̂E . Intuitively, for pE < p̂E �rm I loses the center when

charging pAccZI only realizing ΠAcc
I which induces him to play pDetZI and gain higher

pro�ts ΠDetZ
I . This is consistent with the behavior of the market boundary where

x(pAccZI ) > 1
2 for all pE > p̂E and dE , dI , Z ≥ 0.

Matching ΠDetZ
I with ΠAcc

I yields the two solutions p†E = t(1 + dE − dI + 4Z −
2
√

2Z(1 + 2Z)) and p‡E = t(1 + dE − dI + 4Z + 2
√

2Z(1 + 2Z)). See that p†E <

p̂E < p‡E holds for all dE , dI , Z ≥ 0. This can also be concluded from the structure

of ΠAccZ
I and ΠAcc

I where
∂2ΠAccZI

∂p2
E

=
∂2ΠAccI

∂p2
E

= 1
4t . Further, intersect the respective

price functions pDetZI (p†�E ) = pAccI (p†�E ) and see that p†E < p†�E for all dE , dI , Z ≥ 0.
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It follows that the deterrence-Z strategy dominates the accommodation strategy for

p†E < pE < p̂E , and that the accommodation strategy is preferred to the deterrence-Z

strategy for pE < p†E .

We turn to the deference case. Matching ΠAcc
I with ΠDef

I yields p̃E = t(3dI +dE−1),

and matching ΠDetZ
I with ΠDef

I we get p̌E = t
(
dE + dI

(
1−2dI−2Z
1−2dI+2Z

))
. Leveling the

price functions pAccI and pDefI the pro�t intersection p̃E obtains which can also seen

by
∂ΠAccI
∂pE

∣∣∣∣
p̃E

= dI . It follows that even though ΠDef
I < ΠAcc

I for pE < p̃E �rm I

charges pDefI in order not to be undercut at his own mill. This �nding speci�es the

analysis in Anderson (1987) where it is indicated that the deference strategy yields

higher pro�ts (see Fig.3 on p.376 and proof for proposition 1 lit.b on p.390). Addi-

tionally, due to the linear dependencies of ΠDetZ
I and ΠDef

I in pE the deterrence-Z

strategy is preferable for pE > p̌E , whereas the deference strategy dominates for

pE < p̌E . Note that p
Def
I > pDetZI > pDetI ∀pE .

The �nal step of the proof is to derive the ranges of validity for the �ve pricing

strategies with regards to Z. First note that the accommodation-Z strategy is only

viable when pE > p̂E . This corresponds to a restriction for dE contingent on Z, i.e.,

dE < d.E = 1
4(1+Z) . If dE > d.E the accommodation-Z strategy is always dominated ei-

ther by the deterrence strategy or the deterrence-Z strategy and the switchover point

is given by the intersection of ΠDet
I with ΠDetZ

I at p×E = t(2+2Z−dE(3+4Z)−dI). For
dE > d.E the switchover point always lies below p̂E . The condition for the accommo-

dation strategy to exist is given by p†E > p̃E imposing a restriction on dI contingent

on Z, i.e., dI < d/I = 1
2 + Z −

√
Z(1

2 + Z). Also note that p†E > p̃E restricts p†E to

be positive. To check on the deference case we �rst see that the boundaries d.E and

d/I yield a positive value for p̃E for all 0 ≤ Z ≤ 1
2 . Next we see that p̃E > 0 only if

dE > d/E = 3
√
Z(1

2 + Z) − 1
2(1 + 6Z) is ful�lled for dI = d/I . Note that p̃E(d/I) > 0

for all dE ≤ 1
2 and Z < 1

6 . Since d
.
E > d/E for all 0 < Z ≤ 1

2 a nonnegative set for

dI < d/I obtains which proves part (I) of �rm I's proposed price reaction. For parts

(II) and (III) we �nd that p̌E < p̃E for all dE , Z > 0 when the deterrence-Z strategy

dominates the accommodation strategy, i.e., dI > d/I . Again, Z determines the prof-

itability of ΠDetZ
I in relation to ΠDef

I with p̌E strictly monotonically decreasing in Z.

Setting p̌E ≥ 0 we get dI < d.I = 1
4(1−2dE−2Z+

√
4d2

E + (1− 2Z)2 + 4dE(1 + 6Z)),

and p̌E < 0 for d.I < dI ≤ 1
2 respectively (the negative root only yields d.I < 0 for

dE , Z > 0). Next we compare d/I < d.I and �nd the �oor for dE at the same d/E as

for part (I). Since the interval [d/E ; d.E ] is nonempty the existence of parts (II) and

(III) is established. Also note that d/E > 0 only if Z > 1
6 which implies that d/I < d.I

holds for all dE ≤ 1
2 if Z < 1

6 . This completes the proof.

Proof 2: Consider the pro�t generating functions: ΠgAccZ
I (pI) = −p2

I
2t + pI

2 −
pIdE

2 +
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pIdI
2 + pIpE

2t + pIZ and ΠgAccZ
I (Z = 0) = ΠgAcc

I (pI). Further, recall ΠgDet
I (pI) =

pI(1 + Z) and ΠgDetZ
I (pI) = pI(

1
2 + Z) from proof 1. Now, we will evaluate these

pro�t functions at the switchover points pE , p̂E and p†E to show under which restric-

tions the maxima in ΠgAccZ
I and ΠgAcc

I are covered.7

If �rm E charges pE , the incumbent is indi�erent between the deterrence strate-

gy and the accommodation-Z strategy. Realizing ΠgDet
I and qI = 1 − dE requires

pI ≤ pDetI and realizing ΠgAccZ
I corresponds to pDetI < pI < pDetZI . Thus, the in-

cumbent applies the deterrence strategy for low pI until pE − t(1 − dI − dE) is

reached. For higher pI he switches to an accommodating behavior until the thresh-

old of pE+t(dI−dE) is reached. This of course restricts the market boundary to full�ll

1 − dE ≤ x ≤ 1
2 . Also we see that the intersection of ΠgDet

I with ΠgAccZ
I lies below

pDetI for all dE , dI , pE > 0. Inserting and expanding yields the following expressions:

pDetI (pE) = 2t(1+dE+Z−2
√
dE(1 + Z)), pAccZI (pE) = 2t(1+Z−

√
dE(1 + Z)), and

pDetZI (pE) = 3t+2t(Z−2
√
dE(1 + Z)). The rank pDetI (pE) < pAccZI (pE) < pDetZI (pE)

only holds true for dE <
1

4(1+Z) (and dE < 1 + Z respectively).

Analogously, taking p̂E we get pDetI (p̂E) = 2t(dE + Z), pAccZI (p̂E) = t(1 + 2Z) and

pDetZI (p̂E) = t(1+2Z). The existence of the maximum in ΠgAccZ
I , i.e., pDetZI > pAccZI

demands pE > p̂E . Graphically, this corresponds to the intersection of the straight

line ΠgDetZ
I with the slope 1

2 +Z with the parabola ΠgAccZ
I . At p̂E prices are identi-

cal and a kink in the price reaction function obtains which is also supported by the

analysis of the price and pro�t intersections in proof 1. Note that at the kink pAccZI

and pDetZI are independent of the locations dE and dI .

Finally, we compare ΠgDetZ
I with ΠgAcc

I . First we �nd the respective pro�t intersection

at pcI := pE−2tZ+ t(dI−dE). See that pcI ≥ pAccI only holds if pE ≥ t(1+4Z− (dI−
dE)) := pcE . We can conclude that p̂E < pcE for all Z > 0 which implies that pAccI > pcI
for every pE < p̂E . Now, inserting p

†
E yields pDetZI (p†E) = t(1 + 4Z − 2

√
2Z(1 + 2Z),

pAccI (p†E) = t(1+2Z−
√

2Z(1 + 2Z) and pDefI (p†E) = 2t(1−dI +2Z−
√

2Z(1 + 2Z).

The relation pDetZI (p†E) < pAccI (p†E) holds true for all Z ≥ 0 and pAccI (p†E) < pDefI (p†E)

holds true if Z > 0 and dI < d/I . This completes the proof.

Proof 3: The starting point are the pro�t functions ΠDet
I , ΠDetZ

I , ΠDef
I , ΠAccZ

I , and

ΠAcc
I from proof 1. Now, their intersections and respective existence conditions are

analyzed with respect to dE .

Pro�ts for the deterrence case ΠDet
I are linearly increasing in dE with the slope 1+Z.

7For clarity: ΠgAccZ
I , ΠgAcc

I , ΠgDet
I , and ΠgDetZ

I are general functions of the pro�ts for arbitrary
prices pI , in proof 1 the rank of pro�ts was derived with regards to �rm I's �ve possible pricing
strategies. Recall from equations (3.5) and (3.4) that ΠgAccZ

I gives the pro�ts in pI when �rm I
captures the indi�erent consumer which equals a demand in the amount of the market boundary,
i.e., qI = x. Graphically, ΠgAccZ

I is depicted by a parabola, e.g., �rm I's optimal choice is to
charge pAccZI (pE) to realize the highest possible pro�ts. ΠgDet

I incorporates the pro�ts for any
pI when qI = x = 1− dE . Graphically, ΠgDet

I is a line with the slope 1 + Z.
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All other pro�t functions decrease in dE over the range [0; 1
2 ]: ΠDetZ

I by the factor
1
2 +Z, ΠDef

I by the factor dI , and the accommodation pro�ts are convex in dE with

the minima at 1
t pE + 1 + dI + 2Z and 1

t pE + 1 + dI respectively. Both accommo-

dation pro�ts have the same covexity given by
∂2ΠAccZI

∂d2
E

=
∂2ΠAccI

∂d2
E

= t
4 > 0. Thus,

for Z > 0 the minimium of ΠAcc
I will always lie below the minimum of ΠAccZ

I and

accommodation-Z pro�ts will exceed accommodation pro�ts over dE ∈ [0; 1
2 ].

For high pE deterrence dominates all other strategies. Setting ΠDet
I = ΠAccZ

I yields

the two solutions dE = 5+dI+ 1
t pE+6Z±4

√
(pEt + 1 + dI + 2Z)(1 + Z), the higher

always lies above 1
2 and thus the lower solution stated as dE indicates the switchover

point from the deterrence to the accommodation-Z strategy. Expression dE > 0 re-

duces to pE < t(3− dI + 2Z) for all dI , t, Z > 0 named as p4E and marking the price

limit for the accommodation-Z strategy to exist. Further, leveling respective pricing

functions pDetI = pAccZI yields d
�
E = 1− 1

3(dI + 1
t pE − 2Z). We see that dE < d

�
E for

pE < p4E , thus at dE �rm I's price reaction is described by a discontinuity.

The intersections between the accommodation-Z strategy and the deterrence-Z strat-

egy as well as between the accommodation strategy and the deference case each reveal

a tangential solution. Firstly, setting ΠAccZ
I = ΠDetZ

I and pAccZI = pDetZI we obtain

d̂E = 1
t pE +dI −1−2Z or

∂ΠAccZI
∂dE

∣∣∣∣
d̂E

= −t(1
2 +Z). Secondly, matching ΠAcc

I = ΠDef
I

and pAccI = pDefI yields d̃E = 1 − 3dI + 1
t pE or

∂ΠAccI
∂dE

∣∣∣∣
d̃E

= −tdI . For dE > d̂E the

accommodation-Z strategy is prefered to the deterrence-Z strategy, and for dE > d̃E

the accommodation strategy is prefered to the deference strategy. If the incumbent

would show an accommodating behavior for locations below these boundaries he

would be undercut by the entrant. Thus, his pricing behavior changes at d̂E and d̃E ,

and the corresponding price reactions are described by a kink. Additionally, inter-

secting accommodation pro�ts with the deterrence-Z pro�ts yields the two solutions
1
t pE − (1− dI + 4Z)± 2

√
2Z(1 + 2Z) where only the higher term is applicable with

respect to dE ∈ [0; 1
2 ] which we denote as d†E . The intersection of deterrence pro�ts

with accommodation pro�ts yields 5+dI + 1
t pE +4Z±4

√
(pEt + 1 + dI + Z)(1 + Z)

where only the lower solution is feasible w.r.t. dE denoted as d‡E .

We turn to the intersections of the linear pro�t functions. Leveling ΠDet
I = ΠDetZ

I

yields d×E =
2(1+Z)− 1

t
pE−dI

3+4Z with deterrence as the preferred strategy for dE > d×E
and deterrence-Z dominating for dE < d×E . Matching ΠDetZ

I = ΠDef
I we obtain

ď†E = 1
t pE − dI

(
1−2dI−2Z
1−2dI+2Z

)
with the deterrence-Z startegy as the preferred option

for dE < ď†E and deference for the remaining part. Likewise, we de�ne the inter-

section for ΠDet
I = ΠDef

I as ď‡E = 1 − dI − pE(1−dI+Z)
t(1+dI+Z) with deterrence prefered for

dE > ď‡E . Since p
DetZ
I and pDefI are parallel and pDetZI intersects pDetI at dE = 1

2 ∀pE
respective transitions in the pricing behavior of the three strategies are characterized

by a discontinuity.
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Next, we determine the ranges of validity for the derived intersections. As already ar-

gued part (I) refers to the condition dE ≥ 0 or pE ≤ p4E which holds for all dI , t, Z >

0, to rule out the deterrence-Z strategy dE < d̂E must hold which reduces to pE >

t
(

5+12Z+8Z2

4(1+Z) − dI
)

:= p/E . Further, dE = 1
2 yields pE = t

(
7
2 − dI + 2Z ± 2

√
2
√

(1 + Z)
)

with p4E and p/E lying within these boundary values for all dI , Z ≥ 0. Thus, the

accommodation-Z strategy is pro�table for 0 ≤ dE < dE and the deterrence strategy

is prefered for dE < dE < 1
2 . To check for consistency see that p4E > p/E holds for

dI , Z ≥ 0. In addition, dE is monotonically decreasing in pE ∀pE ∈ [0; p4E ] and d̂E is

monotonically increasing in pE with slope 1
t .

Part (II.a) and part (II.b) require dE > d̂E or pE < p/E . The lower price bound for

(II.a) is determined by d̂E > 0 or pE > t(1 − dI + 2Z) := p.E . A consistency check

reveals that p/E > p.E holds for dI , Z ≥ 0. Consider also that d×E > d̂E is full�lled for

pE < p/E and dI , Z ≥ 0. Further, d×E < 1
2 requires pE > 1

2 t(1 − 2dI) := p./E , and we

see that p./E < p.E holds for dI , Z ≥ 0. Thus, p.E and p/E constitute the price bounds

for part (II.a).

Part (III.a) accounts for d̂E < 0 or pE < p.E and covers solely the deterrence-Z strat-

egy and the deterrence strategy with d×E as the point of indi�erence. The existence

of the accommodation strategy (pAccI , x < 1
2) hinges upon the value of dI and Z.

Graphically, for a decreasing dI the tangent in d̃E shifts downwards. This implies

that the value of d̃E increases and charging pAccI becomes pro�table. Analytically,

d†E < d̃E states the condition for pAccI to exist which reduces to the familiar rela-

tion dI <
1
2 + Z +

√
Z(1

2 + Z) := d/I (cf. lemma 1 and proof 1). Thus, for every

dI > d/I the accommodation strategy does not exist. If the accommodation strate-

gy exists the pro�t functions ΠDetZ
I and ΠAcc

I intersect. Now, d×E is monotonically

decreasing in pE , thus, for d
×
E = d†E pro�ts for the deterrence-Z strategy, the deter-

rence strategy and the accommodation strategy are equal. Then d×E < d†E reduces

to pE >
t
(

5+18Z+16Z2−4dI(1+Z)−2
√

2
√
Z(1+2Z)(3+4Z)2

)
4(1+Z) := p5†E . In addition, the deter-

rence strategy in part (III.a) is prefered for every dE > d×E which requires pE > p./E .

To establish the reaction function in (III.a) we �nd p5†E > p./E ∀dI , Z ≥ 0.

To derive the expressions in part (II.b) and (III.b) we have to compare p.E with

p5†E . There is no de�nite order between these price boundaries instead it depends

on the value of Z. Particularly, we �nd that p.E > p5†E holds if Z exceeds a nu-

merical value of ζ ≈ 0.015503 (this refers to the numerical solution of the third

root of a third degree polynomial in Z)8. Consequently, for Z < ζ p5†E > p.E holds.

It follows that under these conditions the accommodation-Z strategy is prefered

for 0 ≤ dE < d̂E since pE > p.E . Further, the accommodation strategy is feasible

since pE < p5†E or d×E > d†E , the ranges for p
Acc
I are determined by respective prof-

it intersections, i.e., d†E < dE < d‡E . A consistency check shows p/E > p5†E for all

8in Mathematica: Root
[
−1 + 62#1 + 160#12 + 96#13&, 3

]
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dI , Z, t > 0, thus p5†E constitutes the price bound for parts (II.b), (III.a) and (III.b).

Finally, for part (III.b) for deterrence to exist see that d‡E = 1
2 yields a price set

with the bounds 1
2 t
(

7− 2dI + 8Z ± 4
√

2
√

1 + 3Z + 2Z2
)
. This set contains p.E for

all dI , Z ≥ 0 which completes the proof.

Proof 4: We use the pro�t functions and intersections from the preceeding proof.

Part (I ) refers to lemma 3 since the price relation p4E > p/E holds for all dI , Z ≥ 0.

For parts (II ) and (III ) we follow the same line of argumentation but examine the

case dI > d/I .

If the accommodation strategy does not exist, ΠDetZ
I and ΠDet

I intersect with ΠDef
I .

Then the condition d×E = ď†E marks the transition. Setting d×E < ď†E yields pE >
(1−2dI)t(1+dI+Z)(1+2Z)

2(1−2dI+2Z)(1+Z) := p5‡E , and as expected ď†E(p5‡E ) = ď‡E(p5‡E ). Additionally,

d×E <
1
2 or pE > p./E must hold. A consistency check reveals that p5‡E > p./E holds true

for Z > 0 and 0 < dI <
1
2 .

Next, we have to compare p.E > p5‡E . Solving for equality yields the two solutions

d
(1,2)
I = 5+14Z+8Z2±

√
1−60Z−284Z2−416Z3−192Z4

2(6+8Z) . This implies that for d
(1)
I < dI < d

(2)
I

we obtain p.E < p5‡E . Since p5‡E has a singularity at dI = 1
2 +Z for Z > 0 we see that

the intersections only occur at the lower branch of the splitted function. Further, the

existence of the intersections d
(1,2)
I is restricted to the positive discriminant of the

root, i.e., to a value Z = ζ ≈ 0.015503 (which corresponds to the same root as in

proof of lemma 3). Thus, for Z > ζ the inequality p.E > p5‡E holds for all dI ∈ [0; 1
2 ].

We still have to check p/E > p5‡E which holds for all dI , Z ≥ 0. Finally, for deterrence

to exist ď‡E < 1
2 yields pE > t (1−2dI)(1+dI+Z)

2(1−dI+Z) , and p.E > t (1−2dI)(1+dI+Z)
2(1−dI+Z) holds for

dI , Z ≥ 0 which completes the proof.

Proof 5a: Firstly, we set Π̌E := (1−dI +Z)p̌E and see that Π̌E linearly increases in

dE with slope
t(1−3dI+2d2

I+3Z−4dIZ+2Z2)
1−2dI+2Z ; the slope is positive for all Z and dI < 1+Z.

Secondly, consider that the minimum for ΠAcc
E (pAccE ) given at dE = dI−3−2Z is neg-

ative for dI , Z ∈ [0, 1
2 ] which implies that respective pro�ts monotonically increase

in dE over the positive range. Next, we match the pro�t functions Π̌E = ΠAcc
E (pAccE ).

This yields a solution function with linear and quadratic terms in dE , and linear,

quadratic terms and terms to the power of three in dI and Z as well as mixed terms

between dE , dI and Z. We �nd the following two solutions in dE :

d
(1,2)
E =

1

1− 2dI + 2Z

(
5 + 14d2

I + 16Z + 12Z2 − dI(17 + 26Z)± 4Γ
)

(3.26)

with:

Γ =
√
αd4

I − βd3
I + γd2

I − δdI + ξ
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α = 8

β = 20(1 + 2Z)

γ = 2
(
9 + 36Z + 32Z2

)
δ =

(
7 + 40Z + 72Z2 + 40Z3

)
ξ = (1 + Z)(1 + 2Z)3

Graphically, this solution set corresponds to the intersections of the linear function

Π̌E and the parabola ΠAcc
E (pAccE ) (see �gure 3.12). Restricting the lower boundary

solution to d
(1)
E < 1

2 shows that this inequality is not ful�lled for any dI <
1
2 if

Z > 0. Additionally, see that d.E < d
(1)
E and d

(1)
E < d

(2)
E for all 0 < Z < 1

2 and

dI <
1
2(1 + 3Z)− 1

2

√
2Z + 5Z2. At dI = 1

2(1 + 3Z)− 1
2

√
2Z + 5Z2 the intersections

d
(1,2)
E collapse (Γ = 0) and the pro�t functions intersect in a tangential point, if dI

further increases ΠAcc
E dominates Π̌E for all dE ≥ 0. This completes the proof.

Figure 3.12: Illustration of the relation between Π̌E and ΠAcc
E (pAcc

E ) against dE

Comment: Parameter values are t = 1, dI = 0.4, and Z = 1
2
.

Proof 5b: Let us denote Π×E := 1
2p
×
E and take over Π̌E from proof 5a. By taking

the respective �rst derivatives it is straightforward to see that Π×E linearly decreases

and Π̌E linearly increases in dE for dI ∈ [0, 1
2 ] and Z ≥ 0. Thus, we �nd the pro�t

intersection at:

dsplitE =
2− 7dI + 8d2

I − 4d3
I + 6Z − 4dIZ + 4Z2 + 4dIZ

2

5− 12dI + 4d2
I + 16Z − 16dIZ + 12Z2

(3.27)

dsplitE shows a complex dependency on dI and Z since it comprises of two polynomials

in the nominator and denominator. Let us �rst consider the impact of dI . For Z = 0

132



Chapter 3. Does Entry Pay O� in a Linear City with a Center?

dsplitE reduces to
2−7dI+8d2

I−4d3
I

5−12dI+4d2
I

where the nominator and the denominator equal zero

at dI = 1
2 and the denominator yields a second null at 5

2 . Thus, d
split
E (Z = 0) is

not de�ned at dI = 1
2 and over the range 0 ≤ dI <

1
2 the function is monotonically

decreasing in dI . For Z > 0 the dependency of dsplitE on dI is solely determined by the

null of the denominator given at 1
2(1+2Z). For increasing Z the singularity increases

and the convexity of dsplitE in dI on the intervall [0, 1
2 ] decreases. As a result dsplitE

is shifted upwards for reasonably large locations dI (see �gure 3.13). As regards the

dependency of dsplitE on Z we consider the singularity at 1
2(−1+2dI), for Z exceeding

this boundary dsplitE is monotonically increasing in Z. The singularity shifts towards

the origin for increasing dI and d
split
E converges to 1

2 for dI → 1
2 . (see �gure 3.9)

Further, we see that dsplitE < 1
2 for Z > 0 and 1

2 −
√

1
2 + Z + Z2 < dI <

1
2 and

that dsplitE > 0 for all dI , Z ∈ [0, 1
2 ]. Clearly, for dsplitE < 0 we get Π̌E > Π×E , and if

dsplitE > 1
2 the relation Π̌E < Π×E obtains. A consistency check shows that d.E < dsplitE

for all Z, dI ∈ [0, 1
2 ] and that 1

2 −
√

1
2 + Z + Z2 < d/I for all Z ≥ 0 which completes

the proof. We conclude �rstly that undercutting the incumbent setting p̌E will never

strictly dominate the strategy of charging p×E , and secondly that only for locations

of dI >
1
2 −

√
1
2 + Z + Z2 the strategy to charge p̌E will yield higher pro�ts than

setting p×E .

Figure 3.13: Illustration of the relation between dsplitE and dI for di�erent values of Z

Comment: An increase in Z leads to an increase in dsplitE as dI grows depicted for Z = 0 (solid

curve), Z = 0.1 (tiny dashed curve), Z = 0.25 (small dashed curve), and Z = 0.5 (medium dashed

curve). Parameter values are t = 1.

Proof of Proposition 1: Based on the previous analyses in proof 5a and 5b we

�rstly de�ne �rm E's pro�t functions and summarize their characteristics. Secondly,

we conduct a comparative pro�t analysis. The relevant pro�t functions for �rm E's
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pro�t optimization problem are:

ΠE(pE , 1− x(pAccZI )) ≡ ΠE = t((3 + dE − dI + 2Z)
√
dE(1 + Z)− 4dE(1 + Z)),

ΠE(pAccE , 1− x(pAccZI )) = ΠAcc
E (pAccE ) = 1

16 t(3 + dE − dI + 2Z)2,

ΠE(pZE , 1− x(pAccI ) + Z) ≡ ΠZ
E = 1

2 t(1 + dE − dI)(1 + 2Z),

ΠE(p×E , 1− x(pDetZI )) = Π×E = 1
2 t(2− 3dE − dI + 2Z − 4dEZ), and

ΠE(p̌E , 1− x(pDefI ) + Z) = Π̌E .

ΠZ
E and Π̌E increase linearly in dE with steeper slopes as Z grows. Further, Π×E

decreases linearly in dE also with increasing slopes in Z. Pro�ts ΠAcc
E (pAccE ) increase

monotonically in dE over the positive range for all dI , Z ∈ [0, 1
2 ]. Finally, ΠE shows a

local maximum at dMax
E = 1

9

(
23 + 3dI + 26Z − 8

√
7 + 3dI + 17Z + 3dIZ + 10Z2

)
and intersects ΠAcc

E (pAccE ) at dE = 29 + dI + 30Z ± 8
√

13 + dI + 27Z + dIZ + 14Z2

where we denote the lower intersection with dIntsE . See that the �rst derivatives of ΠE

and ΠAcc
E (pAccE ) in dE are identical at the pro�t intersections, particularly at dIntsE ,

from which we conclude that ΠE is dominated by ΠAcc
E (pAccE ) over the domain.

As regards the comparison of ΠAcc
E (pAccE ) with ΠZ

E two intersections at dE = 1 +dI +

6Z ± 4
√
Z + 2Z2 obtain. A nonnegative set requires 1 + dI + 6Z − 4

√
Z + 2Z2 < 1

2

which holds for all Z > 0 and dI <
1
2(−1− 12Z) + 4

√
Z + 2Z2. Since dI is bounded

Z is restricted to 0 < 1
2(−1− 12Z) + 4

√
Z + 2Z2 < 1

2 . The upper bound is full�lled

for all 0 ≤ Z < 1
2 , the lower bound reduces to 1

4

(
5− 2

√
6
)
< Z < 1

4

(
5 + 2

√
6
)
.

Thus, for Z < 1
4

(
5− 2

√
6
)
the rank ΠAcc

E (pAccE ) > ΠZ
E holds for all dE , dI ∈ [0, 1

2 ],

and for Z above this boundary it holds if dE < 1 + dI + 6Z − 4
√
Z + 2Z2 := dZE .

Additionally, a further match reveals that dZE > d.E holds for a threshold value of

dI >
1

4+4Z + 4
√
Z + 2Z2 − 1 − 6Z := dcritZI for all Z ≥ 0. Referring to �rm I's

reaction functions see then immediately that d/I > dcritZI for all Z ≥ 0. In sum this

implies that for locations dI < d/I and dE < d.E the rank ΠAcc
E (pAccE ) > ΠZ

E is always

true. For distant locations of the incumbent the strategy of charging pAccE does not

dominate pZE anymore.

Next we consider the relation between ΠAcc
E (pAccE ) and Π×E . We demonstrate that p×E

is only an alternative for �rm E for the location range dE > d.E , i.e. when p
AccZ
I is

not a pro�table strategy option, but rather pDetI and pDetZI respectively are preferred.

This follows from the rank p̂E < p×E < pE which holds true for all dI , Z ∈ [0, 1
2 ] and

as expected for dE < d.E . For dE < d.E �rm E's strategy to capture the center is

given by p̂E which is dominated by pAccE for all 0 ≤ dE , Z ≤ 1
2 . Clearly, �rm E

could charge p×E when dE < d.E , pro�ts then would be ΠAcc
E (p×E) since the incumbent

reacts with pAccZI . Thus, match ΠAcc
E (pAccE ) = ΠAcc

E (p×E) and the tangential solution

dE = 1−dI+2Z
7+8Z obtains which is also evident since pAccE solves the �rst order condi-

tion. Also note that p×E and pAccE intersect at this dE . Alternatively, see that pro�ts

ΠAcc
E (p×E) and Π×E intersect at d.E which is fully in accord with the suggested order of

entry prices. We conclude that the strategy pAccE dominates p×E for all dI , Z ∈ [0, 1
2 ]
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and dE < d.E . Put di�erently, the match ΠAcc
E (pAccE ) = Π×E is not of economic interest

in the range dE < d.E since �rm I would never choose pDetZI when pE ∈ [p̂E ; pE ].

To conclude the proof recall from proof 5a that ΠAcc
E (pAccE ) > Π̌E holds over the

domain dE , dI , Z ∈ [0, 1
2 ].

Proof of Proposition 2: Recall
∂ΠAccE
∂dE

> 0 and from the preceding proof that
∂ΠE
∂dE

= 0 yields dMax
E and that ΠAcc

E (pAccE ) and ΠE intersect at dIntsE . Note that the

intersection lies below the maximum on the given domain, i.e., dIntsE < dMax
E for all

dI , Z ∈ [0, 1
2 ].

Next, we compare the maximum with the boundary for pAccZI to be applicable and

set dMax
E < d.E which holds for all Z ≥ 0 and dI >

4Z+8Z2−1
4+4Z := dcMax

I . This implies

that for every Z < 1
4

(√
3− 1

)
the maximum lies within the range of d.E and for a

higher Z there exists a set of dI < dcMax
I such that dMax

E is out. More speci�cally

by applying dcMax
I < d/I we �nd that9 for Z < Z ′ ≈ 0.379 for every dI > d/I also

dI > dcMax
I . By contrast for Z > Z ′ there exist some dI such that d/I < dI < dcMax

I .

So far we have established conditions such that �rm E maximizes his pro�ts ΠE over

dE , however, from the preceding proof we know that ΠAcc
E (pAccE ) yields higher pro�ts.

It is straightforward to show that this is only true for locations dE < dIntsE . Intu-

itively, the pro�t maximizing accommodation price of �rm E pAccE can not become

arbitrarily large. The limit is set by the price such that the incumbent is indi�erent

between deterring the entrant or playing pAccZI . This price is of course pE . Now for

certain location pairs (dI , dE) the rank pAccE > pE obtains. (cf. equ. (3.20) in sub-

section 3.1) Evaluating this particular expression with respect to dE yields the term

for dIntsE which essentially proofs our proposition. In short ΠE = ΠAcc
E (pAccE ) and

pAccE = pE at dIntsE . Thus, for dE < dIntsE the entrant charges pAccE and for dE > dIntsE

he sets pE . Since d
Ints
E < dMax

E the pro�t maximizing location is of course dMax
E = d∗E .

The transition in pro�ts and prices is described by a kink. Clearly, inserting dMax

into pE and evaluating the expression yields p∗E .

For p∗E and d∗E to be the optimal solution in the range dE < d.E we have to show that

the pricing strategy pE also dominates the two strategies p×E and p̂E that lead the en-

trant to decrease his prices. Thus, we �rstly match ΠE = ΠAcc
E (p×E) and �nd the inter-

sections at d.E and s(1,2) =
14−3dI+22Z−4dIZ+8Z2±4

√
10−3dI+28Z−7dIZ+26Z2−4dIZ2+8Z3

(3+4Z)2 .

See that at d.E the pro�t functions share a tangential intersection since the �rst

derivatives in dE are equal and that for dE ∈ [s(1), s(2)] ΠE > ΠAcc
E (p×E) since pE >

p×E . (see �gure 3.14) Furthermore, we �nd that s(1) ≤ dIntsE holds for all dI ∈ [0, 1
2 ]

and Z ≥ 0 which proves that ΠE > ΠAcc
E (p×E) holds for all s(1) < dE < d.E and thus

rules out the strategy to charge p×E . Secondly, we set ΠE = Π̂E which yields the three

solutions d.E and s(1,2) = 7 + dI + 6Z ± 4
√

3 + dI + 5Z + dIZ + 2Z2 with ΠE > Π̂E

9in Mathematica: Root
[
−9− 4#1 + 52#12 + 56#13&, 3

]
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for s(1) < dE < d.E . Also note that s(2) > 1
2 for all dI , Z ≥ 0. Moreover s(1) < dMax

E

holds for Z ≥ 0 and 2
√
Z + Z2 − 2 < dI < 2(15 + 16Z)− 10

√
8 + 17Z + 9Z2 where

the boundaries comprise the domain dI ∈ [0; 1
2 ] for all 0 ≤ Z ≤ 1

2 . A further drill

down shows that s(1) < dIntsE for all Z ≥ 0 and dcMax
I < dI , thus, p̂E is not a prof-

itable pricing strategy compared to pE if dE < d.E and dcMax
I < dI .

To conduct a �nal consistency check we use part (I) of the location reaction function

in lemma 3 and 4. See that the rank p∗E < p4E holds for all dI , Z ∈ [0; 1
2 ] and that

p∗E > p/E remains true for the location set dI > dcMax
I for all Z ≥ 0. Thus, if �rm E

chooses his pro�t maximizing set (p∗E , d
∗
E) �rm I reacts with pAccZI or pDetI according

to his location reaction function. We use the boundary dE and insert p∗E . Comparing

dE(p∗E) with d∗E reveals that the local maximum d∗E does not exceed the boundary

for all dI , Z ∈ [0; 1
2 ]. By contrast, we �nd that the relation d∗E > dE(p∗E) holds for

Z ≥ 0 and dI > 31 + 30Z which shows that under the entry set (p∗E , d
∗
E) deterrence

does not occur. This completes the proof.

Figure 3.14: Illustration of the relation between the pro�t functions ΠE , ΠAcc
E (pAcc

E ), Π×
E ,

and ΠAcc
E (p×E)

Comment: ΠE , ΠAcc
E (pAccE ), and Π×E are depicted as solid functions, ΠAcc

E (p×E) is depicted as the

dotted curve. The vertical dashed lines indicate the intersections of ΠE with ΠAcc
E (p×E). For locations

dE > s(1) ≈ 0.139 charging pE yields higher pro�ts than p×E , at dE = d.E ≈ 0.179 respective pro�t

functions share a tangential intersection. Parameter values are dI = 0.4, Z = 0.4 and t = 1.

Proof of Proposition 3: For dE > d.E charging pAccZI is not feasible, thus pE and

pAccE are not part of �rm E's strategy set. Therefore we are left to evaluate the relation

between ΠZ
E , Π×E and Π̌E and derive solutions sets for market entry on the domain

dE > d.E . In addition, we compare these with the pro�t-maximizing set (p∗E , d
∗
E).

Firstly, matching the linear functions Π×E and ΠZ
E yields Π×E > ΠZ

E for dE <
1+2dIZ
2(2+3Z) :=

dZ×E with 0 ≤ dZ×E < 1
2 for all dI , Z ∈ [0, 1

2 ]. Secondly, recall from proof 5b that
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Π×E > Π̌E holds for dE < dsplitE and dI , Z ∈ [0, 1
2 ], and thirdly see that ΠZ

E > Π̌E

holds for all Z > 0, dI <
1
2 .

Referring to lemma 1 and subsection 3.2.2 recall that for d/I < dI < d.I and dE > d.E
charging p×E is the preferred strategy for locations dE < dsplitE and p̌E for dE > dsplitE .

The transition in prices is described by a discontinuity since for all Z ≥ 0 and dI <
1
2

the pro�t intersection dsplitE lies below the location dE where p̌E and p×E intersect. For

close locations dI > d.I �rm E's undercutting price is p̌E < 0, thus the pricing strat-

egy p×E dominates. Next we have to consider that
∂Π×E
∂dE

< 0 and ∂Π̌E
∂dE

> 0. (cf. proof

of proposition 1) This implies that �rm E has no incentive to increase his location

dE when dE < dsplitE or when p×E is the only pricing option respectively. In particular,

the best location �rm E can choose under p×E is dE = d.E since this is where pro�ts

Π×E and ΠE as well as prices p×E and pE intersect. Accounting for the results from

proof of proposition 2 we can conclude that provided dI > dcMax
I the set (p∗E , d

∗
E)

yields higher pro�ts than the best price-location set under the pricing strategy p×E .

Further, we �nd that the transition from pE to p×E and ΠE to Π×E respectively is

described by a kink at the location d.E .

Provided that p̌E > 0, the behavior of Π̌E suggests that �rm E increases his location

when dE > dsplitE . Recall from proof 5b that d.E < dsplitE for all Z, dI ∈ [0, 1
2 ]. Thus,

we compare the pro�ts for the pro�t-maximizing set (p∗E , d
∗
E) with pro�ts under the

pricing strategy p̌E at dE = 1
2 − ε, ε→ 0. We omit the fact that �rm I deters entry

at a location below dE = 1
2 , however, since Π̌E and p̌E monotonically increase in dE

we can conclude that the comparison indicates an upper boundary for the pro�tabil-

ity of the undercutting strategy. Clearly, for locations dE < 1
2 and particularly for

locations where the undercutting strategy p̌E is viable undercutting pro�ts do not

exceed ΠE(dMax
E ) under the following conditions.

Evaluating ΠE(dMax
E ) = Π̌E(dE = 1

2) yields a complex numerical solution set in dI

and Z. For the domain dI , Z ∈ [0; 1
2 ] we �nd that the pro�ts for the set (p∗E , d

∗
E)

strictly increase pro�ts Π̌E(dE = 1
2) if Z > κ ≈ 0.0305.10 For Z < κ playing p̌E

implies ΠE(dMax
E ) < Π̌E(dE = 1

2) if dI lies in a de�ned interval [ď1
I ; ď

2
I ] where respec-

tive boundaries are again numerical functions in Z. This completes the argument

and demonstrates that the level of Z determines whether (p∗E , d
∗
E) constitutes a local

or a global maximum in comparison with the undercutting strategy p̌E .

Proof of Proposition 4: We examine the location ranges dE > dZ×E and dE > dZE ,

and show that the reaction of �rm I does not allow for the entry pricing strategy pZE

10In Mathematica evaluating ΠE(dMax
E ) > Π̌E(dE = 1

2
) leads to the following expression for Z

Root[−2049517− 157017785#1 + 5288937559#12 + 59510555641#13 + 262944127002#14

+648457185140#15 + 997636619952#16 + 997008491936#17 + 647640924928#18

+263301336320#19 + 60596977664#110 + 5985009664#111&, 7]
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to be pro�table. Initially, recall that
∂ΠZE
∂dE

> 0.

We begin by setting dZ×E > d.E which reduces to dI >
1

4+4Z for Z > 0. Also see that
1

4+4Z < d/I holds true for all Z ≥ 0. Thus, there is a nonempty set of locations dI

such that strategy p×E is preferred for d.E < dE < dZ×E and strategy pZE for dE > dZ×E .

It follows that when opting for the pricing strategy pZE then the lowest possible price

is given by pZE(dZ×E ). It is straightforward to compare this price with the thresholds

of the location reaction function in lemma 3 to assess �rm I's reaction. Matching

pZE(dZ×E ) < p/E reveals that part (I) is not applicable since the rank holds for all

dI , Z ∈ [0; 1
2 ]. Evaluating pZE(dZ×E ) < p.E reveals an ambigous result depending on

the interaction of the parameters dI and Z. We turn to the next price threshold and

�nd that the rank pZE(dZ×E ) > p5†E remains true for all dI , Z > 0. This implies that

�rm I will never apply part (III.b) of his location reaction function and that �rm

I never reacts with charging pAccI but for instance with pDetZI to the entry strategy

pZE . Consequently, if �rm E drops his price from p×E to pZE at dZ×E his pro�ts will not

be ΠZ
E(pZE) but e.g. Π×E(pZE) since

Π×E
∂dE

< 0 and thus clearly not pro�table. This is

due to the fact that the incumbent will not adapt his pricing strategy and accommo-

date entry, he rather applies his defensive reaction strategies. In particular, �rm I

reacts with pDetZI to the price drop from p×E to pZE . To prove this argument see that

the relation d×E(pZE(dZ×E )) > dZ×E holds for all dI , Z ∈ [0; 1
2 ] and furthermore that

d̂E(pZE(dZ×E )) < dZ×E holds on the same domain. It su�ces to compare the critical

locations d×E and d̂E with dZ×E since pZE(dZ×E ) < p/E and part (I) is ruled out.11

In the second step of the proof we focus on the threshold dZE or a comparison of

the strategies pAccE and pZE . Analogously to the preceding above, we determine the

price level at the discontinuity pZE(dZE) and assign it to a corresponding price range

of the location reaction function in lemma 3. Noteably, pZE(dZE) > p5†E holds again

for all dI , Z > 0 which rules out an accommodating reaction of �rm I under a

loss of Z. The further assignments of pZE(dZE) to the parts (I), (II.a), (II.b) and

(III.a) hinge upon interactions of dI and Z. Especially, p/E > pZE(dZE) reduces to

dI < 4
√
Z + 2Z2 − 3+20Z+16Z2

4(1+Z) . It remains to compare the locations d̂E , d
×
E , and dE

for the entry price pZE(dZE) with dZE . Firstly, a consistent result is obtained due to

the rank d̂E(pZE(dZE)) < dZE which holds for all dI , Z > 0 since �rm I would never

react with pAccZI for dE > dZE . Secondly, the rank d×E(pZE(dZE)) < dZE holds for all

dI > 4
√
Z + 2Z2− 3+26Z+24Z2

4(1+Z) and thus depends on the value of Z. Particularly, for

any dI ∈ [0; 1
2 ] �rm I reacts with pDetI if Z < Z ′′′ ≈ 0.077 and with pDetZI if Z > Z ′′′.12

Thirdly, dE(pZE(dZE)) < dZE remains true for any dI < 4
√
Z + 2Z2 − 1

4(3 + 23Z). We

compare this limit with the boundary derived from p/E > pZE(dZE) and �nd that

11Note that the demonstrated interdependence between the contenders holds for all 0 < dI <
1
2

and is not restricted to the location range dE > d.E (or dI >
1

4+4Z
) since the reaction of �rm I

is determined by the price level of the entry price pE .
12In Mathematica reducing 4

√
Z + 2Z2 − 3+26Z+24Z2

4(1+Z)
< 0 yields 0 ≤ Z <

Root
[
9− 100#1− 204#12 − 32#13 + 64#14&, 3

]
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4
√
Z + 2Z2− 1

4(3 + 23Z) < 4
√
Z + 2Z2− 3+20Z+16Z2

4(1+Z) is true for Z > 0. This implies

that for any pZE(dZE) > p/E entry is deterred or dE(pZE(dZE)) < dZE .

Remark: The aim is to identify to which price range of the location reaction function

in lemma 4 the undercutting price p̌E is assigned. At the location dsplitE the pricing

behavior of the entrant �rm shifts from p×E to p̌E and therefore for dE > dsplitE the

undercutting strategy dominates. (cf. �gure 3.15) Thus, we use p̌E at dsplitE for the

allignment and note that the strategic behavior of �rm E does not change under an

increase in dE since ∂Π̌E
∂dE

> 0.

The rank p/E > p̌E(dsplitE ) holds for all Z > 0 and dI ∈ [0; 1
2 ]. Secondly, we set

p̌E(dsplitE ) > p.E . This rank holds true if Z and dI remain in certain numerically de-

�ned intervals, i.e. for Z < Z ′′ ≈ 0.0128 and the boundaries for dI are a decreasing

numerical function in Z with the maximum interval at Z = 0 (≈ [0.363; 1
2 ]) and the

minimum at Z = Z ′′.13 Consequently, for Z < Z ′′ and dI outside the de�ned interval

as well as Z > Z ′′ and any 0 ≤ dI ≤ 1
2 the relation p.E > p̌E(dsplitE ) obtains. Thirdly,

we set p5‡E > p̌E(dsplitE ) and �nd that this rank holds for all dI , Z ∈ [0; 1
2 ]. Considering

the threshold value ζ from lemma 4 it follows that for any Z < Z ′′ and given that

dI lies in the prede�ned numerical interval part (III.b) from the location reaction

function is applicable. Now, due to the symmetry of ď†E and p̌E � the two expressions

describe the same intersection between �rm I's pro�ts for the deterrence-Z strategy

and the deferrence strategy � we �nd the identity ď†E(p̌E(dsplitE )) = dsplitE . This implies

that the incumbent initially reacts with pDefI to the undercutting of �rm E at dsplitE .

Recall that p̌E(dsplitE ) marks the lowest feasible price for the undercutting strategy

and that p̌E increases in dE . Thus, the entrant increases dE when choosing the pric-

ing strategy p̌E since corresponding pro�ts move up. In turn, it follows that pE will

exceed p5‡E at a certain location dE . Clearly, �rm I's reaction then switches from

part (III.b) to (II.b) and from pDefI to pDetI since pE > p5‡E is equivalent to d×E < ď†E .

(cf. proof 4)

13In Mathematica:

0 < Z < Root
[
−57 + 4114#1 + 26856#12 + 63792#13 + 66592#14 + 25728#15&, 3

]
Root

[
−3− 20Z − 40Z2 − 24Z3 +

(
15 + 48Z + 36Z2)#1 + (−20− 32Z)#12 + 4#13&, 1

]
< dI <

Root
[
−3− 20Z − 40Z2 − 24Z3 +

(
15 + 48Z + 36Z2)#1 + (−20− 32Z)#12 + 4#13&, 2

]
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Figure 3.15: Illustration of �rm E's pro�t function for di�erent pricing strategies against
his location dE

Comment: The solid lines depict the viable price and pro�t ranges. Pro�ts for the undercutting

strategy amount to 0.464 at dE = 1
2
and exceed pro�ts for the set (p∗E , d

∗
E) which are 0.457. However,

�rm E is only able to play the undercutting strategy in the location interval [ď†E , ď
†
E ] ≈ [0.292; 0321]

(second and third vertical tiny dashed lines). The location d×E ≈ 0.320 is the threshold for deterrence

if pE > p5‡E (medium dashed line) and d.E is approximately 0.248 (�rst vertical tiny dashed line).

Parameter values are dI = 0.44, Z = 0.01 and t = 1.
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4 Price Dispersion, Search Costs and

Spatial Competition*

4.1 Introduction

In contrast to predictions of simple textbook models, causal observations suggest

that homogeneous products are sold at di�erent prices by rival �rms even in markets

with intense competition. In fact, empirical studies reveal that prices, di�erent �rms

charge for the same product, di�er signi�cantly and persistently and deviations from

the 'law of one price' are the norm, rather than the exception. Since the existence of

price di�erences for identical products is an indication of the e�ciency of markets,

programs and policies to improve access to information may result in lower prices

for consumers and enhance consumer welfare.1 The e�ects of competition-enhancing

policies, however, might not be as straightforward as those implied by standard

models. Rather, increased competition can potentially a�ect the price distribution

asymmetrically and may have di�erent impacts on the welfare of di�erent types of

consumers.2 Thus, a thorough examination of the price distribution may shed light

on structural relationships of a market economy and in turn provide a useful basis

for advising policy makers.

Intuition suggests there are two straightforward explanations for the behavior of

prices and the existence of price di�erences. Firstly, price levels and price disper-

sion are related to product and seller heterogeneity. Even though products might

appear homogenous in terms of physical characteristics, as in the case of gasoline,

they are being sold at di�erent stores. In turn, retail outlets di�er in convenience

*This paper was presented at the XXVI Jornadas de Economia Industrial on 16th of September
2011 held at the Universitat de Valencia in Valencia, and at research seminars at the School
of Geographical Sciences of the Arizona State University (ASU) on 14th of April 2012 and
at the Rijksuniversiteit Groningen in September 2011 in the cause of scholar visits supported
and organized by the Network for European and United States Urban and Regional Studies
(NEURUS).

1The Austrian economics ministry for instance recently passed an act on the conduct rules of
gasoline station operators e�ectively regulating gasoline pricing. It lays down that individual
gasoline stations are only permitted to raise gasoline prices once a day. More evidence on the
issue of government intervention and price discrimination in retail gasoline markets is available
in Borenstein (1991) and Borenstein & Bushnell (2005).

2Cp. Lach & Moraga-Gonzalez (2009) and Morgan et al. (2006).
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and amenities. Thus consumers may be willing to pay a premium for products that

they perceive to be of higher quality, e.g. peculiar brands are perceived to be in

the premium segment or shops having a reputation for extraordinary services to be

rendered to customers. Additionally, products may also di�er in a spatial context.

In particular, buying decisions and customer satisfaction may be related to sellers'

locations allowing, for instance, consumers to access a retail outlet conveniently or in

a very short amount of time since outlets may be distributed across di�erent market

areas.3

Secondly, prices and price di�erences are determined by the factor information and

explained by the economics of information.4 Accordingly, variance in prices are as-

sociated with costs incurred by consumers and �rms while processing market infor-

mation. Sellers have incentives to charge di�erent prices since consumers may di�er,

for instance, in their willingness and capabilities to collect information about sellers'

location, prices and pricing strategies. In turn, demand is fragmented into consumer

groups that di�er according to their knowledge of the price distribution. As a result,

markets are characterized by arbitrage opportunitities and market equilibrium out-

comes are cleary impacted by the existence of consumer groups that di�er in their

preferences to balance the costs and bene�ts of price search activities.

These two distinct approaches in mind, this paper examines the diesel price distri-

bution in the Austrian retail market with respect to the in�uence competition and

di�ering levels of search costs have on the mean price and the price variance. The

Austrian gasoline market is particularly useful in testing hypothesis on the com-

parative static behavior of the price distribution. Firstly, it is characterized by a

high level of concentration where the four major chains controll almost 60% of the

market.5 Secondly, gasoline can be considered an almost perfectly homogenous good

with respect to its physical and chemical properties. From the perspective of the con-

sumer, the key issue of di�erentiation in this market is the location of the individual

station. Thus, competition intensity is directly related to the geographical proximity

of sellers. We use two measures that account for sellers' distance relations in local

markets. Additionally, from �rms' perspective a critical issue in optimizing pricing

strategies relates to the di�erences in the knowledge of stations' pricing behavior

among consumers. The distribution of information re�ects consumers' likelihood to

police excessive market pricing. Intuitively, a station sets low prices in areas where

consumers are susceptible to spotting gasoline prices and thus likely to switch be-

3Products that di�er via their quality characteristics are considered to be vertically di�erenti-
ated since consumers agree over the preference ordering. In contrast, distinct seller locations
refer to the notion of horizontal product di�erentiation implying that optimal consumer choices
strongly depend on consumers' preferences that generally di�er with respect to the observed
characteristic, cp. Tirole (2003), p. 96�.

4In the words of George Stigler: �it would be metaphysical, and fruitless, to assert that all dispersion
is due to heterogeneity� (Stigler (1961), p. 214).

5Cf. Report of the Austrian Ministry of Economics, BMWA (2005).
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tween sellers. On the other hand, a pro�table strategy for a station in an area where

consumers' ignorance of price levels and price changes is prevalent is to charge high

prices.

In conclusion, the following research questions will be addressed: How does spatial

competition between di�erent gasoline stations a�ect the price distribution of diesel?

How does the fraction of informed consumers and of uninformed consumers impact

the price distribution and what are possible implications for the relationship for the

level of search costs and the price distribution?

By using data on stations` characteristics and local market characteristics, our strat-

egy is to initially control for product heterogeneity and estimate a model that ex-

amines the relationship between competition, search cost variables and proxies for

sellers' location as well as station speci�c characteristics with price levels. In a sec-

ond step we will test hypotheses on the relation between the fraction of informed

consumers, search costs and competition with price dispersion measured by the price

variance. Besides the usual OLS techniques we will also test for spatial autocorre-

lation and to avoid misspeci�cation apply a spatial error model (SEM) to estimate

market prices. In addition, further robustness checks concerning the use of alterna-

tive spatial weights matrices and search cost proxies will be carried out.

The remainder of this paper is as follows: subsection 4.2 presents a selected overview

of the theoretical literature on the existence and behavior of the equilibrium price

distribution with respect to the spatial distribution of �rms and the existence of

search costs among consumers. Special attention is drawn to the relationship be-

tween the fraction of informed consumers, the level of search costs and the number

of sellers with the average price and price dispersion. Subsection 4.3 gives details on

data and methodology and outlines the strategy for the empirical analysis. Subsec-

tion 4.4 presents the results and eventually subsection 4.5 closes with a concluding

discussion on the �ndings.

4.2 Survey of Price Models

4.2.1 Spatial Competition Models

Standard models of spatial competition assume a uniform distribution of consumers

in a one dimensional market setting for a homogenous product. (e.g. Hotelling (1929),

Salop (1979)) Each �rm serves a customer base that is within a certain local mar-

ket range. Implications of these sort of models are that competition is a localized

phenomenon since sellers compete in prices for potential customers with comparable

transportation costs and settled within a common local market of interest. In par-

ticular, by reducing his price a seller i could attract consumers that are located farer
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away and who would otherwise be indi�erent between purchasing at �rm i's outlet

or at the sites of his close competitors. In equilibrium prices obtain as the sum of

sellers' (equal) marginal cost and a markup that depends on the degree of spatial

di�erentiation. Put di�erently, due to his location a seller holds a certain degree of

monopoly power over its local market customer base which is re�ected in the nega-

tive dependency of prices with geographical distance.

Now, an increase in competition intensity in terms of the number of sellers (due to

reductions in �xed costs or increases in the number of consumers) is associated with

a decrease in the ability to employ market power upon the original customer base.

If a new �rm enters the market it locates in the previously segmented market space

e�ectively shrinking the local monopolies of neighbouring competitors by establish-

ing its own local niche market. Accordingly, increased competition aggravates �rms'

possibilities to (spatially) di�erentiate themselves, leads to a denser net of outlets

and thus erodes the basis to extract a surplus from nearby consumers since they

reconsider their purchase decision due to this increase in seller variety. What follows

is that under entry competition the price elasticity of demand increases, the price

markup decreases and thus the market price declines.6

Further, unit transportation cost t can be interpreted as a measure of consumers'

search cost incurred to compare prices of neighbouring sellers and get additional

price quotes. Consequently, an increase in t decreases consumers' incentives to visit

stores competing in prices. In turn, sellers are able to appropriate more surplus from

their captives and as a result prices are expected to rise as the unit transportation

cost increases.

While spatial competition models are straightforward in explaining the relation be-

tween market prices, transportation costs and competition intensity, the issue of

market information and price dispersion is not explicitly addressed.7 Rather, price

dispersion is expected to arise due to asymmetries in the spatial distribution of �rms.

Comparable to the behavior of price levels, the competitive pressure of market entry

6Salop (1979) shows that in equilibrium �rms realize zero pro�ts with prices above marginal
cost and a markup that inversely depends on the number of competitors by assuming maximal
product di�erentiation. In turn, the number of �rms is endogenously determined by the amount
of �xed costs and market size (total number of consumers), cf. p. 147�.
Additionally, Perlo� & Salop (1985) abstract from spatial competition models and examine the
properties of a more general consumer model of product di�erentiation. They show that for a
symmetric (and di�erentiable) probability distribution of brand preferences equilibrium prices
increase with increases in the intensity of consumers' preferences. Further, they provide two
conditions under which the competitiveness of markets is established. Accordingly, increased
entry competition (number of �rms converging to in�nity) leads to a decrease in the equilibrium
price only if either consumers' brand preferences are bounded or if price elasticity of demand is
su�ciently increasing (cp. p.111 and the example on p. 113).

7Noteable exceptions are given in the work of Sheppard et al. (1992) and Haining et al. (1996).
They scrutinize the existence and properties of spatial price equilibria under special distributions
of consumer choice sets. However, they do not focus on the comparative static behavior of the
resulting equilibrium price distribution under entry competition or a variation in consumers'
search costs and the fraction of informed consumers respectively.
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then leads price di�erences across the market to decrease. Thus, price dispersion is

expected to decrease under an increase in seller density.8

4.2.2 Consumer Search Models

4.2.2.1 Price Distribution, Search Costs and the Fraction of Informed

Consumers

For price dispersion to be an equilibrium outcome all �rms and consumers in a

market must not have incentives to reconsider buying decisions and change pricing

strategies.9 In other words, charging a range of prices would be a rational response

of sellers to consumers' optimal search behavior. Thus, generally the existence and

behavior of an equilibrium price distribution is a function of consumers' search costs.

Two extreme cases highlight the intuition behind this argument. If for instance all

consumers in a market got a price quote from every �rm at no cost, the �rm with the

cheapest price would serve the whole market. Not surprisingly, �erce price competi-

tion is the result of this speci�c distribution of information. What follows is that for

identical sellers with identical cost functions, price dispersion would not occur since

sellers' best response is the Bertrand outcome with every �rm charging the perfect

competitive price at marginal cost (Bertrand (1883)).

In contrast, the existence of imperfect information among consumers does not natu-

rally imply that sellers set distinct prices in equilibrium. Rather, Diamond (1971) was

the �rst to emphasize the paradox that consumers behave rationally under sequential

search with strictly positive and identical search costs when they do not search at

all. Thus, a natural outcome in a setting where consumers lack price information

is not price dispersion but monopoly pricing by sellers. The argument is as follows.

Consumers purchase a unit of a good only at prices equal or below their reservation

price r. In contrast they would search if prices exceeded r and incur a cost s for

every new price quote. The reservation level varies with the unit search cost and

price distribution, thus, for a given distribution F (p) and identical unit search cost

reserveration prices are identical among consumers. Clearly, sellers' rational response

in this case is to set the identical optimal price r. In turn, if there exist no price dif-

8Based on the �ndings of Perlo� & Salop (1985), Barron et al. (2004) for instance argue that
in asymmetric demand cases an increase in the number of sellers tends to increase the price
elasticity across di�erent seller types, and thus reduces respective markups and prices. Under a
given common marginal cost this implies that the increase in the number of sellers leads to a
reduction in the variance of prices or reduced price dispersion (p. 1045).

9In a survey of then existing equilibrium models, Rothschild proposed the following conditions: �A
satisfactory model of adjustment to equilibrium will have at least three parts: a discussion of the
rules which market participants follow when the market is out of equilibrium; a description of how
a market system in which individuals follow these rules operates; and, of course, a convergence
theorem.� (Rothschild (1973), p. 1285f.)
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ferences among sellers, it does not pay o� for any customer to search. Consequently,

sellers optimal response is to charge the monopoly price. The conclusion from the

Diamond model is that, the existence of an equilibrium price distribution requires

some form of heterogeneity among buyers and/or sellers and that the resulting price

distribution re�ects this underlying buyer and seller characteristics.10

In his well-known 'model of sales' Varian (1980), for instance, shows that under a spe-

cial dichotomous distribution of search costs among consumers prices are dispersed

in equilibrium. On the supply side he assumes that �rms sell a homogenous product

with an identical production cost structure unable to discriminate in pricing. On

the demand side consumers are devided into two groups. Shoppers who are perfect-

ly informed about sellers' locations and prices and therefore purchase the good at

the cheapest �rm without incurring any cost of search. By contrast, the regular or

uninformed buyers initially observe only the price from the seller that they chose at

random. If the actually charged price is below their reservation level, they purchase.

Any further seller visit and additional price quote causes them nonnegative visiting

or search costs. Now, the appealing feature of Varian's model is that �rms' optimal

pricing strategy has to reconcile con�icting goals to realize pro�ts in the two dis-

tinct consumer segments. Intuitively, a seller could focus on the informed consumers

and make pro�ts by undercutting all his rivals; or he could aim at appropriating

surplus from the uninformed consumers employing a high price strategy. Clearly,

these strategies can not be applied simultaneously, rather �rms' optimize their price

setting in a dynamic and probabilistic context. The upshot is that in equilibrium

�rms price in mixed strategies randomizing their prices between a lower bound and

an upper bound determined by their average costs and the consumers' reservation

price respectively. As a result, extreme prices are more frequently charged whereas

the frequency of intermediate prices diminishes. Thus, in equilibrium there is price

dispersion.

In an e�ort to close the gap between the equilibrium outcomes of marginal cost

pricing and monopoly pricing, Stahl (1989) developed a model of equilibrium price

10Since early versions of models based on sequential consumer search were not capable of showing
that price dispersion arises in equilibrium a special type of search models, so called clearinghouse
models were developed. These incorporate a third party �an information clearinghouse �that
sells a list of prices charged by di�erent �rms in a homogenous product market to a subset of
consumers who subsequently purchase at the seller with the lowest listed price. Additionally,
�rms are also charged fees by the clearinghouse to be listed. Baye & Morgan (2001) show
that when consumers` and �rms` decision to access the clearinghouse, as well as respective
subscription and advertisement fees are endogenized, the owner of the clearinghouse maximizes
his pro�ts in a dispersed price equilibrium in which all consumers have access to the market price
list. Furthermore, the simplest clearinghouse assumption states that consumers may potentially
become informed of all current prices on a market at once. Thus, a clearinghouse serves the
role of interconnecting dispersed local markets and establishing competition between locally
separated sellers. Consequently, predictions of clearinghouse models have been tested on online
markets and studies showed that price dispersion on the internet is pervasive and signi�cant (cf.
Baye et al. (2004), and Baylis & Perlo� (2002)).
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dispersion for two distinct consumer groups: shoppers with zero search costs and

uninformed regular buyers. Importantly, he extends Varian's work by assuming that

the regular consumers do not remain uninformed. Rather, their search behavior is

characterized by optimal sequential search with nonnegative search costs for ev-

ery additional price quote.11 The asymptotic behavior of the resulting equilibrium

price distribution reveals interesting �ndings.12 Firstly, as the fraction of informed

consumers goes to zero, the lower bound converges to the upper bound, eventually

converging to the monopoly price. Secondly, as the fraction of informed consumers

approaches one, the price mark-up vanishes leading to perfectly competitive pricing.

Thirdly, as search costs converge to zero, the reservation price continously declines,

the upper bound converges to the lower bound with the end result of marginal cost

pricing. Further, comparative static analyses support previous �ndings and show

that, ceteris paribus, an increase in the fraction of informed consumers or a decrease

in search costs causes the reservation price and the lower bound to decline respec-

tively.

In conclusion, price dispersion in equilibrium obtains as a function of the fraction

of informed consumers and the level of search costs. In the limit of only perfectly

informed consumers in the market or search costs converging to zero, the price dis-

tribution degenerates to the competitive price revealing the Bertrand outcome. By

contrast, as the fraction of the informed goes to zero, �rms charge the monopoly

price and the Diamond result obtains. These �ndings imply a negative correlation

between the expected price and the fraction of informed consumers and a positive

correlation between the expected price and the level of search costs.13 Intuitively,

under constant search intensity of the regular buyers, a higher proportion of shop-

pers raises �rms' incentives to charge lower prices.14 Likewise, a decrease in search

costs leads to more intense search of the uninformed consumers and creates more

competitive pressure on market prices.15

A general treatment of the comparative static behavior of prices and price dispersion

with respect to the proportion of perfectly informed consumers is found in a recent

study by Waldeck (2008). He investigates the properties of the �rst two moments

of the equilibrium price distribution (expected price and variance) for two di�erent

11Important features of his model are that, (1) the �rst price quote for the uninformed is free,
and (2) consumers' reservation price ρ is endogenized. Thus, the equilibrium price distribution
F (p, µ,N, ρ(µ,N, c)) is dependent on the fraction of informed consumers µ, the level of search
costs c and the number of �rms N .

12Cf. proposition 2 and 3, p. 705.
13This is a special outcome for the case of full consumer participation. If search is truly costly,

i.e. the uninformed consumers incur a search cost for every price quote, some may drop out of
the market. Under this partial consumer participation equilibrium there is no net e�ect of the
fraction of informed on expected price and expected price increases as the level of search costs
decreases. For details see Janssen et al. (2005).

14The reservation price ρ is a decreasing function in the fraction of informed consumers µ. Cf. Stahl
(1989), p. 704, equation 8 and 9.

15ρ is also an increasing function in the level of search costs c. Cf. ibid.
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search modes that refer to the previous work of Varian (1980) and Stahl (1989): �xed

sample search and sequential search.16 His results are in line with previous �ndings.

For both search speci�cations average prices paid by the uninformed and informed

consumers decrease as the fraction of informed consumers rises. Further, in both

cases price dispersion is an inverse U-shaped function of the fraction of informed

consumers and for the sequential search mode an increase in search costs implies

higher price dispersion.

4.2.2.2 Price Distribution and the Number of Sellers

What do search models tell us about the comparative static behavior of the price

distribution under entry competition? In contrast to predictions of spatial competi-

tion models, �ndings by Varian (1980) and Stahl (1989) suggest that an increase in

the number of sellers leads to an increase in the expected price. The intuition be-

hind this odd result is given by the tension in �rms' pricing strategies accruing from

inherent di�erences in consumers' search activities. In particular, a larger number

of competitors implies that the probability of gaining a pro�t from the uninformed

consumer segment falls less rapidly than the probability of realizing pro�ts by focus-

ing on the informed consumers. Firms face increased competition intensity in two

ways: �rstly, an increase in the number of �rms enlarges the choice set for the well

informed consumers, and secondly, increased competition implies a decrease in the

number of captive consumers per �rm, thus, reducing the average purchase per un-

informed consumer. In sum expected pro�ts due to the chance of being the lowest

priced seller and catching the informed segment are outbalanced by expected pro�ts

obtained from imposing high prices on a reduced uninformed consumer segment. In

sum a high-pricing strategy proves to be more attractive under entry competition

and average prices which are essentially the prices uninformed consumers pay rise.

Morgan et al. (2006) elaborate on the �ndings of the comparative competition analy-

sis in the Varian model. Interestingly, they provide theoretical and empirical evidence

that entry competition implies an ambigous e�ect on the market price distribution

and highlight that information imposes bene�cial externalities on their holders. In

particular, they show in a variant17 of the Varian model that not only the average

price rises with the number of �rms but that simultaneously the expected value of

the minimum price (of the equilibrium distribution) declines. Referring to the com-

16In the step of endogenizing consumers' reservation price a connection is established between
�xed sample search and sequential search. Under certain parameter values (small fraction of
informed and large number of �rms) sequential search 'converges' to the �xed sample type. The
reservation price then exceeds a certain threshold and is further assumed to be exogenously
given. Cf. Waldeck (2008), lemma 15 and table 3, p. 353.

17They assume the ratio of uninformed and informed consumers as well as the number of competing
�rms to be exogenously �xed whereas in the original Varian model the number of �rms is
determined by a zero pro�t condition (cf. Varian (1980), equation (5) on p. 656).

148



Chapter 4. Price Dispersion, Search Costs and Spatial Competition

petition e�ect in the lower price segment, �rms react by reducing competitive prices.

The upshot is that under entry competition informed consumers pay on average low-

er prices and, as argued before, uninformed consumers are charged on average higher

prices. As a result, price dispersion increases in the number of sellers.18

Similar �ndings on the distinct e�ects of competition on the equilibrium price distri-

bution through the distribution of price information among consumers are obtained

in the work of Lach & Moraga-Gonzalez (2009). Assume that a fraction µs of con-

sumers is informed about s price quotes in the market. In total there are N �rms,

thus the ratio of the perfectly informed consumers corresponds to µN and the ratio

of the fully uninformed consumers to µ1.
19 Generally, every fraction of consumers

µs(N) depends on the actual number of sellers in the market since a typical con-

sumer in an informational segment is exposed to a particular number of price quotes

while, for instance, in the case of gasoline pricing driving to work.20 Further, the

total number of consumers is denoted as L and marginal costs c for every �rm are

identical. Now, in the fashion of Varian, every �rm sets a pro�t maximizing price p

in a mixed pricing strategy according to the cumulative distribution F (p).21 Thus,

given the random pricing strategies of all other competitors, expected pro�ts for an

arbitrary �rm i from all types of consumers are given by:

Πi(p, F ) = L(p− c)

[
N∑
s=1

µs
s

N
(1− F (p))s−1

]
(4.1)

Intuitively, a �rm has the chance to make a pro�t in every information segment

18In contrast to these �ndings, the evidence on the comparative behavior of price dispersion in the
Varian model is not clear-cut. Baye et al. (2004), for instance, examine the theoretical relation-
ship between the number of �rms and the level of price dispersion, measured by the di�erence
between the lowest and the second lowest price. According to their simulations price dispersion
in the Varian model is a nonmonotonic function in the number of sellers. Nonmonotonicity arises
due to strategic price e�ects that dominate when the number of sellers is small, and contrarily,
order statistic e�ects determine the course of price dispersion for large numbers of sellers. In
sum, they �nd that as the number of sellers rises, price dispersion initially increases and then
smoothly declines (cf. Baye et al. (2004), p. 486f). Furthermore, Janssen & Moraga-Gonzalez
(2004) scrutinize comparative statics in a closed form of the Varian model and �nd no analytical
characterization of the behavior of price dispersion with respect to the number of �rms (cf.
p. 1096�).

19The uninformed consumers know at least the price at the one seller they would purchase the
good (this equals the de�nition of uninformed consumers in the Varian model). Additionally,
the segment s = 0 and µ0 would refer to the uninformed consumers that do not �nd it bene�cial
anymore to stay in the market. Consequently, from this segment no pro�ts can be obtained.
Further, every consumer group can be completely and unambigously characterized:

∑N
s=0 µs = 1.

20Making the fractions of consumers µs endogenous implies twofold. Firstly, enhanced competition
may only a�ect the price distribution via the distribution of information among consumers, and
secondly, it enables an analysis of the change in search behavior or a change in these di�erent
kinds of consumer fractions s respectively under entry competition. Details for special cases of
this dependence are discussed below.

21They focus only on symmetric equilibria, cf. Janssen & Moraga-Gonzalez (2004), p. 1093 and
Lach & Moraga-Gonzalez (2009), p. 5.
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s. Correspondingly, the quantity sold is dependent on (i) the fraction of informed

consumers in the respecitve segment µs, (ii) the likelihood s/N that the consumers

observe the price quote from �rm i, and (iii) the probability (1−F (p))s−1 that �rm

i sells the good to the segment s at price p. In equilibrium, �rms maximize pro�ts

by randomizing prices. Thus, they are indi�erent between charging any price in the

support of F , especially the upper bound marked by consumers' reservation level p̄ =

v since pro�ts for either pricing strategy are equal.22 Formally, Πi(p, F ) = Πi(p̄, F )

has to be satis�ed which yields the equilibrium condition:

(p− c)

[
N∑
s=1

µss(1− F (p))s−1

]
= (v − c)µ1 (4.2)

Equation (4.2) determines the price distribution F (p) in an equilibrium with �rms

setting pro�t maximizing prices in mixed strategies and consumers searching ac-

cording to their information set depicted in the vector µ(N) = (µ1(N), ..., µN (N))

representing the overall distribution of price information in the market. Generally,

equation (4.2) can not be solved with respect to the equilibrium distribution F (p).

Special cases are investigated, however, in the study of Janssen & Moraga-Gonzalez

(2004). In particular, they distinguish between three di�erent search modes: (i) low

search intensity (µ1 < 1) where consumers randomize between searching for one

price quote or dropping out of the market, (ii) moderate search intensity and every

uninformed consumer searching once (µ1 = 1), and (iii) high search intensity with

uninformed consumers randomizing between searching for one price and searching

for two prices µ = (µ1 < 1, µ2 < 1). Now, comparable to the �ndings of Morgan

et al. (2006), the equilibrium distribution F (p) for exogenously given µ1 in moder-

ate search intensity is characterized by increased frequencies to charge low and high

prices, thus increased price dispersion, as the number of sellers rises.23 Interestingly,

as the propensity to search µ1 is endogenized
24 no equilibrium obtains and consumers

change their search behavior. In particular, as the number of sellers grows average

prices paid by the uninformed consumers rise continously reducing their incentives

22The lower bound is obtained by setting F = 0 and solving for p in the equilibrium condition
(4.2).

23Technically, the distribution F (p,N) is not stochastically �rst-order dominated by F (p,N + 1).
This result of Varian (1980), Janssen & Moraga-Gonzalez (2004) and Morgan et al. (2006) is in
contrast to the �ndings of Rosenthal (1980). He provides evidence for stochastic dominance in the
cdf of the price, formally F (p,N) > F (p,N + 1), implying that in a mixed strategy equilibrium
charging higher prices for any price level is preferred under the entry of an additional competitor.
Thus, average prices for uninformed and informed consumers rise. His �ndings are due to the
fact that the average number of informed consumers or the common market per �rm decreases
as the number of sellers rises. On the contrary, Varian assumes that the number of captive
consumers per seller falls with N .

24The search process occurs under the condition that the net utility from purchasing the product
is positive and that there are no incentives to change the search mode (cf. Janssen & Moraga-
Gonzalez (2004), conditions 3.1. and 3.2. on p. 1097).
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to stay in the market.25 Turning to the low search intensity scenario, results show

that the drop out in demand counteracts with the tendency to increase prices in

the upper price segment. In turn, the rise in the average price comes to a halt and

�rms react to adjusted search preferences by equally strengthening their strategies of

setting extreme prices merely inducing more price dispersion as the number of sellers

increases.

Finally, �ndings for the high search intensity mode provide further evidence for the

adaption of consumers' search behavior to the market structure promoting the impact

enhanced competition has on the price distribution. Speci�cally, given the number

of sellers is su�ciently small consumers search more intensely under increased en-

try competition. In contrast, provided that the number of sellers is large incentives

to search are reduced as an additional competitor enters the market.26 As expect-

ed, �rms' pro�t maximizing pricing strategy under entry is determined by charging

low prices to attract informed and high prices to extract surplus from uninformed

consumers with the latter e�ect dominating. As a result, expected prices increase

monotonically in N . Now, the non-monotonic search behavior of the captive cus-

tomers interacts with �rms' pricing strategies in two ways. In markets with a large

status quo number of sellers both e�ects concur and unambigously lead to an increase

in the average price. In markets with a low status quo number of �rms, however, in-

creased propensities to search counteract with �rms' incentive to raise prices. Thus,

the authors conclude that in line with the non-monotonic search behavior the ex-

pected price decreases with the number of sellers to begin with but subsequently

increases as the number of �rms gets su�ciently large. Further, they �nd numerical

evidence for an increase in price dispersion as the expected price declines. This also

leads them to conclude that price dispersion may have a non-monotonic relationship

with respect to the number of sellers in the high search intensity mode.27

The intuition behind these results is that in local markets with a small number of

competitors an increase in the number of �rms induces higher price competition in

the lower price segment. The reason is twofold; �rstly, �rms compete as expected

for the informed consumers, and secondly, the uninformed consumers show increased

search activity and consequently the probability for these to purchase at a low listed

price increases. In sum, incentives for �rms to focus on stealing rivals' business by

o�ering the potentially lowest market price increase whereas at the same time ex-

tracting surplus from uninformed consumers remains viable. This tendency reverses

as the pro�tability of focusing on the low price segment declines with a growing

25The equilibrium fraction of uninformed consumers who �nd it still bene�cial to remain in the
market is essentially determined by the level of marginal search costs incurred for every new
quote (cf. Janssen & Moraga-Gonzalez (2004), p. 1100).

26Simulations show that the turning point is given for a number of �rms of 6 or 7 (cf. Janssen &
Moraga-Gonzalez (2004), p. 1107).

27Cf. Janssen & Moraga-Gonzalez (2004), footnote 18 on p. 1108.
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number of rivals in the market accompanied by a decrease in search intensity of the

uninformed consumers. In turn, �rms shift to the strategy of appropriating surplus

from their captives, pressures on the low priced segment are released and the average

market price increases in N .

4.2.3 Summary of Models' Predictions, Review of Empirical Evidence

and Postulation of Hypotheses

The previous discussion revealed that the existence and behavior of the equilibri-

um price distribution is critically related to the distribution of (price) information

among consumers and the degree of competition in the market. Table 4.1 summarizes

suggested correlations between the fraction of informed consumers, the number of

sellers and average prices and price dispersion, respectively.

Table 4.1: Summary of correlations in di�erent price models

Dispersion model Predicted correlation between:

Fraction of informed Number of

consumers and sellers and

average price average price

price dispersion price dispersion

Spatial competition models

with asymmetries across �rms

(Hotelling (1929), Salop (1979)) negative negative negative

Consumer search models

with heterogenous search costs

& �xed sample search (Varian (1980)) negative inverse U positive positive*

with heterogenous search costs

& sequential search (Stahl (1989)) negative inverse U positive negative

with �xed-sample-size search:

• low search intensity (0 < µ1 < 1) none positive

• moderate search intensity (µ1 = 1) positive ?

• high search intensity (0 < µ1, µ2 < 1) nonlinear nonlinear

(Janssen & Moraga-Gonzalez (2004))

(*) consumer search and number of �rms exogenously �xed (cp. Morgan et al. (2006))

Firstly, �rms' market position is characterized by their location which implies a

straightforward relation between prices, competition intensity and consumers' propen-

sity to search. In short, market power and thus the ability to raise pro�ts is re�ected
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in geographical proximity to (potential) customers and rivals. Increased competition

via a higher number of sellers leads to lower average prices and price dispersion. In

the search theoretic context a decrease in unit transportation costs can be interpret-

ed as an increase in the fraction of informed consumers and implies a decrease in the

average price.

Secondly, the interrelation between search and pricing activities is explained in search

models. Intuitively, given a certain purchasing behavior and a division of market de-

mand into distinct consumer groups, �rms could either o�er very low prices and sell

large quantities or charge high prices and sell a small amount of goods. Their pricing

strategies and thus the average market price and price variance, i.e. the resulting

market price distribution is determined by these con�icting pro�t-seeking goals. In

this setting variations in consumers' information sets have a direct impact on the

price distribution. An increase in the proportion of shoppers and a decrease in the

level of search costs respectively causes average prices to decline. Further, in the

limit the price distribution degenerates, thus price dispersion is expected to show an

inverse U-shaped relation with the fraction of informed consumers.

Table 4.2: Survey of selected empirical studies investigating price dispersion

Empirical study in industry Correlation between

competition and

price dispersion

Gasoline industry

Marvel (1976) negative

Png & Reitman (1994) positive

Barron et al. (2004) negative

Clemenz & Gugler (2006) negative

Lewis (2008) ambigous

Lach & Moraga-Gonzalez (2009) positive

Airline industry

Borenstein & Rose (1994) positive

Gerardi & Shapiro (2009) negative

Grocery products

Walsh & Whelan (1999) positive

Electronics products

Baye et al. (2004) negative

A comparison on models' predictions on the relation between competition intensity

and the price distribution reveals ambigous results. Clearly, the reason is that a vari-

ation in the number of sellers impacts average prices and price dispersion through
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changes in consumers' search and purchasing behavior.28 Indeed, as depicted in table

4.2 the existing empirical literature across di�erent industries also provides mixed

evidence on the correlation between the number of sellers and price dispersion.

Marvel (1976), for instance, reports that an increase in the number of competitors

reduces the range in the price of gasoline. Barron et al. (2004) study the structural

determinants of price dispersion in the retail gasoline industry in four geographic lo-

cations, and �nd empirical support that an increase in station density decreases both

price levels and price dispersion. For the Austrian retail gasoline market Clemenz &

Gugler (2006) �nd a negative correlation between seller density and price disper-

sion. More recently, Lewis (2008) also observes a negative relationship between the

number of sellers and price dispersion of gasoline though his results reveal that cor-

relations vary signi�cantly for di�erent types of sellers and di�erent measures of

dispersion. Furthermore, Png & Reitman (1994) �nd that prices of gasoline stations

are more dispersed in markets with greater number of competitors. Likewise, Lach

& Moraga-Gonzalez (2009) display empirical evidence that the distribution of gaso-

line prices spreads out as the number of stations increases implying an asymmetric

a�ect of competition on the welfare distribution of consumers. In the airline indus-

try, Borenstein & Rose (1994) similarly �nd that dispersion among airfares increases

on routes with more competition or lower �ight density whereas Gerardi & Shapiro

(2009) recently show that higher competition has a negative e�ect on price disper-

sion. Finally, Walsh & Whelan (1999) report that brand price dispersion in the Irish

grocery market increases with competition and Baye et al. (2004) provide evidence

that price dispersion of consumer electronics products on Internet price comparison

sites decreases with the number of sellers.

Our empirical work scrutinizes determinants of the price distribution of the Austrian

retail gasoline market. Concluding the previous discussion this paper addresses two

interesting issues. First, predictions on the relationship between the proportion of

informed consumers and the level of search costs with the mean and the variance of

the price distribution will be tested, respectively. Second, the relationship between

entry competition and the mean and variance of prices will be examined. Referring

to the predictions of the discussed models in subsection 4.2.1, subsection 4.2.2 and

table 4.1 we propose the following hypotheses:

Hypothesis 1.1: The mean price is a decreasing function of the fraction of informed

consumers in the market.

28Lach & Moraga-Gonzalez (2009), for instance, argue that the e�ect of �rm entry on the share
of consumers who perceive a selected range of seller`s prices is principally undetermined. Thus,
di�erent percentiles of the price distribution may be a�ected di�erently by increased competitive
pressure in the market. As a result, the net e�ect of an increase in the number of sellers on the
dispersion of prices can either be positive or negative, which leads them to conclude that �the
direction and magnitude [of such e�ect] remains an empirical matter� (p. 19).
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Hypothesis 1.2: The mean price is an increasing function of the level of search

costs.

Hypothesis 1.3: The price variance is a non-monotonic function of the fraction of

informed consumers in the market.

Hypothesis 1.4: The price variance is an increasing function of the level of search

costs.

Hypothesis 2.1: The comparative static behavior of the price distribution is a

complex function of entry competition. Thus, the mean price may be a positive or

negative function of the number of sellers. Likewise, the price variance may be a

positive or negative function of the number of sellers.

Hypothesis 2.2: If the mean price is negatively (positively) correlated with the

number of sellers, then the mean price is expected to be positively (negatively)

correlated with a distance measure between a station and its next neighbour.

Hypothesis 2.3: If the price variance is negatively (positively) correlated with the

number of sellers, then the price variance is expected to be positively (negatively)

correlated with a distance measure between a station and its next neighbour.

4.3 Empirical Analysis

4.3.1 Description of Data and Variable Speci�cation

In our analysis we use data from various sources. Gasoline price data are collected

by the Austrian chamber of labor and are available quarterly at irregular intervals

from the period October 1999 to March 2005 (23 time periods). For the sample

of gasoline stations used, the price data are unbalanced and consist of prices of

diesel ranging from a maximum of 1,386 observations per time period (September

2003) to a minimum of 598 observations (March 2003) with 25,150 nonzero price

observations over time. In total, price information was available for 61% of the station

sample or for 1,718 out of all 2,822 Austrian gasoline stations for at least one of

the given 23 time periods. The price data is merged with data for the geographical

location of stations and other station speci�c as well as regional data. Demographical

and regional data are obtained from the Austrian statistical o�ce as part of the

population census in 2001 and are available on a municipality level. Information

about stations' characteristics covering their geographical coordinates is collected by

Catalist in 2003 on an individual level.

Descriptive statistics are reported in table 4.3 where the set of covariates is arranged
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into four main categories.

1. Station Competition Proxies

We specify the degree by which stations spatially di�erentiate themselves and

characterize stations' competitive environments with three main variables: the

number of competitors in a circular radius of 3 kilometer (Density), the road

travelling distance of a station to its nearest competitor (Distance) and a dum-

my variable with nonzero entries if a station does not have a rival seller within

its 3km-periphery and thus is to be considered a local monopolist (Monop).

The existing empirical literature suggests di�erent measures of spatial di�eren-

tiation.29 The market geography of gasoline retailing in Austria is characterized

by the dichotomy of local monopoly structures in remote areas and high seller

density zones in metropolitan areas or along principal roadways. Accordingly,

more than three quarters or 78.25% of stations have their nearest competitor

within a distance of 3km. In contrast, for a local market radius comparable to

the median of the distance distribution (0.96km) 838 stations are considered

to be a monopolist having no competitor in the respective geographical range.

Thus, intuition might suggest that the choice of a circular competition zone

should not be too narrow to capture the (complex) spatial patterns of com-

petitive interactions between stations. However, by de�nition the local market

radius may also establish a commensurable match between the demand and

search cost proxies, given on an aggregate municipaly level, and the stations'

(cirucular) competitive environment.30 Consequently and to be consistent with

the previous literature (Barron et al. (2004), Lewis (2008)) we de�ne a local

market radius of 3km.

Further, the number of �rms in a particular region will generally be proportion-

al to the average distance between �rms as long as �rms are equally distribut-

ed over the geographic area. If, however, individual shops are not distributed

equally, the number of sellers in a local market is an inaccurate measure for the

degree of spatial di�erentiation (cp. Pinkse et al. (2002)). Taking account of

asymmetric location patterns, we additionally use the road distance between

nearest competitors measured in km to proxy for competition intensity.31

29A group of studies uses a circular approach with a local market radius of 1.5 miles to operationalize
seller density in urban areas (cp. Barron et al. (2004) and Lewis (2008)) while other studies
calculate the number of sellers in local municipals (cp. van Meerbeck (2003) and Clemenz &
Gugler (2006)).

30According to the descriptives in table 4.3, the median of the municipal area amounts to 35.23km2

or an approximated circular radius of 3.35km.
31Netz & Taylor (2002) use the Euclidean distance between retail outlets to account for spatial

di�erentiation. Nonetheless this procedure ignores the fact that stations are connected via a
network of roads. Consequently, the Euclidean distance might capture the relevant dimension
of distance only very poorly. Based on the information on stations` geographic coordinates by
using GIS-software we link the location of individual stations to the road network and calculate
distances between neighbouring retail outlets.
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2. Search Cost Proxies

On the demand side, consumers' search costs are proxied by variables cor-

responding to two di�erent consumer groups that accordingly di�er in their

knowledge on local market pricing patterns. Particularly, we have information

on the number of people commuting out of and commuting into a municipality

and the number of overnight stays in a municipality.

Commuters are considered to purchase gasoline in high frequencies for their

daily working trips. Consequently, they are characterized by a relatively high

price elasticity of demand that relates to a low level of search costs and a

profound knowledge of local sellers' pricing strategies respectively. On the con-

trary, the number of overnight stays proxies for the number of people that are

not familiar with pricing patterns in the local gasoline market. Hence, this con-

sumer group supposedly shows a lower price elasiticity and incurs higher costs

for their search for the cheapest gasoline retailer.

Accordingly, in the further analysis the consumer group with a low level of

search costs is represented by the share of commuters commuting out of a mu-

nicipality relative to the number of employed people in that respective munic-

ipality (Coms). Further, the group of consumers characterized by a high level

of search costs refers to the share of overnight stays relative to the number of

inhabitants again on the municipal level (Nights).32

3. Location and Regional Characteristics

The third set of price determinants characterizes stations' location features.

Accordingly, population density, given as the number of inhabitants in a mu-

nicipality per square kilometer, allows to speci�y whether a station is located in

a metropolitan or rural area (PopDens). Further, refering to respective speed

limits, two dummy variables indicate if a station is located on a highway or a

freeway distinguished by respective speed limits (100kmh, 130kmh). Similarily,

the dummy Access denotes if a station is considered to be highly accessible

by cardrivers and �nally nine state dummies display in which of the Austrian

states a station is located.

4. Station Characteristics

Except for stations' plot size, individual station characteristics are all repre-

sented by dummy variables and specify di�erent features that may a�ect sellers'

pricing behavior. These comprise stations' opening times (Open24h), car ser-

vices (Wash), service policies (Service, Leisure), product features (Microwave)

as well as its payment facilities (Creditcard). Further, a set of dummies indi-

cate a station's brand a�liation.

32Additional variables listed in table 4.3 will be used for robustness checks.
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Finally, based on information on stations' geographical coordinates and distance

relations, spatial interdependencies between individual gas sellers are incorporated

in a spatial weights matrix W . It states that, if one station (i) is to be considered a

neighbour to another station (j) the respective element in the weights matrix (wij)

will be nonzero. Further, each matrix element is weighted according to the inverse

distance of the corresponding neighbourhood relationship (dij). Given this weighting

scheme each element of the matrix is recalculated subject to the row standardization

of W .33 Formally:

(W )ij = w̃ij =
wij∑
j wij

(4.3)

wij =

{
1
dij

i and j neighbours

0 other

∑
j

w̃ij = 1

In the construction of W two neighbourhood criteria are applied. Firstly, the nearest

neighbour of every single station is included and secondly every seller in a 3-kilometer-

periphery around each station is to be considered a neighbour.34 Technically, this

ensures that all row sums of the weighting matrix are nonzero and implies that every

station is spatially related to another station. In addition,W takes into account that

stations in more densly populated and presumably in more competitive areas are

subject to more complex spatial interdependencies compared to local monopolies.

Table 4.3: Descriptive statistics (Number of observations = 25, 150)

V ariable Description Mean Median S.D.

pd Diesel price (euro cents) 76.49 75.9 6.36

Station competition proxies:

Density Number of stations in 3km radius 6.672 3.0 8.68

Distance Distance to nearest station 1.816 0.898 2.514

Monop No neighbour in 3km radius 0.187 0.0 0.390

Search cost proxies:

Coms ComsOut/Employed 0.325 0.311 0.141

ComsTot ComsSum/Inhabitants 0.361 0.331 0.140

33Thus, closer neighbours are related to higher values of corresponding weights with every row ofW
summing up to 1. It follows that stations with single neighbours (special case: local monopolists)
correspond to matrix elements equal to 1.

34To test for robustness two alternative weighting matrices will be used. For details see table 4.6
in the appendix.
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Nights Overnight/Inhabitants 2.082 0.143 6.481

NightsC Overnight/ComsSum 8.000 0.368 34.543

ComsSum ComsIn+ComsOut 10, 860.0 3, 034.0 16, 078.0

ComsOut Number of commuters out of a mu-

nicipality

3, 591.0 1, 176.0 5, 067.0

ComsIn Number of commuters into a mu-

nicipality

7, 270.0 1, 746.0 12, 098.0

Overnight Number of overnight stays in a mu-

nicipality

79, 610.0 1, 062.0 206, 197.0

Location and regional characteristics:

PopDens Inhabitants/Area 1, 292.0 281.1 2, 943.0

Inhabitants Number of inhabitants in a munici-

pality

36, 470.0 7, 368.0 57, 162.0

Employed Number of employed in a munici-

pality

17, 890.0 3, 462.0 27, 891.0

Area Municipal area (km2) 51.50 35.23 48.98

100kmh On Freeway (80-100km/h) 0.018 0.0 0.132

130kmh On Highway (100-130km/h) 0.023 0.0 0.151

Access Highly accessible 0.6 1.0 0.49

Bgld Station in state: Burgenland 0.035 0.0 0.184

Ktn Station in state: Carinthia 0.095 0.0 0.294

Noe Station in state: Lower Austria 0.161 0.0 0.368

Ooe Station in state: Upper Austria 0.144 0.0 0.352

Slb Station in state: Salzburg 0.092 0.0 0.289

Stk Station in state: Styria 0.183 0.0 0.387

T ir Station in state: Tyrol 0.129 0.0 0.335

V bg Station in state: Vorarlberg 0.031 0.0 0.175

V ie Station in state: Vienna 0.126 0.0 0.332

Station characteristics:

Open24h Station is open 24h 0.145 0.0 0.353

Wash Station has a carwash 0.704 1.0 0.456

Service Station o�ers full-service 0.227 0.0 0.418

Leisure Station o�ers leisure facilities 0.509 1.0 0.5

Microwave Station sells microwave products 0.265 0.0 0.441

Creditcards Station o�ers credit card payment 0.921 1.0 0.271

Agip Station brand: Agip 0.074 0.0 0.262

Aral Station brand: Aral 0.002 0.0 0.044

Avanti Station brand: Avanti 0.049 0.0 0.216

Avia Station brand: Avia 0.019 0.0 0.137

BP Station brand: BP 0.221 0.0 0.415

Esso Station brand: Esso 0.076 0.0 0.266
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Jet Station brand: Jet 0.045 0.0 0.208

OMV Station brand: OMV 0.181 0.0 0.385

Shell Station brand: Shell 0.132 0.0 0.338

Stroh Station brand: Stroh 0.022 0.0 0.145

Unbranded Station Unbranded 0.178 0.0 0.384

Plotsize Station Plotsize 1, 785.0 1, 500.0 1, 718.0

4.3.2 Model Speci�cation

4.3.2.1 The Price Equation

The empirical analysis of the price distribution takes advantage of the panel struc-

ture of the dataset and will proceed in two steps.35 We �rst estimate a model on the

relationship between gasoline prices and local market characteristics as well as indi-

vidual seller characteristics. The aim is to analyze the determinants of gasoline prices

and control for price di�erences resulting from station heterogeneity.36 According to

the four sets of covariates described in section 4.3.1 the structure of the empirical

model for gasoline prices is given by

log(pdit) = α0 + α1Competitioni + α2Searchit + α3Locationi + α4Stationi

+
T∑
t=1

χtTimet + uit
(4.4)

with:

Competitioni = {log(Densityi), log(Distancei)}

Searchit = {Comsi, log(Nightsit)}

Locationi = {log(PopDensi), 100kmhi, 130kmhi, Accessi, Statei}

Stationi = {Open24hi,Washi, Servicei, Leisurei,Microwavei, Creditcardsi, log(Plotsizei), Brandi}

where the dependent variable is denoted pdit, the self service, regular price of diesel

at station i at a point of time t, measured in euro cents per liter; Competitioni

represents proxies for the competitive environment of each station, essentially (the

logarithms of) seller density and the distance to the closest rival; Searchit subsumes

the search cost proxies share of commuters and share of overnight stays; Locationi

speci�es characteristics of a station's location, including state �xed e�ects; Stationi

captures station speci�c price determinants, including brand �xed e�ects; �nally time

35The data is structured in a repeated cross section and sorted according to the di�erent time
periods.

36Since all of the explanatory variables except for Overnight and Nights respectively do not change
over time, �xed e�ects for individual gasoline stations will not be included in the regressions.
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�xed e�ects are included in the estimation and uit denotes an error term.

Price equation (4.4) is estimated using two di�erent statistical approaches. Previous

studies for the Austrian market (Clemenz & Gugler (2006); Pennerstorfer (2009))

have investigated determinants of gasoline price levels. Their �ndings highlight the

impact of spatial competition in gasoline retail pricing. Since our analysis focuses on

determinants of the unexplained price variance, additionally to standard OLS, we

use a GMM approach37 accounting for spatial e�ects in the price residuals

uit = λ

ntT∑
j=1

w̃ijujt + νit (4.5)

where the weighting matrix W = (w̃ij) equals a single block diagonal matrix of

dimension ntT × ntT consisting of the spatial weight matrices Wt for each period

t = 1, ...23 and with nt as the number of corresponding cross sectional observations

and T as the number of periods.

The intuition behind the Spatial Error Model (SEM) in (4.5) is that certain e�ects

remain outside the model of the price equation and enter the price residuals. In

turn, these unmodeled price e�ects could show a spatial pattern, i.e. they spill over

across neighbouring gasoline stations. Correspondingly, the residuals comprise of a

part that is explained by the spatial structure imposed by W and the innovations

νit; the existing spatial autocorrelation is then captured by the autoregressive pa-

rameter λ. On the contrary, ignoring spatial autocorrelation in the residuals implies

biased standard errors and is thus associated with di�culties in the interpretation

of coe�cients (cp. LeSage (1997)).

4.3.2.2 Analysis of Price Dispersion

The second step of the analysis determines the relationship between price dispersion,

competition, search costs and other location and station characteristics by

log(ε2it) = β0 + β1Competitioni + β2Searchit + β3Locationi + β4Stationi

+

T∑
t=1

χtTimet + ηit
(4.6)

37Technically, spatial autoregressive models or spatial error models respectively can be implemented
via de�ning a maximum likelihood (ML) function and subsequently solving for the autoregressive
parameter λ and variance. Generally, however the weights matrix W will be characterized by an
asymmetric structure and for large datasets the computation of the corresponding eigenvalues is
not feasible anymore. We implement a GMM estimator for a spatial simultaneous autoregressive
error model in R using the spdep package. For technical details of the estimation procedure
see Kelejian & Prucha (1999); an introduction into spatial econometrics focusing on the ML
approach is provided in Anselin (1988) and LeSage & Pace (2009).
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with:

Competitioni = {log(Densityi), log(Distancei)}

Searchit =
{
Comsi, Coms

2
i , Nightsit, Nights

2
it

}
Locationi = {log(PopDensi), 100kmhi, 130kmhi, Statei}

Stationi = {Brandi}

where as the dependent variable εit = {uit or νit} is interpreted as a measure of

unexplained price variation, free of store-, time-, and spatial e�ects of a station i

during period t relative to the statewide average gasoline price. As with the price

regression the main covariates of interest for explaining price di�erences are (the

logarithms of) Density and Distance, the search cost proxies Coms and Nights as

well as their quadratic forms Coms2 and Nights2. Analogous to the approach in

modeling market price levels, other location and station speci�c parameters act as

controls to isolate the competition e�ects and the (indirect) e�ects of search costs.

Again, time �xed e�ects are included and ηit is an error term.

Ning & Haining (2003) highlight in their case study of gasoline pricing in the She�eld

metropolitan area the spatial structure of price residuals as a feature of localized in-

teraction between stations. Similarly, Lewis (2008) constructs a localized dispersion

measure that captures stations' average price deviation from its neighbouring com-

petitors and �nds signi�cant competition e�ects. We will use the residuals from price

equation (4.4) as a measure of (local) price dispersion in the market. These quantify

the unknown deviation from the average gasoline price for each seller in the market

after controlling for signi�cant price determinants relating to competition intensity,

local demand structures, stations' location and additional individual seller charac-

teristics. Further spatial interdependencies or potential spatial autocorrelation in the

OLS residuals respectively will be accounted for by applying the Spatial Error Model

speci�ed in equation (4.5). Accordingly, the dependent variable εit = {uit or νit} in
the price dispersion regressions consists of two sets of price residuals: uit denoting

the residuals calculated in the OLS speci�cation and νit representing the residuals

as an outcome of the Spatial Error Model.

4.4 Results

This section provides results for the e�ects of competition, search costs, location and

station characteristics on price levels and price dispersion. Estimates of the price

model parameters in equation (4.4) are presented in table table 4.4 and estimated

coe�cients of the disperson model in (4.6) are reported in table 4.5 respectively.38

38All of the reported t-statistics are robust to heteroscedasticity. We apply a White-HC0-estimator
to �t the OLS regression models. For details see Zeileis (2004).
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4.4.1 Price Determinants

Although small in magnitude, the results for the competition proxies log(Density)

and log(Distance) in the price equation reveal consistent �ndings that are in line

with theoretical predictions from spatial competition models (Salop (1979)) and with

previous empirical studies (Clemenz & Gugler (2006); Pennerstorfer (2009)). Gen-

erally, the �ndings suggest that stations' price levels are a result of their local ge-

ographic monopoly structure whose size depends on rivals' market power and the

prices charged by neighbouring competitors. In a nutshell the price regressions show

that enhanced competition has on average a diminishing e�ect on market price lev-

els, other factors held constant. Correspondingly, in both the OLS and the GMM

speci�cations the coe�cient on log(Density) is negative and signi�cant at the 1%

level or better. Further, the coe�cient on log(Distance) is positive and signi�cant

(p < 0.02) across OLS estimations. Particularly, the elasticity of Density amounts

to −0.0023 (−0.0021) in the standard speci�cation of the OLS (GMM) model indi-

cating that as the number of competitors in a radius of 3km increases by 1% gasoline

prices on average decrease by 0.0023% (0.0021%).39 Similarly, increasing a station's

distance to its closest competitor by 1% leads to an average increase in price levels

by 0.0006% (0.0003%). We also check for robustness in an alternative speci�cation

by substituting the Distance variable with the monopoly dummy Monop and �nd

positive and highly signi�cant e�ects for the latter for both the OLS and GMM

estimations.40 Accordingly, stations who have no neighbour in their 3km market pe-

riphery charge on average higher prices by approximately 1.1% (0.65%) other factors

equal.

Results for the search cost proxies Coms and log(Nights) support predictions of spa-

tial competition between stations. They provide evidence that di�erences between

consumer groups concerning their knowledge and information on market prices a�ect

sellers' pricing behavior. Other variables held constant, an increase in the share of

informed consumers causes the average market price level to decrease whereas the

price level tends to increase as the share of uninformed consumers rises. In context

with the unit transportation cost t this implies a positive correlation between con-

sumers' search cost levels and the mean price. Correspondingly, in all speci�cations

(OLS and GMM) coe�cients on Coms are negative and highly signi�cant and co-

e�cients on log(Nights) are positive and signi�cant at the 1% level or better. In

particular, this implies for the standard OLS (GMM) speci�cation that the percent-

age change in gasoline prices is given by −0.0327 (−0.0166) when the share of people

commuting out of a municipality relative to the employed in that region increases by

one percentage point. Likewise, the elasticity of Nights amounts to 0.0016 implying

39See columns 1 and 2 in table 4.4.
40See columns 5 and 6 in table 4.4.
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price increases of approximately 0.002% as the proportion of overnight stays relative

to the number of inhabitants in a municipality rises by one percent.

In an additional speci�cation (columns 3 and 4), we also include a spatially lagged

variable for Coms, denoted W ∗ Coms, accounting for the spatial in�uence of the

search cost proxy for neighbouring stations.41 Respective coe�cient estimates show

signi�cant negative signs and thus are in line with estimation results of the Coms

variable. In particular, they indicate that an increase of the spatially averaged com-

muter share of neighbouring stations by one percentage point leads to a decrease

in prices of −0.0072% and −0.0068% in OLS and GMM speci�cations. Eventually,

column 5 and 6 also report results for an interaction term between the monopoly

dummy Monop and Coms. Respective coe�cient estimates in the OLS and GMM

models are highly signi�cant and negative. This implies that stations with no neigh-

bours in their market periphery of 3km show a substantial stronger price reaction

to an increase in the number of informed consumers than stations with competitors

in their local market. Speci�cally, the di�erence amounts to −0.0224% (−0.0142%)

as the share of commuters increases by one percentage point for the OLS (GMM)

estimation.42

Estimated coe�cient results for the location parameters reveal that stations locat-

ed on major roadways and stations that are highly accessible set on average higher

prices. In addition, regression results provide statistical evidence that stations locat-

ed in more densly populated areas are more likely to charge lower prices. Particularly,

results of the OLS estimations reveal that stations located on major highways routes

(speedlimits: up to 130km/h) charge signi�cantly higher prices by about 3.9%; re-

spective estimates in the GMM speci�cations show mark-ups of more than 4%. If a

station is located on a major roadway (speedlimits up to 100km/h) signi�cant price

increases of more than 1% are observed across OLS and GMM speci�cations and

�nally accessibility mark-ups amount to more than 0.1% in all model estimations.

The impact of population density log(PopDens) on price levels is small but highly

signi�cant: the OLS estimates indicate that an increase of density by one percent

leads to price decreases of around 0.002%; corresponding estimates for the elasticities

in the GMM speci�cations yield smaller values between −0.0006 and −0.0009 below

a signi�cance level of 1%.43

41Since the local market radius does not di�erentiate if competitors are within the same munici-
pality, these e�ects arise due to the irregular shape of administrative units as well as the fact
that stations may be located close to a municipal border. We also included a spatially lagged
term of the second search cost proxy W ∗Nights but found no signi�cant e�ects in any of the
speci�cations.

42Again the interaction e�ect between the search cost proxy for the uninformed consumers and the
monopoly dummy Nights ∗Monop was not signi�cant.

43Clemenz & Gugler (2006) show that population density predominantely explaines location and
thus density patterns of gasoline stations in the Austrian market. Leaving out the population
density proxy log(PopDens) across di�erent price speci�cations (OLS and GMM) does not
change signs and signi�cance levels of all coe�cients for one notable exception (correspond-
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After controlling for stations' spatial di�erentiation, estimate results for station spe-

ci�c characteristics show further dimensions in which product di�erentiation occurs.

All variables except for the dummies controlling for carwash and leisure facilities

(Wash,Leisure) have signi�cant positive signs. In particular, stations that have

permanent opening times (Open24h: 0.32% to 0.38%) or o�er full-service (Service:

0.22% to 0.56%) tend to charge higher prices. Further, sellers who o�er potential for

�nancing purchases using company credit cards (Creditcards: 0.31% to 0.49%) as

well as a broad variety of other goods in a convenience store (Microwave: 0.20% to

0.22%) also impose higher mark-ups.

The spatial autoregressive coe�cient λ is estimated roughly as 0.612, and in all three

GMM speci�cations it is highly signi�cant. The test result for the Moran`s I statistic

of the OLS model in equation (4.4) amounts to 0.771 (p < 2.2e-16) indicating spa-

tial autocorrelation in the residuals. We conduct a Lagrange Multiplier (LM) Test to

generally determine which alternative speci�cation to use and to con�rm the applica-

tion of the Spatial Error Model suggested in equation (4.5). In line with the Moran`s

I test statistic, both standard LM-Error and LM-Lag test statistics reveal highly

signi�cant results and reject the null hypothesis (LM-Error: 14682.41 (p < 2.2e-16);

LM-Lag: 14248.40 (p < 2.2e-16)). Finally, the robust forms of the test statistics show

also both highly signi�cant results but with a substantial larger value for the test

statistic of the Error Model (RLM-Error: 457.93 (p < 2.2e-16); RLM-Lag: 23.92 (p

< 1.005e-06)).

Anselin (2005) provides a simple decision rule concerning the selection process in spa-

tial regression modeling (p. 199).44 In the classical textbook case one of the (robust)

test statistics signi�cantly rejects the null hypothesis whereas the other alternative

does not reject or only rejects the null on much smaller orders of statistical magni-

tude. Since both robust statistics (RLM-Error and RLM-Lag) in our case are highly

signi�cant we proceed with the speci�cation with the higher robust test value. To

check for robustness and avoid possible misspeci�cations relating to the imposed

spatial structure, we rerun the GMM price regressions and LM speci�cation tests

with alternative weighting matrices.45 Results on signs and signi�cance levels of the

ing results are given in table 4.8 in the appendix): due to multicolinearity the coe�cient on
log(Density) is partly a�ected. In the OLS speci�cations its value approximately doubles and
its signi�cance level rises substantially. In contrast, in the GMM speci�cation, respective coef-
�cient values remain stable and only signi�cance levels increase. Since our main conclusions in
terms of coe�cients signs and signi�cance levels are not a�ected, we report the results including
the population density covariate in the regression tables.

44For technical details on LM tests regarding spatial model speci�cations see Anselin et al. (1996).
In addition, LeSage & Pace (2009) provide a concise overview of the comparison between spatial
and non-spatial model applications (p. 155�). Further, a more conceptual overview of spatial
modeling in applied econometrics is given in the well known seminal paper of Anselin (2002).

45Accordingly, two additional matrices are constructed: W2 is based on the same neighbourhood
criterion as W but with weights relating to the squared inverse distances; W10 captures the
ten nearest neighbours of every station (if applicable) with weights depending on the inverse
distance measure. See table 4.6 in the appendix.
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regression coe�cients as well as conclusions regarding the model selection remain

unchanged.46 Additionally, further robustness checks are carried out to test the re-

sults of OLS and GMM price models with regards to their functional form. Results

indicate that structural relationships in terms of coe�cient signs and signi�cance

levels are independent of log-log and lin-lin model speci�cation forms.47

Table 4.4: Price function regressions (log-log)

Independent : Dependent : log(pd)

Weights Matrix : W

OLS GMM OLS GMM OLS GMM

(1) (2) (3) (4) (5) (6)

Intercept −0.3772∗∗∗ −0.3907∗∗∗ −0.3764∗∗∗ −0.3882∗∗∗ −0.3798∗∗∗ −0.3906∗∗∗

(0.0035) (0.0033) (0.0035) (0.0034) (0.0037) (0.0036)

log(Density) −0.0023∗∗∗ −0.0021∗∗∗ −0.0026∗∗∗ −0.0024∗∗∗ −0.0024∗∗∗ −0.0023∗∗∗

(0.0005) (0.0004) (0.0005) (0.0004) (0.0005) (0.0005)

log(Distance) 0.0006∗∗ 0.0003 0.0006∗∗ 0.0002

(0.0002) (0.0002) (0.0002) (0.0002)

Monop 0.0110∗∗∗ 0.0065∗∗∗

(0.0024) (0.0016)

Coms −0.0327∗∗∗ −0.0166∗∗∗ −0.0281∗∗∗ −0.0173∗∗∗ −0.0219∗∗∗ −0.0128∗∗∗

(0.0024) (0.0021) (0.0030) (0.0021) (0.0032) (0.0023)

(W )(Coms) −0.0072∗∗ −0.0068∗∗∗ −0.0092∗∗∗ −0.0077∗∗∗

(0.0029) (0.0021) (0.0029) (0.0022)

(Monop)(Coms) −0.0224∗∗∗ −0.0142∗∗∗

(0.0051) (0.0033)

log(Nights) 0.0016∗∗∗ 0.0016∗∗∗ 0.0015∗∗∗ 0.0016∗∗∗ 0.0014∗∗∗ 0.0015∗∗∗

(0.0005) (0.0004) (0.0005) (0.0004) (0.0005) (0.0004)

log(PopDens) −0.0022∗∗∗ −0.0009∗∗∗ −0.0022∗∗∗ −0.0008∗∗∗ −0.0020∗∗∗ −0.0006∗∗∗

(0.0003) (0.0002) (0.0003) (0.0002) (0.0002) (0.0002)

100kmh 0.0118∗∗∗ 0.0144∗∗∗ 0.0117∗∗∗ 0.0141∗∗∗ 0.0121∗∗∗ 0.0142∗∗∗

(0.0020) (0.0010) (0.0020) (0.0010) (0.0020) (0.0010)

130kmh 0.0387∗∗∗ 0.0425∗∗∗ 0.0384∗∗∗ 0.0424∗∗∗ 0.0387∗∗∗ 0.0425∗∗∗

(0.0021) (0.0011) (0.0021) (0.0011) (0.0021) (0.0011)

Access 0.0018∗∗∗ 0.0012∗∗∗ 0.0018∗∗∗ 0.0012∗∗∗ 0.0019∗∗∗ 0.0012∗∗∗

46Again the standard as well as the robust LM-Error and LM-Lag test statistics are highly signi�cant
with higher robust test statistics for the SEM. Refer to table 4.7 and for corresponding GMM
regression results to table 4.9 in the appendix.

47For the log-log form see table 4.4 and the lin-lin form table 4.10 in the appendix.
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(0.0006) (0.0003) (0.0006) (0.0003) (0.0006) (0.0003)

Open24h 0.0032∗∗∗ 0.0038∗∗∗ 0.0032∗∗∗ 0.0038∗∗∗ 0.0032∗∗∗ 0.0038∗∗∗

(0.0008) (0.0004) (0.0008) (0.0004) (0.0008) (0.0004)

Wash −0.0025∗∗∗ −0.0025∗∗∗ −0.0026∗∗∗ −0.0026∗∗∗ −0.0026∗∗∗ −0.0026∗∗∗

(0.0007) (0.0004) (0.0007) (0.0004) (0.0007) (0.0004)

Service 0.0023∗∗∗ 0.0056∗∗∗ 0.0024∗∗∗ 0.0056∗∗∗ 0.0022∗∗ 0.0055∗∗∗

(0.0009) (0.0005) (0.0009) (0.0005) (0.0009) (0.0005)

Leisure −0.0033∗∗∗ −0.0018∗∗∗ −0.0033∗∗∗ −0.0018∗∗∗ −0.0033∗∗∗ −0.0019∗∗∗

(0.0006) (0.0004) (0.0006) (0.0004) (0.0006) (0.0004)

Microwave 0.0022∗∗∗ 0.0020∗∗∗ 0.0022∗∗∗ 0.0020∗∗∗ 0.0021∗∗∗ 0.0020∗∗∗

(0.0007) (0.0004) (0.0007) (0.0004) (0.0007) (0.0004)

Creditcards 0.0032∗∗∗ 0.0050∗∗∗ 0.0031∗∗ 0.0049∗∗∗ 0.0031∗∗ 0.0049∗∗∗

(0.0012) (0.0007) (0.0012) (0.0007) (0.0012) (0.0007)

log(Plotsize) 0.0035∗∗∗ 0.0021∗∗∗ 0.0036∗∗∗ 0.0022∗∗∗ 0.0036∗∗∗ 0.0021∗∗∗

(0.0008) (0.0005) (0.0008) (0.0005) (0.0008) (0.0005)

lambda 0.6122∗∗∗ 0.6127∗∗∗ 0.6124∗∗∗

(0.0055) (0.0055) (0.0055)

Median(νit) 0.0025 0.0024 0.0023

S.E.(νit) 0.0229 0.0229 0.0229

Median(uit) 0.0021 0.0021 0.0021

S.E.(uit) 0.0364 0.0364 0.0364

Adj.R2 0.804 0.804 0.804

Obs 25, 150 25, 150 25, 150 25, 150 25, 150 25, 150

∗∗∗ denotes signi�cance at the 1% level, ∗∗ at the 5% level, ∗ at the 10% level

Omitted brand category = Unbranded, omitted state category = Vienna, omitted time category = 199910

(Coe�cients for the time-, state- and brand-�xed e�ects have been omitted)

White heteroscedasticity correction (H0) is applied to OLS standard errors.

(Standard errors in parentheses)

4.4.2 Determinants of Price Dispersion

Coe�cient estimates of the elasticities for the competition proxies Density and

Distance reveal consistent �ndings regarding changes in the competitive environ-

ment on stations' price di�erences. Correspondingly, the pricing behavior of stations

exposed to a higher degree of (spatial) competition intensity is likely to be character-

ized by a higher variance in prices. In short, higher spatial competition is associated

with higher price dispersion. Particularly, we �nd a highly signi�cant positive re-

lationship between the logarithm of the number of stations in a 3km periphery,
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log(Density), as well as statistcal evidence for a negative relationship between the

logarithm of the distance of a station to its closest competitor, log(Distance), with

the logarithm of the squared price residuals from equation (4.4) and (4.5) respective-

ly. Corresponding estimates, for instance, show that an 1% increase in the number

of competitors in a 3km local market radius leads to an increase in price dispersion

of roughly 0.1% holding other factors equal.48 Likewise, dispersion declines by about

0.04% to 0.045% (0.021% to 0.027%) as the distance measure (in km) increases by

1% when using the OLS (GMM) residuals in the estimations.49

As regards predictions of search models, regression results across the two di�erent

sorts of residuals (uit and νit) suggest a signi�cant nonlinear relationship between

the share of informed consumers proxied by the Coms variable and the level of price

dispersion. According to the coe�cient estimates of the linear and quadratic term

in table 4.5 the course of price dispersion is characterized by an inverse U-shaped

function of Coms.50 In particular, the maximum of price dispersion is reached for

a commuters-employed ratio in the interval of 0.4 to 0.5 implying that price vari-

ance increases with the share of commuters (informed consumers) in municipalities

with a low proportion of commuting people whereas similarly dispersion decreases

with increases in the Coms proxy in municipalities with high shares of commuters.

Correspondingly, for a share of commuters to the number of employed people of 0.2

estimates in column 2 of table 4.5 for instance suggest an increase of gasoline price

variance of 0.75% as the respective ratio increases by one percentage point. Like-

wise, as the commuters-employed ratio amounts to 0.5 price dispersion decreases by

0.12% for a corresponding one-percentage-point increase in the share of informed

consumers. Note that for the turning point of 0.4662 (cf. column 2) about 20% of

the observations for Coms lie in the decreasing part of the inversed U and for a value

of 0.4333 (column 4) for more than 25% of the sample this is true.

Coe�cient estimates of the other search cost variable Nights show that price dis-

persion increases as the share of uninformed consumers in a municipality rises. In-

clusion of the squared term Nights2 does not reveal signi�cant results and supports

the hypothesis of a positive linear relationship. Speci�cally, all else equal dispersion

increases across di�erent speci�cations by roughly 0.01% when the share of overnight

stays in a municipality to the number of inhabitants in the respective administrative

unit increases by one percentage point.

48Coe�cients are signi�cant at the 0.05% level or better.
49Estimates in the model with the OLS residuals uit are signi�cant at the 1% level or better; p-values

for estimations with the GMM residuals νit amount to p < 0.07 (table 4.5 column 3) and p < 0.16
(column 4).

50Across di�erent speci�cations respective linear coe�cients are statistically di�erent from zero at
the 2% signi�cance level or better; p-values for the quadratic terms amount to p < 0.069 (table
4.5 column 2) and p < 0.036 (column 4).
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Table 4.5: Results of price dispersion regressions for di�erent residuals

Independent : Dependent : log(u2
it) Dependent : log(ν2

it)

(OLSResiduals) (GMMResiduals)

(1) (2) (3) (4)

Intercept −8.0711∗∗∗ −8.3536∗∗∗ −7.9964∗∗∗ −8.2982∗∗∗

(0.1556) (0.2095) (0.1547) (0.2099)

log(Density) 0.1012∗∗∗ 0.1153∗∗∗ 0.1210∗∗∗ 0.1363∗∗∗

(0.0289) (0.0297) (0.0289) (0.0297)

log(Distance) −0.0450∗∗∗ −0.0400∗∗∗ −0.0266∗ −0.0208

(0.0140) (0.0143) (0.0145) (0.0148)

Coms 0.3312∗∗ 1.3289∗∗ 0.2771∗∗ 1.4223∗∗

(0.1364) (0.5644) (0.1380) (0.5658)

Coms2 −1.4252∗ −1.6412∗∗

(0.7847) (0.7842)

Nights 0.0065∗∗∗ 0.0104∗∗∗ 0.0072∗∗∗ 0.0093∗∗

(0.0021) (0.0039) (0.0020) (0.0038)

Nights2 −3.74e−05 −1.75e−05

(2.92e−05) (2.39e−05)

log(PopDens) −0.0912∗∗∗ −0.0863∗∗∗ −0.0995∗∗∗ −0.0946∗∗∗

(0.0162) (0.0163) (0.0158) (0.0160)

100kmh 0.2944∗∗∗ 0.2931∗∗∗ 0.2254∗∗ 0.2237∗∗

(0.0996) (0.0995) (0.1133) (0.1132)

130kmh 0.6047∗∗∗ 0.6053∗∗∗ 0.4574∗∗∗ 0.4565∗∗∗

(0.0869) (0.0868) (0.0895) (0.0894)

Median(ηit) 0.4670 0.4655 0.4445 0.4421

S.E.(ηit) 2.174 2.174 2.158 2.158

Adj.R2 0.101 0.101 0.107 0.108

Obs 25, 150 25, 150 25, 150 25, 150

∗∗∗ denotes signi�cance at the 1% level, ∗∗ at the 5% level

∗ at the 10% level

Omitted brand category = Unbranded

Omitted state category = Vienna

Omitted time category = 199910

(Respective FE-Coe�cients have been omitted)

White heteroscedasticity correction (H0) is applied.

(Standard errors in parentheses)

With respect to the location parameters estimates provide signi�cant evidence for a

negative relationship between the logarithm of population density log(PopDens) and

the price dispersion measures log(u2
it) and log(ν2

it). Particularly, variance shrinks by

about 0.09% (0.1%) in the speci�cations using the OLS (GMM) residuals as the num-

ber of inhabitants per square kilometer rises by 1% holding other factors constant.

Further, corresponding estimation results for the dummies indicating a station's lo-

cation on a major road or highway show signi�cant positive signs. Using the OLS
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residuals, stations on freeways with a speed limit of 100km/h are on average charc-

terized by a higher price dispersion of about 30% and stations on interstates with

speed limits of 130km/h have a higher price variance of about 60% both compared

to stations that are not located on main roads and other factors held constant. Cor-

responding estimates for the speci�cation with the GMM residuals yield a mark-up

of 22% for the 100kmh and 46% for the 130kmh covariate.

As with the price function additional checks on speci�cation form and robustness are

carried out. Particularly, we conduct a LM Test and Moran's I Test on the residuals

of the standard OLS dispersion model given in equation (4.6) with log(uit) as the de-

pendent variable. Corresponding results reveal highly signi�cant values for Moran's

I and for the standard LM-Error and LM-Lag test statistics. As regards the robust

test statistics, the RLM-Lag consistently rejects the null hypothesis whereas the

RLM-Error shows only weak signi�cant or insigni�cant results.51 As a consequence,

we apply a spatial lag model to the OLS speci�cation.52 Corresponding results con-

�rm previous �ndings and reveal highly signi�cant positive elasticities for Density,

highly signi�cant negative elasticities for Distance, highly signi�cant evidence for a

quadratic dependence of price dispersion on Coms as well as a signi�cant positive

relationship between Nights and the level of price dispersion.53

Finally, we also test the robustness of our results and run regressions with an alterna-

tive set of search cost proxies leaving the remaining regression model in equation (4.6)

unchanged. Accordingly, the proxy for the ratio of informed consumers in the market

(Coms) is substituted with the share of the total number of commuters (number of

people commuting out and into the municipality) relative to the number of inhabi-

tants in the respective administrative unit, denoted ComsTot. Further, the measure

for the share of uninformed gasoline consumers (Nights) is replaced with the proxy

NightsC, denoting the number of overnight stays devided by the total number of

commuters in a municipality.54 In addition to the residual derivatives log(u2
it) and

51Again test results are provided for di�erent weights matrices, cf. table 4.11 in the appendix.
52The spatial lag model takes the form

log(u2
it) = ρ

ntT∑
j=1

wij log(u2
jt) + βX +

T∑
t=1

χtT imet + κit (4.7)

with the same set of covariatesX = {Competitioni, Searchit, Locationi, Stationi} as in equation
(4.6) and a spatial weights matrix (W )ij = wij (cp. equation (4.3) and table 4.6, regression
results are reported for weights matrices W , W2 and W10 in non row standardized form).
Technically, the SAR model is implemented as a Generalized Spatial Two Stage Least Square
model (GS2SLS) in R via the spdep package. The estimator �ts the regression model by using
spatially lagged X variables as instruments for the spatially lagged dependent variable with ρ
as the coe�cient of spatial dependence, for details see Kelejian & Prucha (1998).

53Accordingly, coe�cients of log(Density) and log(Distance) across various speci�cations are signif-
icant at the 1% level or better (all standard errors are subject to a White-H0 heteroscedasticity
correction). In addition, using the weights matrix W the turning point for Coms is given at
0.4673 with 80.75% of the observations in the decreasing part of the parabola. For details see
table 4.12 in the appendix.

54For descriptives of the variables see also table 4.3.
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log(ν2
it), we also introduce an alternative dispersion measure ωit accounting for ob-

served and unobserved price di�erences due to seller heterogeneity.55 In line with

previous results estimated elasticities for Density and Distance across alternative

speci�cations are signi�cant at the 1% level or better with expected signs. Likewise,

the linear and quadratic coe�cients of ComsTot and ComsTot2 are signi�cant and

support the hypothesis of an inverse U-shaped form of price dispersion with respect

to the share of informed consumers in the market. Further, coe�cient estimates

on NightsC indicate a signi�cant positive linear relationship between the share of

uninformed consumers and the level of price dispersion.56

4.5 Conclusion

This research paper examines determinants of the empirical diesel price distribution

in the Austrian retail gasoline market. Particularly, we speci�ed a model to test the

relationship between the mean price and price variance with a set of spatial com-

petition proxies and a set of search cost proxies referring to two distinct consumer

groups. Our work is motivated by the fact that predictions by search models highlight

the importance of information di�erentials among consumers for the existence and

comparative static behavior of the equilibrium price distribution. In addition, model

predictions and the empirical evidence on the impact of entry competition, in terms

of the number of sellers, on the average price and price dispersion is not straight-

forward. Consequently, our contribution focuses on the question how the fraction of

informed and uninformed consumers in the gasoline market relate to the mean price

and price variance. Further, we provide evidence for the statistical correlation of the

mean and variance with the number of competitors in the local market periphery of

55With reference to Lach (2002) (p. 436f) and Lewis (2008) (p. 658f) we estimate a two stage panel
regression on gasoline prices using seller-�xed e�ects and time-�xed e�ects to control for any
price di�erences resulting from observed and unobserved heterogeneities in time. Consequently,
the remaining residuals are used in the dispersion analysis and are denoted ωit. Formally:

pit = α+

I∑
i=1

ζiStationi +

T∑
t=1

χtT imet + ωit

56For details see regression table 4.13 in the appendix. The turning point for ComsTot in regressions
using the OLS (GMM) residual derivative log(u2

it) (log(ν2
it)) as the dependent variable amounts

to 0.8297 (0.7573) with 1.82% (2.11%) of the observations lying in the decreasing part of the
inverse U (columns 2 and 4). Corresponding results for estimations on the dispersion measure
log(ω2

it) yield a maximum for ComsTot at a share of 0.6327 with a comparably higher percentage
of observations (5.24%) in the upper interval (column 6). In contrast, the signi�cant coe�cient
on the squared variable NightsC in the regressions on log(ω2

it) does not support predictions
on a decreasing e�ect of the number of uninformed consumers on price dispersion since the
sample of observations in the respective interval (0.07%) is so small it can practically be ignored.
Eventually, the alternative speci�cations in table 4.13 are also tested with a spatial lag model
structurally speci�ed according to equation 4.7. Respective results are given in table 4.14 in the
appendix and support all previous �ndings.
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a station as well as with the distance between nearest rivals.

In the analysis a two-step procedure is applied. Firstly, the price function is esti-

mated to identify the impact of price determinants, most notably, the competition

and search cost variables, and to e�ectively control for further observed station and

product characteristics. In turn, the price residuals are interpreted as a measure for

unexplained price di�erences free of time, store and spatial e�ects. Thus, in the sec-

ond step the squared price residuals are regressed on a set of covariates to investigate

the impact of consumer fractions with di�ering information sets and competition in-

tensity on price dispersion. Besides the usual OLS techniques, spatial econometric

tools are used in the analysis to control for spatial spillover e�ects in the price resid-

uals. Particularly, we apply a Spatial Error Model (SEM) in the estimation of price

levels and pertinent tests (LM and Moran's I) to suggest a proper model speci�-

cation. In addition, to check for robustness we conduct the SEM estimations with

di�erent kinds of weighting matrices.

Econometric results are in line with theoretical predictions and con�rm our pro-

posed hypotheses.57 As implied by spatial competition models and search models

the fraction of informed consumers, represented by the share of out-commuters to

the employed in a municipality (Coms), is found to be negatively correlated with the

mean price (Hypothesis 1.1). Likewise, �ndings reveal a positive correlation between

the quotient of overnight stays with the number of inhabitants in a municipality

(Nights) and the mean price. This indirectly supports predictions of the positive

impact of the level of search costs on average prices (Hypothesis 1.2). Arguably,

visitors in a particular region or municipality lack knowledge of sellers who charge

especially high or low prices. As a consequence, they are considered to be uninformed

consumers and associated with high costs of search to compare sellers prices.

Our main result refers to predictions from the search models of Varian (1980), Stahl

(1989) and Waldeck (2008). Accordingly, price dispersion is expected to show a non-

monotonic relationship with the fraction of informed consumers in the market. In-

deed, regression results con�rm that price dispersion, as measured by the squared

price residuals, is characterized by an inverse U-shaped form with respect to Coms

(Hypothesis 1.3).58 Commuters arguably are attentive towards price changes in local

markets and could easily identify stations o�ering low prices on their daily commut-

ing paths. Thus, consistent with theoretical considerations, price dispersion initially

increases as the fraction of commuters rises and starts to decline when the fraction

of these informed consumers exceeds about 43%.

As regards the relation of the fraction of uninformed consumers with price dispersion,

57See Subsection 4.2.3.
58Brown & Goolsbee (2002) provide similar results in their study that examines the impact the

internet has on the relation between consumer search behavior and term-life insurance pricing. To
our knowledge the relationship between the fraction of informed consumers and price dispersion
in the gasoline retailing industry has not been examined yet.
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a positive correlation between Nights and the price variance obtains. Varian (1980)

initially argues that in equilibrium an increase in the share of uninformed consumers

causes the average price to rise and the expected minimum price, i.e. the price paid

by the informed consumers, to decline.59 Accordingly, price disperison would increase

with an increasing proportion of uninformed consumers in the market. By contrast,

Morgan & Sefton (2001) revise this �nding and prove that an increase in the fraction

of uninformed consumers in Varian's model unambigously leads to an increase in

the expected minimum price. They argue that a higher proportion of uninformed

consumers induces more �rms to enter the market which in turn causes two con-

�icting e�ects. An increase in the number of sellers raises incentives to focus on the

high price segment, as a consequence average prices increase (cf. Hypothesis 1.2). In

contrast an increase in the number of �rms enlarges the choice set of the informed

consumers putting pressure on minimum prices. In sum, they show that the �rst ef-

fect dominates the latter. However, the behavior of price dispersion has eluded their

proof. Now, our results suggest an increase in the mean price and price variance as

the fraction of uninformed consumers increases, other factors constant. Referring to

the �ndings of Morgan & Sefton (2001) this suggests that the increase in the upper

price segment is stronger than in the lower price segment. Further, provided that the

fraction of uninformed consumers is associated with a high level of search costs, our

results indirectly support predictions of Stahl (1989) and Waldeck (2008).60

Intuition suggests that entry of an additional �rm in a �xed local market area im-

pedes spatial di�erentiation among stations and thus reduces the average distance

between nearest neighbours. As a consequence, we use two measures to capture the

potential e�ect of increased competition: the number of competitors in a circular

range of 3km around each station and the distance to its closest competitor. Accord-

ing to predictions of spatial competition models an increase in competition intensity

is associated with a decrease in the mean market price and price dispersion whereas

consumer search models forcefully argue that higher competition leads to an increase

in average market prices (predictions on the behavior of price dispersion remain am-

bigous). Thus, as regards our variable set we would expect consistent results in the

case of both competition proxies having opposite signs (Hypothesis 2.2 and Hypoth-

esis 2.3).

Concerning the price levels, our �ndings support hypothesis of spatial competition

between stations. Firstly, a signi�cant negative relationship between the number of

sellers and the mean price obtains. Secondly, the distance measure is found to be

59� [...] pmin will decrease with M - the uninformed consumers confer a bene�cial externality on
the informed consumers.� p. 657.

60Cp. Hypothesis 1.4. Stahl shows that as search costs decrease the equilibrium price distribution
degenerates to the competitive price, i.e. the average price and price dispersion decrease. Waldeck
proposes that price dispersion (variance of the equilibrium distribution) increases as search costs
increase in a setting of sequential search and the reservation price endogenized (cf. Proposition
19, p. 355).
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signi�cantly positively correlated with the mean. Further, these results are in line

with previous work on spatial competition analysis in the Austrian gasoline mar-

ket. Most notably, Clemenz & Gugler (2006) provide evidence that an increase in

station density reduces average prices. As competition proxies they use the number

of stations per square kilometer and the Her�ndahl index as a measure of market

concentration.

With respect to the relationship between price dispersion and entry competition re-

sults suggest a signi�cant positive correlation of price variance with the number of

sellers and a signi�cant negative correlation of the variance with the distance mea-

sure. In sum, the comparative static behavior of the price distribution reveals that

as competition increases the mean price decreases and dispersion increases. In con-

text with predictions from search models this shift can be interpreted by a higher

propensity of sellers to focus on the lower price segment whereas at the same time

incentives to extract surplus from uninformed consumers remain intact. Generally,

search models emphasize that sellers price in mixed strategies and tend to extreme

pricing patterns. Thus, an increase in price dispersion is re�ected in a shift of the

probability mass towards the upper and lower bounds of the distribution. Now, re-

sults indicate that a higher number of sellers and closer proximity between stations

leads to a lower mean price and higher dispersion. Consequently, these �ndings sug-

gest that increased competition implies a downward shift in the probability mass and

highlights that pricing activities in the lower segment become more frequent. Refer-

ring to the discussion of search models in section 4.2 this outcome of the competition

analysis is partly in line with predictions of Janssen & Moraga-Gonzalez (2004) for

the high search intensity mode.61 Further, theoretical evidence for a negative relation

between the number of sellers and the average price and a positive relation between

the number of sellers and price variance is given in the model of Carlson & McAfee

(1983).

In conclusion, our empirical analysis highlights that both competition and the dis-

semination of market information among consumers have a critical impact on the

price distribution. It is shown that an increase in the fraction of (un)informed con-

sumers leads to a decrease (increase) in the mean market price. Further, the course of

price dispersion is determined by the fraction of informed consumers and accordingly

follows an inverse U-shaped form whereas an increase in the fraction of uninformed

consumers implies higher price dispersion. In turn, the e�ect of increased competi-

tion intensity is twofold. First, in line with previous empirical research the behavior

of price levels supports predictions of spatial competition models. Speci�cally, an in-

crease in the number of sellers and a decrease in the distance between nearest rivals

implies a decrease in the mean price. Second, price dispersion signi�cantly increases

as competition intensi�es. Together with the behavior of the mean price this �nding

61The empirical evidence supports the case of a small initial number of �rms in the market.
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emphasizes the interrelation between competition, consumers' search behavior and

�rms' pricing strategies.

Referring to the triangulation of consumer search, competition and strategic pricing

future directions for empirical research might address predictions of extended ver-

sions of the model by Stahl (1989). In particular, it would be interesting to examine

the relationship between search intensity, for instance in terms of purchase frequency,

and the degree of market competition. Intuitively, a higher number of �rms would

be associated with a positive or negative change in search behavior. This would give

further insights in the mechanisms and e�ects increased competition has on the equi-

librium price distribution. Further, theoretical evidence is found that for the case of

consumers opting out of the market (if search costs become considerably high and

net utility becomes negative) relations between the number of �rms, search costs and

the fraction of shoppers with the expected price deviate from predictions of classical

models (cp. Janssen et al. (2005)). Consequently, it would be interesting to test these

alternative model predictions in an appropriate setting.
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Appendix

Table 4.6: Summary of di�erent spatial weights matrices used in spatial price regressions

W W2 W10

Neighbourhood criterion: Nearest neighbour
plus all stations
in a circular range
of 3km

Nearest neighbour
plus all stations
in a circular range
of 3km

10 nearest
neighbours

Number of stations: 25, 150 25, 150 25, 150
Number of nonzero links: 113, 864 113, 864 251, 489*
Symmetric: No No No
Row standardized: Yes Yes Yes
Weights: wij wij = 1

dij
wij = 1

(dij)2
wij = 1

dij

Min(wij): 0.0001129 0.000003 0.001588
Max(wij): 1 1 0.967300
Mean(wij): 0.2209 0.2209 0.1
Median(wij): 0.0889 0.0597 0.0779
Percentage of nonzero weights: 0.018 0.018 0.040

(*) Due to missing price information two stations had a maximum of eight and seven stations had a maximum of nine

neighbours.

Table 4.7: Summary of test statistics of the standard OLS price speci�cation for di�erent
spatial weights matrices

W W2 W10
Statistic p-value Statistic p-value Statistic p-value

LM-Err 14,682.41 < 2.20e-16 13.215.28 < 2.20e-16 36,556.21 < 2.20e-16
LM-Lag 14,248.40 < 2.20e-16 12.873.88 < 2.20e-16 35,385.22 < 2.20e-16
RLM-Err 457.93 < 2.20e-16 366.83 < 2.20e-16 1,231.70 < 2.20e-16
RLM-Lag 23.92 1.01e-06 25.43 4.59e-07 60.70 6.66e-15
Moran`s I 0.78 < 2.20e-16 0.78 < 2.20e-16 0.72 < 2.20e-16

Figure 4.1: Moran`s I plot of standard OLS speci�cation for weights matrix W
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Table 4.8: Price function regressions (log-log) without log(PopDens) variable

Independent: Dependent: log(pd)
Weights Matrix: W

OLS GMM OLS GMM OLS GMM
Coe�cient Coe�cient Coe�cient Coe�cient Coe�cient Coe�cient
(t-value) (z-value) (t-value) (z-value) (t-value) (z-value)

Intercept -0.3888 -0.3972 -0.3875 -0.3943 -0.3899 -0.3956
(123.19) (143.44) (121.77) (135.65) (115.77) (128.77)

log(Density) -0.0046 -0.0026 -0.0048 -0.0029 -0.0045 -0.0026
(11.70) (7.20) (12.04) (7.77) (9.97) (5.81)

log(Distance) 0.0005 0.0003 0.0005 0.0002
(2.22) (1.71) (1.95) (1.42)

Monop 0.0129 0.0073
(5.52) (4.70)

Coms -0.0313 -0.0141 -0.0257 -0.0150 -0.0183 -0.0105
(13.27) (7.19) (8.67) (7.57) (5.61) (4.83)

(W )(Coms) -0.0088 -0.0071 -0.0113 -0.0080
(3.05) (3.27) (3.87) (3.63)

(Monop)(Coms) -0.0284 -0.0158
(5.60) (4.83)

log(Nights) 0.0021 0.0019 0.0021 0.0018 0.0019 0.0017
(4.64) (4.39) (4.52) (4.24) (4.11) (3.88)

100kmh 0.0124 0.0144 0.0124 0.0141 0.0127 0.0143
(6.35) (13.99) (6.31) (13.83) (6.44) (13.86)

130kmh 0.0391 0.0426 0.0388 0.0424 0.0391 0.0426
(18.47) (38.02) (18.34) (37.94) (18.45) (38.10)

Access 0.0020 0.0012 0.0020 0.0012 0.0020 0.0013
(3.60) (3.56) (3.56) (3.56) (3.67) (3.70)

Open24h 0.0036 0.0040 0.0035 0.0039 0.0035 0.0039
(4.83) (9.55) (4.69) (9.42) (4.68) (9.29)

Wash -0.0026 -0.0025 -0.0027 -0.0025 -0.0027 -0.0026
(3.95) (6.77) (4.06) (6.87) (4.05) (6.96)

Service 0.0021 0.0056 0.0021 0.0056 0.0020 0.0055
(2.42) (11.92) (2.48) (11.93) (2.27) (11.70)

Leisure -0.0036 -0.0018 -0.0035 -0.0018 -0.0035 -0.0019
(5.68) (4.67) (5.65) (4.72) (5.65) (4.96)

Microwave 0.0019 0.0020 0.0019 0.0019 0.0019 0.0019
(2.99) (5.25) (3.02) (5.20) (2.91) (5.17)

Creditcards 0.0030 0.0050 0.0029 0.0050 0.0029 0.0049
(2.46) (6.98) (2.40) (6.98) (2.38) (6.82)

log(Plotsize) 0.0034 0.0021 0.0035 0.0022 0.0034 0.0021
(4.26) (4.34) (4.39) (4.48) (4.33) (4.32)

lambda 0.613 0.614 0.613
(112.05) (112.20) (112.10)

Adj.R2 0.803 0.804 0.804
Obs 25,150 25,150 25,150 25,150 25,150 25,150
Median(uit) 0.0021 0.0020 0.0021
S.E.(uit) 0.0365 0.0365 0.0365
Median(νit) 0.0024 0.0023 0.0023
S.E.(νit) 0.0230 0.0229 0.0229

Omitted brand category = Unbranded

Omitted state category = Vienna

Omitted time category = 199910

(Coe�cients for the time-, state- and brand-�xed e�ects have been omitted)

White heteroscedasticity correction (H0) is applied to OLS standard errors.

(Absolute values of t-statistic and z-statistic in parentheses)
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Table 4.9: GMM Price function regressions (log-log) with weights matrices W2 and W10

Independent: Dependent: log(pd)
Weights Matrix: W2 Weights Matrix: W10

GMM GMM GMM GMM GMM GMM
Coe�cient Coe�cient Coe�cient Coe�cient Coe�cient Coe�cient
(z-value) (z-value) (z-value) (z-value) (z-value) (z-value)

Intercept -0.3900 -0.3872 -0.3840 -0.3883 -0.3881 -0.3918
(119.53) (115.28) (109.75) (94.78) (93.97) (91.98)

log(Density) -0.0022 -0.0025 -0.0023 -0.0021 -0.0021 -0.0018
(5.65) (6.38) (4.89) (6.06) (6.04) (4.41)

log(Distance) 0.0003 0.0002 0.0005 0.0005
(1.53) (1.19) (3.13) (3.06)

Monop 0.0068 0.0090
(4.28) (6.11)

Coms -0.0174 -0.0181 -0.0134 -0.0142 -0.0140 -0.0084
(8.32) (8.63) (5.69) (7.78) (7.47) (3.97)

(W )(Coms) -0.0079 -0.0087 -0.0009 -0.0017
(3.64) (3.95) (0.51) (0.88)

(Monop)(Coms) -0.0146 -0.0177
(4.35) (5.76)

log(Nights) 0.0016 0.0016 0.0015 0.0015 0.0015 0.0014
(3.72) (3.58) (3.40) (3.92) (3.90) (3.52)

log(PopDens) -0.0009 -0.0008 -0.0006 -0.0008 -0.0008 -0.0006
(3.63) (3.44) (2.63) (3.79) (3.75) (2.56)

100kmh 0.0143 0.0141 0.0143 0.0117 0.0117 0.0119
(13.89) (13.71) (13.75) (11.76) (11.74) (11.95)

130kmh 0.0424 0.0422 0.0424 0.0422 0.0422 0.0425
(37.53) (37.41) (37.57) (39.49) (39.45) (39.76)

Access 0.0011 0.0011 0.0012 0.0009 0.0009 0.0010
(3.07) (3.07) (3.21) (2.77) (2.77) (2.95)

Open24h 0.0037 0.0037 0.0037 0.0041 0.0041 0.0041
(8.86) (8.72) (8.68) (10.26) (10.25) (10.25)

Wash -0.0025 -0.0026 -0.0026 -0.0022 -0.0022 -0.0022
(6.70) (6.81) (6.90) (6.15) (6.17) (6.20)

Service 0.0056 0.0056 0.0055 0.0048 0.0048 0.0047
(11.79) (11.78) (11.58) (10.80) (10.81) (10.54)

Leisure -0.0018 -0.0018 -0.0019 -0.0015 -0.0015 -0.0015
(4.74) (4.78) (4.99) (4.15) (4.14) (4.32)

Microwave 0.0020 0.0020 0.0020 0.0018 0.0018 0.0017
(5.41) (5.34) (5.29) (4.97) (4.98) (4.86)

Creditcards 0.0049 0.0048 0.0048 0.0052 0.0052 0.0052
(6.73) (6.72) (6.61) (7.63) (7.61) (7.63)

log(Plotsize) 0.0023 0.0023 0.0023 0.0022 0.0022 0.0021
(4.57) (4.72) (4.58) (4.80) (4.81) (4.60)

lambda 0.596 0.596 0.596 0.808 0.808 0.808
(110.50) (110.63) (110.52) (80.99) (80.95) (80.91)

Obs 25,150 25,150 25,150 25,150 25,150 25,150
Median(νit) 0.0023 0.0023 0.0022 0.0021 0.0021 0.0018
S.E.(νit) 0.0231 0.0231 0.0231 0.0207 0.0207 0.0207

Omitted brand category = Unbranded

Omitted state category = Vienna

Omitted time category = 199910

(Coe�cients for the time-, state- and brand-�xed e�ects have been omitted)

(Absolute values of z-statistic in parentheses)
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Table 4.10: Price function regressions (lin-lin)

Independent: Dependent: pd
Weights Matrix: W

OLS GMM OLS GMM OLS GMM
Coe�cient Coe�cient Coe�cient Coe�cient Coe�cient Coe�cient
(t-value) (z-value) (t-value) (z-value) (t-value) (z-value)

Intercept 0.6746 0.6684 0.6753 0.6705 0.6765 0.6717
(283.61) (318.40) (280.16) (305.85) (284.25) (307.35)

Density -0.0003 -0.0002 -0.0003 -0.0002 -0.0003 -0.0002
(8.29) (5.03) (8.67) (5.63) (9.00) (6.12)

Distance 0.0010 0.0006 0.0010 0.0006
(11.16) (9.87) (10.99) (9.78)

Monopy 0.0134 0.0072
(8.21) (6.70)

Coms -0.0221 -0.0106 -0.0185 -0.0110 -0.0134 -0.0079
(13.29) (7.44) (8.54) (7.73) (5.64) (5.04)

(W )(Coms) -0.0056 -0.0054 -0.0078 -0.0064
(2.61) (3.34) (3.60) (3.95)

(Monop)(Coms) -0.0223 -0.0120
(5.90) (4.86)

Nights 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
(3.48) (3.66) (3.54) (3.74) (3.31) (3.56)

PopDens -5.0e-07 -3.0e-07 -4.8e-07 -3.0e-07 -4.6e-07 -2.7e-07
(6.07) (3.85) (5.82) (3.87) (5.52) (3.53)

100kmh 0.0104 0.0112 0.0104 0.0111 0.0107 0.0112
(7.03) (14.60) (6.99) (14.45) (7.19) (14.68)

130kmh 0.0311 0.0328 0.0309 0.0327 0.0314 0.0331
(19.18) (39.19) (19.08) (39.14) (19.33) (39.61)

Access 0.0013 0.0008 0.0012 0.0008 0.0013 0.0009
(3.08) (3.13) (3.04) (3.09) (3.17) (3.36)

Open24h 0.0025 0.0029 0.0024 0.0029 0.0025 0.0029
(4.39) (9.27) (4.30) (9.15) (4.47) (9.21)

Wash -0.0019 -0.0019 -0.0020 -0.0020 -0.0020 -0.0020
(3.95) (6.89) (4.05) (6.99) (4.04) (7.07)

Service 0.0015 0.0043 0.0015 0.0042 0.0016 0.0043
(2.36) (12.07) (2.42) (12.07) (2.47) (12.20)

Leisure -0.0028 -0.0014 -0.0028 -0.0015 -0.0027 -0.0015
(5.98) (5.12) (5.97) (5.18) (5.87) (5.17)

Microwave 0.0012 0.0014 0.0012 0.0014 0.0011 0.0014
(2.51) (5.14) (2.54) (5.07) (2.37) (4.93)

Creditcards 0.0020 0.0036 0.0019 0.0036 0.0020 0.0036
(2.22) (6.67) (2.15) (6.64) (2.22) (6.72)

log(Plotsize) 0.0027 0.0020 0.0028 0.0020 0.0023 0.0017
(4.62) (5.38) (4.69) (5.52) (4.00) (4.55)

lambda 0.608 0.608 0.608
(110.20) (110.35) (110.14)

Adj.R2 0.820 0.820 0.820
Obs 25,150 25,150 25,150 25,150 25,150 25,150
Median(uit) 0.0012 0.0012 0.0012
S.E.(uit) 0.0270 0.0270 0.0270
Median(νit) 0.0014 0.0014 0.0013
S.E.(νit) 0.0171 0.0171 0.0171

Omitted brand category = Unbranded

Omitted state category = Vienna

Omitted time category = 199910

(Coe�cients for the time-, state- and brand-�xed e�ects have been omitted)

White heteroscedasticity correction (H0) is applied to OLS standard errors.

(Absolute values of t-statistic and z-statistic in parentheses)
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Table 4.11: Summary of test statistics of the standard OLS price dispersion model (depen-
dent: log(u2it)) for di�erent weights matrices

W W2 W10
Statistic p-value Statistic p-value Statistic p-value

LM-Err 4,999.55 < 2.20e-16 4,580.66 < 2.20e-16 11,115.33 < 2.20e-16
LM-Lag 5,036.85 < 2.20e-16 4,610.88 < 2.20e-16 11,186.95 < 2.20e-16
RLM-Err 4.44 0.04 2.87 0.09 1.94 0.16
RLM-Lag 41.75 < 2.20e-16 33.08 < 2.20e-16 73.57 < 2.20e-16
Moran`s I 0.45 < 2.20e-16 0.46 < 2.20e-16 0.40 < 2.20e-16

Table 4.12: Results of price dispersion regressions for di�erent weights matrices estimated
by S2SLS

Independent: Dependent: log(u2
it)

(Weights Matrix: W ) (Weights Matrix: W2) (Weights Matrix: W10)

Coe�cient Coe�cient Coe�cient Coe�cient Coe�cient Coe�cient
(z-value) (z-value) (z-value) (z-value) (z-value) (z-value)

Intercept -8.0506 -8.3234 -8.0714 -8.3536 -8.0632 -8.3406
(51.67) (39.69) (51.79) (39.87) (51.65) (39.67)

log(Density) 0.0943 0.1080 0.1014 0.1153 0.1004 0.1143
(3.25) (3.63) (3.48) (3.86) (3.47) (3.84)

log(Distance) -0.0560 -0.0509 -0.0448 -0.0340 -0.0510 -0.0452
(3.82) (3.40) (3.03) (2.66) (3.07) (2.67)

Coms 0.3218 1.2830 0.3314 1.3288 0.3295 1.3045
(2.36) (2.27) (2.43) (2.35) (2.42) (2.31)

(Coms)2 -1.3728 -1.4251 -1.3925
(1.75) (1.82) (1.78)

Nights 0.0065 0.0103 0.0065 0.0104 0.0065 0.0104
(3.05) (2.65) (3.04) (2.67) (3.04) (2.65)

(Nights)2 -3.64e-05 -3.74e-05 -3.69e-05
(1.25) (1.28) (1.26)

log(PopDens) -0.0899 -0.0852 -0.0912 -0.0863 -0.0904 -0.0857
(5.56) (5.22) (5.64) (5.28) (5.59) (5.25)

100kmh 0.2941 0.2928 0.2944 0.2931 0.2953 0.2939
(2.95) (2.94) (2.96) (2.95) (2.97) (2.95)

130kmh 0.6077 0.6082 0.6046 0.6053 0.6076 0.6078
(6.99) (7.00) (6.96) (6.97) (6.98) (6.98)

rho 0.0002 0.0002 -9.32e-08 -1.21e-08 0.0354 0.0301
(2.39) (2.34) (0.06) (0.01) (0.63) (0.54)

Obs 25,150 25,150 25,150 25,150 25,150 25,150
Median(κit) 0.4653 0.4640 0.4670 0.4655 0.4653 0.4647
S.E.(κit) 2.173 2.174 2.174 2.174 2.173 2.173

Weight matrices not row standardized

Omitted brand category = Unbranded

Omitted state category = Vienna

Omitted time category = 199910

(Coe�cients for the time-, state- and brand-�xed e�ects have been omitted)

White heteroscedasticity correction (H0) is applied to standard errors.

(Absolute values of z-statistic in parentheses)
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Table 4.13: OLS price dispersion regressions with alternative search cost proxies

Independent: Dependent: log(u2
it) Dependent: log(ν2

it) Dependent: log(ω2
it)

(OLS Residuals) (GMM Residuals) (2WFE Residuals)

Coe�cient Coe�cient Coe�cient Coe�cient Coe�cient Coe�cient
(t-value) (t-value) (t-value) (t-value) (t-value) (t-value)

Intercept -7.9140 -8.0716 -7.8535 -7.9753 -9.9591 -10.2480
(57.05) (51.16) (57.39) (51.21) (36.52) (33.68)

Density 0.0878 0.0934 0.1071 0.1120 0.1047 0.1161
(3.22) (3.41) (3.92) (4.08) (3.14) (6.12)

Distance -0.0404 -0.0376 -0.0239 -0.0213 -0.0427 -0.0368
(2.86) (2.64) (1.64) (1.45) (2.74) (2.38)

ComsTot 0.3475 1.0041 0.2286 0.7980 0.2246 1.5442
(3.19) (2.74) (2.08) (2.21) (2.06) (3.63)

(ComsTot)2 -0.6051 -0.5269 -1.2204
(1.89) (1.66) (3.35)

NightsC 0.0009 0.0020 0.0011 0.0017 0.0010 0.0026
(2.70) (2.58) (3.51) (2.10) (2.72) (2.89)

(NightsC)2 -1.39e-06 -6.99e-07 -1.85e-06
(1.55) (0.91) (1.82)

PopDens -0.1068 -0.1081 -0.1103 -0.1123 -0.0803 -0.0845
(6.43) (6.46) (6.82) (6.90) (4.09) (4.29)

100kmh 0.2992 0.2962 0.2301 0.2269 0.0851 0.0779
(3.00) (2.98) (2.03) (2.00) (0.80) (0.73)

130kmh 0.6108 0.6073 0.4633 0.4584 0.0025 0.0080
(7.03) (6.99) (5.19) (5.13) (0.02) (0.08)

Adj.R2 0.101 0.101 0.107 0.107 0.055 0.055
Obs 25,150 25,150 25,150 25,150 25,150 25,150
Median(ηit) 0.465 0.466 0.446 0.443 0.458 0.459
S.E.(ηit) 2.174 2.173 2.158 2.158 2.675 2.675

Omitted brand category = Unbranded

Omitted state category = Vienna

Omitted time category = 199910

(Coe�cients for the time-, state- and brand-�xed e�ects have been omitted)

White heteroscedasticity correction (H0) is applied to standard errors.

(Absolute values of t-statistic in parentheses)
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Table 4.14: S2SLS price dispersion regressions with alternative search cost proxies

Independent: Dependent: log(u2
it) Dependent: log(ν2

it) Dependent: log(ω2
it)

(OLS Residuals) (GMM Residuals) (2WFE Residuals)

Coe�cient Coe�cient Coe�cient Coe�cient Coe�cient Coe�cient
(z-value) (z-value) (z-value) (z-value) (z-value) (z-value)

Intercept -7.8978 -8.0486 -7.8297 -7.9413 -9.9403 -10.2230
(56.88) (50.94) (57.16) (50.91) (36.50) (33.65)

Density 0.0812 0.0868 0.0973 0.1019 0.0972 0.1087
(2.96) (3.15) (3.56) (3.72) (2.91) (3.22)

Distance -0.0509 -0.0479 -0.0392 -0.0366 -0.0544 -0.0479
(3.44) (3.21) (2.59) (2.40) (3.29) (2.92)

ComsTot 0.3257 0.9448 0.1968 0.7107 0.2005 1.4819
(2.98) (2.58) (1.79) (1.96) (1.83) (3.49)

(ComsTot)2 -0.5697 -0.4749 -1.1833
(1.78) (1.49) (3.25)

NightsC 0.0010 0.0020 0.0011 0.0017 0.0010 0.0026
(2.74) (2.58) (3.57) (2.10) (2.76) (2.89)

(NightsC)2 -1.37e-06 -6.75e-07 -1.83e-06
(1.54) (0.88) (1.81)

PopDens -0.1047 -0.1060 -0.1073 -0.1091 -0.0780 -0.0822
(6.30) (6.32) (6.64) (6.70) (3.97) (4.17)

100kmh 0.2989 0.2962 0.2298 0.2269 0.0850 0.0780
(3.00) (2.98) (2.03) (2.00) (0.80) (0.73)

130kmh 0.6137 0.6105 0.4675 0.4632 0.0057 0.0048
(7.07) (7.03) (5.23) (5.18) (0.05) (0.04)

rho 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001
(2.21) (2.14) (2.49) (2.44) (2.73) (2.52)

Obs 25,150 25,150 25,150 25,150 25,150 25,150
Median(κit) 0.462 0.465 0.446 0.444 0.456 0.458
S.E.(κit) 2.173 2.173 2.157 2.157 2.675 2.674

Weights matrix W (not row-standardized) is applied in S2SLS regressions.

Omitted brand category = Unbranded

Omitted state category = Vienna

Omitted time category = 199910

(Coe�cients for the time-, state- and brand-�xed e�ects have been omitted)

White heteroscedasticity correction (H0) is applied to standard errors.

(Absolute values of z-statistic in parentheses)
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