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Abstract— The first resonance mode of mechanical systems is  In this work, the first successful implementation of a contro
a significan_t limit to the achievable p_ositioning l_)andwidth. ThiS_ scheme that effectively increases the positioning banitwad
resonance is dependent on the physical, material and geometric a nanopositioning system by seemingly shifting the dontinan

properties of the system. Significant effort is typically required to ~ _. . -
increase the resonance frequency by increasing stiffness or red- first resonant mode to a higher frequency, is reported. A

ing mass. In this article, a modified IRC scheme is presented that Proportional gain controller is implemented in tandem with
effectively shifts the first resonance mode to a higher frequeng  the appropriate IRC scheme to result in a closed-loop damped

thereby enabling a substantially higher positioning bandwidth. A system that has its first resonance shifted to a higher frexyue
70% increase in positioning bandwidth is demonstrated. than it's open-loop counterpart. This technique can belyeasi
I. INTRODUCTION integrated into any co-located positioning system to @eliv

Integral Resonant Control (IRC) was first proposed, a decadeSignificantly wider positioning bandwidth. As a resulte th
ago, as a simple, low-order well-performing damping cdntroorOPOSEd scheme has t_he pote_ntlal to 5|gn|f|cantly increase
scheme for co-located systems, [1]. The advantages of tRehievable scan speeds in Atomic Force Microscopes.

IRC scheme include the ability to damp multiple resonant _

modes, guaranteed stability and robustness in the presﬂncéa" Overview

resonance frequency shifts - an artefact of system loading.In section Il, a second-order model (for the dominant first
These desirable qualities have made the IRC scheme a popuksonant mode) is identified to match the measured frequency
choice for resonance damping applications. As a resultast hresponse of one axis of the nanopositioning platform. Afbrie
been successfully applied to damp the problematic res@sandntroduction for the IRC design is also included. Section ||

in a plethora of technological systems such as cantileveresents the rationale, the detailed design and closqdden
beams [1], flexible robotic manipulators [2], piezoeleztack formance analysis of the proposed resonance-shifting adeth
actuated nanopositioners [3], piezoelectric tube naribpps Section IV presents the modifications necessary to implémen
ers [4], piezoelectric microgrippers [5], lightweight mstiian the resonance-shifting IRC scheme in practice. Positgpnin
structures [6], floor structures [7], nonlinear oscillgtsystems performance of the closed-loop resonance-shifted IRCrsehe
[8], MEMS nanopositioners [9] etc. In a number of thesds recorded and presented in both time and frequency domain
applications, the IRC scheme is used as the damping cantrolto show that significant increase in positioning bandwidth i

in tandem with a suitably designed tracking controller tachieved. VI concludes the paper.

effectively deliver superior positioning performance.

It is well-known that most micro- and nanopositioning I[l. SYSTEM MODELING
systems exhibit a lightly damped resonant mode at a rela-
tively low frequency. Moreover, this resonant mode stritte
restricts the achievable closed-loop positioning bantwiaf
the positioning system, [10], [11]. To increase the achiéva
positioning bandwidth, several geometries and structiesign

A simplified schematic of one axis of a piezoelectric-stack
actuated nanopositioner is shown in Fig. 1. The piezoétectr
actuator is fixed at one end to a base and at the other end, it
pushed on a compliant structure which acts as a lever motion

dificati h b d that ol this limitirg fi amplifier. The motion amplifier transfers the motion to the
modifications have been proposed that place this limitirg Irmoving stage which is supported by flexure joints to ensure

resonant mode at higher frequencies, [3], [12], [13]. Unior maximal flatness, low cross-coupling and linearity of motio

nately, this increase in bandwidth by means of a higher firﬁthe motion of the moving stage is accurately sensed by a

resonance frequency comes at the cost of a reduction in d@ipacitive displacement sensor

placement ranges. It is therefore deemed extremely bealefici The frequency response of one axis of a nanopositioner

if the achievable positioning bandwidth could be increase easured from the voltage applied to the piezo-stack to the

without any mechanical / design changes; thereby keeping .tresultant displacement of the platform as sensed by theceapa

d;splslcedmentt ralntgehur_lchangr]]ed. hAthwaty to tagmeve th'st uj”i}g/e displacement sensor can be represented as an infimie s
standard control techniques has hitherto not been reported. o+ second-order resonant sections shown in Eq. 1.
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where M — oo, o2 corresponds to the gain of each mode o 299 [
vibration, ¢; is the dampin.g ra_tio of each mode, and is is 10t 12
the natural frequency of vibration of each mode. Howevar, fc Frequency(H z)

practical purposes Eg. (1) is usually truncated to a cotiitaiite
number modes that lie within the bandwidth of interest. Fof'9: 2:
typical nanopositioners, the first resonant mode is uswalty response
lightly damped and dominates the entire frequency respohse
the axis. Consequently, in most related works, the axis iriede . .

. , : the controller parameters as well as to validate the dedigne
truncated to include only the first dominant resonant mo@g [1 control scheme via simulations
[14], [15]. This dominant lightly damped resonance mode can '
be modeled as a second order system with a small and positive
feed-through termi , added to compensate for the truncation-
induced modeling error, [16]. Thus, the useable model of one The three step controller design process is described as

Measured FRF vs the identified second-order modetguincy

IIl. CONTROLLERDESIGN

axis of a typical nanopositioner takes the form: follows:
o2 Stepl: Resonance shifting -
G(s) = 52 + 2Cwps + w2 +d, @ The achievable positioning bandwidth of a nanopositioser i

) ) o ) limited by the resonance frequency of its axis. The resomanc
where ( is the damping coefficient and, is the resonance ghitting controller is introduced to overcome this coristra
frequency. o This controller is basically a negative proportional feaclo
The frequency-response of the nanopositioning platforrs Wdoop, see Fig. 3.
measured from input vpltage supphgd to the piezo-actuator The proportional gain loop not only increases the resonance
output VOI.t‘f‘ge propornonal to the displacement meas_u_g_ed k?requency but also increases the maximum peak value (by
the_ capamtw_e displacement sensor. A subspace-basetﬂfudenreducing the damping coefficiend. This negative feedback
cation technique as reported in [17], was employed to gesmera}oop is always stable for a second order system and by

a second-order model shown in Eq. 3 increasing the gaik the DC gain of the loop approaches unity.
N 8.3782 x 106 This is shown below wherél; is the transfer function for the
G(s) = o 5795 4 6.657 X 10°° (3) resonance-shifted closed-loop system:
The measured frequency response data as well as the iden- G o= o’

tified second-order model’s frequency response is plotted i 52 + 2Cwps + w2

Fig. 2. As seen, the identified model matches the measurad dat el

with good accuracy. The first resonant mode at 411 Hz is {ightl H = —

damped and dominates the dynamics withing the bandwidth of 1+ kG .

interest. As an artifact of the mechanical constructionhef t H, = ko § )

platform axis, a second resonant mode, much smaller than the 52 + 2Cwps + w2 + ko?

fjommgn:r:‘irsg mgdgd;:r?nfpetseelwt at_ 57? ?Z' Thm:?h tt?tlxs tmog%nceforth, the system subjected to damping and tracking
is within the bandwidth of interest, simulation results\sttbai %?ntroller is given by:

neglecting it from the system model and subsequent contr
design and analysis does not have any unwanted effects. _ o’
In the next section, this identified model is used to derive 52 + 2Cwps + w;
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Fig. 3. (a) Block diagram for the Resonance-shifting cdférplRC damping controller and Integral tracking conteolscheme wherd is the feed-through
term, k is the resonance shifting gaih,is the IRC damping gain ank is the integral tracking gain.

wheres? = ko? and@? = w? + ko?. (with reduced damping).
By comparing the platform transfer function afi, rela-
tionships betweeq and other parameters can be identified:
2) Relationship between feed-through, damping and IRC

20y - 2wy gain: In [18], a full mathematical derivation of the relationship
= ¢ _ Y (5) between feed-through, damping and IRC gain can be summa-
¢ wp rized by the following theorem.

(5) shows that increasing resonance frequency by a factor of

a will reduce the damping ratio byt/c. In most closed-  Theorem 1:Consider a colocated system with a pair of
loop second-order system analysis, the damping ratio iallysu complex poles at+jw, and feed-through induced zeros at

neglected for sake of simplicity. The same simplificationl wi 5, ~ jw,/3. If the IRC strategy is implemented, the maxi-
be applied to all the analysis presented in the work thghym damping achievable is given by
follows. As we have further reduced the damping coefficient,

this simplification is more valid. The DC gain off; is 1 wp
ko? /(w2 + ko?). Since for most of the systems” and w? Cmaz = B 2. o2/g D E (7)
are almost equal, the DC gain can be estimated as: Vs o/
w2 The controller gain required to reach this maximum damping
DClyain —L — ~1=0dB is given by
(k+ w2

1) Relation between sensor bandwidth &ndSensor band- R Wp ()
width is one of the limiting factors for the amount of res- |d] ! /wg +02/d
onance shift. The shifted resonance should be within the
Zgrzz%rfzgg\)/\f/dzth/th ;:r?n5|der|ng shifted resonance frequenC)(Nherewz _ \/m with respect tad.

. , :

(wp +ko®)!/2 <y Step 3: Tracking controller -The IRC algorithm has been
i< v - w,% ©) applied to damp the resonances of various precision positjio
o? systems, especially nanopositioners [2], [3], [6], [149]
Step 2: Damping Controller The general concept of the Nanopositioning systems generally employ piezoelectric-a
IRC design can summarized below: ators that tend to introduce nonlinear effects such as reste
and creep. To minimize the positioning errors introduced
by these phenomena, a damping controller such as IRC is

- - used in conjunction with a simple integral tracking scheme
be added to the system to reverse the interlacing from perie-z .
to zero-pole. Furthermore, if a simple integratfs) —  is [10], [20]. A block diagram of the complete control scheme

implemented in positive feedback with such a modifiedS Systeliﬂ_corporating both IRC_: _damping and_integral t_rack_ing along
with the resonance-shifting controller is shown in Fig.. (3)

G(s) = G(s) + d, as the integral gaink® is increased, the
poles of the system traverse a curve where first they move away

from the imaginary axis, into the left-half complex planbus In Fig. (3), the transfer functions of interest for quantfion
increasing their damping coefficient) and then back towdrds of positioning performance ang/r (output to input) and;/d;
imaginary axis till they reach their correspondingly peimero (output to input disturbance). To find the characteristigagippn

Given that a colocated syste(s) with pole-zero interlac-
ing is to be damped, an adequate feed-through térean first



i . Bode Diagram
C(s), four loopsLy, Ls, Ly and Ly are defined as below: G = 115 dB (at 543 ) pon 6,52 deg (at 516 H)

L1 = —]23 X G(S)
koo
Ly, = S X kEx G(s) =
k g
L3 = —xd %
S g
k k. e
Ly = ——2x=xkxG(s).
S S
Using Mason'’s rule’(s) is the numerator of (9). o
D -180
1—(Ly+ Lo+ L3+ Ly)+ (L1L3) 9) %
Roots of the denominator of (9) are zeros of different transf & °*°|
functions or they may cancel out. But the zeros of (9) are tr saol
poles of the final closed-loop transfer function. Stabitifythe . .
closed-loop transfer function is the most important faatany 10 Frequency (le(;

control applicationH; as defined before, can be considered as
the new system which needs to be damped and tracked. Hengg, 4. The loop-gain and stability margins of the proporibfeedback loop
the relationship between damping and tracking controléar ¢ whenks = 0.02.
be defined byrheorem 2[18].
Theorem 2:Let k£ and k; be the IRC damping and integral
tracking gains respectively. Then, for the closed-looptesys
as implemented in Fig. (3) to be stable, the gains must obgyodes. The practical stability margins is best determined
the following inequality: directly from the measured open-loop frequency responstd. W
this approach, the maximum stable gain of the proportional
52 4+ di? feedback was found to bk, = 0.02 which is only sufficient
kik < ———5— (10)  to achieve an 8 Hz increase in the resonance frequency. The
This theorem proves that gamping and tracking gains ateop gain in Figure 4 shows a phase margin of 8 degrees, which
related in the IRC scheme and cannot be arbitrarily tuned of little practical value.
independent of each other. . . S .
Corollary 3: For a given second order system controlled Although th_e proportlor_wal_l_oop Is not practical in isolatjo
using the scheme shown in Fig. (3), there exists an absol cha_lracterlstlcs are significantly more favorab_le whten t
maximum value fork;k. The corresponding maximum value proportional and damping control loops are combined.

is related tod by: First, the complementary sensitivity function of the prepo
tional loop is (5)
Gs(s)k

52 Gy(s) = ——=—2= 13
d= —2‘% = 2d, (11) (5) 1+ Gy(s)ks (13)

W,
P a ISimilgrly, the complementary sensitivity of the dampingiol

kk} = L 12) loopis

max {k¢k} 152 (12)  Ga(5)Cals) »
IV. EXPERIMENTS Ga(s) = 1— Gy(s)Ca(s) (14)

Experimental validation is carried out by implementingyhere C,(s) = ky/s. By substitutingG,(s), the transfer

the developed control scheme on a nanopositioning platforiynction of the damping and proportional loop is
Straightforward implementation leads to an unstable deose

loop system. Practical implementation of this techniquedse Ga(s) = G(s)Ca(s)ks , (15)

a modified control structure. The following section will firs 1+ G(s)ks — G(s)Cals)ks

describe the issue and then present the modified implementab G(s)Cq(s)ks

control structure Ga(s) = ( : (16)
. 14+ G(s)ks (1 —Cy(s))

A. Modified implementation for practical application By removing the factorCy(s)/ (1 — Cq(s)) from the above

c){aquation, the transfer function can be arranged in the fdrm o

2 regulator and prefilter. That is,
G(s5)Ceq(s)

1+ G(5)Ceqs)’

The control block diagram illustrated in Figure 3 cann
be implemented directly due to the wide bandwidth of th
proportional feedback loop. The unlimited bandwidth can

cause instability when dealing with unmodeled high freqyen Ga(s) = Cy(s)

7



Bode Diagram
Gm =5.87 dB (at 3.82e+003 Hz) , Pm = 20.1 deg (at 2.33e+003 Hz)
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where the equivalent regulator is
Ceq(s) = ks (1 = Ca(s)) (18)

and the prefilter is .
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Cy(s) = T=Cy(s)’ (19)
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o

. . . . Fig. 6. The loop-gain and stability margins of the equivaldginping control
This arrangement is illustrated in Figure 5. Although thare |oop.

other possible implementations, this configuration is rekxe

since the prefilter and regulator are both causal and sthble.

contrast, standard IRC requires an unstable controlldreouse The closed-loop frequency responses of the servo loops are
of positive feedback. Furthermore, the stability margihshe compared in Figure 8. The resonance shifted controller ji@rm
equivalent control loop are superior to the isolated propoal — an increase in the tracking bandwidth from 225 Hz to 711 Hz,

loop, as described in the following section. which is 40% higher than the system resonance. This is an
outstanding achievement for a first-order damping and ingck
B. Experimental Results controller that does not require model based inversion.

A proportional qain of. — 1.5 was chosen the increase the The system responses are also compared in the time domain

brop 9 s . __in Figures 9, 10, 11 and 12. The increased bandwidth of the

resonance frequency from 507 Hz to 1000 Hz. The Optlmarltlesonance shifted controller permits a faster settlinge tand
damping parameters were then determined tatpe= 6000 P &

: . : lower tracking error for dynamic signals.
ndd = —1.2. That is, th ivalent r lator i .
andd atis, the equivalent regulator is Remarks: The resonance shifted controller was demonstrated

Cuyls) = 1.5s + 1800 (20) to effectively double the resonance frequency of the nasiepo
“ s+ 7200 tioner whilst increasing the damping to near critical le®&hce
and the prefilter is the resonance frequency of a mechanical system is propattio

6000 7 to \/k/m, a comparable increase using mechanical methods

s +4.32 x 10 . . : . )

1(s) = = 5 (21) would require a four times increase in the stiffness, or a 75%
s* 4 8400s +8.64 x 10 reduction in the mass. Such mechanical improvements may

The loop-gain and stability margins of the equivalent dampbe difficult, undesirable, or impossible to achieve. Themef
ing control loop are plotted in Figure 6. Even though thehe proposed technique provides an alternate or complemen-
proportional gain has been increased by two orders of magnary method to significantly improve the performance withou
tude, the phase margin is significantly better than the tedla additional cost or mechanical reconfiguration.
proportional loop.

The frequency responses of the standard and resonance
shifted damping control loops are plotted in Figure 7. Bath-c Due to the low order of the control scheme, it is straight-
trollers eliminate the resonance peak; however, the remena forward to implement in both digital and analog forms. There
shifted controller achieves a bandwidth almost twice ttidhe are a number of options for analog implementation of Figure 5
standard controller and nearly double the open-loop resma One method is to implement the transfer functions (20) and
frequency. (21) directly, for example, by state-variable filter. Howev

The servo controller was tuned to minimize settling timdghis approach may be difficult to tune experimentally. It is
after a step command. The servo controllers for the standapeeferable to create circuits with component values that ar
IRC C)(s) and resonance shifted systerfis(s) were found directly related to the control gains.
to be In order to implement Figure 5 as an analog controller,

650 840 circuits are required for the transfer functiod,(s) and
Ci(s) = — +0.034, and C5(s) = +0.034, Cf(s). Both of these filters are parameterized by the damping

S S

V. ANALOG IMPLEMENTATION
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Fig. 13. Analog implementation of the IRC damping controlief’y(s).

controllerCy(s). A filter that implements-Cj(s) is illustrated
in Figure 13. The desired transfer function is

(22)

—Cy(s) = —

The circuit transfer function is

1
T2aC2

1
T2bC2

s+ (23)

Sincek, is positive andd is negative, the equalities are

(24)

1 1
T2qC2 = kfd, andr2b02 = de

The transfer functionC,,(s) can be constructed from

—Cy(s) as illustrated in Figure 14.

T2b

Fig. 14. Analog implementation af’c,(s). The sub-circuit for—Cy(s) is
shaded.

Cy(s) = Ca(s)/(1 = Ca(s))

T2p
R
’—\W || “2
R
| T2q | |
J‘ AAA
+

SR

Analog implementation af’;(s). The sub-circuit for—Cy(s) is

Fig. 15.
shaded.

VI. CONCLUSIONS

In this work, the IRC scheme is modified to include a
resonance shifting control loop that is capable of incregsi
the positioning bandwidth of any colocated nanopositioner
The modified scheme also possesses excellent input distur-
bance rejection capability - a key performance criteria for
accurate positioning systems. Finally, the effectivermfsthe
proposed scheme is demonstrated by simulating the resenanc
shifting IRC scheme on the model derived from an FRF
data set recorded for a commercially available nanoposi-
tioner. A twelve-fold increase in positioning bandwidth sva
achieved. Future work will include experimental verificati
and bandwidth-dictated parameter optimizations.

The transfer functiorC;(s) can be implemented by notic-
ing that the sub-circuit-Cy(s) is contained in a unity-gain
negative feedback loop with an inverting input gain. This
arrangement can be implemented by the circuit in Figure 15.

With circuit diagrams forC.,(s) and C¢(s), the block
diagram in Figure 5 can be implemented with the addition of
a subtracter. Once the damping and resonance control laop hl
been implemented, it is trivial to implement the outer tiagk
control loop with standard circuits.
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