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Abstract
Correlated ordinal data typically arises from multiple measurements on a collection
of subjects. Motivated by an application in credit risk, where multiple credit rating
agencies assess the creditworthiness of a firm on an ordinal scale, we consider mul-
tivariate ordinal regression models with a latent variable specification and correlated
error terms. Two different link functions are employed, by assuming a multivariate
normal and a multivariate logistic distribution for the latent variables underlying the
ordinal outcomes. Composite likelihood methods, more specifically the pairwise and
tripletwise likelihood approach, are applied for estimating themodel parameters.Using
simulated data sets with varying number of subjects, we investigate the performance of
the pairwise likelihood estimates and find them to be robust for both link functions and
reasonable sample size. The empirical application consists of an analysis of corporate
credit ratings from the big three credit rating agencies (Standard & Poor’s, Moody’s
and Fitch). Firm-level and stock price data for publicly traded US firms as well as an
unbalanced panel of issuer credit ratings are collected and analyzed to illustrate the
proposed framework.

Keywords Composite likelihood · Credit ratings · Financial ratios · Latent variable
models · Multivariate ordered probit · Multivariate ordered logit

1 Introduction

The analysis of univariate or multivariate ordinal outcomes is an important task in
various fields of research from social sciences to medical and clinical research. A
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typical setting where correlated ordinal outcomes arise naturally is when several raters
assign different ratings on a collection of subjects. In the financial markets literature
ordinal data often appears in the form of credit ratings (e.g., Cantor and Packer 1997;
Blume et al. 1998; Bongaerts et al. 2012; Becker and Milbourn 2011; Alp 2013).
Credit ratings are ordinal rankings of credit risk, i.e., the risk of a firm not being able
to meet its financial obligations. Such credit ratings can be either produced by banks
which use internal rating models or are provided by credit ratings agencies (CRAs).
CRAs like Standard and Poor’s (S&P), Moody’s and Fitch play a significant role in
financial markets, with their credit ratings being one of the most common and widely
used sources of information about credit quality.

The CRAs provide in their issuer ratings a forward-looking opinion on the total
creditworthiness of a firm. In evaluating credit quality, quantitative and qualitative
criteria are employed. The quantitative analysis relies mainly on the assessment of
market conditions and on a financial analysis. Key financial ratios, built from market
information and financial statements, are used to evaluate several aspects of a firm’s
performance (according to Puccia et al. 2013, such aspects are profitability, leverage,
cash-flow adequacy, liquidity, and financial flexibility). In credit risk modeling, the
literature on credit ratings so far usually consideredmodels for each CRA individually.
For example, Blume et al. (1998) as well as Alp (2013) use ordinal regression models
with financial ratios as explanatory variables to obtain insights into the rating behavior
of S&P.

In general, the ratings from the big three CRAs do not always coincide and they
sometimes differ by several rating notches due to multiple reasons. First, S&P and
Fitch use different rating scales compared toMoody’s. Second, S&PandFitch consider
probabilities of default as the key measure of creditworthiness, while Moody’s ratings
also incorporate information about recovery rates in case of default. Third, given
the fact that the rating and estimation methodology of the CRAs is not completely
disclosed, there is ambiguity about whether the CRAs give different importance to
different covariates in their analysis. In view of these facts, a multivariate analysis,
where credit ratings are considered as dependent variables and firm-level and market
information as covariates, provides useful insights into heterogeneity among different
raters and into determinants of such credit ratings.

Tomotivate this studywe focus on a data set of US corporates over the period 1999–
2013 forwhich at least one corporate credit rating from the big three CRAs is available.
For this purpose we propose the use of multivariate ordered probit and logit regression
models. The proposed models incorporate non-standard features, such as different
threshold parameters and different regression coefficients for each outcome variable
to accommodate for the different scales and methodologies of the CRAs. Aside from
the inferred relationship between the outcomes and various relevant covariates based
on the regression coefficients, multivariate ordinal regression models allow inference
on the agreement between the different raters. Using the latent variable specification,
where each ordinal variable represents a discretized version of an underlying latent
continuous random variable, association can be measured by the correlation between
these latent variables. The complexity of the model can further be increased by letting
the correlation parameters depend on covariates. In our application we only consider
business sectors as relevant covariates for the correlation structure.
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Estimation of the multivariate ordered probit and logit models is performed using
composite likelihood methods. These methods reduce the computational burden by
replacing the full likelihood by a product of lower-dimensional component likelihoods.
For the logit link we employ the multivariate logistic distribution of O’Brien and
Dunson (2004) which is based on a t-copula with fixed degrees of freedom and has
marginal logistic distributions. The use of the t-copula allows for a flexible correlation
matrix.

While multivariate linear models have been extensively researched and applied,
multivariate modeling of discrete or ordinal outcomes is more difficult, owing to
the lack of analytical tractability and computational convenience. However, many
advances have been made in the last two decades. An overview of statistical modeling
of ordinal data is provided by e.g., Greene and Hensher (2010) or Agresti (2010).
The main approaches to formulate multivariate ordinal models include: (i) model-
ing the mean levels and the association between responses at a population level by
specifying marginal distributions; such marginal models are estimated using general-
ized estimating equations. (ii) Under the latent variable specification, joint distribution
functions are assumed for the latent variables underlying the ordinal outcomes. Esti-
mation of multivariate ordinal models in the presence of covariates can be performed
using Bayesian and frequentist techniques. Chib and Greenberg (1998) and Chen and
Dey (2000) were among the first to perform a fully Bayesian analysis of multivariate
binary and ordinal outcomes, respectively, and to develop several Metropolis Hast-
ings algorithms to simulate the posterior distributions of the parameters of interest.
Difficulties in Bayesian inference arise due to the fact that absolute scale is not identi-
fiable in ordinal models. In this case, the covariance matrix of the multiple outcomes
is often restricted to be a correlation matrix which makes the sampling of the corre-
lation parameters non-standard. Moreover, threshold parameters are typically highly
correlated with the latent responses. Bayesian semi- or non-parametric techniques can
be employed if normality of the latent variables is assumed to be a too restrictive
assumption (e.g., Kim and Ratchford 2013; DeYoreo and Kottas 2014). Nonetheless,
research into these techniques is still on-going.

Frequentist estimation techniques include maximum likelihood (e.g., Scott and
Kanaroglou 2002; Nooraee et al. 2016), which is usually feasible for a small num-
ber of outcomes. If the multivariate model for the latent outcomes is formulated as
a mixed effects model with correlated random effects, Laplace or Gauss–Hermite
approximations, as well as EM algorithms can be applied. EM algorithms which treat
the random effects as missing observations can be employed to estimate the model
parameters (Grigorova et al. 2013 extended the EM algorithm for the univariate case
of Kawakatsu and Largey 2009 to the multivariate case). However, we experienced
convergence problems in our application. Alternatively, estimation using maximum
simulated likelihood has been proposed (e.g., Bhat and Srinivasan 2005), which uses
quasi Monte Carlo methods to approximate the integrals in the likelihood function.
This method has been reported to be unstable and to suffer from convergence issues
as the dimension of the outcomes increases (a simulation study is provided by Bhat
et al. 2010). An estimation method which has managed to overcome most of the dif-
ficulties faced by other techniques is the composite likelihood method, which can
easily be employed for higher number of ordinal responses (e.g., Bhat et al. 2010;
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Kenne Pagui and Canale 2016). In addition, the composite likelihood estimator has
satisfactory asymptotic properties.A comprehensive overviewon the theory, efficiency
and robustness of this estimator is provided by Varin et al. (2011).

The contribution of the paper is twofold. Firstly, from amethodological perspective,
we extend the model of Bhat et al. (2010) and Kenne Pagui and Canale (2016) in that
we allow for a more flexible error structure which depends on a categorical covariate.
In the credit risk application, we allow the correlation of errors to differ between
business sectors. Moreover, we implement a multivariate logit link, which offers a
more attractive interpretation of the coefficients in terms of log-odds ratios. We also
provide a comprehensive simulation study on the performance of composite likelihood
methods. Secondly, we apply composite likelihood methods to a data set of corporate
credit ratings from the big threeCRAs. In credit riskmodeling, so far usually univariate
models were employed where credit ratings from one single CRA were analyzed. In
contrast to the existing literature, a joint analysis is performed and the joint model
provides insight into the heterogeneity among the CRAs and further enhances our
understanding of the drivers of creditworthiness.

This paper is organized as follows: Sect. 2 provides an overview of multivariate
ordinal regression models, including model formulation, link functions and identifi-
ability issues. Estimation is discussed in Sect. 3. In Sect. 4 we set-up an extensive
simulation study and investigate how different aspects and characteristics of the data
influence the accuracy of the estimates. The multiple credit ratings data set is analyzed
in Sect. 5. Section 6 concludes.

2 Model

Several models can be employed for ordinal data analysis with cumulative link models
being the most popular ones. A cumulative link model can be motivated by assuming
that the observed ordinal variable Y is a coarser version of a latent continuous variable
˜Y .

Suppose that for the application at hand one has a possibly unbalanced panel of firms
observed repeatedly over T years with a total of n firm-year observations. Moreover,
suppose each firm h in year t is assigned a rating on an ordinal scale by CRAs indexed
by j ∈ Jht , where Jht is a non-empty subset from the set J of all q = |J | available
raters1 and the number of available ratings for firm h in year t is given by qht = |Jht |.
The missing ratings are assumed to be ignorable. Let Yht j denote the rating assigned
by rater j to firm h in year t out of K j possible ordered categories. The unobservable
latent variable ˜Yht j and the observed rating Yht j are connected by:

Yht j = rht j if θ j,rht j−1 < ˜Yht j ≤ θ j,rht j , rht j ∈ {1, . . . , K j },
where θ j is a vector of suitable threshold parameters for outcome j with the following
restriction: −∞ ≡ θ j,0 < θ j,1 < · · · < θ j,K j ≡ ∞. We allow the thresholds to
vary across outcomes to account for differences in the rating behavior of each rater.

1 For example, if firm h in year t is rated by raters one and three out of a total of three raters (q = 3), one
has the set Jht = {1, 3}.
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Given an n × p covariate matrix X , where each row xht is a p-dimensional vector of
covariates for firm h in year t , we assume the following linear model:

˜Yht j = β j0 + αt j + x�
htβ j + εht j , [εht j ] j∈Jht = εht ∼ Fht,qht , (1)

where β j0 is a constant term, αt j is an intercept for year t and rater j , β j is a vector
of slope coefficients corresponding to outcome j2 and εht j is a mean zero error term
distributed according to a qht -dimensional distribution function Fht,qht . We assume
that errors are independent across firms and years with distribution function Fht,qht
and orthogonal to the covariates. The year intercepts should capture stringency or
loosening of the rating standards of each CRA relative to a baseline year, in our case
the first year in the sample (like in Blume et al. 1998; Alp 2013; Baghai et al. 2014).

In order to simplify notation, the n × (T − 1) matrix of year dummies D will
be incorporated together with the covariates into a new matrix ˜X = (D X) and the
vector ˜β j = (α�

j ,β�
j )� will contain the T − 1 year intercepts α j and the vector of

slope coefficients β j . Using this notation, the index ht for each firm-year observation
is replaced by i = {1, . . . , n}, and we call each firm-year observation hereafter a
subject. Thus, model (1) becomes:

˜Yi j = β j0 + x̃�
i
˜β j + εi j , [εi j ] j∈Ji = εi ∼ Fi,qi . (2)

Link functions The distribution functions we consider for the error terms are the
multivariate normal and a multivariate logistic distribution, where the corresponding
models for the observed variable Yi j are the cumulative probit and the cumulative logit
link models.

The probit link arises if the error terms in model (1) are assumed to follow a
multivariate normal distribution: εi ∼ Nqi (0,Σ i ). In defining a multivariate logis-
tic distribution, we follow the lines of O’Brien and Dunson (2004), who proposed
a multivariate logistic family with univariate logistic margins and t-copula with cer-
tain degrees of freedom, which they employ for performing posterior inference in a
Bayesian multivariate logistic regression. For a q-dimensional vector z, the proposed
multivariate logistic density with ν degrees of freedom, location μ and covariance Σ

for q dimensions is given by:

Lq,ν,μ,Σ (z) =Tq,ν,R({gν((z1 − μ1)/s1), . . . , gν((zq − μq)/sq)}�)

×
q

∏

j=1

L((z j − μ j )/s j )

Tν(gν((z j − μ j )/s j ))
, (3)

where gν(x) = t−1
ν (exp(x)/(1 + exp(x)), t−1

ν and Tν are the quantile and density
function of the univariate t-distribution with ν degrees of freedom, Tq,ν,R denotes
the q-dimensional multivariate t-density with ν degrees of freedom and correlation

2 Note that this setting easily accommodates the use of different covariates for each outcome, by restricting
a-priori some of the slope coefficients to zero.
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matrix R and L denotes the univariate logistic density. The variances [s2j ] j∈J are the
diagonal elements of Σ and R is the correlation matrix corresponding to Σ .

Gumbel (1961) was the first to propose a bivariate logistic distribution which was
later extended to themultivariate case byMalik andAbraham (1973). Thismultivariate
distribution has only one parameter to represent the dependence between all outcomes.
The main advantages of using the multivariate logistic distribution in Eq. (3) are (i)
it allows for a flexible dependence structure between the underlying latent variables
˜Y through the unconstrained correlation matrix of the t-copula and (ii) the regression
coefficients can be interpreted in terms of log odds ratios. The multivariate logistic
family above has also been adopted by Nooraee et al. (2016) in a maximum likelihood
estimation procedure for a multivariate ordinal model for longitudinal data. Nooraee
et al. (2016) approximate the multivariate logistic family of O’Brien and Dunson
(2004) by a multivariate t-distribution with the scale and degrees of freedom chosen
appropriately. The approximation is based on the result of Albert and Chib (1993)
who show that the univariate logistic density with location parameter μ and scale s
is approximately equivalent to a t-distribution with location μ, degrees of freedom
ν = ν̃ ≡ 8 and scale sπ

√
(ν − 2)/

√
3ν.

Identifiability It is well known that in ordinal models absolute location and absolute
scale of the underlying latent variable are not identifiable (see for example Chib and
Greenberg 1998). Assuming that Σ i is the full covariance matrix of the errors εi with
diagonal elements [σ 2

i j ] j∈Ji , in model (2) only the quantities ˜β j/σi j and (θ j,ri j −
β j0)/σi j are identifiable. As such, typical constraints on the parameters are, for all j :

– fixing β j0 (e.g., to zero), using flexible thresholds θ j and fixing σi j (e.g., to unity);
– leaving β j0 unrestricted, fixing one threshold parameter (e.g., θ j,1 = 0), fixing σi j
(e.g., to unity);

– leaving β j0 unrestricted, fixing two threshold parameters (e.g., θ j,1 = 0 and
θ j,K j−1 = 1), leaving σi j unrestricted;

– fixing β j0 (e.g., to zero), fixing one threshold parameter (e.g., θ j,1 = 0), leaving
σi j unrestricted.

Alternatively, if the ordered responses are mirrored or symmetrically labeled, one
can assume symmetric thresholds around zero such that the length of intervals for
symmetrically labeled responses are the same. In this case, scale invariance can be
achieved by fixing the length of one interval to an arbitrary number.

In this paper we fix the intercept terms (β j0) j∈J to zero and the variance of the
errors to unity, such that Σ i = Ri becomes a correlation matrix. Moreover, in the
parametric model we assume a sector specific correlation structure for the errors Rg(i),
where g(i) denotes the business sector of firm-year i . In other words, the correlation
structure does not vary across subjects within the same business sector. In the presence
of missing observations, Ri,g(i) denotes a sub-matrix of the correlation matrix Rg(i)

corresponding to the underlying variables generating the observed outcomes Y i =
[Yi j ] j∈Ji and is obtained by choosing the elements of Rg(i) corresponding to the
available ratings (i.e., which lie in rows Ji and columns Ji ).
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3 Estimation

Let δ denote the vector containing the threshold parameters, the regression coefficients,
and the elements of the matrices Rg(i) to be estimated. The weighted likelihood of the
model is given by the product:

L (δ;Y1, . . . ,Yn) =
n

∏

i=1

P
(

⋂

j∈Ji

Yi j = ri j
) =

n
∏

i=1

(∫

Di

fi,qi (˜Y i ; δ)dqi˜Y i

)

,

where Di = ∏

j∈Ji (θ j,ri j−1, θ j,ri j ) is a Cartesian product, fi,qi is the qi -dimensional
density corresponding to the distribution function Fi,qi and dqi is the qi -dimensional
differential.

In order to estimate the model parameters we use a composite likelihood approach,
where the full likelihood is approximated by a pseudo-likelihood which will be
constructed from lower dimensional marginal distributions, more specifically by
“aggregating” the likelihoods corresponding to pairs and triplets of observations,
respectively. In the presence of ignorable missing observations, the composite likeli-
hood will be constructed from the available outcomes for each subject i . In contrast to
Varin (2008) and Varin et al. (2011), for the pairwise approach we include univariate
probabilities if only one outcome is observed. Similarly, for the tripletwise approach
univariate and bivariate probabilities are included if qi is less than three. For the sake
of notation we introduce an n×q binary index matrix Z, where each element zi j takes
a value of 1 if j ∈ Ji and 0 otherwise. The pairwise log-likelihood is given by:

c	(δ;Y1, . . . ,Yn) =
n

∑

i=1

⎡

⎣

q−1
∑

k=1

q
∑

l=k+1

1{zik zil=1} log (P(Yik = rik,Yil = ril))

+ 1{qi=1}
q

∑

k=1

1{zik=1} log (P(Yik = rik))

]

. (4)

Similarly, the tripletwise log-likelihood is:

c	(δ;Y1, . . . ,Yn) =
n

∑

i=1

⎡

⎣

q−2
∑

k=1

q−1
∑

l=k+1

q
∑

m=l+1

1{zik zil zim=1} log (P(Yik = rik,Yil = ril ,Yim = rim))

+ 1{qi=2}
q−1
∑

k=1

q
∑

l=k+1

1{zik zil=1} log (P(Yik = rik,Yil = ril))

+ 1{qi=1}
q

∑

k=1

1{zik=1} log (P(Yik = rik))

]

. (5)
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If, for the case of no missing observations, the errors follow a q-dimensional mul-
tivariate normal or multivariate logistic distribution, the lower dimensional marginal
distributions Fi,qi are also normally or logistically distributed. In the sequel we denote
by fi,1, fi,2 and fi,3 the uni-, bi- and trivariate densities corresponding to Fi,1, Fi,2
and Fi,3. Hence, the marginal probabilities can be expressed as:

P(Yik = rik,Yil = ril ,Yim = rim)

=
∫ θk,rik

θk,rik−1

∫ θl,ril

θl,ril−1

∫ θm,rim

θm,rim−1

fi,3(˜Yik, ˜Yil , ˜Yim; δ)d˜Yikd˜Yild˜Yim,

P(Yik = rik,Yil = ril) =
∫ θk,rik

θk,rik−1

∫ θl,ril

θl,ril−1

fi,2(˜Yik, ˜Yil; δ)d˜Yikd˜Yil ,

P(Yik = rik) =
∫ θk,rik

θk,rik−1

fi,1(˜Yik; δ)d˜Yik .

Point maximum composite likelihood estimateŝδc	 are obtained by direct maxi-
mization using general purpose optimizers. In order to quantify the uncertainty of the
maximum composite likelihood estimates standard errors are computed, either analyt-
ically or by numerical differentiation techniques. Under certain regularity conditions,
the maximum composite likelihood estimator is consistent as n → ∞ and q fixed and
asymptotically normal with asymptotic mean δ and covariance matrix:

G(δ)−1 = H−1(δ)V (δ)H−1(δ),

whereG(δ) denotes the Godambe informationmatrix, H(δ) is the Hessian (sensitivity
matrix) and V (δ) is the variability matrix (Varin 2008). The sample estimates of H(δ)

and V (δ) are given by:

̂V (δ̂) = 1

n

n
∑

i=1

(

∂c	i (δ̂c	;Y i )

∂δ

) (

∂c	i (δ̂c	;Y i )

∂δ

)�
,

̂H(δ̂) = 1

n

n
∑

i=1

∑

k<l
k,l∈Ji

(

∂c	ikl(δ̂c	; Yik,Yil)
∂δ

)(

∂c	ikl(δ̂c	; Yik,Yil)
∂δ

)�
,

where c	i (δ;Y i ) denotes the i-th component of the composite log-likelihood and
c	ikl(δ; Yik,Yil) corresponds to subject i and pair (k, l). For model comparison the
composite likelihood information criterion introduced by Varin and Vidoni (2005) can
be used: CLIC(δ) = −2 c	(δ̂c	) + k tr(̂V (δ̂) ̂H(δ̂)−1), where k = 2 corresponds to
CLIC-AIC and k = log(n) corresponds to CLIC-BIC.

To achieve monotonicity in the threshold parameters θ j we set θ j,1 = γ j,1 and
θ j,r = θ j,r−1 + exp(γ j,r ) for r = 2, . . . , K j − 1, and estimate the vector of
unconstrained parameters [γ j ] j∈J . For all correlation matrices we use the spherical
parameterization described in Pinheiro andBates (1996) and transform the constrained
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parameter space into an unconstrained one. The spherical parameterization for covari-
ance matrices has the advantage over other parameterizations in that it can easily be
modified to apply to a correlation matrix.

4 Simulation study

The aim of the simulation study is to investigate the following aspects: First, in order
to assess how the sample size n influences the accuracy of the pairwise likelihood
estimates, we simulate data sets with different numbers of observations and plot the
mean squared errors of the estimates. Second, we investigate how the bias and the
variance of the composite likelihood estimates changeswhen using the pairwise versus
the tripletwise likelihood approach for both the probit and the logit links. Finally,
motivated by the unbalanced panel of credit ratings observations, we explore the
performance of the pairwise likelihood in the presence of missing observations in the
outcome variables with three and five outcome variables. In addition, we include six
groups of observations with different correlation patterns, which in the application
case would correspond to business sectors.

For the probit link we simulate the error terms from the multivariate normal distri-
bution. For the logit link, errors from the multivariate logistic distribution in Eq. (3)
which is based on a t-copula and has logistic margins are generated in the following
way: For each subject i , we generate a vector (ui1, . . . uiqi ) from the qi -dimensional
t copula with ν = 8 degrees of freedom. The required sample of error terms can then
be constructed as

(εi1, . . . , εiqi )
� = (L−1(ui1), . . . L−1(uiqi ))

�,

where L−1 denotes the quantile function of the univariate logistic distribution.
In all settings, we work with three covariates for each outcome, which we simu-

late from a standard normal distribution and assume the vector of coefficients β j =
(1.2,−0.2,−1)� for all j ∈ J outcomes. In our simulation study with q = 3 outcome
variables, we use the following set of threshold parameters: three thresholds for the
first outcome θ1 = (−1, 0, 1)�, three thresholds for outcome two θ2 = (−2, 0, 2)�
and five thresholds for the third outcome θ3 = (−1.5,−0.5, 0, 0.5, 1.5)�. The under-
lying error terms are assumed to have different degrees of correlation. More details
are provided for each simulation exercise in the following subsections.

In the simulation study, we follow Bhat et al. (2010) and proceed in the following
way:

1. Simulate S data sets with n subjects, where each subject i has q outcome variables.
2. Estimate the composite likelihood parameters for each data set and compute the

mean estimate for all parameters. In the estimation procedure for the logit link,
we fix the degrees of freedom of the t-copula to 8.
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3. Estimate the asymptotic standard errors using the Godambe information matrix
for each data set and compute the mean3 for all parameters.

4. Compute the absolute percentage bias (APB):4

APB =
∣

∣

∣

∣

true parameter − mean estimate

true parameter

∣

∣

∣

∣

.

5. Compute the finite sample error through calculating the standard deviation across
all S data sets for each parameter.

6. Calculate a relative efficiency measure of estimator 2 compared to estimator 1

RE = se1
se2

.

for both the asymptotic as well as the finite sample standard errors.

4.1 Investigating the effect of the sample size on the pairwise likelihood
estimates

In this part we investigate the influence of the number of subjects n on the
pairwise likelihood estimates for both the probit and the logit link. For this
purpose, we use three different correlation structures and simulate for each of
these structures S = 100 data sets for increasing number of subjects (n =
75, 100, 200, 300, 400, 500, 700, 1000, 2000, 3000, 4000, 5000). We use a high cor-
relation (R1; solid line), a moderate correlation (R2; dashed line) and a low correlation
matrix (R3; dotted line). The correlation matrices can be found in Sect.4.3. In Fig.1
average mean squared errors (MSEs) are plotted against the number of subjects n.
We show only averaged MSEs for thresholds, coefficients and correlation parameters
as we observed no considerable differences between the MSE curves for the single
parameters. The average MSEs of the coefficients and the thresholds parameters show
no difference between the data sets simulated with different correlation structures.
On the other hand, the MSEs of the correlation parameters differ across the different
degrees of correlation. We observe that correlation parameters of the high correlation
data sets are recovered better compared to the moderate and low correlation ones. This
finding has been previously reported also by e.g., Bhat et al. (2010) in their simulation
study for the multivariate probit model. The last plot shows the average MSEs of all
estimated parameters indicating that from n = 500 subjects the MSE curves start to
flatten out. MSEs are in general low and even for smaller sample sizes (like n = 100)
we obtain reasonable results. On average the logit link MSEs are slightly higher than
the ones obtained by probit link, but this seems to not be the case for the correlation
parameters.

3 With one exception: In the case of the tripletwise estimates we compute the median due to instabilities
in the numerical derivatives of the trivariate normal distribution function. Such instabilities have occurred
in roughly 3% of all simulations.
4 If the true parameter is zero we do not report the APB.
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Fig. 1 These plots display the averaged MSEs for increasing number of subjects (n =
75, 100, 200, 300, 400, 500, 700, 1000, 2000, 3000, 4000, 5000) for the probit link (blue) and the logit
link (green) and different correlation structures. The lines are obtained by fitting a cubic smoothing spline
to the averageMSEs for the above sample sizes. Three correlation matrices are employed: a high correlation
(R1; solid line), a moderate correlation (R2; dashed line) and a low correlation matrix (R3; dotted line).
The correlation matrices can be found in Sect.4.3

We report in the sequel of the paper results for n = 1000 subjects per group, mainly
motivated by the application case where the smallest business sector contains around
1000 subjects. In addition, we also perform the simulation for n = 100, 200, 500
and provide the results in the supplementary materials. As expected, with increasing
sample sizes we observe a decrease in the bias and the standard errors. This is observed
for both the probit and the logit link functions. However, even in the study with
n = 100 subjects, the absolute percentage bias of the pairwise likelihood estimates
does not exceed 6.79% for the probit and 5.29% for the logit (see Tables 1 and 2 in
the supplementary materials).

4.2 Comparison pairwise versus tripletwise likelihood approach

In order to compare pairwise and tripletwise likelihood estimates we simulate S =
1000 data sets with n = 100, 200, 500, 1000 subjects and three outcome variables
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Table 1 This table displays in
the diagonal the number of
ratings from the three CRAs in
our data set from 1999 to 2013.
The off-diagonal displays the
number of co-rated firms

S&P Moody’s Fitch

S&P 20,383 12,610 4423

Moody’s 13,517 3810

Fitch 4613

Table 2 This table displays the threshold parameter estimates from the multivariate ordered logit model
using the multiple corporate credit ratings data set

Thresholds S&P Fitch Thresholds Moody’s

Est. SE Est. SE Est. SE

Ca|Caa − 8.70 0.125

CCC/C|B − 6.82 0.079 − 6.07 0.110 Caa|B − 4.94 0.069

B|BB − 2.66 0.059 − 2.73 0.070 B|Ba − 1.75 0.059

BB|BBB − 0.62 0.058 − 0.81 0.063 Ba|Baa − 0.41 0.059

BBB|A 1.70 0.059 1.54 0.063 Baa|A 1.89 0.061

A|AA 4.29 0.072 4.34 0.081 A|Aa 4.50 0.080

AA|AAA 6.36 0.122 6.70 0.208 Aa|Aaa 6.65 0.182

(q = 3). Table 4 (probit link) and Table 5 (logit link) present a comparison between
the pairwise and tripletwise likelihood estimates for n = 1000 (the results for smaller
sample sizes can be found in the supplementary materials). In a setting with q = 3
this represents the full likelihood.

For each link, both approaches seem to recover all parameters very well. For the
probit link, comparing the APB of the two estimation approaches yields a range from
0.05 to 0.93% for the pairwise and a range from 0.00 to 0.89% for the tripletwise
likelihood approach. In this case, the relative efficiency of the tripletwise estimators
to the pairwise estimators is close to one for asymptotic as well as finite sample
standard errors. For the logit link the APB ranges from 0.04 to 2.15% for the pairwise
approach and from 0.02 to 2.08% for the tripletwise approach. The relative efficiency
measure is again close to one. For both link functions the asymptotic standard errors
are close to the finite sample standard errors. For the logit link the standard errors
of the threshold and coefficient parameters are higher than for the probit link, while
for the correlation parameters this difference disappears. An inspection of the QQ-
plots for the pairwise and tripletwise parameter estimates reveals that the empirical
distribution of the S = 1000 estimates is well approximated by a normal distribution.
In the simulation studies for smaller samples sizes, we observe a similar behavior of
the estimates, with the exception of the APB, which increases for all estimates as the
sample size decreases (themaximal APB is 6.93% for n = 100, probit link, tripletwise
likelihood).

The relative efficiency based on the finite sample standard errors is in most cases
1.00 and maximally 1.04, pointing in few cases to a slightly higher efficiency of the
tripletwise approach. The relative efficiency based on the asymptotic standard errors,
however, is in general belowone (but close to one). This can be due to the fact that in the
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pairwise case standard errors are computed analytically,while in the tripletwise casewe
compute the gradient andHessian of the objective function numerically. The numerical
computation of the derivatives highly depends on the algorithm used for computing
the multivariate normal or t-probabilities, which again delivers an approximation and
must rely on deterministic methods. In our simulations we experienced numerical
instabilities in this procedure.

According to the results, there seems to be no substantial improvement in the
parameter estimates when using the tripletwise approach. In terms of computing time,
the pairwise likelihood approach (on average 263.68 seconds per data set) outperforms
the tripletwise likelihood approach (on average 935.54 seconds per data set) by a factor
of 3.5. Computations have been performed on 25 IBMdx360M3 nodeswithin a cluster
of workstations. Given the similar performance, computing time and instability of the
numerical estimation of the standard errors, we decide to use the pairwise likelihood
approach for the analysis of the multiple credit ratings data set in Sect. 5.

4.3 Simulation study with three outcomes and six different sector correlations

In this subsection we analyze the performance of the pairwise likelihood approach in
the presence of missing observations for three outcome variables.

We simulate S = 1000 data sets with n = 600, 1200, 3000, 6000 subjects, where
each subject i has three outcomevariables (q = 3).Weallow for 6different sectorswith
each ns = 100, 200, 500, 1000 subjects per sector and choose two high correlation
(R1 and R4), two moderate correlation (R2 and R5) and two low correlation matrices
(R3 and R6):

R1 =
⎛

⎝

1.0 0.8 0.7
0.8 1.0 0.9
0.7 0.9 1.0

⎞

⎠ , R2 =
⎛

⎝

1.0 0.5 0.3
0.5 1.0 0.4
0.3 0.4 1.0

⎞

⎠ , R3 =
⎛

⎝

1.0 0.2 0.3
0.2 1.0 0.1
0.3 0.1 1.0

⎞

⎠ ,

R4 =
⎛

⎝

1.0 0.9 0.9
0.9 1.0 0.9
0.9 0.9 1.0

⎞

⎠ , R5 =
⎛

⎝

1.0 0.8 0.3
0.8 1.0 0.6
0.3 0.6 1.0

⎞

⎠ , R6 =
⎛

⎝

1.0 0.1 0.1
0.1 1.0 0.1
0.1 0.1 1.0

⎞

⎠ .

For ns = 1000, Table 6 presents the parameter estimates of both the full obser-
vations model and the model containing missing observations when using the probit
link. The results for ns = 1000 and logit link are displayed in the Table 7. The results
for smaller sample sizes are presented in the Tables in the supplementary materials.

Full observations model In the full observations model we observe excellent esti-
mates for all parameters. In particular for the probit link, the threshold parameters
and coefficients are recovered very well. The APB ranges from 0.01 to 1.17%. In the
case of correlation parameters we observe that high correlation parameters are recov-
ered extremely well (APB between 0.01 and 0.34%), in contrast to low correlation
parameters, where we observe higher APB. Even though the model performs better
for high correlation structures, we can conclude that pairwise likelihood estimates
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are reasonable for different correlation patterns. In the presence of the logit link we
observe slightly higher APB for the regression coefficients (APB from 0.02 to 3.56%)
but similar APB for the threshold estimates (APB from 0.03 to 1.38%), but slightly
better estimates for high and moderate correlations compared to the probit link.

Missing observationsmodel We repeated the simulation this time with observations
missing completely at random in the outcome variables of the simulated data sets.
We randomly remove 5% of the first outcome variable, 20% of the second outcome
and 50% of the third outcome. Overall for both link functions, all parameter esti-
mates are recovered very well in the missing observation model. In analogy to the full
observations model with probit link, the threshold and coefficient parameters have an
APB ranging from 0.01 to 1.77%. High correlation parameters are recovered better
compared to low correlation parameters. In addition, standard errors increase for all
parameters with the number of missing observations. In the logit model with missing
observations, the threshold and coefficient parameters as well as the high correlation
parameters are recovered very well, in contrast to low correlation parameters, where
we observe that missing observations have an impact on the quality of the estimates.

Full observations model versus Missing observations model First, we compare the
parameter estimates of the full and themissing observationsmodel with probit link. As
expected, we observe smaller APB and standard errors for almost all parameters in the
full model. In case of threshold parameters and coefficients, we do not observe a big
difference in the pairwise likelihood estimates. While large correlation parameters are
recovered very well in both models, we observe a significant impact of missing obser-
vations on the estimation quality of low correlation parameters (e.g. APB typically
increases for parameter ρs

23). Nevertheless, even if we omit 50% of the observations of
one particular outcome variable, all parameter estimates remain very good as long as
the number of remaining observations is not too low. In terms of relative efficiency our
measure yields approximately 0.9 for most parameters corresponding to the outcome
with 5% missing observations, approximately 0.84 for parameters corresponding to
outcome two with 20% missing observations and approximately 0.7 for parameters
corresponding to the third outcome with 50% of missing observations. Moreover, a
comparison for the logit link models shows similar aspects. For threshold as well as
coefficient estimates, the estimation quality does not suffer strongly in the presence
of missing observations. The quality of the correlation parameters is only affected in
dimensions with a lot of missings and low correlation. This affects the correlation
parameters between the second and third outcome. In summary, we are confident that,
even though one has to deal with outcomes with high percentage of missing values, the
pairwise likelihood estimates can still recover the parameters of interest in a reliable
way.

4.4 Simulation study with five outcomes and six different sector correlations

In addition, a simulation study with q = 5 outcomes is conducted. The sets of
threshold and coefficient parameters are extended by two additional outcomes. For
outcome four and five we choose the thresholds θ4 = (−2,−1, 0, 1, 1.5)� and
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θ5 = (−1.5,−1,−0.5, 0, 0.5, 1, 1.5)�. The following vectors of coefficients are
added: β j = (1.2,−0.2,−1)�, for j = 4, 5. We simulate S = 1000 data sets
with n = 600, 1200, 3000, 6000 subjects. We allow for 6 different sectors, each with
ns = 100, 200, 500, 1000 subjects and with the following correlation matrices:

R1 =

⎛

⎜

⎜

⎜

⎜

⎝

1.0 0.8 0.7 0.9 0.8
0.8 1.0 0.8 0.8 0.7
0.7 0.8 1.0 0.7 0.8
0.9 0.8 0.7 1.0 0.9
0.8 0.7 0.8 0.9 1.0

⎞

⎟

⎟

⎟

⎟

⎠

, R2 =

⎛

⎜

⎜

⎜

⎜

⎝

1.0 0.4 0.5 0.6 0.5
0.4 1.0 0.3 0.5 0.7
0.5 0.3 1.0 0.3 0.6
0.6 0.5 0.3 1.0 0.5
0.5 0.7 0.6 0.5 1.0

⎞

⎟

⎟

⎟

⎟

⎠

,

R3 =

⎛

⎜

⎜

⎜

⎜

⎝

1.0 0.1 0.2 0.3 0.2
0.1 1.0 0.2 0.3 0.1
0.2 0.2 1.0 0.1 0.3
0.3 0.3 0.1 1.0 0.2
0.2 0.1 0.3 0.2 1.0

⎞

⎟

⎟

⎟

⎟

⎠

, R4 =

⎛

⎜

⎜

⎜

⎜

⎝

1.0 0.9 0.9 0.9 0.9
0.9 1.0 0.9 0.9 0.9
0.9 0.9 1.0 0.9 0.9
0.9 0.9 0.9 1.0 0.9
0.9 0.9 0.9 0.9 1.0

⎞

⎟

⎟

⎟

⎟

⎠

,

R5 =

⎛

⎜

⎜

⎜

⎜

⎝

1.0 0.5 0.2 0.3 0.6
0.5 1.0 0.2 0.3 0.1
0.2 0.2 1.0 0.8 0.3
0.3 0.3 0.8 1.0 0.2
0.6 0.1 0.3 0.2 1.0

⎞

⎟

⎟

⎟

⎟

⎠

, R6 =

⎛

⎜

⎜

⎜

⎜

⎝

1.0 0.1 0.1 0.1 0.1
0.1 1.0 0.1 0.1 0.1
0.1 0.1 1.0 0.1 0.1
0.1 0.1 0.1 1.0 0.1
0.1 0.1 0.1 0.1 1.0

⎞

⎟

⎟

⎟

⎟

⎠

.

We randomly remove 5% of the first outcome variable, 20% of the second outcome,
50% of the third outcome, 10% of the fourth outcome and 70% of the fifth outcome
variable and repeat the simulation.

The findings are similar to the model with three outcome variables. The results are
provided in the supplementary materials and show that threshold parameters, coeffi-
cients and large correlation parameters are recovered well for both link functions. The
highest efficiency loss is seen in the parameters corresponding to the fifth outcome,
where the number of missing observations is very high. The loss is more severe for the
low and moderate correlations than for the high correlations. But overall, the model
with five different outcome dimensions seems to deliver reliable estimates based on the
APB for all parameters as long as the number of non-missing values for each outcome
is around 100 or higher.We can conclude that, aside from increasing computation time,
increasing number of dimensions in the outcome variables does not pose a problem.

5 Multivariate analysis of credit ratings

We base our empirical analysis on a data set of US firms rated by S&P, Moody’s
and Fitch over the period 1999–2013. We chose this time frame as Fitch became an
established player in the US ratings market around the beginning of this sample period
(Becker and Milbourn 2011).

5.1 Data

We collect historical long-term issuer credit ratings from S&P, Moody’s and Fitch, the
three biggest CRAs in theUSmarket. S&P domestic long-term issuer credit ratings are
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retrieved from the S&P Capital IQ’s Compustat North America© Ratings file, while
issuer credit ratings from Moody’s and Fitch were provided by the CRAs themselves.
The CRAs assign ratings on an ordinal scale. S&P and Fitch assign issuers to 21 non-
default categories.5 Moody’s rating system for issuers comprises 20 non-default rating
classes and uses different labeling,6 where AAA and Aaa, respectively represent the
highest credit quality and hence lowest default risk. Firms falling into the best ten
categories (AAA/Aaa to BBB−/Baa3) are considered investment grade (IG) firms,
while those falling into BB+/Ba1 to C /Ca are speculative grade (SG) firms.

In order to build the covariates, annual financial statement data and daily stock prices
from the Center of Research in Security Prices (CRSP) are downloaded for the S&P
Capital IQ’sCompustatNorthAmerica© universe of publicly tradedUSfirms. Follow-
ing the existing literature (e.g., Shumway 2001; Campbell et al. 2008; Alp 2013) and
the ratingmethodology published by theCRAs (Puccia et al. 2013; Tennant et al. 2007;
Hunter et al. 2014),we build the following covariates: interest coverage ratio [earnings
before interest and taxes (EBIT) and interest expenses]/interest expenses, tangibility
measured as net property plant and equipment/assets, debt/assets, long-term debt
to long-term capital, retained earnings/assets, return on capital (EBIT/equity and
debt), earnings before interest, taxes, depreciation and amortization (EBITDA)/sales,
research and development expenses (R&D)/ assets and capital expenditures/assets. In
addition, we use daily stock prices to compute the following measures: relative size
(RSIZE) is the logarithmof the ratio ofmarket value of equity (computed as the average
stock price in the year previous to the observation times the number of shares out-
standing) to the average value of the CRSP value weighted index. BETA is a measure
of systematic risk, which represents the relative volatility of a stock price compared
to the overall market. SIGMA is a measure of idiosyncratic risk. We regress the daily
stock price in the year before the observation on the daily CRSP value weighted index.
BETA is the regression coefficient and SIGMA is the standard deviation of the residu-
als of this regression. The last measure is the market assets to book assets ratio (MB)
which is market equity plus book liabilities divided by book assets.

We follow standard practice in the literature and remove financials (GICS code 40)
and utilities (GICS code 55) from the sample, as these firms have a special regime of
reporting their annual figures which might distort the results. We match the ratings
data with financial statement data from Compustat using CUSIPs. To ensure that these
data are observable to the rating agencies at the time the rating is issued, we match
each rating with financial statement data lagged by three months. We choose the three
months lag, as all publicly traded US firms must file their annual reports with the
Securities and Exchange Commission within 90 days of the fiscal year end.

The merged sample consists of 21,397 firm-year observations and 2961 firms for
which at least one rating is available. Table 1 shows the number of non-missing ratings
and co-ratings between the CRAs. S&P rates 95%, Moody’s 63% and Fitch only 22%
of the firm-year observations in the sample. Only 3727 firm-years (17%) have a rating

5 AAA, AA+, AA, AA−, A+, A, A−, BBB+, BBB, BBB−, BB+, BB, BB−, B+, B, B−, CCC+,
CCC , CCC−, CC and C .
6 Aaa, Aa1, Aa2, Aa3, A1, A2, A3, Baa1, Baa2, Baa3, Ba1, Ba2, Ba3, B1, B2, B3, Caa1, Caa2,
Caa3, Ca.
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Fig. 2 This figure displays the distribution of ratings on the original scale containing 21 rating classes for
S&P and Fitch and 20 rating classes for Moody’s

from all three CRAs. We make the simplifying assumption that the missing data
mechanism is ignorable to avoid increasing model uncertainty, as specifying a joint
model for the observed and missing responses is far from trivial in our application.
The vast majority of the ratings provided by the CRAs are solicited by the issuers.
Firms hire the rating agencies to assess their creditworthiness and then decide whether
the rating should be published or not. Also, the firm can decide when a rating should
be withdrawn. This “issuer-pays” business model of the big three CRAs has been
criticized and several studies have looked into whether this creates a sample selection
bias and gives incentives to the firms to shop for the best rating. Unfortunately, the
literature offers conflicting evidence. For example, Cantor and Packer (1997) claim
that the differences in the ratings across different CRAs are due to the different rating
scales and they fail to accept the selection bias hypothesis in their model. On the other
hand, Bongaerts et al. (2012) argue that when Moody’s and S&P rate on the opposite
sides of the investment-speculative grade frontier, the firms are more likely to ask for
a Fitch rating. In absence of a strong theory of why firms solicit multiple ratings and
how they decide which agency to hire, we decide to treat the missing data mechanism
as ignorable. This is, however, a simplifying assumption and we leave this topic open
for further research.

Figure 2 shows the distributions of the ratings for each CRA. For further analysis
we aggregate the “+” and “−” ratings for S&P and Fitch and the “1” and “3” ratings
for Moody’s to the middle rating. Moreover, following the practice of the CRAs in
their report series, we aggregate classesCCC toC for S&P and Fitch. The distribution
of the ratings using the aggregated scale is presented in Fig. 3.

We winsorize all variables at the 99% quantile and additionally the variables which
can take negative values at the 1% quantile.Missing values in the ratios are replaced by
the sectorwisemedian in each year. In order to have comparable regression coefficients,
we standardize the covariates to have mean zero and variance equal to one.

In order to perform a sectorwise correlation analysis, firms are classified into busi-
ness sectors according to the Global Industry Classification Standard (GICS). We use
eight sectors in the analysis: energy (GICS code 10, 2683 observations), materials
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Fig. 3 This figure displays the distribution of ratings on the aggregated scale containing 7 rating classes for
S&P and Fitch and 8 rating classes for Moody’s

(GICS code 15, 2536 observations), industrials (GICS code 20, 3639 observations),
consumer discretionary (GICS code 25, 5282 observations), consumer staples (GICS
code 30, 1697 observations), health care (GICS code 35, 2031 observations), informa-
tion technology (GICS code 45, 2294 observations) and telecommunication services
(GICS code 50, 1235 observations).

5.2 Results

Model (1) as well as several sub-models are fitted to the ratings data set. The latent
variable motivation of ordinal models is an intuitive setting for the application case.
In the context of credit risk one may think of the underlying latent variable as the
latent creditworthiness of a firm, which is measured on a continuous scale. In the
literature, this latent variable has been introducedunder different names and in different
settings. For example, Altman (1968) introduced the Z-score, a linear combination of
multiple accounting ratios, as a measure to predict corporate defaults. Furthermore, in
his seminal work, Merton (1974) proxies creditworthiness by the distance-to-default,
which measures the distance of the firm’s log asset value to its default threshold on the
real line. Ratings can then be considered as a coarser version of this latent variable.
Low values of the latent creditworthiness will translate to the worst rating classes,
while the right tail of the distribution of the latent variables will correspond to the best
rating classes.

The models we fit have varying degree of complexity. In all models we use rater-
specific thresholds. We estimate models with one set of regression parameters for all
raters as well as rater-specific regression parameters. Moreover we consider a busi-
ness sector-specific as well as a constant general correlation structure. We use both
the multivariate probit and the multivariate logit links in the estimation of the mod-
els. According to the CLIC-BIC, the multivariate logit link performs better than the
multivariate probit link across all model specifications. The best among all compared
models is the model with one set of regression parameters, flexible threshold param-
eters and a business sector-specific correlation structure. We therefore proceed in the
following the discussion of the results of this model.
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Table 3 This table displays the regression coefficients from the multivariate ordered logit model using the
multiple corporate credit ratings data set

Covariate Est. SE

Interest coverage ratio 0.033∗ 0.013

Net property plant & equipment/assets 0.080∗∗∗ 0.019

Debt/assets −0.522∗∗∗ 0.028

Long term debt/long term capital −0.333∗∗∗ 0.027

Retained earnings/assets 0.572∗∗∗ 0.018

Return on capital 0.481∗∗∗ 0.018

EBITDA/sales 0.165∗∗∗ 0.016

R&D/assets 0.232∗∗∗ 0.015

Capital expenditures/assets −0.098∗∗∗ 0.017

RSIZE 0.978∗∗∗ 0.018

BETA −0.240∗∗∗ 0.018

SIGMA −0.675∗∗∗ 0.022

MB −0.211∗∗∗ 0.017

Signif. codes: 0 ‘∗∗∗’ 0.001 ‘∗∗’ 0.01 ‘∗’ 0.05 ‘.’ 0.1 ‘ ’ 1

It is to be noted that in the flexible model the estimated thresholds and coefficients
represent signal to noise ratios due to identifiability constraints. As the measurement
units of the underlying latent processes differ, one needs to proceed with care when
interpreting the results and the parameters cannot be compared directly. On the other
hand, an advantage of the chosen model is that, if regression coefficients are equal
across raters, differences in the threshold parameters among the raters can be inter-
preted.

Threshold parameters The estimated threshold parameters together with their stan-
dard errors for the multivariate logit model are presented in Table 2. Moody’s seems
to be the most conservative rater, with all but the last threshold parameters higher than
the other two CRAs. While for the investment grade classes the difference between
S&P and Moody’s thresholds is relatively small, this is not the case for the specu-
lative grade rating classes, where Moody’s seems to distance itself from S&P in the
way it assigns ratings and tends to be more conservative. Fitch on the other hand has
significantly lower threshold parameters BBB|A and BB|BBB than S&P, which could
translate into a more optimistic rating scale around the investment–speculative grade
frontier.

Regression coefficients Table 3 presents the regression coefficients. All the coeffi-
cients have the expected sign and are in linewith prior literature (e.g., Alp 2013). Firms
with higher interest coverage ratios, more tangible assets, high profitability (measured
by retained earnings to assets, return on capital and EBITDA/sales), which spend
more on R&D and have a bigger size tend to get better ratings. On the other hand,
firms with higher debt ratios, higher proportion of long-term debt (which is riskier
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Fig. 4 This figure displays the time dummy coefficients from 1999 to 2013 from the multivariate ordered
logit model

than short-term debt), capital expenditures, idiosyncratic and systematic risk tend to
get worse credit ratings. The market-to-book ratio (MB) is also inversely related to
creditworthiness. This has also been found by Campbell et al. (2008), who argue that
high MB ratio can point towards overvaluation of the firm in the market, which in turn
can be a bad sign in terms of credit quality.

Year intercepts As previously mentioned, using the logit link has the advantage that
the regression coefficients can be interpreted as marginal log odds ratios. For the year
intercepts, this means that, for each year t and rater j , the odds of Y ≥ r against Y < r
(i.e., the odds of a firm being assigned to rating class r or better rather than in a worse
class than r , for all r ) are exp(αt j ) times the odds in 1999 (which is the baseline year),
ceteris paribus.

Figure 4 shows these odds ratios corresponding to the coefficients of the year
dummies for each rating agency. We observe that the odds ratios are less than one
after year 2000, which means that the odds of a firm with constant characteristics to
get a better rating decrease after 2000. This can indicate a tightening of the rating
standards (also found by Alp 2013). An interesting remark is that before the financial
crisis the odds start increasing, reaching a peak in 2008. This could indicate a loosening
of the rating standards in the financial crisis. After 2008, the odds return and stabilize
close to the levels before the financial crisis.

Correlation parameters Figure 5 shows the estimated correlation parameters
together with their standard errors. We interpret the correlations as measures of asso-
ciation between the three CRAs, even though they are often interpreted as measures
of agreement. In general, we observe very high levels of association for all business
sectors. In particular, very high levels of association for all three CRAs are identified
for sectors like energy, materials, industrials, consumer discretionary and consumer
staples. Other sectors like health care, information technology or telecommunication
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Fig. 5 This figure shows the correlation estimates from the multivariate ordered logit model for differ-
ent business sectors using the multiple corporate credit ratings data set. The standard errors are given in
parentheses

show small deviations in the association levels among the CRAs and exhibit correla-
tions under 0.9. The high degree of correlation is good news, as it implies that firms
have little incentives to engage in ratings “shopping”. Ratings “shopping” emerges
when CRAs do not perfectly agree on the credit quality of a firm, as firms could
exploit the disagreement by “shopping” the most favorable ratings (see for example
Cantor and Packer 1997; Becker and Milbourn 2011; Bongaerts et al. 2012).

Goodness-of-fit and model assumptions In order to evaluate the goodness-of-fit of
the proposedmodel,we report aMcFadden’s adjusted pseudo R2 of 0.39.According to
McFadden et al. (1977) values of 0.2–0.4 indicate an excellent model fit, as the values
of this pseudo R2 are considerably smaller compared to the ordinary R2. Additionally,
we use an adjusted composite likelihood ratio test provided by Satterthwaite (1946) in
order to test a simple model with independent error terms against the proposed model
under the alternative hypothesis. This test suggests to reject the simpler model and
to proceed with the proposed model (with a p-value of 0). Furthermore, in-sample
predictions give evidence that the joint correlation model has increased predictive
power compared to the independent error model. In 62.41% of the observations, the
fitted joint probabilities for the observed rating classes increased when including the
correlation structure. The conditional probabilities for S&P given the observed ratings
from Moody’s and Fitch increased in 67.36% of the observations, while for Fitch and
Moody’s we observed an increase in 86.28% and 78.39% of the cases.

Moreover, we discuss the implicit assumption of proportional odds in the fitted
cumulative model with logit link, which means that the log odds of the cumulative
marginal probabilities do not depend on the category and that the regression coeffi-
cients are constant for all categories. Unfortunately, standard tests for checking the
homogeneity of the proportional odds ratios are sensitive to large sample sizes, as they
deliver significant results even if the deviation from proportionality is of no practical
significance (Scott et al. 1997). In such cases, graphical techniques can be employed.
One alternative of inspecting the proportionality of the odds ratios on a variable level
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is plotting the observed mean of the covariate against the expected mean implied by
the proportional odds model (Harrell Jr 2015). We generated such plots for each vari-
able and each rater using package rms (Harrell Jr 2017) and observed no profound
violations of the assumption, in that the curve of the observed means was similar to the
expected curve. Moreover, relaxing the proportional odds assumption for our model
would cause a dramatic increase of the parameter space.

6 Concluding remarks

In this paper we consider multivariate ordinal regression models with a latent variable
specification in a credit risk context. This joint modeling approach is motivated by
the case where multiple CRAs assess a firm’s credit quality based on firm-level and
market information and assign ordinal credit ratings accordingly. Composite likeli-
hood methods are applied to estimate the model parameters and a simulation study
is performed in order to investigate several aspects. First, we check how the sam-
ple size affects the pairwise likelihood estimates. We find that results are reasonable
already for small sample sizes (e.g., 100 subjects) and that the MSEs flatten out for
samples sizes higher than 500. For both link functions, high correlation parameters
are better recovered than low correlation parameters, even though it seems that the
logit link does a slightly better job at recovering low correlations. Second, we find
that for three ordinal outcomes, using the pairwise approach has advantages over the
tripletwise likelihood approach. Even though the tripletwise approach delivers slightly
better estimates in terms of bias, the differences between the estimates are minimal
and the pairwise approach is significantly faster than the tripletwise approach. Another
relevant aspect for the application case, where the panel of credit ratings has many
missing values especially for Fitch, is the influence of ignorable missing values on
the pairwise likelihood estimates. We find that these estimates are robust to observa-
tions missing completely at random and threshold parameters, coefficients and high
correlation parameters are all recovered very well. Low correlation dimensions are
more sensitive to missing observations but, as long as the sample size is not too small,
estimates are reliable. Additionally, a simulation study with five outcome variables
was performed and similar results as for the three-dimensional case were observed.
Simulation results are satisfactory for both the probit and the logit link functions.

In the empirical application, corporate credit ratings from S&P, Moody’s and Fitch
are matched to financial statement and stock price data for US publicly traded firms
between 1999 and 2013. Relevant covariates which have an impact on the creditwor-
thiness of firms are chosen according to prior literature. Moreover, we include time
dummies in the analysis to capture changes in the rating standards over time. Asso-
ciation between the ordinal credit ratings is reflected in the correlation between the
latent creditworthiness processes, which in our model depends on the business sector
of the firm. We allow for different threshold parameters for each CRA and observe
that Moody’s tends to have a more conservative behavior, especially in the specula-
tive grade classes, while Fitch seems to assign on average better ratings around the
investment–speculative grade frontier. Moreover, all covariates have the expected sign
and are consistent with the existing literature. We conclude that firms with higher debt
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ratio, long term debt, idiosyncratic and systematic risk, market to book ratio tend to
get worse credit ratings. Larger, more profitable firms, which spend more on R&D
and have higher interest coverage ratios and capital expenditures tend to obtain better
ratings. The coefficients of the year dummies indicate that rating standards in the sam-
ple period became stricter relative to the standards in 1999. This “tightening” trend
after 1999 was interrupted by a “loosening” of the standards during the financial cri-
sis 2007–2009, but after 2010 the coefficients returned to the level before the crisis.
The degree of inter-rater association for all business sectors is very high. Marginal
differences are observed for few business sectors.

Possible extensions of this work include the incorporation of multi-level depen-
dencies, such as time dependencies in the error terms and/or the implementation of
different covariates in the error correlation matrix. Moreover, a simulation study could
be performed to investigate the performance of the pairwise estimators under the “miss-
ing completely at random” assumption, in a case where the true generating process
of the missing observations is not completely random. The empirical analysis could
be extended to incorporate additional ratings from smaller players in the US ratings
market.

Computational details

All computations have been performed in R (R Core Team 2018). For the compu-
tation of the bi- and trivariate normal and t-probabilities we used the R package
mnormt (Azzalini and Genz 2016). The minimization of the negative log-likelihood
has been performed by using the general purpose optimizers implemented in the pack-
age optimx (Nash and Varadhan, 2011; Nash, 2014). After trying all available solvers,
we chose the NEWUOA solver (Powell 2006), as it performed best in terms of con-
vergence of the algorithm. The numerical derivatives for the tripletwise likelihood
approach have been computed with the R package numDeriv (Gilbert and Varadhan
2016). The pairwise likelihood estimates are estimated using the R package mvord
(Hirk et al. 2018). For the tripletwise approach as well as for the simulation of the data
sets used in the simulation study, we provide code in the supplementary material.
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