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Abstract— The first resonance mode of mechanical systems is
a significant limit to the achievable positioning bandwidth. This
resonance is dependent on the physical, material and geometric
properties of the system. Significant effort is typically required to
increase the resonance frequency by increasing stiffness or reduc-
ing mass. In this article, a modified IRC scheme is presented that
effectively shifts the first resonance mode to a higher frequency,
thereby enabling a substantially higher positioning bandwidth. A
70% increase in positioning bandwidth is demonstrated.

I. I NTRODUCTION

Integral Resonant Control (IRC) was first proposed, a decade
ago, as a simple, low-order well-performing damping control
scheme for co-located systems, [1]. The advantages of the
IRC scheme include the ability to damp multiple resonant
modes, guaranteed stability and robustness in the presenceof
resonance frequency shifts - an artefact of system loading.
These desirable qualities have made the IRC scheme a popular
choice for resonance damping applications. As a result, it has
been successfully applied to damp the problematic resonances
in a plethora of technological systems such as cantilever
beams [1], flexible robotic manipulators [2], piezoelectric-stack
actuated nanopositioners [3], piezoelectric tube nanoposition-
ers [4], piezoelectric microgrippers [5], lightweight pedestrian
structures [6], floor structures [7], nonlinear oscillatory systems
[8], MEMS nanopositioners [9] etc. In a number of these
applications, the IRC scheme is used as the damping controller
in tandem with a suitably designed tracking controller to
effectively deliver superior positioning performance.

It is well-known that most micro- and nanopositioning
systems exhibit a lightly damped resonant mode at a rela-
tively low frequency. Moreover, this resonant mode stringently
restricts the achievable closed-loop positioning bandwidth of
the positioning system, [10], [11]. To increase the achievable
positioning bandwidth, several geometries and structuraldesign
modifications have been proposed that place this limiting first
resonant mode at higher frequencies, [3], [12], [13]. Unfortu-
nately, this increase in bandwidth by means of a higher first
resonance frequency comes at the cost of a reduction in dis-
placement ranges. It is therefore deemed extremely beneficial
if the achievable positioning bandwidth could be increased
without any mechanical / design changes; thereby keeping the
displacement range unchanged. A way to achieve this using
standard control techniques has hitherto not been reported.
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In this work, the first successful implementation of a control
scheme that effectively increases the positioning bandwidth of
a nanopositioning system by seemingly shifting the dominant
first resonant mode to a higher frequency, is reported. A
proportional gain controller is implemented in tandem with
the appropriate IRC scheme to result in a closed-loop damped
system that has its first resonance shifted to a higher frequency
than it’s open-loop counterpart. This technique can be easily
integrated into any co-located positioning system to deliver
a significantly wider positioning bandwidth. As a result, the
proposed scheme has the potential to significantly increase
achievable scan speeds in Atomic Force Microscopes.

A. Overview

In section II, a second-order model (for the dominant first
resonant mode) is identified to match the measured frequency
response of one axis of the nanopositioning platform. A brief
introduction for the IRC design is also included. Section III
presents the rationale, the detailed design and closed-loop per-
formance analysis of the proposed resonance-shifting method.
Section IV presents the modifications necessary to implement
the resonance-shifting IRC scheme in practice. Positioning
performance of the closed-loop resonance-shifted IRC scheme
is recorded and presented in both time and frequency domain
to show that significant increase in positioning bandwidth is
achieved. VI concludes the paper.

II. SYSTEM MODELING

A simplified schematic of one axis of a piezoelectric-stack
actuated nanopositioner is shown in Fig. 1. The piezoelectric
actuator is fixed at one end to a base and at the other end, it
pushed on a compliant structure which acts as a lever motion
amplifier. The motion amplifier transfers the motion to the
moving stage which is supported by flexure joints to ensure
maximal flatness, low cross-coupling and linearity of motion.
The motion of the moving stage is accurately sensed by a
capacitive displacement sensor.

The frequency response of one axis of a nanopositioner
measured from the voltage applied to the piezo-stack to the
resultant displacement of the platform as sensed by the capac-
itive displacement sensor can be represented as an infinite sum
of second-order resonant sections shown in Eq. 1.

G(s) =

M
∑

i=1

σ2

i

s2 + 2ζiωis+ ω2

i

(1)



Fig. 1. Schematic view of the mechanical structure of the nanopositioner axis
and displacement sensor arrangement.

whereM → ∞, σ2

i corresponds to the gain of each mode of
vibration, ζi is the damping ratio of each mode, andωi is is
the natural frequency of vibration of each mode. However, for
practical purposes Eq. (1) is usually truncated to a containfinite
number modes that lie within the bandwidth of interest. For
typical nanopositioners, the first resonant mode is usuallyvery
lightly damped and dominates the entire frequency responseof
the axis. Consequently, in most related works, the axis model is
truncated to include only the first dominant resonant mode [12],
[14], [15]. This dominant lightly damped resonance mode can
be modeled as a second order system with a small and positive
feed-through termd , added to compensate for the truncation-
induced modeling error, [16]. Thus, the useable model of one
axis of a typical nanopositioner takes the form:

G(s) =
σ2

s2 + 2ζωps+ ω2
p

+ d, (2)

where ζ is the damping coefficient andωp is the resonance
frequency.
The frequency-response of the nanopositioning platform was
measured from input voltage supplied to the piezo-actuatorto
output voltage proportional to the displacement measured by
the capacitive displacement sensor. A subspace-based identifi-
cation technique as reported in [17], was employed to generate
a second-order model shown in Eq. 3

ˆG(s) =
8.3782× 106

s2 + 57.2s+ 6.657× 106
. (3)

The measured frequency response data as well as the iden-
tified second-order model’s frequency response is plotted in
Fig. 2. As seen, the identified model matches the measured data
with good accuracy. The first resonant mode at 411 Hz is lightly
damped and dominates the dynamics withing the bandwidth of
interest. As an artifact of the mechanical construction of the
platform axis, a second resonant mode, much smaller than the
dominant first mode can be seen at 576 Hz. Though this mode
is within the bandwidth of interest, simulation results show that
neglecting it from the system model and subsequent control
design and analysis does not have any unwanted effects.

In the next section, this identified model is used to derive
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Fig. 2. Measured FRF vs the identified second-order model’s frequency
response

the controller parameters as well as to validate the designed
control scheme via simulations.

III. C ONTROLLER DESIGN

The three step controller design process is described as
follows:

Step1: Resonance shifting -
The achievable positioning bandwidth of a nanopositioner is

limited by the resonance frequency of its axis. The resonance-
shifting controller is introduced to overcome this constraint.
This controller is basically a negative proportional feedback
loop, see Fig. 3.

The proportional gain loop not only increases the resonance
frequency but also increases the maximum peak value (by
reducing the damping coefficientζ). This negative feedback
loop is always stable for a second order system and by
increasing the gain̂k the DC gain of the loop approaches unity.
This is shown below whereH1 is the transfer function for the
resonance-shifted closed-loop system:

Ĝ =
σ2

s2 + 2ζωps+ ω2
p

H1 =
k̂G

1 + k̂G

H1 =
k̂σ2

s2 + 2ζωps+ ω2
p + k̂σ2

(4)

Henceforth, the system subjected to damping and tracking
controller is given by:

H1(s) =
σ̄2

s2 + 2ζ̄ω̄ps+ ω̄2
p
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Fig. 3. (a) Block diagram for the Resonance-shifting controller, IRC damping controller and Integral tracking controller scheme whered is the feed-through
term, k̂ is the resonance shifting gain,k is the IRC damping gain andkt is the integral tracking gain.

whereσ̄2 = k̂σ2 and ω̄2

p = ω2

p + k̂σ2.
By comparing the platform transfer function andH1, rela-

tionships between̄ζ and other parameters can be identified:

2ζ̄ω̄p = 2ζωp

⇒
ζ̄

ζ
=

ωp

ω̄p
(5)

(5) shows that increasing resonance frequency by a factor of
α will reduce the damping ratio by1/α. In most closed-
loop second-order system analysis, the damping ratio is usually
neglected for sake of simplicity. The same simplification will
be applied to all the analysis presented in the work that
follows. As we have further reduced the damping coefficient,
this simplification is more valid. The DC gain ofH1 is
k̂σ2/(ω2

p + k̂σ2). Since for most of the systemsσ2 and ω2

p

are almost equal, the DC gain can be estimated as:

DCgain ≈
k̂ω2

p

(k̂ + 1)ω2
p

≈ 1 = 0dB

1) Relation between sensor bandwidth andk̂: Sensor band-
width is one of the limiting factors for the amount of res-
onance shift. The shifted resonance should be within the
sensor bandwidthγ. Considering shifted resonance frequency
be (ω2

p + k̂σ2)1/2, then:

(ω2

p + k̂σ2)1/2 < γ

k̂ <
γ2 − ω2

p

σ2
(6)

Step 2: Damping Controller -The general concept of the
IRC design can summarized below:

Given that a colocated systemG(s) with pole-zero interlac-
ing is to be damped, an adequate feed-through term ‘d’ can first
be added to the system to reverse the interlacing from pole-zero
to zero-pole. Furthermore, if a simple integratorC(s) = k

s is
implemented in positive feedback with such a modified system
Ĝ(s) = G(s) + d, as the integral gain ‘k’ is increased, the
poles of the system traverse a curve where first they move away
from the imaginary axis, into the left-half complex plane (thus
increasing their damping coefficient) and then back towardsthe
imaginary axis till they reach their correspondingly paired zero

(with reduced damping).

2) Relationship between feed-through, damping and IRC
gain: In [18], a full mathematical derivation of the relationship
between feed-through, damping and IRC gain can be summa-
rized by the following theorem.

Theorem 1:Consider a colocated system with a pair of
complex poles at±jωp and feed-through induced zeros at
jωz > jωp/3. If the IRC strategy is implemented, the maxi-
mum damping achievable is given by

ζmax =
1

2





ωp
√

ω2
p + σ2/d

− 1



 . (7)

The controller gain required to reach this maximum damping
is given by

k =
1

|d|






ωp

√

√

√

√

ωp
√

ω2
p + σ2/d






, (8)

whereωz =
√

ω2
p + σ2/d with respect tod.

Step 3: Tracking controller -The IRC algorithm has been
applied to damp the resonances of various precision positioning
systems, especially nanopositioners [2], [3], [6], [14], [19].
Nanopositioning systems generally employ piezoelectric actu-
ators that tend to introduce nonlinear effects such as hysteresis
and creep. To minimize the positioning errors introduced
by these phenomena, a damping controller such as IRC is
used in conjunction with a simple integral tracking scheme
[10], [20]. A block diagram of the complete control scheme
incorporating both IRC damping and integral tracking along
with the resonance-shifting controller is shown in Fig. (3).

In Fig. (3), the transfer functions of interest for quantification
of positioning performance arey/r (output to input) andy/di
(output to input disturbance). To find the characteristic equation



C(s), four loopsL1, L2, L3 andL4 are defined as below:

L1 = −k̂ ×G(s)

L2 =
k

s
× k̂ ×G(s)

L3 =
k

s
× d

L4 = −
kt
s

×
k

s
× k̂ ×G(s).

Using Mason’s rule,C(s) is the numerator of (9).

1− (L1 + L2 + L3 + L4) + (L1L3) (9)

Roots of the denominator of (9) are zeros of different transfer
functions or they may cancel out. But the zeros of (9) are the
poles of the final closed-loop transfer function. Stabilityof the
closed-loop transfer function is the most important factorin any
control application.H1 as defined before, can be considered as
the new system which needs to be damped and tracked. Hence,
the relationship between damping and tracking controller can
be defined byTheorem 2, [18].

Theorem 2:Let k andkt be the IRC damping and integral
tracking gains respectively. Then, for the closed-loop system
as implemented in Fig. (3) to be stable, the gains must obey
the following inequality:

ktk < −
σ̄2 + dω̄2

p

d2
(10)

This theorem proves that damping and tracking gains are
related in the IRC scheme and cannot be arbitrarily tuned
independent of each other.

Corollary 3: For a given second order system controlled
using the scheme shown in Fig. (3), there exists an absolute
maximum value forktk. The corresponding maximum value
is related tod by:

d = −2
σ̄2

ω̄2
p

= 2dc (11)

max {ktk} =
ω̄4

p

4σ̄2
(12)

IV. EXPERIMENTS

Experimental validation is carried out by implementing
the developed control scheme on a nanopositioning platform.
Straightforward implementation leads to an unstable closed-
loop system. Practical implementation of this technique needs
a modified control structure. The following section will first
describe the issue and then present the modified implementable
control structure.

A. Modified implementation for practical application

The control block diagram illustrated in Figure 3 cannot
be implemented directly due to the wide bandwidth of the
proportional feedback loop. The unlimited bandwidth can
cause instability when dealing with unmodeled high frequency
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Fig. 4. The loop-gain and stability margins of the proportional feedback loop
whenks = 0.02.

modes. The practical stability margins is best determined
directly from the measured open-loop frequency response. With
this approach, the maximum stable gain of the proportional
feedback was found to beks = 0.02 which is only sufficient
to achieve an 8 Hz increase in the resonance frequency. The
loop gain in Figure 4 shows a phase margin of 8 degrees, which
is of little practical value.

Although the proportional loop is not practical in isolation,
the characteristics are significantly more favorable when the
proportional and damping control loops are combined.

First, the complementary sensitivity function of the propor-
tional loop is

Gs(s) =
Gs(s)ks

1 +Gs(s)ks
. (13)

Similarly, the complementary sensitivity of the damping control
loop is

Gd(s) =
Gs(s)Cd(s)

1−Gs(s)Cd(s)
, (14)

where Cd(s) = kd/s. By substitutingGs(s), the transfer
function of the damping and proportional loop is

Gd(s) =
G(s)Cd(s)ks

1 +G(s)ks −G(s)Cd(s)ks
, (15)

Gd(s) =
G(s)Cd(s)ks

1 +G(s)ks (1− Cd(s))
. (16)

By removing the factorCd(s)/ (1− Cd(s)) from the above
equation, the transfer function can be arranged in the form of
a regulator and prefilter. That is,

Gd(s) = Cf (s)
G(s)Ceq(s)

1 +G(s)Ceq(s)
, (17)



Cf (s) Ceq(s) G(s)

Fig. 5. Equivalent regulator form of the proportional and damping loops.

where the equivalent regulator is

Ceq(s) = ks (1− Cd(s)) (18)

and the prefilter is

Cf (s) =
Cd(s)

1− Cd(s)
, (19)

This arrangement is illustrated in Figure 5. Although thereare
other possible implementations, this configuration is desirable
since the prefilter and regulator are both causal and stable.In
contrast, standard IRC requires an unstable controller or the use
of positive feedback. Furthermore, the stability margins of the
equivalent control loop are superior to the isolated proportional
loop, as described in the following section.

B. Experimental Results

A proportional gain ofks = 1.5 was chosen the increase the
resonance frequency from 507 Hz to 1000 Hz. The optimal
damping parameters were then determined to bekd = 6000
andd = −1.2. That is, the equivalent regulator is

Ceq(s) =
1.5s+ 1800

s+ 7200
, (20)

and the prefilter is

Cf (s) =
6000s+ 4.32× 107

s2 + 8400s+ 8.64× 106
. (21)

The loop-gain and stability margins of the equivalent damp-
ing control loop are plotted in Figure 6. Even though the
proportional gain has been increased by two orders of magni-
tude, the phase margin is significantly better than the isolated
proportional loop.

The frequency responses of the standard and resonance
shifted damping control loops are plotted in Figure 7. Both con-
trollers eliminate the resonance peak; however, the resonance
shifted controller achieves a bandwidth almost twice that of the
standard controller and nearly double the open-loop resonance
frequency.

The servo controller was tuned to minimize settling time
after a step command. The servo controllers for the standard
IRC C1(s) and resonance shifted systemsC2(s) were found
to be

C1(s) =
650

s
+ 0.034, andC2(s) =

840

s
+ 0.034,
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The closed-loop frequency responses of the servo loops are
compared in Figure 8. The resonance shifted controller permits
an increase in the tracking bandwidth from 225 Hz to 711 Hz,
which is 40% higher than the system resonance. This is an
outstanding achievement for a first-order damping and tracking
controller that does not require model based inversion.

The system responses are also compared in the time domain
in Figures 9, 10, 11 and 12. The increased bandwidth of the
resonance shifted controller permits a faster settling time and
lower tracking error for dynamic signals.
Remarks: The resonance shifted controller was demonstrated
to effectively double the resonance frequency of the nanoposi-
tioner whilst increasing the damping to near critical level. Since
the resonance frequency of a mechanical system is proportional
to

√

k/m, a comparable increase using mechanical methods
would require a four times increase in the stiffness, or a 75%
reduction in the mass. Such mechanical improvements may
be difficult, undesirable, or impossible to achieve. Therefore,
the proposed technique provides an alternate or complemen-
tary method to significantly improve the performance without
additional cost or mechanical reconfiguration.

V. A NALOG IMPLEMENTATION

Due to the low order of the control scheme, it is straight-
forward to implement in both digital and analog forms. There
are a number of options for analog implementation of Figure 5.
One method is to implement the transfer functions (20) and
(21) directly, for example, by state-variable filter. However,
this approach may be difficult to tune experimentally. It is
preferable to create circuits with component values that are
directly related to the control gains.

In order to implement Figure 5 as an analog controller,
circuits are required for the transfer functionsCeq(s) and
Cf (s). Both of these filters are parameterized by the damping
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r2a

r2b

c2

Fig. 13. Analog implementation of the IRC damping controller−Cd(s).

controllerCd(s). A filter that implements−Cd(s) is illustrated
in Figure 13. The desired transfer function is

−Cd(s) = −
kd

s− dkd
. (22)

The circuit transfer function is

− 1

r2ac2

s+ 1

r2bc2

. (23)

Sincekd is positive andd is negative, the equalities are

r2ac2 =
1

kd
, andr2bc2 =

1

dkd
. (24)

The transfer functionCeq(s) can be constructed from
−Cd(s) as illustrated in Figure 14.

The transfer functionCf (s) can be implemented by notic-
ing that the sub-circuit−Cd(s) is contained in a unity-gain
negative feedback loop with an inverting input gain. This
arrangement can be implemented by the circuit in Figure 15.

With circuit diagrams forCeq(s) and Cf (s), the block
diagram in Figure 5 can be implemented with the addition of
a subtracter. Once the damping and resonance control loop has
been implemented, it is trivial to implement the outer tracking
control loop with standard circuits.

r2a

r2b

c2

R

R

R

R(2ks-1)

Ceq(s) = ks (1− Cd(s))

Fig. 14. Analog implementation ofCeq(s). The sub-circuit for−Cd(s) is
shaded.

r2a

r2b

c2
R

R

R

Cf (s) = Cd(s)/(1− Cd(s))

Fig. 15. Analog implementation ofCf (s). The sub-circuit for−Cd(s) is
shaded.

VI. CONCLUSIONS

In this work, the IRC scheme is modified to include a
resonance shifting control loop that is capable of increasing
the positioning bandwidth of any colocated nanopositioner.
The modified scheme also possesses excellent input distur-
bance rejection capability - a key performance criteria for
accurate positioning systems. Finally, the effectivenessof the
proposed scheme is demonstrated by simulating the resonance-
shifting IRC scheme on the model derived from an FRF
data set recorded for a commercially available nanoposi-
tioner. A twelve-fold increase in positioning bandwidth was
achieved. Future work will include experimental verification
and bandwidth-dictated parameter optimizations.
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