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Abstract
Eulerian-Lagrangian simulations of solid-liquidldhave been performed. The volume-averaged Navier-
Stokes equations have been solved by a variaieofattice-Boltzmann method; the solids dynamics by
integrating Newton'’s second law for each individpatlticle. Solids and liquid are coupled via magpin
functions. The application is solids suspensioa mixing tank operating in the transitional regi(ttee
impeller-based Reynolds number is 4,000), an ovsodils volume fraction of 10% and a particle-idju
combination with an Archimedes number of 30. I1$ tapplication, the required grid resolution is aliet
by the liquid flow and we thus need freedom to d®the particle size independent of the grid sgacin
Preliminary hindered settling simulations show tthet proposed Eulerian-Lagrangian mapping strategy
indeed offers this independence. The subsequeningnitank simulations generate grid-independent

results.
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1 Introduction

Mixing tanks with the purpose of suspending sobudttigles in a liquid are a common feature in chenic
and biochemical industrial processes. The apptinatiare wide-ranging: from wastewater treatment to
food processing; from catalytic slurry reactorsitdustrial crystallization devices. Solid-liquid ssga
transfer— in many cases including surface reactiengs an important objective of the process steps
carried out in the mixing equipment. Since masedtfier strongly depends on the extent to which the
surface of the solid particles is exposed to liglogv, the fluid and solids dynamics are directjyavant

for process performance. Also for characterizintured processes such as sediment transport insriver
and coastal areas, the dynamics of solid particiesiquid flow is a feature demanding accurate
description and thorough understanding. These metiave led to extensive research on the dynamic
behavior of solid-liquid suspensions.

Next to theoretical and experimental approachemgldtack to the seminal works of Stokes [1],
Richardson & Zaki [2] and — in the field of mixingnks— Zwietering [3] , computational methods are a
means of researching the dynamics of suspensidreseTis no universal numerical method to simulate
suspension flow. The approach depends on the questasked, and the computational resources
available. An important division is the one betweam Eulerian-Eulerian (EE) and an Eulerian-
Lagrangian (EL) viewpoint. In an EE simulation, #@ids phase is described as a continuum, governed
by continuum forms of mass and momentum balancatems. In an EL simulation, particles are tracked
individually or as clusters (parcels) through tigeiid based on Newton’s second law and hydrodynamic
and other forces.

This paper will exclusively consider the EL apphoa®Ve focus on EL simulations since in
subsequent research we want to quantify mass éraatsthe particle level, i.e. individual particlesl be
followed on their way through the liquid, therebgelping track of the extent to which they exchange
mass with their surroundings. If mass transfer wonvolve change in particle size, EL simulatiohert

also would naturally allow simulating the evolutioh a particle size distribution in the course of a



process, something which is much harder to do inEBncontext. For the remainder of this paper,
however, mass transfer will not be considered. mhe flow system that will be considered in thipea

is a mixing tank, operating in the mildly turbulehtransitional regime (to be specified below in a
guantitative sense) such that the liquid flow cansbmulated directly, without the need for a tudmdae
closure model or subgrid scale model.

Within the realm of EL approaches, a distinctioedseto be made between particle-resolved, and
particle-unresolved simulations. In particle-regalvsimulations, the resolution of the Eulerian goid
which the fluid flow is solved is sufficiently higio explicitly apply the no-slip condition at therface of
the particles and thus in detail calculate the femaund them individually [4-8]. This way, hydrodymic
forces and torques on the particles are directierdgned and used to solve the translational and
rotational equations of motion of the particlesisTlevel of detail requires fine grids and thusessive,
usually parallel, computational resources and ieffiiccodes. Currently simulations with up to 1 ronl
resolved particles have been reported [8]. Evemalnscale flow systems, however, this number of
particles is easily exceeded. For dealing with ssydtems, one then needs to revert to methodsitbat
less resolved at the patrticle level: particle-uohe=d simulations.

Particle-unresolved simulations come with a nundessues that are the subject of active research.

(1) Determination of hydrodynamic forces and torques on the particles. Since the flow around the
particles is not resolved, one needs closure oglatior hydrodynamic forces and torques on thagbast
as a function of local conditions, usually expresseterms of a Reynolds number based on the slip
velocity between particle and surrounding fluiddahe local solids volume fraction [9,10]. Additadn
(dimensionless) parameters that have been condidertorce expressions are the Stokes number for
dealing with inertia and with the suspension’s mistructure [11], and a Reynolds number based on
granular temperature for dealing with the effedtfuctuations [12]. One emphasis of current reskas

on closure relations for the drag force. In gasdssystems, the drag force is theminanthydrodynamic



force [13]. In liquid-solid systems, however, aduhil effects such as lift, added mass, and history
effects [14] might be relevant as well.
(2) The exchange of information between grid-based (Eulerian) quantities and particle-based

(Lagrangian) quantities. Examples are the determination of the Eulerididswolume fraction fieldg

(relevant for solving the volume-averaged fluid &pns, see Egs. 1 and 2 below) from the (off-grid)
locations of individual particles, as well as tha&d velocity in the direct vicinity of a particlgom the
velocity distribution on the grid. This Euleriandrangian exchange is facilitated bapping functions
that distribute Lagrangian quantities over the ,gaiadd generate weighted averages of Eulerian diganti
at the center location of a particle [15].

The modestly turbulent mixing tank applications ave interested in have specific requirements for

the mapping process: It should be able to deal wéhicle sizesd) that are of the same order of

magnitude as the grid spacidg d :O(A). Where some, largely interpolation based, mapmethods

require the mesh to be much wider than the parside [16], there is recent development in mappings

facilitating d :O(A) simulations [17,18]. We need such mappings to lisexom in the choice of grid

spacing to resolve the transitional or turbuleatfin the mixing tank. Ideally the choice of gripaging
is independent of the particle size and mainly meiteed by requirements for sufficiently resolvirtget
liquid flow. The aim of this work is to establishidrindependent simulations of solid-liquid flowathare
high on solids loading (overall solids volume frantof order 10%) with an unresolved — mapping-dase
— particle approach. We use the same mapping puoedtat was tested in a previous paper for fully
periodic, three-dimensional systems [18]. Thislastudy allowed to compare average slip velocuies
velocity fluctuation levels (of liquid and solidgptained with particle-unresolved procedures tdyful
resolved simulations of the same systems and thoshionark / optimize the unresolved procedure.

First in this paper, we apply the simulation pragedto the case of particles settling in liquidain
column towards a solid bottom. This mimics the sileel Richardson & Zaki experiments [2], and

enables performing a number of basic checks (hatsettling speeds, build-up of a hydrostatic pness



gradient, velocity fluctuation levels, grid effectsn the simulation procedure. Then we simulatat
various resolution levels the flow in a mixing tank with zero-velocity irdli conditions and the particles
forming a granular bed on the tank bottom. Aftertatg the impeller we keep track of the suspension
process and continue beyond the time frame ovechwhuasi steady state is reached. The simulation
conditions are chosen such that they are amenabébiscale visualization experiments with refraeti

index matching of solids and liquid [19]. The impelbased Reynolds number is 4,000, the Archimedes

gApd?®

V2

number associated to particles and liquid As = =30 (with g gravitational acceleration,

Ap = p, — p the difference between solid and liquid densihyd & the kinematic viscosity of the liquid),

and the solid-over-liquid density ratjo,/ o is in the range 2.23 — 2.5.

In the subsequent sections of this paper we fitsbduce the flow systems. We then summarize the
simulation procedure and refer to the literaturg.(f18,20]) for further details. In discussing thadered
settling results we focus on the impact of modaiads on the settling speed. A study of grid eHfast
the main theme when mixing tank simulations arsgméed. In the final section we draw conclusiorg an

give an outlook to further study.

2 Flow systems and simulation methods
2.1 Flow systems

The flow domains are rectangular, three-dimensienaimes of sizenxxnyxnz. Gravity points in the
negativez-direction: g = —ge,. The domain size in the horizontal directions thee same:nx=ny. The

systems in which we study hindered settling haweéogdie conditions in thex andy directions and solid
planar walls at the top and bottom. The agitatetktdaare rectangular as well and have solid walls al
around. Agitation is achieved by spinning an imgeWith four blades, pitched under®48 a direction

such that fluid is pumped downward. Figure 1 presidhe geometrical details of the mixing tank. The

Reynolds number associated to the flow inducechbyirhpeller is defined aRe,, = ND?/v with D the



impeller diameter andll the impeller speed (in revolutions per unit timd@he flow systems contain a

Newtonian liquid with densityo and kinematic viscosity and spherical solid particles of equal size
with diameterd and densityp, larger thanp .

There are various ways to define the flow condgion the systems as introduced above. The

dimensionless numbers we use to characterize tiieted settling systems are the average solidsnelu

fraction <¢)> in the part of the volume loaded with particlese Wensity ratiop,/p, and the single-
particle settling Reynolds numbé&e, =u_d/v with u, the settling velocity that we determine from a
force balance over a single particle in an infinitenain g ( o, - p) 77d%/6 =1 C, pu? 7d?/ 4. For the drag
coefficient C, the Schiller-Naumann correlation [20, :24(1+ 0.15 R%‘“”)/ R is applied. For the
solid-liquid mixing simulations, next to the impalbased Reynolds numb&e,, and the density ratio

ON?D?

p./p there is the Shields parametér=
g(p.-p)d

. The latter expresses the competition between

inertial stress generated by the impeller motiospsuding the particles (that scales wighi?’D?), and

net gravity pulling them down [6].

2.2 Liquid and solids dynamics
Fluid flow is solved on a three-dimensional Eulergrid. The Eulerian grid is uniform and cubic with
grid spacingA. The spherical particles that move through thid bave a diameter comparable4q the

range of diameters investigated in this papeig7<d/A< 3.%. On the Eulerian grid the volume-

averaged continuity equation and momentum balasrcehé liquid phase [223] are solved:

9 (p#)+0ifpgiu) =0 )
ot

2 (ogu)+D{oguu) = g0+, @



with ¢ =1-¢ the continuous phase (liquid) volume fraction amdhe solids volume fractiony the
interstitial liquid velocity, 7t the liquid’s stress tensor, arfid the force per unit volume the solid particles

exert on the liquid. Equations 1 and 2 are solvéti & variant of the lattice-Boltzmann method. Full
details can be found in [18,20].

The dynamics of the spherical solid particles igegned by Newton’s equations of motion

T . du T
—d*—L=F +F,-—d*(p,-p)ge 3
Pt =R R (o= p)ge, 3)

7T . do
—d°—P2 =T +T 4
ps60 dt h c ()
and by

dx, . 5)

dat P

with u ,@,, X, the linear velocity, angular velocity, and centecation of a spherical particle

respectively (note that — because we are dealinly spheres — there is no need to track the angular

“location” of the particles)F, and T, the hydrodynamic force and torque on a partiahel, B. and T,

the contact force and torque due to particle-gartiollisions and lubrication effects.

2.3 Modelling assumptions and implementation

The only hydrodynamic force on the particles wel Wwé considering is the drag force. For liquid-goli
systems — with density ratios of order one — add#l hydrodynamic effects such as lift, added maisd,
history forces might have a significant effect [1A} this stage we discard these effects. Eventuall
experimental data and sensitivity analyses thraigtulations will need to shed light on the impodan
of additional forces under specific flow conditions

The drag force is written in the form

F, :vad(u—up)F(Rego) (6)



with Rez(l—qa)‘u —up‘d/v.

An additional simplification thus is that drag omlgpends on the solids volume fraction, and on the
Reynolds number. That is, we do not include termghe drag expression that depend on the granular

temperature (as in [12]), or on the Stokes numb&}. [The functionF is written as a product function

F (Re@) = p( R9q(¢). The Reynolds dependency is captured through thdl@edaumann correlation

[21] p(Re)=(1+ 0.15 R%‘m) (which is valid for Re< 1,00(, a condition met in this paper). For the
dependence of drag on the local solids volume itmove have tested two expressions: the Wen &Yu

expression q(qo):(l—qo)_ﬁ with B=2.65 [24] and the Van der Hoef et al expression

qa(e) =%+(1—¢)3(1+%\/47)) [25]. As has been noticed [11], the latter expgmssesults in higher

values for the drag force as compared to the farinefl1] this has been identified as an effectrod
Stokes number. The Wen & Yu correlation has beeiveld from hindered settling experiments in solid-
liquid systems that have moderate Stokes numbdrs.Vian der Hoef et al expression is the result of
simulations of the flow around static, random addes of particles. This is a system characteriftic
infinite Stokes numbers. Since the solids are cstahd thus would take “infinite time” to change
configuration, the fluid phase time scales arenitély smaller than those of the solids.

The force exerted by the fluid on the particlene sum ofF, and the contribution from a slowly
varying stress field (e.g. due to buoyancy) arothmal particle. This total hydrodynamic force on the

particle as it shows up in Eq. 3 can be expressef & F,/(1-¢) [26]. One manifestation of a varying
stress field around the particles is the presshat luilds up as a consequence of the net weigtiteof

collection of particles. As will be shown, this wéis in a pressure gradien%gz—g(pm—p) with
z

o :¢ps+(1— q)),o the mixture density. In this expression for thetical pressure gradient, the liquid

density p is subtracted since Eq. 3 already accounts folighel-only buoyancy force.



The body forcef, in Eq. 1 is the reaction of the drag force onfthiel. Feeding back the drag force
on the fluid is an example afapping: relating Lagrangian properties (in this case di@ge F,) to
Eulerian propertiesf().

The one-dimensional version of the mapping functised in this work reads
1(€) 15 5_4_25_2+_1 for—-A<&f<A
16/ A°  A° A T
1(&)=0 for|é>A

(7)

This is a “clipped fourth-order polynomial” [27] thi A the half-width of the mapping function. It shows
resemblance to a Gaussian distribution but is caatipmally more efficient to calculate than a Gaarss

and is zero attA. To determine some property, that is known on the Eulerian grid, at a Lagrangi

location «, the product of mapping function and propertwiﬂegrated:<a(/()>ﬂ = f U(é-k)a(&)dé.

-A

The propertya(f) is defined on the equidistant Eulerian ggd with spacingA by valuesa;. We
approximatea (&) in the integrant as a stair-step function, (&) =a;, for & -1A<&<& +1A.

Given the discrete nature af(&), the integral can be written ésr(/()% =Yna, with 7, coefficients

following from integrating the mapping function. & lextension to a three-dimensional Eulerian grl an

a three dimensional Lagrangian locatiok is straightforward and can be written as

<a(|<)>) =222 With i, j,k discrete coordinates i, y, and z-direction respectively. The
i j ok
coefficientss;, are only non-zero on grid points within a volunie(iem)3 aroundx . Also >3 >, =1
i ] ok

since in casear is uniform, <a>ﬂ =qa. For efficient calculations, we use a look-up ¢afdr determining
the coefficientsy,, . Prior to a simulation all coefficientg, are determined for a three-dimensional grid

of Lagrangian points (®A0x10 points in our code) in a grid cell. During thetueml simulation, the

coefficients associated to a specific Lagrangiacation (a particle) are obtained from tri-linear



interpolation in this grid of points. Interpolatioguarantees smooth time-variation of the mapping
operations.

The coefficientsr,, are used to distribute Lagrangian properties éghd. As an example, the

drag force on one of the particleS;( contributes to the body force on the fldid(see Eq. 2) in grid cell

i,j,K by an amount—% Folli -

At three instances in the simulation procedure nmappperations are applied: (1) to determine the
liquid velocity u (to be used in Eq. 6 to determine the drag foatehe location of the particle from the

Eulerian velocity field; (2) to determine the Euder solids volume fraction fielgp from the location and
size of the particles so thaf = —# is a known field when solving Egs. 1 and 2; (3 éxplained
above) to determine the Eulerian vector fieldrom the drag force§&, on the particles.

The choice of the width of the mapping functioh)(is worthwhile investigating. Earlier research
[17,18] suggests a value df=1.5d and we will be using this as our default choicewdver, we will be

looking into the effects of excursions from thioue.

2.4 Particle dynamics

Equations 3- 5 describe the dynamics of the particles. The Wayin Eq. 3) has been determined was
shown above. The contact forée consists of two parts: soft-sphere collision ferég, and lubrication

forces F,,, . Both forces are assumed to be radial forces. igians that they act on the line connecting

the two sphere centers involved in a contact. Tksons thus are assumed to be smooth so thatiive

not be considering tangential contact forces amdam torques, as a resdlf =0 in Eq. 4.
The soft-sphere collision force is a radial repudgiorce proportional to the distande over which

the spheres overlaﬂj::ﬂ| = (nzm/tf)é' with m=7p.d*/6 the mass of a particle, angd a parameter that

controls the typical time of contact between tweotipkes [11]. Particle-wall collisions are treatsihilar

10



to particle-particle collisions: a fixed, fictitisyparticle is placed at the opposite side of thi aral the
actual particle bounces smoothly with the fictisquarticle.

Lubrication forces occur when two closely spacediglas move relative to one another. The radial
component of the lubrication force (the only comgminconsidered here) is the result of a drainiggidi
film between two approaching particles, and a bigtiim filling upon separation. For low Reynolds

number film flow, the radial lubrication force omriclej due to particle can be written a§,,; = F,n

ub,j ij

with n; = (xp’j =X, )/‘xpyj —xp’i‘ the unit vector along the line connecting the eenbf the two particles,

and F, :—gm/pdz(up’j —up’i)m” /s with s the minimum distance between particle surface$ [PBe

force on particle due toj is opposite:F,,; =—F,n;. In the simulations these expressions have been

modified in two ways. (1) A cut-off distance @&1d has been introduced: fa=>0.1d the lubrication
force is zero, fors<0.1d F, 01s-10'd [26]. (2) The lubrication force saturatessi€ 10°d [26].

Since collisions between particles and betweenigestand walls are smooth, the only source of

rotation is the hydrodynamic torqué&, (in Eq. 4). It is determined according to a cregpflow
approximation: T, =7zovd3(%(o—cop) with @ the vorticity of the liquid in the direct vicinitpf the

particle [29]. The hydrodynamic torque is not feaick to the liquid. As a result, the rotation of the
particles has no impact on the overall dynamiaheftwo-phase flow.

The equations of motion (Eq. 3-5) are solved bymsea a split derivative time integration which
has been discussed in detail in [30]. Such integranhances stability which is useful in case oflast
solid over liquid density ratios, as we have irs thaper.

As a summary, we here list the main choices, assangp and limitations of the proposed
simulation procedure: (a) Drag is the only hydraaiyiic force; it depends on a particle-based Reynolds
number and local solids volume fraction. (b) Magpfanctions with half-widthA =1.5d are used to

relate Eulerian and Lagrangian flow properties;wileinvestigate the sensitivity with respect #gd . (c)

Collisions are smooth, and interaction forces ¢spfiere and lubrication) are radial. (d) The torqnea

11



particle is estimated based on a creeping flowrapsion and particle rotation is not fed back to the

liquid flow.

3 Results

3.1 Hindered settling

The hindered settlingase-case consists of a liquid filled domain, periodic inethorizontal directiong
andy and enclosed between a top and bottom solid walk ny =54.5d ;nz= 102l . A total of 62,500

solid particles of diametet are initialized randomly in the lower part of tthemain, in betweerz =0.5d

and z=0.4nz such that in this regiorzi¢>:o.252. The density ratio i,/ =2.50. Viscosity and

gravitational acceleration are such thi¢,  =2.89. The default settings apply for the half-widththe
mapping function 4/d =1.5), the hindered settling functiom(¢) = (1-¢) ") and the collision time
(tv/d® =0.008%).

At moment zero the particles are released and s#dtliing. In Figure 2 we show snapshots of
vertical cross sections through the domain in tewhdiquid and solids velocity vectors for two
resolutions:d =1.1A and 2.2A. The liquid develops vortical structures as itsgagitated by the settling
solids. Since we start the simulations at the tesolutions with the same initial solids configuoati
there is strong similarity between the panels iguFé 2. On average one observes an upward liquid
motion to compensate for downward particle volutog.fThe interface between particle-laden and clear

liquid is sharp, also after — as in Figure 2 — Higant time has elapsed since the start of thdirsgt

process.

The system develops a vertical pressure gradieattduhe net weighg n(ps—p)d3/6 of the
particles withg—:—g(pm—p) where p,, = ¢p, +(1-¢) p is the mixture density. We thus expect a
z

pressure gradien?}E =-¢ (,0S —,0); in the scaling of Figure 3 this Bd—@ =-@. This is what
z

g(o.—p)d 0z

12



is observed in the left panel of Figure 3: the slap the pressure profile in the part of the volumagt

contains settling particles is approximatel§.25 which is minus the average solids volume fraclﬁq@n

there. The solids volume fraction contours in FggWB are consistent with the pressure profile:
approximately zero pressure gradient in the cleaid and in the settled granular bed on the botiat,
and a constant, negative gradient in the regiorrevtie particles settle.

Hindered settling speeds have been determined a®utd have been done in an experiment:
measure the vertical location of the interface leetvsuspension and clear liquid as a functionnoé ti
As we observed in Figures 2 and 3, the interfacgel-defined and horizontal. Two different ways of
guantifying the interface location have been tesfgjithe laterally X andy) averaged location where
the Eulerian solids volume fraction field is halfetsolids volume fraction in the suspension; (3 th
averagez location of the top 2% of the particles. In Figdré shows that the results of two methods have
close resemblance. The settling speeds as presarteziremainder of this section have been detezhi
with the second (top 2%) method by fitting a stinditine to the linear portion of the time seriestlais
method shows a slightly smoother time series (sg@r& 4).

In Figure 5 it is demonstrated that the simulagpoocedure mimics the dependency of the settling
velocity on the average solids volume fraction agppsed by Richardson & Zaki [2] quite well (left

panel of Figure 5). In a more critical test we camgphindered settling in terms of the exponent the
settling function (1 /u, :(1—<¢>)n) and the way it depends on a Reynolds numher/v with an

empirical correlation due to Di Felice [31]. Thensilations show an that is some 10% lower than the
empirical correlation. The weakly downward trend nnwith respect to the Reynolds number is
represented correctly by the simulations.

In our previous work [18] it was shown that averatjp velocities were virtually insensitive for the
half-width of the mapping functionl as long asl/d =1.5. The left panel of Figure 6 confirms this for
the current hindered settling simulations. More amantly, however, the spatial resolution of the

simulations expressed a§A at fixed A/d =1.5 has virtually no effect on the settling velocigeé the

13



right panel of Figure 6). It implies that — at les average settling speeds — there is freedoomaosing
spatial resolution relative to the particle size,least in the rangel<d/A<3. The situation for
fluctuating velocities is more complicated in these of the present simulations. Where the setsjreged

is steady in a significant part of the time windofira simulation (see Figure 4), the per-particlgalality

in the velocity (expressed in a root-mean-squataeyas a transient as shown in Figure 7. The root-
mean-square (rms) values are — as expected — l&geéhe vertical velocity component than for the
horizontal components (by approximately a factor2pf[20,32]. The dependency of the rms particle
velocity values with respect to the width of theppiag function follow the same trend as in thelgful
periodic) simulations in [18]: the wider the mapgpifunction, the weaker the rms velocity values[{i8]

it was argued that fo/d — o« fluctuations would disappear). From comparisorhvgérticle-resolved
simulations, A/d =1.5 was found to be the mapping function width thastb@imicked the particle
resolved simulations [18], in line with conclusiodsawn in [17]. With the latter value fod/d the
sensitivity of the rms velocities with respectdpA was assessed, see the right panel of Figuiien@.
outlier in this panel is the simulation with theviest resolution (ad/A=0.77). As long asl/A>1.1, the
resolution of the particles on the grid has noi§icent impact on the rms particles velocity values

In summary, the mapping procedure, in combinatidth Whe lattice-Boltzmann based numerical
scheme, shows for hindered settling towards a sadilll results that are largely independent on éwell
of resolution of the particles on the grid, as esged through the ratio of particle size and goaceg
d/A. It is important to realize that the most approjgriethoice ofA/d =1.5 is based on a limited range of
solids volume fractions and (particle-based) Regsaiumbers. It might very well be — and some of the
comparisons with particle resolved simulations @se@nted in [18] indeed suggest so — that thecehafi
A/d =15 is regime dependenin the subsequent section, the numerical procediltée applied to a
mixing tank configuration where, next to determgparticle dynamics, also resolving the complexvflo

generated by the impeller imposes demands on ttiesgacing.
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3.2 Agitated solid-liquid flow

The dimensionless numbers we use for defining thated flow in the mixing tank (with geometry and

oN?D?

=260, and
g(p,-p)d

aspect ratios as given in Figure 1) have Va|lFQ$hXEND2/V =4,000, 6=

P,/ p=2.23. The particle size relative to the impelle@andeter isd/D =0.0208; the tank-averaged solids
volume fraction, i.e. total volume of solids oveta tank volume is<¢)> =0.098; the number of particles
is 250,000. A Stokes number Wiﬂ;((4N) (the inverse of the impeller blade passage frecylers

d?4N
v

defined asStE%% and has value of 3.4, i.e. an intermediate Stokesber.

The main purpose of this study of agitated solighlil flow is to establish grid independence.
Sufficiently fine grids are required to resolve flew at the given- impeller-based- Reynolds number.
The settling simulations have shown that, with pheposed mapping procedure, there is freedom in the
choice of the particle diameter relative to thedgspacing. In the right panels of Figure 6 and i& it
shown that results on respectively settling spaetiparticle velocity fluctuations during settlingeanot

sensitive to the particle size relative to the gidicing as long ad/A>1.1. Four levels of resolution
have been applied to the agitated flow systefy=1.0, 1.6, 2.0, 2.5 with all four simulations hayithe
same physical dimensionless parameters given afAteecoarsest grid consists of £Hibic cells, the
finest of 278. Expressed in terms of lattice spacings per inepaliameter, the four resolutions are
D/A =48, 76.8, 96, and 120 respectively.

The initial conditions for each simulatiamethe same: an initial particle configuration isatesl by
letting the 250,000 particles (witth/A=1.0) settle in a cubic container. Each of the feioTulations uses
exactly the same dense layer of particles restinthe bottom of the tank with thgy,2) locations of the
particles scaled according to the specific resotutf the simulation. At moment0, when fluid and

particles have zero velocity, the impeller is setdtate. The impeller speed is ramped up to gadst
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state valueN such that the first impeller revolution takes mdiof2/N ; beyondt=2/N the impeller

spins at constant speBid
For illustration, we show snapshots of the startfifhe suspension process for the simulation with

d/A=2.0 in Figure 8. The velocity magnitude contoursiivertical plane through the center of the tank

show liquid being pumped by the impeller in a dowandvradial direction. This stream agitates the
particles that — as a result — get suspended. pantieles reach the top of the tank within the tmeeded

for eight impeller revolutions. After 16 revolutierparticles can be found throughout the entire tank
volume, although their distribution is clearly imhogeneous.

Before discussing the way particles distribute otteg tank volume, first the effects of grid
resolution on the liquid flow predictions will besdussed. In Figure 9 we show snapshots of the flow
close to an impeller blade taken at the same nuwibenpeller revolutions after startup for two @ifént
spatial resolutions in terms of liquid and partigkdocity vectors. That the overall flow pattermsthe
two panels of Figure 9 are different is not a diancern: The impeller generates a mildly turbulen
transitional) flow so that we expect randomnesshin temporal variability of the flow. The left, neor
resolved panel, however, shows much more fine, Isstale detail that seems to be too small to be
captured on the coarser grid in the right panel,eoample the vortex underneath the hub. We thus
anticipate the latter simulation (with = 48A) to be under-resolved.

We realize (1) that these are only qualitative olmtgons, and (2) that it might very well be thia¢ t
simulation in the left panel is under-resolved aslwn fact, in order to fully resolve boundary layens
impeller blades at the current Reynolds numbegalimrmesh spacings might need to be smaller by an
order of magnitude. The boundary layers are, howexa critical for the bulk flow in the tank [33fhe
bulk flow is where the main solid-liquid interaat®take place.

As a more objective, albeit global, measure fod gonvergence the torqi required to spin the

impeller is compared between the various grids. wé define the dimensionless torque as

Po= Zﬂ\/l/(,oNZD5) it is equivalent to the power number (since powetr 277NM ). Time series of Po
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are shown in Figure 10. They show some time vditpbas well as a strong effect of the spatial
resolution of the simulations. For all cases, asgateady state is reached after approximatelyriieiler
revolutions. The figure indicates that grid conwsrge is reached if in the simulation the resolui®n
such thatD/A =96 (equivalent tod/A >2.0). This is an important result. It teaches that tbguired
resolution is in the first place dictated by thguid flow dynamics. If particles are involved iretfow,
we thus need the freedom to choose their size amtgmnt of the grid spacing. The results on sedimgnt
systems in the previous section suggest that whith ¢urrent mapping procedure particle size
independence can be achieved. In the remainddniopaper we will test particle size independerme f
the more complicated situation (as compared to leiripndered settling) of a mildly turbulent agidt
flow.

Time series of two global particle characteristios compared for the four resolutions in Figure 11.

The left panel shows the number of particles withrdination number of at least Nf) over the total
number of particles|,). The coordination number of a particle is the bemof other particles it is in
contact with, where contact is defined as ovedap0. Since we start from a dense granular bed on the
bottom of the tank, the ratidl, /N, is close to one at time zero, and in the subsecspension process
the ratio N,/N, gets reduced. The fact that it gets reduced teecko zero implies that the solids

suspension process under the conditions considgnethaches complete suspension over the 60 impeller
revolutions of the time series. The second gloleatigle characteristic is the average vertiaalp@rticle
location, plotted as a function of time in the tiglanel of Figure 11. Both time series show a $icgmt

difference between on one side the simulation vdfA =1, and on the other side the other three
simulations. This is consistent with the resultstfee power number (Figure 10) where also tH& =1
stood out from the others. The difference as oleskim power number fod/A=1.6 with the finer

simulations, however, does not reflect in marketifierent global particle behavior.
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In Figures 12 and 13 a more local characterizadioiihe suspension process is presented. Here we
look into what happens around timill =20. Considering this moment in time when the susmensi
process is still in progress (see Figure 11) iscaeninteresting and critical test for assessinglu®n
effects than looking at the fully suspended, qstesady state. Figure 12 shows instantaneous agahs
at tN =20 of the situation in a vertical cross section tlylouhe center of the tank for the four
simulations considered. The way individual parscietersect that plane is indicated by the whitksli
the colors indicate the instantaneous Euleriardsolblume fraction fields as obtained through magpi
from the particle locations and the figure thusvesras an illustration of how the mapping operation
works. The particles concentrate under the impsilece the flow there is relatively weak (see Fey8y).
There are more particles close to the bottom ferl¢fast resolved simulatior (A =1) compared to the
other simulations, in line with the results in Figul2. No systematic differences between the other
simulations can be concluded from the snapshofsigare 12. For this reason average solids volume
fraction fields over the periotl5<tN < 20 are shown in Figure 13. They confirm the leasel®f solids
suspension fod/A =1 and tentatively — not significantly — show lesstisées in the bottom region and
in the solids cone underneath the impeller the drighe spatial resolution of a simulation. We cadel
from these results that a decent level of grid peshelence for this two-phase system under its curren
conditions is achieved fad/A > 2.

It should be realized that the primary purposehid paper is to establish a procedure for solid-
liquid simulations in which the resolution can laddred independently to the needs of fluid as \asll|
solids mechanics. The level of realism of the satiah results depends on much more than on (the
elimination of) grid effects only. One of the chescwe made was for the Wen & Yu drag force
correlation [24]; another choice was the incorporabf lubrication forces. To judge the impact bése

specific choices, two additional simulations (wi#hsolution d/A =1.6) were performed. One using the

Van der Hoef et al drag force expression [25] iadtef the Wen & Yu correlation, the other without
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lubrication forces. Results are in Figure 14. Thaye been presented in the same way as the rasults
Figures 12 and 13 for the base-cases.

The effects of the lubrication force are very siigaint: suspending the solids is much easier
without activated lubrication forces. Mobilizing ehgranular bed requires pulling apart connected
particles. In this process the lubrication forcarsattractive force. The change in drag corrataisoless
drastic but still visible: suspension of the soladter 20 impeller revolutions has advanced legh e

Van der Hoef et al correlation as compared to tlen\& Yu correlation.

5 Conclusions and outlook

In this paper we have assessed a procedure — basttw lattice-Boltzmann method — for performing
Eulerian-Lagrangian simulations of dense solidiligsystems with unresolved particles. We focused on
the effects of spatial resolution. Two flow systewexe considered: (1) settling of particles undawviy
towards a solid, horizontal wall; (2) an agitatedk with particles getting suspended by a transdtio
(Reynolds number 4,000) liquid flow. The modelliagproach is relatively simple: drag and lubrication
are the only hydrodynamic forces considered. Tlag dorce depends on the local solids volume fractio
through the Wen & Yu correlation [24] which we jifigtbecause we are dealing with solid-liquid system
(that have modest Stokes numbers). Particle amfissiare smooth. The solids and liquid dynamics are
two-way coupled except for particle rotation whistone-way (only fluid to solid) coupled.

The main conclusion of the sedimentation simulaisnthat the results in terms of average settling
speed as well as particle velocity fluctuations iadependent of the particle size relative to tttide
spacing if we use mapping functions with a fixedlthirelative to the particle size. The dependerfcy o
the hindered settling speed as a function of tlegame solids volume fraction is in reasonable agesé
with empirical correlations from the literature |31

The independence of the particle size relativilhéogrid spacing is an important feature if thelgri

resolution is decided by factors other than thedsotlynamics. In the case of the mixing tank, the
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transitional flow generated by the impeller is da@ for the choice of resolution and grid effefitst

and foremost show up for the torque required tan gbie impeller. Global and local parameters
characterizing the solids suspension process shgwddndependent behavior beyond a certain spatial
resolution.It should be realized that simulation results ‘widng those that approach grid-independence
— depend on the choice of the width of the mapgpumgtion relative to the particle size. Furtherdstus
needed to explore how to objectively make this ch@nd to what extent this choice is regime (solids
volume fraction, Reynolds number, Stokes numb&peddent.

Given the relative simplicity of the way solids @nics has been modelled and coupled to the
liquid dynamics there is ample room for model refirent. An important question in this respect is,
however, how to judge if model refinement leadsirtgorovement of the level of realism of the
simulations. Inour opinion we need detailed experiments for this, leaged on visualization and optical
velocity measurements in refractive index matchadlgiquid systems [19]. For example, an experiten
along these lines in a mixing tank would be abldeoide if the role of the lubrication force is @&t as
important as shown by the numerical results in faper,or if there are advantages of using one

formulation of a drag force correlation over anothe
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Figures

Figure 1. Mixing tank geometry: top view and side view. Targgin of the Cartesian coordinate is in the
center of the bottom wall.
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2.2 . Instantaneous

1.1A, right d

13.4 after start-up. Cross sections through the middi¢he flow domain. Black

Figure 2. Base-case for hindered settling at two resolutitefs d

realizationstu, /d

24

vectors: interstitial liquid velocity; red vectorgelocity of particles in adithick layer in the middle of the

domain. The reference vector indicates the singhtigte settling velocityu,, .




Figure 3. Left: the solid blue curve is the vertical pregsprofile averaged over the lateral directions
<p>; the dashed line is to show slop8.25. Right: solids volume fraction distribution in artical cross

section. Instantaneous realizatiort@af/d = 35.9. Base-case withl =1.1A .
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Figure 4. Time series of the vertical interface locationading to two methods as explained in the text.
Base-case witld =1.1A .
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Figure 5. Left: hindered settling velocity as a function &bélids volume fraction forRe, =2.89,

p./p =250, d/A=1.1, and A/d =1.5. Right: same data as in left figure with= In(ﬁ]; the curve

1-(¢)

isn=4.7- O.65ex;E—( 1.5 x)z/ ;ﬁwith x ="log(u,d/v) due to Di Felice [30].
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Figure 6. Settling speed as a function of numerical pararseteeft: effect of the half-width of the
mapping function Q) for d =1.1A. Right: effect of particle size relative to gripaging d/A) for

A=15d. In all casesRe, =2.89, p,/ p=2.50; (¢) as indicated.
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Figure 7. Time series of particle velocities fluctuation lesvgoot-mean-square values) in horizontal and

vertical direction in a horizontal layer with thivkss 8 centered atz=nz/3. Left: effect of A for
d =1.1A. Right: effect ofd with A =1.5d. Re, =2.89, p,/p = 2.50; (¢)=0.252.

u,lu,
0.4r

29

———————— d/A=0.77
d/A=1.1
d/A=1.65

; ——dIA=2.2




Figure 8. Start of the solids suspension process in thengixank in terms of particle positions and
velocity magnitude contours. In the two right panehly particles in a slab through the center adthvi
0.2T are displayed in order to better see inside thstegy. Base-case conditions with a resolution

d/A=2.0.

after 2 revs

30



Figure 9. Impressions of instantaneous flow near the impéHieea indicated in grey in the right panel).

Black vectors are liquid velocity, red vectors paet velocity. The blue dots are the points usethi

immersed boundary method to represent the impellee. left panel ¢/A

resolution as the middle panel /A

2.0) has a twice as high

1.0). Base-case conditions; 29 impeller revolutiorerastart-up.
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Figure 10. Left: time series of power number Po for simulasiawith different resolution; right: time-
averaged power number determinedtidr= 20.
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Figure 11. Time series of the fraction of particles havingoardination number of 4 or higher (left) and
the average vertical location of the particleshtidor the four different resolutions.
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Figure 12. Instantaneous realizations of the solids volumaetion in a vertical plane through the center
of the tank attN =20. The white dots are cross sections of individuatiglas. Increasing resolution

from left to right: d/A =1.0, 1.6, 2.0, and 2.5 respectively.
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Figure 13. Time-averaged solids volume fraction in a vertipne through the center of the tank.
Averaging over five impeller revolutiorfs< tN < 20. Increasing resolution from left to righd/A = 1.0,

1.6, 2.0, and 2.5 respectively.

oy

W NN, W,

- —1
<0.05 0.25 0.45 >

Ak A

35



Figure 14. Top row: instantaneous realizations of the solidlsime fraction in a vertical plane through
the center of the tank &N = 20; bottom row: time-averaged %< tN < 20) solids volume fraction. Left:
Van der Hoef et al [24] instead of Wen & Yu dragretation; right: lubrication force switched offa |

both casesl/A=1.6
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