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Abstract 

 

Axon Initial Segment Plasticity in Mouse Models of Amyotrophic Lateral Sclerosis 
 
 

John W. Smerdon 
 

  

 Amyotrophic Lateral Sclerosis (ALS) is a debilitating and fatal neurodegenerative 

disease affecting upper and lower motor neurons.  Though studied for over two decades since 

the first ALS-associated genetic mutation was discovered, researchers have yet to uncover the 

pathological processes that lead to progressive degeneration of motor neurons in ALS, or to 

develop effective treatments. One prominent hypothesis proposes that excitotoxicity caused by 

increased motor neuron firing plays a role in ALS pathogenesis.  While prior studies reported 

increased action potential firing in early postnatal ALS-model motor neurons in vivo, it remains 

unknown whether the increased activity stems from increased intrinsic excitability of ALS motor 

neurons or from increased excitatory drive, and whether these changes are transient or persist 

into adulthood, when ALS symptoms emerge.   

 In this thesis, I circumvented the difficulties in standard measurement of 

electrophysiological properties of adult spinal motor neurons in vivo by relying on the 

visualization of the axon initial segment, a subcellular structure known to undergo compensatory 

structural changes in response to perturbations in excitatory input.  I discovered that cultured 

motor neurons derived from stem cells of the SOD1G93A mouse model of ALS display shortened 

axon initial segments and hypoexcitable electrophysiological properties.  The shortening of the 

axon initial segment is compensatory, as ALS motor neurons receive increased numbers of 

excitatory inputs and manifest increased spontaneous activity.  Remarkably, similar shortening 

of the axon initial segment was detected in early presymptomatic spinal motor neurons in vivo.  

The shortened axon initial segment persists into the symptomatic stages and is particularly 



pronounced in motor neurons containing p62 immunoreactive aggregates and neurons 

exhibiting swollen mitochondria, two signs of stress and neurodegeneration in the disease.  

Based on these observations I propose that early in the presymptomatic stages of the disease, 

spinal motor neurons recruit excessive excitatory inputs, resulting in their increased activity that 

is in part compensated by shortening of the axon initial segment.  This state persists and 

becomes even more pronounced in motor neurons exhibiting biochemical changes preceding 

neurodegeneration.  

 While these observations support the potential role for excitotoxic stress in spinal ALS 

motor neurons, I paradoxically observed the opposite phenotype in ALS-vulnerable cranial 

motor neurons in the brainstem of the SOD1G93A animals, raising the possibility that the cellular 

stress that drives the neurodegeneration in ALS is motor neuron subtype specific.  
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Chapter 1: Introduction 

 

  The ultimate purpose of the central nervous system is to orchestrate precisely timed 

sequences of electrical signals, termed action potentials, to control voluntary movement, 

communicate ideas, regulate internal organs and to manifest basic instinctive behaviors.  Motor 

neurons are the principal output unit and the final neuron in the motor circuit.  Motor neurons 

relay signals to muscles that govern internal systems such as digestion and respiration, as well 

as allow movement and interactions with the outside world, controlling 320 bilateral pairs of 

skeletal muscles  (Brooks, 2003).  In order to generate the dynamic and distinct contractile 

properties of these muscles that are required to create a complex range of movement, 

specialization of the motor neurons must exist.  Specialization in motor neurons is typically 

exposed by their patterns and speed of action potentials, and can be categorized into subtypes.     

 Many types of neurodegenerative diseases selectively affect particular subtypes of 

neurons, including Amyotrophic Lateral Sclerosis that affects subtypes of motor neurons.  What 

drives the progressive degeneration of motor neuron subtypes remains an unanswered question 

for neuroscientists. Principally, it is unknown how the electrical tuning in neuronal subtypes and 

the neuronal constituents to which they are connected, leads to unique action potential 

properties and, in turn, makes them selectively vulnerable to human diseases. Although the 

abundant diversity in the central nervous system has made the illumination of these 

mechanisms a daunting undertaking, great insights have been made through studies of 

neuropathology, where perturbations to this finely tuned system have uncovered minute, though 

important physiological niches.  With hope, these discoveries will lead to mechanism-based 

therapies and ultimately cures to these devastating diseases.  
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I. Amyotrophic Lateral Sclerosis 

 

 Amyotrophic Lateral Sclerosis (ALS), also known in the United States as Lou Gehrig’s 

disease, is a devastating disorder that is clinically characterized by signs of progressive 

neurological deterioration of corticospinal and somatic motor neurons of the spinal cord and 

brainstem (Figure 1.1). ALS is typically fatal 3-5 years after symptom onset (Vucic et al., 2014), 

and death most often the result of denervation of the respiratory muscles  (Rothstein, 2009). 

Although ALS was first medically described by Charcot almost 150 years ago (Vucic et al., 

2014) and the first mouse model of the disease was created over 20 years ago (Gurney et al., 

1994), the pathogenic pathways are still unknown and neither prophylactic nor curative 

treatments exist.  Only two drugs for ALS are currently on the market, the first of which, Riluzole 

only extends life by a few months (Bensimon et al., 1994), and the second, Edaravone, shows a 

similarly limited treatment scope though not enough time has elapsed to understand its true 

effectiveness on survival (Oskarsson et al., 2018).  Thousands of Americans are diagnosed with 

ALS each year resulting in a staggering impact on the United States economy, costing annually 

$256 to $433 million (Larkindale et al., 2014).  According to the Centers for Disease Control, 

ALS prevalence in the United States was 5 cases per 100,000.  Diagnosis of ALS is typically 

through identification of progressive weakness, spasticity, atrophy and eventual paralysis of 

skeletal muscles, as well as analysis of electromyograms and nerve conduction studies.   

 Hereditary genetic mutations account for about 10% of ALS diagnoses  (familial ALS, or 

FALS), leaving 90% of the cases with no known genetic cause  (sporadic ALS or SALS) (Li et 

al., 2015). Though FALS cases only account for roughly 10% of the ALS patients, there are 

strong links between phenotypes observed in FALS and SALS cases (Rakhit et al., 2004; Bosco 

et al., 2010; Haidet-Phillips et al., 2011; Guareschi et al., 2012), suggesting that treatments 

developed using FALS models might impact many ALS patients.  More than 16 ALS-associated 

gene loci have been reported (Vucic et al., 2014), one of these, copper/zinc ion-binding  
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Figure 1-1: Motor neuron degeneration in Amyotrophic Lateral Sclerosis  

Top – Parafin-embedded, Klüver-Barrera-stained postmortem anterior horn sections from the fourth lumbar segment 
of a control patient and an ALS patient (Terao et al., 1994).  The large, dark cells in the control are motor neurons, 
clearly missing in the ALS patient.  

Bottom – Yearly batting averages plotted vs. time for the last decade of Lou Gehrig’s carrier.  Demonstrating both the 
absence of symptoms prior to disease onset, as well as the rapid decline after symptom onset.  Lou Gehrig 
succumbed to ALS in 1941. 
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Superoxide Dismutase 1  (SOD1) (Esteban et al., 1994; Gurney et al., 1994), has been widely 

studied in ALS research and accounts for 20% of the FALS cases (Kiernan et al., 2011).  Over 

150 mutations in SOD1 have been linked to ALS (Kiernan et al., 2011). One in particular, the 

glycine to alanine mutation at position 93  (G93A), was introduced in the first mouse model of 

ALS (Gurney et al., 1994) and is the most commonly used model for the disease (van Zundert 

et al., 2012). The construct in this model encoded for human SOD1 through 12-15 kb genomic 

fragments and was driven off of the endogenous promoter, and there are 18 copies of the 

transgene in the G1 mouse from the original report (Gurney et al., 1994).   

 Clinical events in the mice closely match those seen in ALS patients (Turner and Talbot, 

2008).  By 90 days of age, the mice develop tremors in their hindlimbs, as well as other 

locomotor shortfalls and muscle weaknesses  (Figure 1.2).  These symptoms progress into 

paralysis and death 30 days later, where postmortem analysis of the spinal cord and brainstem 

revel massive loss of motor neurons and reactive gliosis (Dal Canto and Gurney, 1994; Turner 

and Talbot, 2008).  After this original mouse model was created, multiple ALS mouse models 

with various SOD1 mutations were created (Lutz, 2018) and all overexpressed the mutant 

human SOD1 gene.  Though the models differ in onset, presentation and disease course, all 

have reduced lifespans and display clinical phenotypes of ALS, as well as undergo motor 

neuron degeneration, motor axon denervation, and show signs of protein aggregation.   

 For the SOD1G93A mouse, neuromuscular junctions degenerate at ~50 days and appears 

to first occur in fast-fatigable muscles (Kanning et al., 2010).  By 80 days, 60% of the axons in 

the ventral root are lost and at least half of the motor neurons have degenerated by 100 days 

(Fischer et al., 2004).  Though it is still unclear where the pathogenesis originates, the loss of 

the neuromuscular junction prior to complete loss of the motor neuron has helped to create a 

“dying-back” hypothesis.  However, it is possible that denervation is a downstream event after 

initiation of stress in the motor neuron.  There is evidence that motor neuron death is a slower 

event than what is seen in the canonical apoptotic or necrotic pathways, it may instead occur  
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Figure 1-2: Clinical and pathological phenotypes reported in the high expresser SOD1G93A mouse on the 
hybrid B6SJL background. 

At 90 days postnatal, mice become symptomatic, presenting with tremors, weakness, and locomotor deficits.  One 
month after symptom onset, significant muscle wasting and paralysis mark the end-stage symptoms, coupled to 
motor neuron lose and reactive gliosis.  Preceding symptom onset, synaptic retraction from neuromuscular junctions 
and distal axonal degeneration is observed.  As early as 30 days postnatal, increases in endoplasmic reticulum stress 
is observed (Saxena et al., 2009).  Progressively through end-stage, mutant human SOD1 aggregation, ubiquitinated 
inclusion bodies, and mitochondrial dysfunction have been reported.  Adapted from (Turner and Talbot, 2008). 

	

  



	

	 6	

over great amounts of time, albeit with necrotic-like signatures (Martin et al., 2007; Martin, 

2010).  Ultimately, these SOD1G93A mice on the B6SJL hybrid background succumb to the 

disease at around 130 days. In the works presented in this thesis, I have used the SOD1G93A 

mouse on the C57BL/6J inbred background that has slightly delayed disease duration where 

50% survival is ~160 days, though disease onset occurs at a similar age (Kaplan et al., 2014).  

A caveat here is that the timeline of phenotypic presentation in the inbred line is far less well 

characterized, though assumed to be similar to the hybrid line.  

 

II. Mechanisms of Pathogenesis in the SOD1G93A Mouse Model of ALS 

 

 Though the pathophysiology of ALS remains unknown, many hypotheses have been 

proposed, however, none have lead to a clear understanding of the disease pathogenesis. 

Some of the difficulties arise from the inability to separate between the cell autonomous and 

non-autonomous mechanisms in the disease. Glial cells and inflammatory mechanisms have 

been implicated in ALS pathogenesis (Di Giorgio et al., 2007; Frakes et al., 2014; Re et al., 

2014), evidence of non-autonomous contributions to the disease, and yet, only some motor 

neuron subtypes are selectively vulnerable to degeneration (Kihira et al., 1997; Lewinski and 

Keller, 2005; Brockington et al., 2013; Kaplan et al., 2014; Comley et al., 2015; Venugopal et al., 

2015a), an indication of cell autonomous mechanisms at play.  Given the high subtype 

specificity of the disease, where most of the neurons of the central nervous system  (CNS) are 

spared, it may be most effective to focus on cell-autonomous mechanisms as a target for ALS 

treatments.   

 There are multiple mouse models in existence today (Lutz, 2018) that provide valuable 

insight to pathological mechanisms across diverse genetic backgrounds.  Commonalities 

between these models may provide a truer picture of ALS pathogenesis.  However, as these 
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models are relatively new, the breadth of research describing their phenotypic profiles is still far 

behind that of the SOD1 mouse models.  For the purposes of this thesis, I will focus on the 

mechanisms presented in the SOD1 model.  As described above, the SOD1 mouse model 

nicely recapitulates ALS clinical presentations.  Additionally, there is hope that when the 

pathophysiology is uncovered in the SOD1 mouse model, it will have broader functional 

importance to many other types of familial and sporadic ALS cases (Rakhit et al., 2004; Bosco 

et al., 2010; Haidet-Phillips et al., 2011; Paré et al., 2018).   

 In the short few years following the initial creation of the SOD1G93A mouse model, it was 

determined that the loss of motor neurons was not due to a loss-of-function in SOD1, but 

instead due to a toxic gain-of-function.  This was demonstrated in two seminal studies, the first 

of which utilized the creation of a SOD1 knockout mouse and showed that these animals 

maintained normal development and motor control well into adulthood and no signs of pathology 

in the spinal cord (Reaume et al., 1996).  Nevertheless, these knockout mice notably have been 

shown to undergo chronic oxidative stress, where lifespan is reduced by 30% (Flood et al., 

1999; Muller et al., 2006; Fischer et al., 2012).  The second study utilized the SOD1G85R 

transgene on a normal mouse background, homozygous for endogenous SOD1, and on top of a 

SOD1-/- mouse (Bruijn et al., 1998) to show no difference in survival time in the two conditions.  

This would argue that endogenous SOD1 activity has little involvement in the pathophysiology 

of ALS. 

 As the SOD1G93A mutation does not effect normal catalytic activity of SOD1, one 

hypothesis surrounding the toxic gain-of-function has pointed to the protein becoming more 

susceptible to misfolding and aggregation (Banci et al., 2008).  High molecular weight SOD1 

aggregates are found across multiple SOD1 models and are isolated to the neuromuscular 

system (Bruijn et al., 1998; Wang et al., 2002; Turner et al., 2003).  It was hypothesized that 

these aggregates are causing toxicity in ALS.  Recently, it was discovered that large aggregates 

do not confer toxicity, instead, small soluble trimeric aggregates of SOD1 impact motor neuron 
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health (Zhu et al., 2018).  However, it is still unclear how these moieties impart neurotoxic 

effects.  Potential pathways may involve increased stress on the mitochondria, where SOD1 has 

been shown to accumulate on the membrane (Liu et al., 2004; Vande Velde et al., 2008), or on 

the unfolded protein response in the endoplasmic reticulum, thought to be dysfunctional in ALS 

(Saxena et al., 2009).   

 Both the endoplasmic reticulum and mitochondria have been found to swell in ALS 

(Kong and Xu, 1998; Martin et al., 2007), though the triggering mechanism of these events is 

still unknown.  This swelling, which starts in the dendrites and axons, has been shown to be so 

severe that it creates enormous vacuoles that take up large amounts of space in the soma of 

motor neurons (Dal Canto and Gurney, 1994).  Later in the disease course however, the 

vacuoles in spinal motor neurons are believed to consist mostly of swollen mitochondria 

(Higgins et al., 2003; Vinsant et al., 2013).  Due to the control exhibited by the mitochondria and 

endoplasmic reticulum over reactive oxygen species and mechanisms of programed cell death, 

the abnormalities seen in these two organelles is of particular interest as potential initiation 

points of pathogenesis.  It has been proposed that aggregated protein moieties discussed 

earlier are disrupting normal function of the mitochondria and the endoplasmic reticulum.  

However, greater focus has been put on intracellular calcium abnormalities and excitotoxicity.  

The latter will be discussed in depth in section V of this chapter, but ultimately, these 

mechanisms are hinged upon the importance of mitochondrial regulation of intracellular calcium 

(Nicholls, 2002).   

 Multiple signaling cascades that converge on calcium imbalance have been proposed to 

contribute to ALS pathogenesis. Among these, increased electrophysiological activity 

associated with excessive calcium loading (Olney, 1969; Blizzard et al., 2015), emerged as a 

potential mechanism leading to excitotoxicity and motor neuron degeneration (van Zundert et 

al., 2012; Vucic et al., 2014).  This model is corroborated by electrophysiological analyses of 

both FALS and SALS human patients that exhibited increases in motor neuron activity upon 



	

	 9	

transcranial magnetic stimulation (Vucic et al., 2013).  Multiple pathways have been proposed to 

contribute to excitotoxicity in ALS models, such as increased intrinsic excitability (Kuo et al., 

2004; Vucic et al., 2008; Bellingham, 2011; Quinlan et al., 2011), decreased glutamate transport 

(Rothstein et al., 1992; Foran et al., 2011; Wainger et al., 2014), increased extracellular 

glutamate levels (Rothstein et al., 1990; Sen et al., 2005), glutamate receptor alterations 

(Kawahara et al., 2004; Hideyama et al., 2010), mitochondrial dysfunction (Sasaki and Iwata, 

1996; Ferri et al., 2006; Igoudjil et al., 2011), and reduced calcium buffering (Reiner et al., 1995; 

Vanselow and Keller, 2000; Beers et al., 2001; Sasaki et al., 2006; Jaiswal et al., 2009).  

Targeting these mechanisms, however, did not lead to a successful therapy for ALS. Riluzole, 

the only known drug to extend the survival of ALS patients, does target pathways that could 

contribute to excitotoxicity, such as presynaptic glutamate release (Gurney et al., 1994; 

Bellingham, 2011), but its effects are only modest and mechanism of its action is not well 

understood, warranting further investigation. 

 It has been demonstrated that by increasing the buffering capacity of mitochondria in the 

motor neurons of ALS mice, motor neuron death can be rescued. However, survival in these 

ALS-model mice is not increased, due to continued neuromuscular junction  (NMJ) retraction 

(Parone et al., 2013), a hallmark of ALS disease progression (Kiernan et al., 2011). This 

evidence supports the hypothesis that increased activity triggers ALS pathogenesis, where 

increased calcium buffering capabilities prevent excitotoxic death in motor neurons, yet, activity-

induced distal axonopathy still occurs (King et al., 2007; Vucic et al., 2014; Blizzard et al., 2015).  

Furthermore, ALS-vulnerable motor neurons in the brainstem of P4-P10 SOD1G93A mice 

displayed increased spontaneous synaptic activity mediated by excitatory glutamatergic 

transmission (van Zundert et al., 2008), occurring months before symptom onset.  The results of 

another study suggest that there are augmented networks that drive ALS motor neurons, 

leading to heightened and disordered bursting activity (Jiang et al., 2009). Though the authors 

postulate that decreases in inhibitory interneurons could account for their findings, an equally 
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plausible explanation could be an increase in excitatory input. While several studies have 

reported deficiencies in inhibitory input in ALS models (Lorenzo et al., 2006; Chang and Martin, 

2009; 2011; Nieto-Gonzalez et al., 2011; Chang and Martin, 2014), the question still remains 

whether there is also an increase in glutamatergic input and if these alterations in the spinal 

circuitry are brought on by cell autonomous or non-autonomous mechanisms.   

 

III. Spinal motor neuron subtypes in ALS 

 

 An intriguing area of investigation in ALS has been the non-uniformity of pathogenesis 

between all motor neurons; moreover, some motor neurons demonstrate seemingly complete 

resistance to the disease.  In the spinal cord, motor neurons are divided into three subtypes, 

fast α-motor neurons, slow α-motor neurons and γ-motor neurons.  These subtypes can be 

identified by the muscle fibers they innervate as well as by their electrophysiological profiles  

(Figure 1.3).  As detailed in this section, there are large differences between α-motor neurons 

and γ-motor neurons and likely these subtypes of motor neurons are fated early during the 

differentiation process, long before axonal outgrowth and target innervation (Stifani, 2014).  That 

distinction is less clear between the slow and fast α-motor neurons.  It may simply be the 

muscle fiber connections themselves that push the physiological differences between these two 

subtypes, arguing there may be a subtler shift in their expression profiles.  To that point, after 

sectioning and reanastomosis of the medial gastrocnemius nerve, electrical properties of motor 

neurons were indistinguishable prior to reinnervation (Foehring et al., 1986).  After reinnervation 

of the muscle fibers, they regained the normal electrical differences that exist between these 

two subtypes, arguing that these neurons dedifferentiated then redifferentiated.  This will 

become relevant later as differential susceptibility in ALS is discussed.   
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Figure 1-3: Spinal motor neuron subtypes and their sensitivity to ALS 

α-Motor neurons that innervate fast-twitch fatigable  (FF) type IIb muscle fibers typically degenerate first in ALS.  
Followed by α-motor neurons that innervate fast-twitch fatigue-resistant  (FR) type IIa muscle fibers.  The last to 
degenerate in ALS are the α-motor neurons that innervate slow-twitch fatigue-resistant  (S) type I muscle fibers. γ-
Motor neurons, innervating the intrafusal fibers of the muscle spindle, do not degenerate in ALS (Lalancette-Hebert et 
al., 2016).  Adapted from (Kanning et al., 2010). 
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 Fast α-motor neurons innervate the medium to low oxidative type IIa and IIb muscle 

fibers respectively, and fire action potentials in high frequency bursts.  They exhibit higher 

rheobase  (current activation threshold) and shorter afterhyperpolorizations  (Kanning et al., 

2010; Müller et al., 2014), a post-action potential event mediated by potassium current that 

drives the membrane potential 5-15mV below resting potential, effectively suppressing a 

subsequent action potential until its dissipation  (Carp and Wolpaw, 2010).  Fast α-motor 

neurons display the largest somal size and most complex dendritic arbor.  In ALS, these are 

also the neurons that degenerate first, meaning they are the most vulnerable in the disease.  

Slow α-motor neurons, smaller and harboring a less complex dendritic arbor than the fast α-

motor neurons, innervate the highly oxidative type I muscle fibers, and fire long trains of low 

frequency action potentials.  In contrast to fast α-motor neurons, the slow α-motor neurons 

exhibit low rheobase and long afterhyperpolorizations  (Kanning et al., 2010; Müller et al., 2014).  

Due to the relatively low current demands to fire a slow α-motor neuron, as well as a large 

persistent inward current, slow α-motor neurons exhibit bistability where a short burst of 

excitatory input can trigger a self-sustaining train of action potentials  (Heckman et al., 2008).  

This self-sustaining tonic firing event requires inhibitory input to shut it down. In ALS, these 

motor neurons tend to degenerate later than their fast α-motor neurons counterparts, though 

they are still ultimately vulnerable in the disease. 

 Most unique of the spinal subtypes is the γ-motor neuron, much smaller compared to 

fast α-motor neurons and carry the least complex dendritic arbor.  Unlike the extrafusal fiber 

innervation of the α-motor neurons, γ-motor neurons innervate the intrafusal fibers of the muscle 

spindle and regulate the output of the fusimotor system (Ellaway et al., 2015).  The fusimotor 

system provides an electrical gain system for motor neurons, regulating motor neuron output 

dynamically throughout locomotion  (Figure 1.4).  To accomplish this, an intricate and 

complicated system of circuitry has evolved to send proprioceptive input, through the type Ia 

sensory fibers, back onto α-motor neurons.  The Ia proprioceptive signal originates at the  
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Figure 1-4: The fusimotor system 

Without a mechanism to control it, as extrafusal muscle fibers are activated by α-motor neurons, the muscle spindle 
would lose tension and proprioceptive feedback to the motor system through the Ia circuit would be lost.  However, γ-
motor neurons precisely maintain tension on the spindle through contraction of intrafusal fibers.  Additionally, the 
direct input of Ia afferent signaling onto α-motor neurons, allows γ-motor neurons to elicit a gain-like function, where 
they modulate the strength of afferent excitatory input (Ellaway et al., 2015).  Figure adapted from (Widmaier et al., 
2013). 
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muscle spindle, a sensory organ found in large numbers throughout skeletal muscles in 

mammals, that produces afferent information about stretch force.  Through fast-conducting 

myelinated nerve fibers, these organs are capable of sending information back to the CNS 

about passive and active states of the skeletal muscles.  Amazingly, in human leg and hand 

muscles, spindle-mediated Ia input onto the motor system accounts for 30-40% of the isometric 

contraction (Gandevia et al., 1990; Macefield et al., 1993).  This function is carried out by the 

presence of two types of sensory nerve endings as well as motor innervation to regulate tension 

of the muscle spindles (Ellaway et al., 2015). As the skeletal muscle changes from either 

passive or standard locomotion to irregular or new movements, fusimotor drive is switched from 

a tonic static discharge, to a dynamic discharge that sends back more detailed information 

about the skeletal muscle movement to the CNS (Prochazka et al., 1985).  The CNS is then 

able to tune the excitability of the α-motor neurons to suit the requirements of complex 

locomotor demands.  

 γ-Motor neurons also carry diversity amongst their subtype.  Two known subtypes of γ-

motor neurons exist, static and dynamic γ-motor neurons, and both possess distinct firing 

properties, though their conduction velocity cannot distinguish them as with other motor neuron 

subtypes.  Both static and dynamic γ-motor neurons carry out distinct functions, innervating 

different muscle fibers within the muscle spindle, as well as operating the afferents originating at 

the muscle spindle in different ways (Hulliger, 2005). Most γ-motor neurons undergo a resting 

discharge of action potentials, where α-motor neurons are essentially shut down at rest so as to 

not elicit muscle contraction.  Distinct tonic and phasic firing patterns have been found between 

static and dynamic γ-motor neurons, though it seems to be muscle dependent (Murphy and 

Martin, 1993).  It has been difficult to directly record from and therefore their actually firing rates 

are unknown, though they are suspected to be similar to that of α-motor neurons (Hulliger, 

2005; Ellaway et al., 2015).  In ALS, γ-motor neurons are seemingly completely resistant to 

degeneration (Lalancette-Hebert et al., 2016), making them an interesting subtype by 
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comparison to their vulnerable α-motor neuron counterparts.  That said, previous uncertainty as 

to the fate of γ-motor neurons (Kanning et al., 2010) was, at least in part, due to the observation 

of γ-motor neuron denervation of the muscle spindles from postmortem human ALS patients 

(Swash and Fox, 1974; Saito et al., 1978).  It is unclear from those reports, however, the extent 

of influence that the atrophied extrafusal fibers and degenerated α-motor neurons has on the 

fusimotor system.  It would be expected that significant rearrangement of this system might 

occur.  Indeed, in these analyses, the intrafusal fibers were relatively resistant and only became 

atrophic in severely wasted muscles.  As postulated in one study (Lalancette-Hebert et al., 

2016), it is an interesting possible mechanism of pathology to consider the influence of 

compensatory behavior of the fusimotor system on the degeneration of α-motor neurons.   It 

also posses the question whether the electrophysiological phenotypes discussed in the 

following sections can be found in populations of motor neurons spared in ALS, or if opposite or 

antagonistic phenotypes may be seen?  Throughout this thesis, I will attempt to address this 

question as I investigate multiple vulnerable and resistant populations of motor neurons. 

 Importantly, potential contributions from interneurons should not be overlooked when 

considering subtype-specific vulnerability in ALS.  While ALS may primarily effects motor 

neurons, interneuron loss could contribute to motor neuron degeneration or abnormal action 

potential firing patterns in interneurons could also have a down stream influence on motor 

neurons.  Though most of the reports of interneuron loss have found degeneration of these 

neurons after motor neuron degeneration and may be a product of widespread effects 

downstream of that event (Nihei et al., 1993; Hossaini et al., 2011).  However, some studies 

have pointed to early events that should not be discounted, such as a loss in inhibitory 

interneurons early in the disease (Brockington et al., 2013; McGown et al., 2013).  As for firing 

patterns, the local spinal circuitry that produces rhythmic movement of limbs, complemented 

firing and inhibition of antagonistic muscle pairs, and coordinates alternating movements such 

as left-right stepping is called a central pattern generator (Carp and Wolpaw, 2010).  This is a 
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delicately balanced network of multiple interneuronal subtypes elicits movements through the 

integration of input from descending, sensory and motor feedback circuits.  Though it would 

seem that small perturbations could upset this balanced network, central pattern generator 

circuits are amazingly plastic (Molinari, 2009).  However, some of the plasticity in the circuitry 

depends on the motor neuron’s capability of adjusting to changes in input and providing 

feedback to the system (Lawton et al., 2017).  Therefore, when discussing aberrant motor 

neuron activity, potential interneuronal dysfunction should be considered as well.  

 

IV. Vulnerable and resistant populations of cranial motor neurons in ALS 

 

 Presentation of ALS in patients arises in multiple phenotypic patterns but most often 

occurs in the distal muscles (Kanning et al., 2010). However, a fifth of the patients present with 

bulbar symptoms that lead to dysphagia, dysarthria (Urban et al., 1998) and ultimately a worse 

prognosis (Swinnen and Robberecht, 2014).  That said, after widespread paralysis and at the 

time of death in humans, postmortem tissue reveals pervasive loss of motor neurons in all 

regions of the anterior spinal cord and vulnerable cranial motor nuclei (Kanning et al., 2010).  

This puzzling heterogeneity in ALS first presenting in either distally projecting spinal motor 

neurons or vulnerable cranial motor neurons has not been investigated and may point to 

underlying differences in the pathogenesis of ALS.   

 From clinical analyses, ALS vulnerability in the cranial motor nuclei can be assumed to 

exist in cranial motor nuclei V  (trigeminal), VII  (facial) and IX-XII  (glossopharyngeal, vagus, 

accessory, and hypoglossal) (Watts and Vanryckeghem, 2001; Kiernan et al., 2011; Vucic et al., 

2014; Nijssen et al., 2017).  In the SOD1 mouse models, reports consistently find approximately 

40 – 60% motor neuron loss in the trigeminal and facial nuclei, similar to the loss seen in the 

spinal cord (Chiu et al., 1995; Nimchinsky et al., 2000; Haenggeli and Kato, 2002; Zang et al., 
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2004; Ferrucci et al., 2010; Wootz et al., 2010).  Little investigative effort in the mouse models 

has been focused on the dorsal motor nucleus of the vagus nerve.  However, nucleus ambiguus 

contains a cluster of motor neurons projecting axons to the vagus and glossopharyngeal nerves 

and has also been shown to reflect similar motor neuron losses to facial and trigeminal.  These 

studies provide mixed results about the hypoglossal nucleus, where some see severe 

degeneration and others show no significant difference compared to control.  Most of these 

studies used the high-expresser SOD1G93A mice, however, different quantification measures 

ranged from magnetic nuclear resonance imaging methods to direct counting of neurons per 

section.  It is possible that the disparities seen for degeneration of the hypoglossal nucleus are 

due to experimental error, or that heterogeneity exists in its vulnerability to ALS.   

 Though a predominant loss of motor neurons is seen throughout the spinal cord and 

brainstem, a remarkable divergence from this pattern is seen in the motor neurons that 

innervate the extraocular muscles.  Cranial nuclei III  (oculomotor), IV  (trochlear), and VI  

(abducens) house these motor neurons where preservation is nearly complete (Nimchinsky et 

al., 2000; Haenggeli and Kato, 2002; Ferrucci et al., 2010; Kaplan et al., 2014; Nijssen et al., 

2017).  The preservation of these motor neurons allows full control over eye movement, 

providing one of the only means of communication for ALS patents (Nijssen et al., 2017).  

Though the motor neurons are spared in these nuclei, there is marked astrogliosis in the 

neuropil surrounding the oculomotor nucleus at end-stage (An et al., 2014).  ALS resistance in 

these nuclei have fuelled many studies in the field and, as discussed throughout this chapter, 

have yielded a number of potential physiological mechanisms that provide protection.  However, 

these motor neurons are perhaps even more unlike α-motor neurons than γ-motor neurons, 

meaning it has been difficult to tease out meaningful differences between the two that may 

confer ALS resistance.   

 Notably, oculomotor neurons are small compared to α-motor neurons and are almost the 

size of γ-motor neurons, including in their relatively simple level of complexity in their dendritic 
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structure  (Figure 1.5). The extraocular muscles themselves harbor greater complexity as 

compared to most skeletal myosins, and oculomotor neurons innervate multiple fiber types 

(Nijssen et al., 2017).  These motor neurons are also highly active relative to other cranial and 

somatic motor neurons.  Rheobase measurements decrease in oculomotor neurons as they 

mature, opposite to what is shown to occur in many other types of neurons including spinal and 

hypoglossal motor neurons (Miles et al., 2004; Venugopal et al., 2015b).  Oculomotor neurons 

fire action potentials most of the day and night as opposed to less than 2% of the day for some 

fast spinal α-motor neurons (Monster et al., 1978).  Steady gaze firing frequency in oculomotor 

neurons is around 100Hz and saccadic eye movements produce up to 600Hz bursts (Robinson, 

1970).  This is far greater to spinal motor neuron firing that tops out around 100Hz in the mouse.  

Relevant to the excitotoxicity hypothesis, it would be expected that the increased activity in the 

oculomotor neurons would place an excessive load of calcium influx, however, these 

specialized motor neurons contain relatively high levels of calcium buffering proteins (Vanselow 

and Keller, 2000).  One of which, parvalbumin, has been reported to increase, specifically in 

oculomotor neurons but not in ALS-vulnerable motor neurons, after large calcium influxes from 

axotomy.  This pronounced buffering capability has been proposed to confer resistance to 

oculomotor neurons, moreover, overexpression of parvalbumin in ALS-vulnerable motor 

neurons delays onset and increases survival in SOD1 mice, though both of these effects are 

modest.   

 There are notable premotor circuitry differences for cranial motor neurons as well.  The 

origin neurotransmitter composition of synaptic boutons found on cranial and spinal motor 

neurons vary significantly (Rekling et al., 2000), where disease relevant categorization is not 

clear.  However, one large difference is the lack of Ia proprioceptive input from the fusimotor 

system as discussed previously. At least in mice, there are no muscle spindles in the 

extraocular muscles and therefore no Ia feedback (Lalancette-Hebert et al., 2016).  Instead, 

there appear to be alternative pathways through which proprioceptive feedback is modulated in  
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Figure 1-5: Spinal motor and oculomotor units 

The much larger and dendritically more complex spinal motor neuron, and innervates 300 to 2000 muscle fibers.  
Additionally, spinal motor neurons are typically limited to the innervation of a single type of muscle fiber.  Conversely, 
the relatively small and dendritically simple oculomotor neuron only innervates as few as 5 muscle fibers.  Extraocular 
muscles contain greater diversity in their types of muscle fibers, and oculomotor neurons innervate multiple types in a 
single unit.  Adapted from (Nijssen et al., 2017). 
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these muscles (Niechwiej-Szwedo et al., 2006).  Trigeminal motor neurons, however, seem 

much more similar to spinal motor neurons in that there is a typical Ia sensory feedback system 

modulated by γ-motor neurons (Nishimura et al., 2018).  Hypoglossal proprioception in rodents 

is still under investigation and some evidence points to the presence of muscle spindles in the 

tongue muscles of rats, but fusimotor systems are believed to be present in primate muscles 

innervated by hypoglossal motor neurons (O'Reilly and FitzGerald, 1990).  At first glance, the 

lack of Ia input to the oculomotor, trochlear and abducens nuclei seems to be an intriguing 

difference from spinal motor neurons and might underlie a possible mechanism that imparts 

resistance in ALS.  However, facial motor neurons in the mouse also lack Ia inputs, and the 

muscles they innervate are devoid of spindles, yet, they still degenerate in ALS (Whitehead et 

al., 2005).  Likewise, though debated, extraocular muscles in humans and other mammals may 

have spindles, thus potentially using a proprioceptive system containing Ia circuitry (Maier et al., 

1974).  It is possible that Ia sensory feedback and the fusimotor system plays a role in spinal 

motor neuron pathology in ALS, but it seems less likely to underlie pathophysiology in all 

vulnerable motor neurons. 

 

V. Electrophysiological Battlefield in ALS 

  

Defining excitability 

 A recurring focus and a subject of controversy in ALS research, centers on whether 

observed changes in motor neuron excitability drive the pathophysiology of the disease.  

I will cover this in some depth, however, it is first important to define excitability in the context of 

this thesis.  Though a seemingly trivial point, “excitability” has been a catchall term in the ALS 

field that is often poorly explained when presented as a defining term for experimental findings.  

In simpler times, 1948 to be exact, Hodgkin recorded evoked firing patterns using current 
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injections to the axons of crustaceans (Hodgkin, 1948). He classified the firing responses into 

three groups known later as the Hodgkin excitability states (Prescott et al., 2008).  These 

excitability states pertain to the spiking responses of neurons, rather than the exact voltages or 

currents that are required to induce an action potential.  In the field of ALS, excitability has been 

used to describe both of these or even a mixture of these two very different measurements.   

 For the hypothesis of excitotoxicity, most arguments are trying to make a connection 

between the data they present and an increase in calcium influx expected to come from 

increased action potential firing.  One of the issues with this position, however, is that there are 

no behavioral indications of aberrant action potential firing in patients or mouse models of ALS 

prior to symptom onset, which succeeds significant motor neuron death  (Figure 1.1).  This is 

problematic in that subtle shifts in motor neuron firing that occur below the threshold of 

behavioral effects will be difficult to observe experimentally.  

 It might be that Hodgkin’s simple states of excitability, where neurons fall into these 

defined three categories, do not fairly represent the complexity and subtleties of firing patterns 

that may have significant consequences on the disease.  It is known that spinal motor neurons 

do not maintain an abundance of calcium buffering proteins  (opposite to oculomotor neurons) 

and, therefore, they rely mostly on their mitochondria, endoplasmic reticulum, and somal 

membrane calcium transporters to sequester transient calcium influx (Vanselow and Keller, 

2000; Beers et al., 2001).  It has also been reported that spinal motor neurons are selectively 

susceptible to over-activation (Hugon et al., 1989; Carriedo et al., 1996; Ikonomidou et al., 1996; 

Sugiyama and Tanaka, 2018), likely due to their inability to buffer calcium.  It could be, then, 

that even a small shift in action potential kinetics and/or firing pattern could have long-term 

consequences due to increased stress from calcium overload.  Further yet, if the balance and/or 

number of synaptic inputs are shifted to slightly increase excitation, stress induced through 

increased action potential firing, or even through subthreshold activation of voltage-gated 

calcium channels (Magee et al., 1995) in the dendrites may be relevant to ALS pathology.  This 
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is an interesting possibility when considering the effects of Riluzole  (discussed later) and that 

potential compensation in the dendritic calcium currents have been reported (Quinlan et al., 

2015). 

  Now, considering the term excitability, what is most relevant here are changes in intrinsic 

properties that would lead to over-activation of calcium channels in ALS motor neurons.  For this 

thesis, I will use “intrinsic excitability” to define properties that make a motor neuron more 

susceptible to reaching threshold, such as passive membrane properties and rheobase 

measurements.  I will refer to the firing of action potentials as “activity”, and the summation of 

synaptic input as “net excitation”.  Further consideration of the consequences of intrinsic 

excitability, however, should be discussed.  After all, intrinsic excitability may not be a good 

indicator of neuronal output, as these two properties are not necessarily positively correlated. In 

fact, recent reports investigating the functional properties of fast α-motor neurons (Müller et al., 

2014), the most vulnerable pool of neurons in ALS (Kaplan et al., 2014), find the fast α-motor 

neurons to be intrinsically hypoexcitable, relative to slow α-motor neurons  (based on rheobase 

and input resistance).  This is despite their propensity to fire high frequency trains of action 

potentials. Taking this into account, reports of intrinsic hypoexcitability do not refute the 

evidence of hyperactivity in ALS, and may in fact be exposing homeostatic mechanisms 

attempting to compensate for the increased action potential firing or increased net excitation. 

 As discussed previously, the hypothesis of excitotoxicity remains highly contested in the 

field of ALS.  This degenerative pathway is supported by the beneficial effect of Riluzole within 

both human and mouse models (Bensimon et al., 1994; Miller et al., 1996; Gurney et al., 1998), 

where at clinically relevant concentrations, riluzole reduces glutamatergic synaptic activity and 

intrinsic excitability of motor neurons, likely leading to a reduction in action potential firing (King 

et al., 2007; Bellingham, 2011; Vucic et al., 2014; Blizzard et al., 2015).  However, there have 

been a number of reports that draw contradictory conclusions arguing against this hypothesis.  

Certainly, at least some of the verbal disagreements in the ALS field surround a 
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misunderstanding of the term “excitability” as discussed above.  Nevertheless, there are many 

studies published that, at face value, directly contradict one another. Here, I will try and 

compare and contrast some of these studies and perhaps offer some reasoning for the 

disparities. 

 

Input Resistance 

 First, I will discuss intrinsic excitability, or better put, changes in electrical properties 

intrinsic to motor neurons.  Input resistance is perhaps the best measure of the passive 

membrane properties in neurons.  It is quantified by a reasonably consistent protocol across the 

literature where neurons are subjected to hyperpolarizing current steps and the voltage is 

recorded for each step.  Per Ohm’s law  (!"#$%&' = !"##$%&×!"#$#%&'("), the slope of the 

current/voltage relationship is the passive membrane resistance measurement for that neuron  

(note care must be taken to avoid inaccuracies in the measurements caused by capacitance 

and the voltage-gated cation channels that underlie H-current (Lüthi and McCormick, 1998)).  

Despite the uniformity of the protocol, there have been inconsistent changes relative to controls 

seen within ALS transgenic models, with some studies reporting decreases (Bories et al., 2007; 

Quinlan et al., 2011) and others showing no change (Pieri et al., 2003; Kuo et al., 2004; 2005; 

van Zundert et al., 2008; Pambo-Pambo et al., 2009; Pieri et al., 2009; Meehan et al., 2010; 

Leroy et al., 2014).  Conflicting evidence regarding action potential kinetics are also riddled 

throughout these studies, where opposite but still significant differences were reported.  Some 

of this variation may be due to the differences between the models being used.  Though most of 

these studies used mice carrying a mutant SOD1 transgene, differences still exist in the type of 

mutation as well as in the expression levels of the transgene across these models.  For 

instance, even between the SOD1G93A mutants, a high expresser line carrying ~25 copies of the 

human SOD1 transgene was used in several studies (Pieri et al., 2003; Kuo et al., 2004; 2005; 
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van Zundert et al., 2008; Pieri et al., 2009; Quinlan et al., 2011) where the low expresser line 

carrying ~8 copies was used for another (Pambo-Pambo et al., 2009). 

 Interestingly, the reports that do show changes in input resistance perform their 

recordings on whole-cord preparations, where the dendrites remain intact.  This is significant in 

this case as morphological abnormalities, typically reflecting an increased dendritic branching 

nodes, total length and surface area, have been reported in both transgenic models of ALS 

(Amendola et al., 2007; Amendola and Durand, 2008; Elbasiouny et al., 2012; Filipchuk and 

Durand, 2012) as well as in postmortem tissue from human ALS patients (Sasaki and 

Maruyama, 1992).  However, as with many of the studies in the field, at least one account 

shows the exact opposite phenotype, where embryonic spinal motor neurons in the high 

expresser SOD1G93A mouse have a reduction in dendritic arbor size (Martin et al., 2013).  

Regardless, alterations in membrane surface area would likely result in decreased input 

resistance, but might not be present in primary cultures or slice recordings where the size of the 

dendritic arbor is severely truncated by sample preparation.  This preparatory difference may 

also affect the action potential kinetics discussed above.  

 

Action potential kinetics  

 Action potential kinetics include the firing characteristics of neurons such as action 

potential rate of rise, fall rate, duration, overshoot and afterhyperpolarization.  All of these 

measures can effect maximal firing rate of the neuron, as well as the action potential waveform 

(Bean, 2007).  Of the reports that show an action potential characteristic difference, the ones in 

the high expressing line see an decrease action potential duration where the low expressing line 

shows an increase in duration.  Interestingly however, these two ALS models have largely 

different timelines of the disease course, where the disease onset in the low expresser line is 6-

8 months compared to the 3 months to onset in the high expresser line (Turner and Talbot, 

2008).  As action potential kinetics are highly responsive to homeostatic mechanisms, the 
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differences between these two lines may reflect the differences in the pathogenic timeline, 

rather than true pathophysiological differences between the models.   

 In addition to heterogeneity between mouse models and populations of motor neurons 

analyzed  (it has only been assumed that cranial and spinal motor neurons degenerate through 

similar pathogenic pathways), there were notable variations in experimental parameters 

including the usage of voltage clamp or current clamp, extracellular calcium concentrations and 

the time course of current injections.  All of these will certainly add variation to the 

electrophysiological characteristics being quantified, and even perhaps underlie some of the 

contradictory data.  Nonetheless, even when comparing motor neurons differentiated from 

human induced pluripotent stem cells under similar conditions, opposite results in firing 

frequencies were observed between a SOD1 mutant model (Wainger et al., 2014) and a 

C9ORF72 mutant model (Sareen et al., 2013).  Again, the time in culture was different along 

with several other conditions that could explain the discrepancy, but regardless the 

inconsistencies continue to lead to confusion in the ALS and the hypothesis of excitotoxicity 

unproven. 

 

Rheobase 

  More recently, Leroy et al.  (2014) show in their preparation of neonatal spinal motor 

neurons in the high expresser SOD1G93A mouse, fast α-motor neurons  (first motor neurons to 

degenerate in ALS) do not demonstrate differences in their intrinsic excitability (Leroy et al., 

2014).  Surprisingly, they also show that slow α-motor neurons  (last motor neurons to 

degenerate in ALS) are intrinsically hyperexcitable.  Leroy and Zytnicki claim that this is 

evidence that early intrinsic excitability is not part of the pathophysiology of ALS (Leroy and 

Zytnicki, 2015).  There are some protocol differences, however, that exist between this study 

and previous analyses, one of which is their measurement of rheobase.  Rheobase is simply the 

minimum current required to elicit an action potential and it is tested using whole-cell path clamp 
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in a current clamp configuration, and incrementally increasing the current injections until an 

action potential fires.  In its standard definition, this current can be held for an infinite duration, 

however, neurons may encounter activation or inactivation of some voltage-gated ion channels 

during this time.  Typically, current step durations are held for between 200 ms and 1 s.  Yet for 

the recordings in Leroy et al.  (2014), a 5 s current step is used.  During this time, a clear 

depolarizing creep of the voltage can be seen in neurons that they call delayed firing neurons, 

indicative of the activation of voltage-gated sodium channels.  Though this phenotype may 

suggest the presence of very relevant physiological differences, it may not be the most accurate 

way to measure rheobase or the subsequent measure of threshold voltage.  Nevertheless, the 

differences described in this report insinuate that neonatal hyperexcitability does not drive 

pathogenesis in ALS.  

  

Excitatory input 

 What, then, can be concluded about excitotoxicity from the studies reported thus far?  

Unfortunately, the field still seems left with little definitive evidence to suggest whether this 

hypothesis is correct or not.  And yet, the effects of Riluzole still seem to drive these analyses 

forward.  There are many disparities in recoding and tissue preparation methods in these 

reports, as well as within the mouse models used.  Of additional concern is that the vast 

majority of these studies are carried out on embryonic and neonatal motor neurons, long before 

any of the descending corticospinal circuitry innervates the spinal cord (Gianino et al., 1999; 

Arlotta et al., 2005) and before the maturation of spinal circuitry (Gianino et al., 1999; Clarke 

and Still, 2001; Personius and Balice-Gordon, 2001; Arber, 2012).  Any early changes in activity 

or intrinsic excitability then, may not reflect abnormalities in mature physiology that drives the 

pathogenesis of ALS.  Furthermore, aberrations in spinal and corticospinal circuitry may also be 

influencing pathology in ALS.  Activity output of a neuron can be measured as a kind of 

summation of net excitatory input and intrinsic excitability  (Figure 1.7).  Low intrinsic excitability  
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Figure 1-6: The axon initial segment and neuronal excitability 

Top: immunostaining for pan-neuronal markers and Ankyrin G (green; visualization of the axon initial 
segment and the nodes of Ranvier) showing the progression of the action potential, initiating at the 
axon initial segment, and terminating at the neuromuscular junction.  (Rasband, 2010) 

Middle: Artistic rendition of the axon initial segment location in the proximal axon.  Structural and 
molecular properties of the axon initial segment and the nodes of Ranvier are very similar, however, 
unlike the nodes of Ranvier, myelin formation is not required for assembly and function of the axon 
initial segment.  (Duflocq et al., 2011) 

Bottom:  A simple representation of neuronal excitability, as defined by Hodgkin.  Output, action 
potential firing, is controlled by two variable factors, intrinsic properties of the neuron, and ionotropic 
input.  Metabotropic input can modify intrinsic properties along with homeostatic mechanisms.  This 
thesis will define intrinsic properties as “intrinsic excitability” and output as “activity”.  (Rekling et al., 
2000) 
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with high excitation may still yield a highly active neuron.  It could in fact be that the intrinsic 

excitability is reacting in a compensatory manor to excitatory input.  To that point, it has been 

consistently reported in ALS mouse models, as well as in human ALS patients, that 

corticospinal neurons are hyperactive (Vucic et al., 2008; Saba et al., 2016; Kim et al., 2017).  

This would likely increase net excitation of spinal motor neurons and induce homeostatic 

changes in local circuitry and in intrinsic excitability.   

 There has been some evidence in spinal motor neurons that may suggest that circuitry 

changes do in fact occur.  C-boutons, modulatory inputs to spinal motor neurons, are enlarged 

in ALS, where increased C-bouton input would increase intrinsic excitability (Witts et al., 2014).  

Evidence from ALS-model mice shows that early abnormalities in spinal circuitry may exist, 

where in response to polysynaptic activation by high stimulus intensity dorsal root stimulation, 

ventral root amplitudes were reduced (Bories et al., 2007).   Furthermore, inhibitory glycinergic 

inputs onto spinal motor neurons in ALS may be reduced (Martin and Chang, 2012; Wootz et 

al., 2013).  Though it is possible to quantify Ia input onto motor neurons, it has not been 

possible to quantify the entirety of the excitatory synaptic profile of motor neurons, due to their 

size, as well as the issues with electrophysiological recording discussed in this section.  

Problematically, electrophysiological analyses in adult spinal motor neurons are also quite 

difficult.  For example, with spinal sections, the neurons often die from the ischemic conditions 

and severing their massive dendritic arbor induces severe stress (Mitra and Brownstone, 2012; 

Bucchia et al., 2018).  Though some recent progress has demonstrated our improved ability to 

record from adult motor neurons in spinal sections (Martinez-Silva et al., 2018), our insight into 

the physiological activity and excitatory inputs of motor neurons in ALS remains opaque, and 

the ability to record from adult spinal sections does not mitigate all of the experimental variation 

discussed in this section.  Additionally, parsing out the differences between homeostatic 

compensation within motor neurons due to synaptic input and other extrinsic influences, and 

what is intrinsically driving potential changes in motor neuron activity defines the heart of the 
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argument about excitotoxicity.  I hope to address this issue throughout this thesis and provide 

evidence that adult motor neurons may be harboring electrophysiological abnormalities in ALS.  

 

VI. The Axon Initial Segment 

 

 In 1957, several years after Eccles first recorded action potentials in motor neurons, 

Mary Becker and John Eccles proposed in separate works that the action potential must 

originate in the axon hillock due to a hyperpolarization of the threshold voltage  (by about 15mV) 

in the hillock as compared to the soma.  This was based in part on earlier observations of 

differences between orthodromic and antidromic stimulation, and that there was an inflection in 

the action potential that changed the rise rate from the initial rate and the post inflection rate 

(COOMBS et al., 1957; FUORTES et al., 1957).  In these studies, the calculations that 

hypothesized the hyperpolarization in the hillock were mostly based on a local reduction in 

capacitance.  Maintained by the small surface area of the axon hillock relative to the soma, the 

summation of excitatory input that occurs simultaneously in the soma and proximal axon would 

reach threshold more quickly in the low capacitance environment of the hillock.  Later in the 

1970s and 80s, theoretical modeling found the voltage threshold is likely much lower than what 

could be accounted for by capacitance alone.  They proposed that the sodium channel density 

in the axon initial segment must be much higher as well (Dodge and Cooley, 1973; MOORE et 

al., 1983), thus sufficiently lowering the threshold to account for the anomalies seen in empirical 

data.  It took over 50 years for empirical evidence to prove they were correct, at least with part 

of them mechanism.   

 Though immunostaining for sodium channels agreed with these models, the first 

empirical testing in the late 1990s and early 2000s determined there was an alternative 

mechanism at play.  Using cell-attached and outside-out patch clamp analyses, it was reported 
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that densities of sodium channels in the axon initial segment were comparable to those of the 

soma (Colbert and Johnston, 1996; Colbert and Pan, 2002).  Given that empirical whole-cell 

recordings still showed a hyperpolarized voltage threshold in the hillock as compared to the 

soma, these groups posited that a unique subtype of sodium channel must be present and 

responsible.  However, in a very elegant series of experiments, definitive evidence proved that 

the sodium channel densities in the axon initial segment were close to 50-fold higher than in the 

somatodendritic compartment (Kole et al., 2007; Kole and Stuart, 2008; Kole et al., 2008).  It is 

now understood that the sodium channels in the axon initial segment are bound to the 

cytoskeletal scaffolding (Huang and Rasband, 2016) in the proximal axon and in the previous 

studies that used outside-out patches from the hillock, the sodium channels likely were pulled 

from the membrane patches that were removed by the patch pipette.  

 Further studies of the axon initial segment uncovered additional properties that highlight 

a more complex function of this highly specialized sub-cellular structure.  It is not just that the 

action potential initiates at the axon initial segment, it does so heterogeneously across the 

proximo-distal axis  (Figure 1.7).  Studies established that the action potential initiates in the 

distal part of the axon initial segment (Colbert and Pan, 2002; Kole et al., 2008; Lorincz and 

Nusser, 2008), and that this is likely due in some cases  (including motor neurons) to the distal 

localization of a particular voltage-gated sodium channel subtype, NaV1.6 (Hu et al., 2009; 

Duflocq et al., 2011).  Nav1.6, harboring a relatively hyperpolarized gating threshold, sits distally 

in the axon initial segment to Nav1.1 or Nav1.2, both of which carry depolarized gating 

thresholds relative to Nav1.6.  This compartmentalization of sodium channel subtypes in the 

axon initial segment creates a system of backpropagation of the action potential in neurons that 

travels in both directions from the distal initial segment.  This perhaps contrasts the original 

doctrine of the “Law of Dynamic Polarization of the Neuron” by Ramon y Cajal, whose assertion 

was that information flows along a neuron in one direction.  However, the backpropagation is 

vital for homeostatic feedback for the neuron (Hu et al., 2009) and provides information that 
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travels back to the somatodendritic compartment in the opposite direction of Cajal’s information 

flow. 

 In addition to being the epicenter for the summation of synaptic input and initiation of the 

action potential, the axon initial segment is also vital to the maintenance of neuronal polarity.  

Polarity of the neuron is established early in development through positive and negative 

intracellular signaling pathways (Arimura and Kaibuchi, 2007), however, maintaining polarity 

through these mechanisms would place a large metabolic demand on the neuron over the 

duration of its life (Rasband, 2010).  Therefore, the neuron establishes a gateway using the 

axon initial segment to preform this duty.  AnkyrinG is the first protein to cluster in the proximal 

axon after polarity is established and recruits and interacts with most of the other membrane 

and submembrane components of the axon initial segment (Jones and Svitkina, 2016).  

AnkyrinG is indispensable, not just for establishment of the axon initial segment, but also in its 

structural retention.  Selective loss of the scaffolding protein ankyrinG, master organizer of the 

axon initial segment (Kapfhamer et al., 1995; Yoshimura and Rasband, 2014), results in the 

disruption of neuronal polarity (Hedstrom et al., 2008).  Furthermore, deficiencies in ankyrinG in 

neurons have been shown to play a role in the pathology of multiple neurological diseases 

including epilepsy, schizophrenia, angleman syndrome, bipolar disorder, autism spectrum 

disorder and Alzheimer’s disease (Kaphzan et al., 2011; Sun et al., 2014b; Huang and 

Rasband, 2018; Yue et al., 2018). 

 Adding to the already immense load of utility that axon initial segment provides to a 

neuron, it is not simply a static structure that forms and takes root to preform its functions.  

Instead, it has been shown to have dynamic structural plasticity and it important for 

physiological homeostasis in the neuron.  The dynamic nature of the axon initial segment was 

postulated in the 1980s, when literature emerged reporting on electrophysiological recordings 

that were carried out in the spinal cords of cats.  The range of input resistance seen in these 

motor neurons did not account for the large range observed in the rheobase measurement, a  
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Figure 1-7: Plasticity in the axon initial segment 

Changes in net excitatory input can provoke structural rearrangement in the axon initial segment.  As the initiation 
point of the action potential, structural rearrangement in the axon initial segment can affect the action potential 
threshold.  As distal shift of the axon initial segment will depolarize the threshold due to signal attenuation, as it must 
travel further down the axon.  A lengthening of the axon initial segment will increase the voltage-gated sodium 
channel numbers, effectively hyperpolarizing the action potential threshold.  In excitatory neurons, structural 
rearrangement in the axon initial segment is always coupled to a compensatory response in intrinsic excitability.  
Adapted from (Gründemann and Häusser, 2010). 
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relationship that, according to Ohm’s law, should be linear (Fleshman et al., 1981; Pinter et al., 

1983; Gustafsson and Pinter, 1984).  They reasoned that the most likely cause was a shift in 

threshold and since the axon initial segment set the threshold, there must be dynamic properties 

in that region.  Indeed, this was the case.  Seminal studies showed that the axon initial segment 

underwent compensatory structural changes when the level of net synaptic excitation was 

modified (Grubb and Burrone, 2010; Kuba et al., 2010)  (Figure 1.8).  Grubb and Burrone  

(2010) showed that by stimulating cultured hippocampal neurons they were able to induce a 

shift of the axon initial segment away from the soma.  This distal shift was accompanied by a 

reduction in intrinsic excitability and these neurons fired action potentials at lower frequencies.  

All of the reported changes to intrinsic excitability in these neurons matched the shift in 

excitability caused directly by the axon initial segment, and thus, were all compensatory.  

Similarly, but this time in an in vivo preparation, Kuba et al.  (2010) reported a lengthening in the 

axon initial segment in the neurons of the nucleus magnocellularis, a critical relay center in the 

auditory system, after losing synaptic input following the removal of the cochlea.  Fitting with the 

previous reports of high sodium channel density at the axon initial segment, the lengthening 

also marked a significant increase in sodium current.  Using an elegant paired-patch recording 

experiment, a cell-attached pipette was added to the patched cell in the whole-cell patch 

configuration.  With this, the authors were able to show that the increased current was not due 

to increased sodium channel densities on the somal membrane, and therefore most likely 

mediated by the axon initial segment lengthening.  Like the Grubb and Burrone  (2010) findings, 

the activity-induced structural changes in the axon initial segment were coupled to additional 

changes in intrinsic excitability where all reported parameters followed a compensatory 

response to try and make the neurons hyperactive and hyperexcitable.  Likewise, all excitatory 

neurons tested to date exhibited a compensatory response in the axon initial segment and other 

measures of intrinsic excitability (Grubb and Burrone, 2010; Kuba et al., 2010; Kaphzan et al., 
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2011; Evans et al., 2013; Kaphzan et al., 2013; Kuba et al., 2014; Muir and Kittler, 2014; Chand 

et al., 2015; Wefelmeyer et al., 2015).   

 Though the development (Le Bras et al., 2013), structure and channel subtype 

composition (Duflocq et al., 2011) of the axon initial segment in motor neurons have been 

reported, to date, no studies have investigated axon initial segment plasticity in these neurons.  

Additionally, as noted above in this section, axon initial segment deficiencies have been 

implicated in disease pathology.  In epilepsy, a well-known disease caused by hyperactivity in 

various subtypes of neurons, the axon initial segment was shown to exhibit structural plasticity 

as a compensatory response to over-activation in these neurons (Harty et al., 2013; Yue et al., 

2018).  Axon initial segment structural plasticity would, therefore, serve as a useful visual 

indicator of anomalous synaptic circuitry within disease-state neuron populations compared to 

their healthy control counterparts.  This would carry the distinct advantage of providing a true 

physiological snapshot of intrinsic excitability in ALS motor neurons, circumventing the 

electrophysiological limitations discussed in this introduction.   As such, this thesis will attempt 

to address three questions regarding the axon initial segment: 1) Do motor neurons exhibit 

activity-dependent structural plasticity in the axon initial segment and 2) Do motor neurons in a 

mouse model of ALS display structural changes in the axon initial segment 3) Do structural 

changes in the axon initial segment correlate with motor neuron degeneration?  If these 

questions are found to be true, it may provide insight not only into motor neuron biology, but 

also physiological evidence of pathophysiology in ALS motor neurons.   
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Chapter 2: Length changes in the axon initial segment is induced prior to p62 pathology 

and mitochondrial swelling in a mouse model of Amyotrophic Lateral Sclerosis 

 

Summary 

 

 In amyotrophic lateral sclerosis  (ALS) α-motor neurons of the spinal cord progressively 

degenerate throughout the course of the disease. A well-known hypothesis describing ALS 

pathogenesis proposes that excitotoxicity induced by increased excitatory activity in these motor 

neurons contributes to the pathophysiology of the disease. However, testing this mechanism 

has been complicated and limited by difficulties in electrophysiological analysis of adult motor 

neurons. Here, I report that spinal motor neurons exhibit plasticity in their axon initial segment 

and, similar to other excitatory neurons, their axon initial segment responds to increased 

excitation in a compensatory manner, resulting in a reduction in length.  In a critical analysis of 

adult spinal motor neurons in the SOD1G93A mouse model of ALS, I analyzed axon initial 

segment length as a visual proxy for net excitation in adult spinal motor neurons, where a 

shorter axon initial segment would indicate increased neuronal excitation. Reduced axon initial 

segment length of alpha, but not ALS-resistant gamma spinal motor neurons was found very 

early in presymptomatic ALS mice, but only after circuit maturation. Axon initial segment length 

reduction is persistent and progressive at ages when neuronal degeneration and neuromuscular 

junction denervation occurs.  Shortening of the axon initial segment was found to precede other 

phenotypes of cellular stress, specifically p62 aggregation and gross swelling of the 

mitochondria; furthermore, only those motor neurons that later emerge with these phenotypes 

undergo axon initial segment shortening.  As degeneration begins, the axon initial segment 

length changes observed in all motor neurons may reflect broad circuitry abnormalities as the 

motor system compensates for functional motor unit loss.  These findings indicate an early 
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modification in motor neuron activity in ALS mice that may contribute to the subtype-specific 

pathophysiology of the disease. 

 

Introduction 

 

 Excitotoxic stress, thought to be facilitated by increased electrophysiological activity 

(Vucic et al., 2014) has been fiercely debated in the literature, which has provided conflicting 

evidence describing both hypo and hyperexcitability in ALS motor neurons (Elbasiouny et al., 

2012; van Zundert et al., 2012; Leroy and Zytnicki, 2015). However, most of the studies testing 

the excitotoxicity hypothesis focus on intrinsic measures of excitability  (Elbasiouny et al., 2012) 

and infer that motor neuron action potential firing  (activity) will be proportional to these 

measures.  It has also been proposed that motor circuitry may be abnormal in ALS  (Leroy and 

Zytnicki, 2015), meaning that some of the electrophysiological changes observed could be 

reflecting homeostatic responses to irregular synaptic inputs, another possible source of stress 

for motor neurons due to long-term demands on compensatory mechanisms.    

 The majority of these studies have been carried out in neonatal motor neurons or in 

primary motor neuron cultures (Elbasiouny et al., 2012), resulting in an opaque sense of the true 

nature of adult motor neuron physiology. Historically, it has proven very difficult to perform 

electrophysiological recordings in adult mouse motor neurons, limiting our understanding of 

pathophysiological changes in ALS.  For example, with spinal sections, the neurons often die 

from the ischemic conditions and severing their massive dendritic arbor induces severe stress  

(Mitra and Brownstone, 2012; Bucchia et al., 2018). Though some recent progress has 

demonstrated our improved ability to record from adult motor neurons in spinal sections  

(Martinez-Silva et al., 2018), our insight into the physiological activity and excitatory inputs of 
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motor neurons in ALS remains obscure, leading to much debate surrounding excitability in ALS 

motor neurons.   

 Axon initial segment plasticity has gained attention recently after a score of reports have 

shown structural changes to occur in response to modifications in excitatory input.  Due to a 

relatively high density of voltage-gated sodium channels, and low relative capacitance as 

compared to the somatodendritic compartment, the action potential initiates at the axon initial 

segment, imbuing this structure with key regulatory power over threshold voltage  (COOMBS et 

al., 1957; Kole et al., 2008; Kole and Stuart, 2012).  In neurons  (e.g. hippocampal neurons  

(Grubb and Burrone, 2010; Wefelmeyer et al., 2015), olfactory bulb neurons  (Chand et al., 

2015) and auditory neurons  (Kuba et al., 2010)), excitation-driven changes are seen in either 

the length of the axon initial segment, or its distance from the soma, both of which impact 

intrinsic excitability.  The plastic response of the axon initial segment to net excitatory input in 

these neurons is compensatory, where an increase in neuronal excitation leads to a decrease in 

intrinsic excitability that was mediated, at least in part, by the structural rearrangement of the 

axon initial segment.  Consistently, these changes in axon initial segment structure were 

coupled with additional adjustments to excitability, including passive membrane properties and 

voltage-gated K+ conductance (Grubb and Burrone, 2010; Kuba et al., 2010).   Therefore, the 

axon initial segment presents as a potential molecular marker to visualize relative excitability in 

a population of neurons that reflects the level of compensatory input.  To this point, changes in 

the axon initial segment have been observed in effected neurons in several different diseases, 

thought to be mediated by changes in activity  (Kaphzan et al., 2011; Baalman et al., 2013; 

Harty et al., 2013; Hamada and Kole, 2015).   

 Here, I have utilized axon initial segment plasticity to assess motor neuron excitability in 

ALS mice as a way to circumvent issues with recording from adult motor neurons and to get a 

physiological snapshot of motor neuron excitation. I compared motor neurons in the same 

lumbar segments in ALS model mice to their non-transgenic  (Nt) littermates, where 
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hyperexcitation  (increased net excitatory input) may result in a shorter axon initial segment 

length indicating a shift toward reduced intrinsic excitability.  Using mouse embryonic stem cell-

derived motor neurons  (ESC-MNs), I demonstrate that like other excitatory neurons, motor 

neurons respond to activity changes by altering the structure of their axon initial segment and 

intrinsic excitability in a compensatory manner.  With that in mind, I compared the axon initial 

segment length in lumbar motor neurons at multiple time points in pre-symptomatic SOD1G93A 

mice.   I find the axon initial segment to be significantly shorter starting in young adult mice at 

postnatal day 25, marking a very early phenotype in the disease, and this shift persists through 

at least postnatal day 70.  Confirming that the shift in the axon initial segment marks motor 

neurons that are likely to be the first to degenerate, I found those with the shortest axon initial 

segments possess other phenotypic markers of stress, namely p62 aggregation and vacuolar 

degeneration.  Taken together, I’ve identified one of the earliest markers of pathophysiology in 

mature motor neurons in ALS mice, one that may suggest vulnerable spinal motor neurons are 

intrinsically hypoexcitable early in the disease course. 

 

Results 

 

Activity modifications in motor neurons induce plastic changes in axon initial segment 

length 

 

 Though the development and channel composition of the axon initial segment in motor 

neurons has been reported (Duflocq et al., 2011; Le Bras et al., 2013; Jacko et al., 2018), 

activity-driven plasticity of the motor neuron axon initial segment has not been conclusively 

demonstrated.  To test the link between motor neuron activity and axon initial segment plasticity, 
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I took advantage of a well-established in vitro preparation of ventral spinal neurons derived from 

mouse embryonic stem cells  (mESC)  (Wichterle et al., 2002; Wichterle and Peljto, 2008).   

 Stem cell differentiation yields a complex mixture of ventral spinal neurons, primarily 

composed of motor neurons, V3, V2a and V2b interneurons  (Wichterle et al., 2002; Alaynick et 

al., 2011; Sternfeld et al., 2017).  Motor neurons are identified in this milieu of spinal neurons by 

their expression of green fluorescent protein  (GFP) driven off the motor neuron-specific 

promoter for the homeodomain protein Hb9  (Figure 2.1A).  After a week in culture, motor 

neurons elaborate complex processes, establish axon initial segments, and exhibit robust 

synaptic activity.  Glutamatergic synapses, positive for VGluT2, were observed apposed to 

motor neuron cell bodies and proximal dendrites  (Figure 2.1A).  Whole-cell patch clamp 

recording of individual motor neurons revealed EPSPs and spontaneous action potentials, both 

of which were effectively inhibited by AMPA channel blocker CNQX (Honoré et al., 1988)   

(Figure 2.1B).  Though I have yet to identify the specific glutamatergic presynaptic neurons, it is 

likely to be either the V2a or V3 interneurons as they are generated alongside motor neurons 

and both were characterized as premotor glutamatergic interneurons in vivo  (Wichterle et al., 

2002; Xu and Sakiyama-Elbert, 2015; Sternfeld et al., 2017).   

 To elicit maximal activity-dependent structural changes in the axon initial segment, I 

cultured mESC-derived motor neurons in for 17 days in vitro  (DIV17) in a control condition, or in 

the presence of tetrodotoxin  (TTX)  (Figure 2.1C), a potent voltage-gated sodium channel 

blocker (NARAHASHI et al., 1964).  Furthermore, it was unclear if the full formation of the axon 

initial segment would take place devoid of any neuronal activity.  Then, to determine if the axon 

initial segment is indeed plastic in motor neurons, I cultured motor neurons under control 

conditions and inhibited activity only for the final two days. I then utilized whole-cell patch 

electrophysiology in the current clamp configuration to analyze the intrinsic excitability of the 

motor neurons within these conditions.  Patch pipettes contained biocytin that allowed for 

identification of neurons post recording.  Interestingly, I find that motor neurons increase the  
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Figure 2-1: Activity-induced changes in motor neuron axon initial segments reflect adaptation of intrinsic 
excitability.   

A) Representative images of maturing ESC-derived motor neurons.  Emergence of VGLUT2 staining indicates the 
presence of in vitro synaptic networks.  Axon initial segments can be visualized in ESC-derived motor neurons using 
the scaffolding protein, ankyrinG.  B) Current clamp trace of EPSPs and spontaneous action potential formation.  
EPSPs are completely blocked by bath-applied CNQX and recover after a wash.  C) Experimental design to assess 
axon initial segment plasticity in motor neurons.  Control ESC-derived motor neurons are cultured normally until 
DIV17.  Manipulation of the axon initial segment will be accomplished using TTX to abolish action potential firing 
either from DIV0 or DIV15.  All conditions will undergo electrophysiological analysis at DIV17.  D) Axon initial 
segment length increases with the length of time activity is removed. E) Lengthening of the axon initial segment 
reflects an increase in intrinsic excitability.  Significance by one-way ANOVA and Bonferroni post hoc analysis.         
F) Data table for measured electrophysiological analyses.  Statistics not preformed on all parameters as data reflects 
preliminary results.   
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length of their axon initial segment in response to a loss of activity  (Figure 2.1D).  The axon 

initial segment length in the TTX at DIV15 condition  (36.33µm ± 0.88; n=123) became equal 

that of the axon initial segment in the motor neurons cultured in TTX from DIV0  (36.47µm ± 

0.90; n=105).  Both differed significantly from the axon initial segment length in the control 

condition  (31.24µm ± 0.84; n=95).  Consistent with a compensatory shift in axon initial segment 

length, intrinsic excitability also was increased in the motor neurons cultured in TTX.  The 

maximum frequency of firing reached by current step was significantly increased in both TTX 

conditions and resting membrane potential decreased  (Figure 2.1E).  Interestingly, rheobase 

was only affected in the motor neurons cultured with TTX from DIV0, indicating intrinsic 

excitability may be elevated to a greater extent in these neurons. These data propose that like 

other excitatory neurons, motor neurons exhibit homeostatic plasticity in their axon initial 

segment that compensates for changes in activity. 

 

The axon initial segment of vulnerable motor neurons shortens in presymptomatic ALS 

mice 

 

 Changes in neuronal physiology were reported in early postnatal ALS mice (Turner and 

Talbot, 2008; Elbasiouny et al., 2012; van Zundert et al., 2012; Vucic et al., 2014). Taking 

advantage of the observed axon initial segment plasticity in motor neurons, I opted to examine 

changes in the axon initial segment as a visual proxy of motor neuron excitability. I initially 

attempted to analyze both axon initial segment length and distance; however, in motor neurons, 

the axon does not always sprout directly from the soma, complicating the distance 

measurement, increasing variability, and reducing confidence in the accuracy of the 

quantification.  Therefore, I focused on axon initial segment length for this study.  
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 Using the SOD1G93A mouse model of ALS, I first analyzed the axon initial segment in 

lumbar spinal cord segments 4 and 5  (L4-5) of young adult mice, at postnatal ages 23-26  

(P23-26).  I also restricted our analysis to the lateral motor column, providing a population of 

almost entirely fast fatigable α-motor neurons (Burkholder et al., 1994; Augusto et al., 2004; 

Bácskai et al., 2014) that display the highest vulnerability in ALS (Kanning et al., 2010).  This 

age precedes the onset of endoplasmic reticulum  (ER) stress (Saxena et al., 2009), cell death 

markers (Li et al., 2000) and axonal retraction from the neuromuscular junction  (NMJ) (Frey et 

al., 2000). Thus, changes in the axon initial segment may represent a component of the 

pathogenesis of ALS, rather than the downstream consequence of other pathology that may be 

present in stressed motor neurons as the disease progresses.  Furthermore, this age 

immediately follows motor circuit and neuromuscular maturation (Clarke and Still, 2001; Arber, 

2012), removing variability that may be caused by differences in rates of circuitry development. 

Finally, to distinguish between the ALS-vulnerable alpha  (Kanning et al., 2010) and resistant 

gamma  (Lalancette-Hebert et al., 2016) motor neuron subtypes I stained spinal cord sections 

for NeuN  (Rbfox3) that is selectively down-regulated in γ-motor neurons but persists in 

vulnerable α-motor neurons  (Shneider et al., 2009).   

 100µm sections from L4-5 were taken from SOD1G93A mice and compared to those from 

non-transgenic  (Nt) littermates.  Using immunohistochemistry  (IHC), motor neurons were 

visualized by targeting choline acetyltransferase  (ChAT) and their axon initial segments by the 

structural protein ankyrinG  (AnkG or Ank3), master organizer of and densely clustered at the 

axon initial segment  (Zhou et al., 1998; Yang et al., 2007; Song et al., 2009; Brachet et al., 

2010; Kuba et al., 2014; Jacko et al., 2018).  The axon initial segment length was then 

quantified through the Z-stack using the Simple Neurite Tracer plugin in ImageJ (Longair et al., 

2011).  Intriguingly, α-motor neurons of the L4-5 spinal cord in ALS mice display shorter axon 

initial segments  (23.3µm ± 0.26; n=207) as compared to their Nt littermates  (24.8µm ± 0.26; 

n=182), indicating that ALS motor neurons are intrinsically hypoexcitable  (Figure 2.2).  In  
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Figure 2-2: Axon initial segment length is reduced in α-motor neurons of young adult ALS mice.   

A) Representative images of ChAT and NeuN positive α-motor neurons, ChAT positive and NeuN negative γ-motor 
neurons, and axon initial segments visualized by ankyrinG.  White arrows denote the proximal and distal ends of the 
axon initial segment and asterisk marks a γ-motor neuron.  B) Quantification of axon initial segment length.  Each dot 
represents a single motor neuron and the red bar marks the mean. Significance by one-way ANOVA and Bonferroni 
post hoc analysis. 



	

	 44	

contrast, the γ-motor neurons did not display a significant change in axon initial segment length 

between ALS motor neurons  (25.8µm ± 0.61; n=93) and their Nt littermates  (24.6µm ± 0.46; 

n=89)  (Figure 2.2).  

 

Axon initial segment shortening succeeds spinal circuit maturation 

 

 To determine if axon initial segment shortening is present prior to circuit maturation, I 

examined neonatal mice in their first week of age, before descending fiber innervation (Clarke 

and Still, 2001; Arber, 2012).  I find no difference in axon initial segment length in the P4-6 

lumbar spinal cord  (Figure 2.3), suggesting a necessity of circuitry maturation before axon initial 

segment changes in the SODG93A mice are detectable.  Interestingly, the length of the axon 

initial segment in these neonatal mice [ (Nt-alpha 31.9µm ± 0.36; n=177)  (SOD1G93A-alpha 

33.0µm ± 0.42; n=128)  (Nt-gamma 43.2µm ± 0.92; n=82)  (SOD1G93A-gamma 42.8µm ± 1.01; 

n=66)] is notably longer as compared to the P23-26 mice, consistent with the relatively low 

levels of activity that have been reported in immature motor neurons of this age (Personius and 

Balice-Gordon, 2001).  This same shift in axon initial segment length between neonatal and 

young adult  (~P25) mice is seen in both the alpha and γ-motor neuron subtypes, suggesting 

that these neurons both undergo structural changes in the axon initial segment in response to 

circuit maturation.   

 

Axon initial segment shortening is persistent and progressive 

 

 To assess whether the change in axon initial segment length in young adult ALS mice 

simply reflects a transient alteration of this structure, I looked at the same region of the spinal 

cord  (L4-5) at later, but still presymptomatic time points.  Choosing points approximately every  
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Figure 2-3: Axon initial segment length is unchanged in α and γ-motor neurons of neonatal ALS mice, 
though markedly longer than their adult equivalents.  

A) Representative images of ChAT and NeuN positive α-motor neurons, ChAT positive and NeuN negative γ-
motor neurons, and axon initial segments visualized by AnkyrinG. White arrows denote the proximal and distal 
ends of the axon initial segment and asterisk marks a γ-motor neuron.  B) Quantification of axon initial segment 
length.  Each dot represents a single motor neuron and the red bar marks the mean. Significance by one-way 
ANOVA and Bonferroni post hoc analysis. 
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20 days, I reexamined the axon initial segment length in aging ALS mice.  At postnatal days 44-

46, I observed a persistent phenotype, where ALS α-motor neurons display shorter axon initial 

segments  (21.9µm ± 0.18; n=139) compared to their Nt littermates  (22.7µm ± 0.21; n=86)  

(Figure 2.4A,B).  And γ-motor neurons did not display a significant change in axon initial 

segment length between ALS motor neurons  (22.6µm ± 0.70; n=32) and their Nt littermates  

(22.5µm ± 0.56; n=40)  (Figure 2.4A,B).   

 The axon initial segment progressively shortened in α-motor neurons as the SOD1G93A 

mice aged to P63-70, an age near the beginning of degeneration in this mouse model (Turner 

and Talbot, 2008).  Α-motor neurons in the SOD1G93A mice contained significantly shorter axon 

initial segments  (19.8µm ± 0.36; n=136) than their Nt littermates  (22.2µm ± 0.18; n=142)  

(Figure 2.4C).  Remarkable, I observe opposite axon initial segment length changes in the 

SOD1G93A mice γ-motor neurons  (25.7µm ± 0.54; n=48) at this age, compared to Nt gammas  

(22.9µm ± 0.46; n=64)  (Figure 2.4C). 

 

p62 pathology marks vulnerable α-motor neurons and precedes vacuole invasion of the 

soma 

 

 Later stages of ALS are marked by retraction of the neuromuscular junction and motor 

neuron degeneration (Fischer et al., 2004; Pun et al., 2006).  Prior to these phases of the 

disease, early pathological markers in the SOD1G93A mouse model includes the formation of 

large p62 immunoreactive structures (Rudnick et al., 2017), as well as the formation of large 

vacuoles that likely result from mitochondrial swelling (Dal Canto and Gurney, 1994; Higgins et 

al., 2003).  Given the presence of p62 aggregates in several other neurodegenerative diseases 

(Liu et al., 2017), and that not all motor neurons in ALS present with this phenotype, I regarded 

is as an appropriate marker of neuronal stress to identify motor neurons that would likely be the  
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Figure 2-4: Axon initial segment length changes are persistent in α-motor neurons of adult ALS mice 
and present in γ-motor neurons as the disease progresses.  

A) Representative images of ChAT and NeuN positive α-motor neurons, ChAT positive and NeuN negative γ-
motor neurons, and axon initial segments visualized by AnkyrinG. Red asterisks mark γ-motor neurons.  B) 
Quantification of axon initial segment length.  Each dot represents a single motor neuron and the red bar 
marks the mean. Significance by one-way ANOVA and Bonferroni post hoc analysis. 
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first to degenerate.  I aimed to identify a timeline of in vivo motor neurons that presented with 

markers of cellular stress in ALS prior to degeneration.  I first analyzed the development of p62-

possitive aggregates, important in binding a number of ubiquitinated products and aiding in their 

targeting for autophagic degradation (Komatsu et al., 2012).  I next characterized the 

emergence of soma-invading vacuoles, presenting as an additional marker for progressive 

cellular stress (Wong et al., 1995).  Though somal vacuoles were clearly recognizable with the 

ChAT antibody alone, I also visualized vacuoles by targeting the external mitochondrial 

membrane protein, TOMM20 (Pfanner et al., 1997).   

 At postnatal day 23-26, where I first see emergence of the axon initial segment 

phenotype, I see no evidence of p62 aggregation or vacuole formation  (Figure 2.5).  By 

postnatal day 45 a robust presence of p62 aggregation emerges, however, very few somal 

vacuoles were observed  (Figure 2.5).  Severe somal vacuolation accompanied by p62 

aggregation occurs by postnatal days 63-70  (Figure 2.5), though, not all motor neurons 

containing p62 aggregates harbored vacuoles.  Importantly, vacuole formation was seemingly 

only observed in α-motor neurons, though I based this only on size rather than NeuN staining. 

Nevertheless, is appears that γ-motor neurons are markedly spared of this cellular stress 

phenotype.  Additionally, in another qualitative analysis, p62 aggregation was only observed in 

spinal motor neurons and was not observed elsewhere in the spinal sections at this stage  (data 

not shown). 

 

Increased excitation leads to early stress in ALS motor neurons 

 

 It is possible that the axon initial segment shortening observed in SOD1G93A α-motor 

neurons is random throughout the motor neuron population, rather than presenting as an early 

indicator of cells to become stressed.  To address this possibility, I used our characterization of  
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Figure 2-5: Axon initial segment shortening is an early phenotype in ALS, emerging prior to p62 aggregation 
and vacuolization 

A) Representative images of ChAT positive motor neurons where abundant p62 aggregation is visualized in 
Postnatal Day 45 SOD1G93A mice.  Though vacuoles emerge in a small number of motor neurons at Postnatal Day 
45, they are not abundantly represented in motor neuron somas until Postnatal Day 65.  Vacuoles are visualized by 
the outer mitochondrial membrane marker, TOMM20.   



	

	 50	

known pathological markers in ALS to identify motor neurons undergoing early cellular stress 

events.  The axon of α-motor neurons is known to be much larger in diameter as compared to γ-

motor neurons  (Kanning et al., 2010), making their axon initial segment easily identifiable with 

the AnkG stain alone  (Figure 2.2A).  So, as a method of blinding, axon initial segment 

measurements were made on all α-motor neuron axon initial segments with just the AnkG 

staining in P44-46 L4-5 spinal cord sections.  After measurement, the composite image was 

used to verify first whether the axon initial segment measured belonged to a ChAT-positive 

motor neuron, and second to divide into motor neurons that contain p62 aggregates and those 

that do not display any tested pathologies  (“normal”).  Intriguingly, the motor neurons that 

contain p62 aggregates display significantly shorter axon initial segments as compared with 

both Nt littermates and to “normal” SOD1G93A motor neurons  (Figure 2.6A,B,D).   The same 

blinding procedure was used to analyze motor neurons in postnatal day 63-66 L4-5 spinal cord 

sections.  This time, however, motor neurons were split into three groups, “normal” motor 

neurons, those that contain only p62 aggregates, and those with vacuoles, identified using the 

ChAT staining.  Similarly to the P45 mice, the shortest axon initial segments belonged to those 

with stress markers, yet the vacuole-containing motor neurons displayed the shortest, p62 

aggregate-only motor neurons the second shortest, and the “normal” SOD1G93A motor neurons 

did not significantly differ from their Nt littermates. 

 

Discussion 

 

 Here, I show that the axon initial segment exhibits early structural changes in ALS, 

suggestive of an early decrease in intrinsic excitability.  The motor neurons displaying axon 

initial segments that are shortest, also, display early markers of neuronal stress and are likely 

the first neurons to undergo degeneration.  I describe axon initial segment plasticity in motor  
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Figure 2-6: Axon initial segment shortening is restricted to motor neurons that display phenotypic 
markers of stress  

A) Representative image of a “normal” ChAT positive motor neuron lacking p62 aggregates or vacuoles.  
B) Abundant p62 aggregation in a motor neuron lacking vacuoles. C) Vacuolized motor neuron.  D) 
Quantification of axon initial segment length in P45 motor neurons.  SOD1G93A motor neurons are divided 
into two groups, those with p62 aggregates and those without (denoted “Normal”).  E) Quantification of 
axon initial segment length in P65 motor neurons.  SOD1G93A motor neurons are divided into three 
groups, those with vacuoles, those with p62 aggregates and those without either (denoted “Normal”).  
Significance by one-way ANOVA and Bonferroni post hoc analysis. 
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neurons to function as homeostatic compensation for synaptic drive, as others have defined in 

various other excitatory neurons in the CNS (Grubb and Burrone, 2010; Kuba et al., 2010; 

Chand et al., 2015; Wefelmeyer et al., 2015).  Our in vitro study of axon initial segment plasticity 

in motor neurons is reinforced by the observation that the axon initial segment shortens, even in 

the Nt mice, from the neonatal age to the young adult in vivo  (Figures 2.2 and 2.3), a period 

where known increases in activity take place (Personius and Balice-Gordon, 2001).  Taken 

together, these data suggest the emergence of intrinsic hypoexcitability early in ALS mice may 

hold a pathogenic influence that plays a role in degeneration.  

   

Hyperexcitability vs hyperexcitation 

 Leroy and Zytnicki well define the conflicting evidence describing hyperexcitability in ALS 

motor neurons and further differentiating between excitability and excitation (Leroy and Zytnicki, 

2015).  Many studies of ALS motor neurons focus on intrinsic measures of excitability 

(Elbasiouny et al., 2012) and infer that motor neuron action potential firing  (activity) will be 

proportional to these measures.  Intrinsic electrophysiological properties, however, may not be a 

sufficient guide to uncover aberrant activity in motor neurons.   Situations arise, such as with the 

fast and slow α-motor neuron subtypes, where the intrinsically hypoexcitable neuron ends up 

firing at significantly higher frequencies  (Müller et al., 2014).  Furthermore, our data suggest 

that motor neurons that are likely intrinsically hypoexcitable may be so as a result of 

hyperexcitation (Figure 2.1).  Intrinsic excitability may reflect homeostatic shifts in response to 

excitation, rather than underlie the driving force, thus inversely proportional to their amplitude of 

excitation. 

 Interestingly, I see no significant changes in axon initial segment length in the neonatal 

mice.  This result compares with findings in Leroy et al., who do not find significant 

electrophysiological differences in fast α-motor neuron in ALS (Leroy et al., 2014).  Likewise, I 

do not see axon initial segment length changes that would reflect electrophysiological 
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abnormalities in SOD1G93A mice.  The shift in excitability of slow α-motor neurons in their report 

would likely not show up in our analysis, as there are limited numbers of type I muscle fibers in 

small mammals such as mice (Peters et al., 1999).  Moreover, the vast majority of the muscles 

innervated by motor neurons that originate in L4-5 region are comprised almost entirely of type 

II fibers (Burkholder et al., 1994; Augusto et al., 2004; Bácskai et al., 2014).  To that point, the 

soleus muscle, one of the crural muscles innervated by L4-5 and well known for its composition 

of ~50% type I fibers (Peters et al., 1999), likely represents only ~20 motor neurons total 

(Fladby and Jansen, 1987).  Therefore, it is unlikely that significant contamination from slow α-

motor neurons exist in the present analysis.  This is supported by my observation that axon 

initial segment shortening occurs in the motor neurons that first display phenotypic markers of 

stress, where these early-affected motor neurons tend to be the fast alpha subtype.  

Furthermore, descending circuitry of the corticospinal tract does not connect with lumbar motor 

neurons until the end of postnatal week two  (Gianino et al., 1999; Arlotta et al., 2005).  Prior to 

the descending circuitry’s innervation of lumbar motor neurons, they have also been found to 

have low levels of activity compared to their adult counterparts (Personius and Balice-Gordon, 

2001), reflected here by their relatively long axon initial segments  (Figure 2.3).  So, it is likely 

that shifts in intrinsic excitability seen in neonatal fast α-motor neurons in the spinal cord have a 

small effect until after circuit maturation, when there may be larger homeostatic events such as 

seen here with axon initial segment plasticity.  

 

Circuitry Defects and Compensation 

 The axon initial segment changes seen at P23-26 are possibly reflective of circuitry 

abnormalities. Yet, I cannot rule out the possibility of activity-independent mechanisms at play.  

For instance, one could posit that disruptions to calcium homeostasis could be involved.  This 

could effect the calcium-dependent mechanism of axon initial segment plasticity (Yoshimura 

and Rasband, 2014).  However, the calcineurin-mediated mechanism that underlies axon initial 
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segment plasticity seems more likely to be triggered through a calcium microdomain 

surrounding L-type calcium channels, than through global perturbations of calcium (Huang and 

Rasband, 2018).  Additionally, if cytosolic calcium levels became too disrupted, one might 

expect to see calpain-mediated dissolution of the axon initial segment in motor neurons close to 

death (Schafer et al., 2009).  I do not see a full loss of the axon initial segment even in 

extremely swollen and vacuolized cells.  Thus, I deem it less likely that calcium disruption in 

ALS leads to the shortened axon initial segment, and that it is more likely a product of canonical 

excitation-driven changes.  

 Our data support this claim when considering the shift in axon initial segment length that 

occurs even in the Nt mice from the neonate to the young adult.  Motor neurons display 

relatively low amounts of activity in the early postnatal period and do not gain adult activity 

levels until P14-15 (Personius and Balice-Gordon, 2001), after the descending circuitry matures 

(Gianino et al., 1999; Clarke and Still, 2001; Arber, 2012).  This would suggest that the changes 

in axon initial segment length in ALS motor neurons require circuitry maturation and are 

indicative of abnormally high net excitation.  The lack of neonatal phenotype also suggests that 

intrinsic activity-independent mechanisms that control axon initial segment assembly are not 

compromised.   

In contrast to changes in axon initial segment in alpha motor neurons, I observed lengthening of 

the axon initial segment in gamma motor neurons in the P70 mice  (Figure 2.4). The γ-motor 

neurons are resistant to degeneration, but their function is intimately linked to that of the α-

motor neurons.  The opposite change of axon initial segment length observed in alpha and 

gamma motor neurons is indicative of more complex, motor circuit level aberrations emerging at 

the time when first alpha motor neurons start to degenerate, perhaps revealing modulatory 

attempts to reduce alpha excitation.  Evidence of such effects may be supported by the 

observation of longer axon initial segments in the “normal” motor neurons in the SOD1G93A mice.  

Additionally, as major behavioral changes aren’t observed in SOD1G93A mouse models until 
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~P90 (Turner and Talbot, 2008), it is likely that the axon initial segment and other intrinsic 

compensatory systems contribute to the outwardly normal functioning of the motor systems in 

early adult life, mimicking ALS in humans where few early functional abnormalities have been 

detected.   

 It will be interesting to address whether the homeostatic mechanisms, likely active here, 

underlie an increase in cellular stress that exacerbates the disease.  Also of interest, neuronal 

polarity and axonal transport breakdown have been seen in ALS (De Vos and Hafezparast, 

2017).  Given the important role of the axon initial segment in maintaining polarity (Rasband, 

2010), it is possible that chronic induction of plastic events in this subcellular structure degrades 

its ability to properly separate the axonal and somatodendritic compartments.    

 

Methods 

 

Animals 

 Staining in the lumbar spinal cord was performed on tissue from first generation crosses 

of C57BL/6J females and SOD1G93A transgenic male mice [C57BL/6J, 000664; B6.Cg-Tg 

(SOD1*G93A)1Gur/J, 004435, Jackson Laboratory]. All experiments utilizing laboratory animals 

were performed in accordance with NIH guidelines for the care and use of laboratory animals, 

and with approval of the Institutional Animal Care and Use Committees of Columbia University. 

 

Animal Tissue Collection, Immunofluorescence Staining and Imaging 

 SOD1G93A mutant mice and their non-transgenic littermates  (first generation cross only) 

at postnatal days 66 and 100 ± 3 were deeply anesthetized using Avertin  (tribromoethanol, 

Sigma) and fixed by transcardial perfusion with 4% paraformaldehyde  (from 32% stock, 15714, 

Electron Microscopy Sciences) in phosphate-buffered saline  (PBS) pH 7.4  (70011, 
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ThermoFisher). The CNS was removed and fixed overnight in the same solution noted above. 

Whole brain and lumbar segments 4 and 5 were dissected, embedded in 4%  (w/v) agar and 

sectioned on a vibratomb  (Leica VT1000 S).  100 µm transverse spinal cord sections and 

sagittal whole brain sections were cut. Sections were blocked overnight in Tris-buffered saline  

(TBS) with 10% donkey serum  (D9553, Sigma) and 0.4% Triton X-100  (T8787, Sigma). 

Sections then were incubated at room temperature for two days in the above blocking buffer 

with primary antibodies [goat polyclonal anti-ChAT  (1:100; AB144P, Millipore); mouse 

monoclonal anti-NeuN, clone A60  (1:100; MAB377, Millipore); mouse monoclonal anti-

SQSTM1 / p62  (1:500; ab56416, Abcam); mouse monoclonal anti-misfolded human SOD1  

(1:250; MM-0072-02, MédiMabs); rabbit polyclonal anti-ankyrin G  (Stock 0.2 µg/mL, 1:100; 386 

003, Synaptic Systems)]. After the primary incubation, six washes  (>30 minutes each) in TBS 

with 0.4% Triton were followed by a one-day incubation at room temperature in the above wash 

buffer with donkey anti-mouse and anti-goat secondary antibodies  (1.5 µg/mL; Jackson 

ImmunoResearch). After six more washes  (as stated above), sections were mounted on 

microscope slides in Fluoromount G  (OB100, ThermoFisher) using 100 µm spacers and 

allowed to set for >12hrs.  Staining was visualized by confocal microscopy  (Zeiss LSM 800). 

 

Cell Culture 

 Mouse embryonic stem cells  (ESCs) were cultured in EmbryoMax DMEM  (EMD 

Millipore) supplemented with 15% embryonic stem cell screened fetal bovine serum  (HyClone), 

2mM L-glutamine  (Life Technologies), 1x non-essential amino acids EmbryoMax MEM  (EMD 

Millipore), 1x EmbryoMax nucleosides  (EMD Millipore), 0.1mM β-mercapthoethanol  (Sigma-

Aldrich), 1000U/ml ESGRO Leukemia inhibitory factor  (EMD Millipore), 1.25µM GSK-3 inhibitor 

XVI  (EMD Millipore) and 100nM FGF receptor antagonist PD173074  (Tocris).  All cells were 

determined to be negative for mycoplasma using the Venor GeM Mycoplasma detection kit  

(Sigma-Aldrich). 
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Motor neuron differentiation, fixation and staining 

 ESCs were differentiated into spinal neurons in embryoid bodies following established 

protocols (Wichterle et al., 2002; Wichterle and Peljto, 2008; Sternfeld et al., 2017).  During the 

differentiation process, primary cortical astrocytes were plated onto plasma-treated coverslips 

coated in polyornithine/laminin and incubated from 4-5 days in media [Advanced DMEM/F12  

(Life Technologies), 2mM L-glutamine  (Life Technologies), 10% fetal bovine serum].  After 6 

days of differentiation, embryoid bodies were dissociated and neurons were plated on astrocyte 

monolayer in maturation media [Neurobasal medium  (Life Technologies), 500µM L-glutamine  

(Life Technologies), 1x B-27 Supplement  (serum free)  (Life Technologies), 1:1000 β-mercapto 

ethanol  (Chemicon ES-007-E), 2% heat-inactivated horse serum, containing neurotrophic 

factors  (10ng/mL BDNF  (R&D Systems), 10ng/mL GDNF  (R&D Systems), 10ng/mL CNTF  

(R&D Systems), 10ng/mL IGF-1  (R&D Systems), 10µM Forskolin  (Sigma), and 100µM IBMX  

(R&D Systems)]. The media was replaced every 2-3 days starting from two days after plating.  

Motor neuron differentiations were consistently around 40% efficient.  

 In vitro motor neurons were fixed with 4% paraformaldehyde  (from 16% stock, 15710, 

Electron Microscopy Sciences) in phosphate-buffered saline  (PBS) pH 7.4  (70011, 

ThermoFisher). Equal volume paraformaldehyde was first added to the media of each well and 

incubated for 2 minutes.  This ~2% paraformaldehyde solution was then aspirated and the 4% 

paraformaldehyde added and incubated at 4°C for 20 minutes.  After the incubation, three 

washes  (>5 minutes each) in PBS were performed.  Cultures were blocked for >30 minutes in 

PBS with 10% donkey serum  (D9553, Sigma) and 0.1% Triton X-100  (T8787, Sigma). In vitro 

motor neurons were then were incubated at 4°C overnight in the above blocking buffer with 

primary antibodies [mouse monoclonal anti-vesicular glutamate transporter 2  (1:100; MAB5504, 

EMD Millipore) or rabbit polyclonal anti-ankyrin G  (Stock 0.2 µg/mL, 1:100; 386 003, Synaptic 

Systems)]. After the primary incubation, three washes  (>5 minutes each) in PBS with 0.1% 
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Triton were followed by a 1.5hr incubation at room temperature in the above wash buffer with 

donkey anti-mouse or anti-rabbit secondary antibodies  (1.5 µg/mL; Jackson ImmunoResearch). 

After three more washes  (as stated above), coverslips were mounted on microscope slides in 

Fluoromount G  (OB100, ThermoFisher) and allowed to set for >12hrs.  

 

Axon initial segment analysis 

 Motor neurons plated on primary cortical astrocytes were imaged using a laser-scanning 

confocal microscope  (LSM 800, Zeiss) using a 40x oil-immersion objective.  The settings were 

adjusted to prevent signal saturation and the images were taken in z-stacks with 1 µm steps. Z-

stack images were projected into a single plane using maximum intensity projections and 

intensity across the length of the axon initial segment was quantified using the image analysis 

software Fiji (Schindelin et al., 2012).   Briefly, the cutoff intensity for axon initial segment 

start/end was 1/3 of the maximum intensity similar to methods used previously (Grubb and 

Burrone, 2010).  AnkyrinG signal in the soma at times was quite high, therefore the axon initial 

segment starting point was manually determined.   

 For in vivo axon initial segment analysis, sections were imaged using a laser-scanning 

confocal microscope  (LSM 800, Zeiss) and a 40x oil-immersion objective.  The settings were 

adjusted to prevent signal saturation and the images were taken in z-stacks with 1 µm steps.  

The start and end of the in vivo initial segment is extremely distinct as seen in the reported 

images.  Therefore, the start and end were manually chosen and Simple Neurite Tracer 

(Longair et al., 2011) software through the Fiji platform was used to automatically generate 

lengths of the axon initial segment.   
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Whole cell current clamp 

 Excitability was assessed using conventional whole cell current clamp technique. Briefly, 

astrocytes were prepared as previously described (Albuquerque et al., 2009) and plated on 15-

mm diameter coverslips at a density of 100,000 cells per well in a 24-well plate. 4-6 days 

following astrocyte plating, non-sorted motor neurons added to the wells at a density of 50,000 

total cells per well. Cultures were maintained for 17 days before recording, as per experimental 

design  (Figure 2.1). Membrane potential recordings were performed using a Multiclamp 700B 

amplifier and a Digidata 1550 digital-to-analog converter. Signals were recorded at a 10-kHz 

sample rate using pClamp 10 software  (all equipment from Molecular Devices). Patch pipettes 

were fabricated with a P-97 pipette puller  (Sutter Instruments) using 1.5 mm outer diameter, 

1.28 mm inner diameter filamented capillary glass  (World Precision Instruments). Pipette 

resistance was 2-5 MΩ when filled with the pipette solution. The external recording solution 

contained 145 mM NaCl, 5 mM KCl, 10 mM HEPES, 10 mM glucose, 2 mM CaCl2 and 2 mM 

MgCl2. The pH was adjusted to 7.3 using NaOH and the osmolality adjusted to 325 mOsm with 

sucrose. The pipette solution contained 130 mM CH3KO3S, 10 mM CH3NaO3S, 1 mM CaCl2, 10 

mM EGTA, 10 mM HEPES, 5 mM MgATP and 0.5 mM Na2GTP  (pH 7.3, 305 mOsm). 

Experiments were performed at room temperature  (21–23 °C). During recordings, current was 

injected to hold the cells at -60 mV. The liquid junction potential between pipette and external 

solutions was calculated empirically, and the correction applied before the experiment. Resting 

membrane potential was measured immediately following establishment of the whole-cell 

configuration. Membrane resistance and capacitance were calculated from the membrane 

potential changes in response to 1 s duration hyperpolarizing current steps that increased 

incrementally by 5 pA. Action potentials were evoked and rheobase obtained using 1 s duration 

depolarizing current steps that increased incrementally by 5 pA.  For blocking EPSPs, bath 

perfusion containing CNQX was used, followed by a wash with bath solution. 
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 An action potential was defined as a transient depolarization of the membrane which had 

a minimum rise rate > 10 mV/ms and reached a peak amplitude > 0 mV. Action potential 

characteristics were measured from the first action potential at rheobase. The threshold 

potential was measured at the point where the voltage increases at a rate greater than 10 

ms/mV. The duration was calculated from the full width at the half maximum voltage. For this 

calculation, the amplitude was measured from the threshold potential to the maximum potential. 

The maximum number of action potentials was measured from a 1 s current step. The 

amplitude of the step was dependent on the individual cell. Quantification was carried out using 

custom written scripts for Igor Pro v. 6  (Wavemetrics, USA). Outliers within Rheobase, Input 

Resistance, and Capacitance, that would indicate a poor seal, were identified using the ROUT 

method  (Q = 0.5%) in GraphPad Prism version 7.0a for Mac, GraphPad Software, La Jolla 

California USA  (www.graphpad.com). For each outlier detected, data from the entire neuron 

was removed from the analysis. Statistical comparisons were made using unpaired Student’s t-

test in GraphPad Prism. P-values < 0.05 were considered significant. 

 

Chapter 3: Heterogeneity of ALS phenotypes between cranial motor nuclei and spinal 

motor neurons 

 

Summary 

 

 ALS is marked by progressive degeneration of motor neurons in the spinal cord, 

midbrain and cortex.  Studies have investigated physiological differences between ALS-

vulnerable and resistant populations; however, it is unclear whether populations of molecularly 

distinguishable ALS-vulnerable motor neurons encounter identical pathogenic pathways.  



	

	 61	

Marked shortening of the axon initial segment was observed in spinal motor neurons.  This 

phenotype was most pronounced in motor neurons that displayed p62 aggregation and vacuole 

formation.  Contrary to what was found in spinal motor neurons, ALS-vulnerable motor neurons 

of the brain stem exhibit lengthening of their axon initial segment.  Additionally, p62 aggregation 

and somal vacuole formation present heterogeneously across ALS-vulnerable cranial motor 

neuron populations and are distinct from their phenotypic pattern in the spinal motor neurons.  I 

further characterized mutant SOD1 aggregation in both spinal and cranial motor neurons.  This 

phenotype maintained more consistency between the populations, however, was most prevalent 

at outer membranes of the vacuoles.  Lastly, I quantified degeneration within cranial and spinal 

motor neuron populations, finding that though phenotypically distinct, the timeline of 

degeneration is consistent.     

 

Introduction 

  

 As described in Chapter 1, across the cranial motor nuclei, motor neurons in nuclei that 

innervate the extraocular muscles  (oculomotor, trochlear, and abducens) are spared in ALS 

while all others see significant degeneration at similar levels to what is seen in spinal motor 

neurons (Turner and Talbot, 2008; Nijssen et al., 2017).  In ALS patients, those that first present 

with bulbar symptoms have a worse prognosis, possibly indicating some heterogeneity in the 

mechanisms of disease pathogenesis, though similar to other clinical presentations of ALS, 

studies show degeneration throughout the motor system in postmortem tissue in these patients 

(Nijssen et al., 2017). The vulnerable cranial motor neurons  (trigeminal, facial, ambiguus, and 

hypoglossal) are thought to undergo similar pathophysiology as spinal motor neurons in ALS 

(Turner and Talbot, 2008), however, given that these mechanisms have not yet been identified, 

this insight remains unclear.  Certainly, phenotypes observed in spinal motor neurons such as 
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SOD1 and p62 aggregation have been reported in ALS (An et al., 2014).  However, there are far 

fewer studies carried out in cranial motor neuron pathogenesis in ALS as compared to spinal 

motor neurons.  Furthermore, a detailed quantification of the penetrance of these phenotypes 

across multiple vulnerable and resistant populations in both spinal and cranial motor neurons 

has not been conducted. 

 In Chapter 1, studies that were discussed arrived at seemingly contradictory conclusions 

regarding motor neuron activity and excitotoxicity.  However, much of the excitotoxic effects 

thgouht to be present in vulnerable motor neuron pathophysiology is based on evidence from 

spinal motor neurons and the over-activation of corticospinal circuitry.  Only a few analyses 

have investigated this hypothesis in vulnerable cranial motor neurons.  Furthermore, it is unclear 

whether corticobulbar circuitry harbors similar hyperactivity to the corticospinal circuits in ALS.  

The few studies that have addressed excitability and activity in cranial motor neurons, however, 

have found increases in intrinsic excitability and excitatory input (van Zundert et al., 2008; 2012; 

Venugopal et al., 2015b), albeit with comparable caveats to what was discussed in Chapter 1 

regarding electrophysiological analyses.  Specifically, the cranial motor neurons analyzed were 

all at neonatal ages, leaving the same questions addressed for spinal motor neurons, where the 

differences in intrinsic excitability and activity reported for young cranial motor neurons may not 

reflect disease-relevant adult physiology.   

 In this chapter I examined the axon initial segment in ALS-vulnerable and resistant 

cranial motor neurons in the SOD1G93A mouse model as a proxy for changes in motor neuron 

excitation. Additionally, using the other ALS phenotypes characterized in Chapter 2, I will 

assess the timeline, presentation and severity of p62 aggregation and vacuole formation in and 

resistant vulnerable cranial motor neurons coupled to axon initial segment plasticity.  This will 

have the added benefit of finding any transient phenotypic presentation in these populations.  

As an added measure of stress in ALS, I will investigate SOD1 aggregation within spinal and 
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cranial motor neurons.  As with γ-motor neurons in the spinal sections, I will use the ALS-

resistant oculomotor and trochlear motor neurons as internal controls for these experiments.   

 

Results 

 

Dynamic and heterogeneous plasticity of the axon initial segment in cranial motor nuclei 

 

 I previously reported the early phenotype of axon initial segment shortening in the 

lumbar spinal cord of the SOD1G93A mouse model of ALS.  Axon initial segment length changes 

are not observed in ALS-resistant γ-motor neurons until later in the disease course, where a 

lengthening in this structure is observed  (Figures 2.2 and 2.4).  To investigate an additional 

resistant motor neuron population, and whether this phenotype of axon initial segment 

shortening is consistent across all vulnerable motor neurons, even those that are molecularly 

distinct, I looked at cranial motor neurons. I quantified the lengths of axon initial segments within 

the ALS-vulnerable facial, hypoglossal, and trigeminal motor pools, and in the oculomotor and 

trochlear pools, both spared in ALS  (Figure 3.1).  Ambiguus motor nucleus, though clearly 

vulnerable in ALS  (Figure 3.1), was not analyzed for axon initial segment length due to the very 

dense clustering of motor neurons that cause uncertainty when assigning the axon initial 

segment to a motor neuron.  To reduce variability from perfusion and staining artifacts, I 

collected the entire CNS from the mice used in the analysis in Chapter 2, and analyzed cranial 

motor neurons from these same tissue samples.  100µm sagittal sections from the midbrain 

were taken from Neonatal, P25 and P65 SOD1G93A mice and compared to those from non-

transgenic  (Nt) littermates.  Using immunohistochemistry  (IHC), motor neurons were visualized 

by targeting choline acetyltransferase  (ChAT) and their axon initial segments by the structural  
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Figure 3-1: Visualizing cranial motor neurons in ALS 

Top and Middle: Sagittal sections of whole brains from SOD1G93A mice were immunostained for 
choline acetyl transferase (ChAT) and visualized by fluorescence microscopy.  ALS-vulnerable 
cranial motor nuclei (V-trigeminal; VII-facial; XII-hypoglossal; Amb-ambiguus) and ALS-resistant 
cranial motor nuclei (III-oculomotor; IV-trochlear) were identified and analyzed for ALS 
phenotypes.  Bottom: Nucleus ambiguus from young and post-symptomatic SOD1G93A mice 
clearly demonstrate vulnerability to ALS in cranial motor neuron. 
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protein ankyrin G  (AnkG or Ank3).  The axon initial segment length was then quantified through 

the Z-stack using the Simple Neurite Tracer plugin in ImageJ (Longair et al., 2011). 

 

Postnatal days 23-26 

 In SOD1G93A mice at P25 I see evidence of axon initial segment plasticity in ALS-

vulnerable motor neurons of the cranial nuclei.  However, in contrast to the changes observed in 

spinal motor neurons, I detected an increase in axon initial segment length in ALS-vulnerable 

cranial motor neurons  (Figure 3.2C).  However, longer axon initial segments are seen only in 

trigeminal and hypoglossal MNs, but not in facial motor neurons, marking an additional level of 

heterogeneity in these vulnerable populations.  Like the resistant γ-motor neurons of the spinal 

cord, the axon initial segment of motor neurons in the trochlear and oculomotor nuclei do not 

significantly change in the P25 SOD1G93A mice.  

  

 Postnatal days 63-70 

 In the spinal cord, the axon initial segment of α-motor neurons became progressively 

shorter as the SOD1G93A mice aged to P63-70  (Figure 2.4).  To see if the phenotype in ALS-

vulnerable cranial motor neurons persisted to later stages of the disease as well, I analyzed 

them at this age, again attaining tissue samples from the same mice that were used for the 

spinal motor neuron analysis.  In the P63-70 cranial motor neurons, I find some ALS-vulnerable 

motor neurons to retain significant changes in the axon initial segment as compared to their Nt 

littermates.  Again, however, I observe heterogeneity between populations of different cranial 

motor nuclei.  Lengthening of the axon initial segment is observed again in the trigeminal motor 

neurons, as well as the facial motor neurons where a significant change is now apparent  

(Figure 3.2D).  Conversely, the hypoglossal motor neurons are not found to be significantly 

longer, though a trend of longer axon initial segment length is seen.  Dynamic changes are also 

observed in the ALS-resistant motor neurons, where, the P63-70 motor neurons in the  
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Figure 3-2: Changes in the axon initial segment in cranial motor neurons 

 A) Representative images of ChAT and NeuN positive motor neurons in the facial and 
oculomotor nuclei where axon initial segments can be visualized by AnkyrinG.  B, C, and 
D) Quantification of axon initial segment length across cranial motor nuclei at the 
respective ages.  Each dot represents a single motor neuron and the red bar marks the 
mean. Significance by one-way ANOVA and Bonferroni post hoc analysis. 
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oculomotor nucleus become significantly shorter.  This reflects the opposite shift seen the spinal 

cord between alpha and γ-motor neurons.  Nevertheless, this shift is not observed in the 

trochlear motor neurons  (Figure 3.2D).   

 

Postnatal days 4-6 

 Lastly, I analyzed neonatal mice to compare the axon initial segment of cranial motor 

neurons.  As with motor neurons in the lumbar spinal cord  (Figure 2.3), the axon initial segment 

in all of the cranial motor nuclei were noticeably longer in the neonates as compared to the adult 

mice  (Figure 3.2B).  Moreover, the axon initial segment in most of the SOD1G93A cranial motor 

neurons in the neonates were not significantly different from their Nt littermates.  With one 

unexpected exception, the axon initial segment of the SOD1G93A hypoglossal motor neurons 

were significantly shorter than those in the Nt control  (Figure 3.2B). 

 

p62 aggregation is heterogeneous across vulnerable cranial motor nuclei 

 

 Given that the axon initial segment phenotype was vastly different in the cranial motor 

neurons than what was observed in the spinal motor neurons, I questioned whether other 

phenotypes showed similar heterogeneity.  I started this analysis with p62 aggregation, 

abundant in spinal motor neurons and previously reported to present in ALS-vulnerable cranial 

motor neurons as well (An et al., 2014).  Unlike the prolific presence of p62 aggregation in the 

P45 spinal α-motor neurons, I was unable to find any p62 aggregation in the cranial motor 

neurons.  Finally by P65, I observed p62 aggregation in some ALS-vulnerable cranial motor 

neurons  (Figure 3.3).  However, I observed almost no evidence of p62 aggregation in the 

hypoglossal motor neurons  (out of all sections analyzed, one neuron displayed aggregates and 

one skein-like inclusions).  Furthermore, though not quantified, the dorsal motor nucleus of the  
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Figure 3-3: p62 aggregation is less abundant in ALS-vulnerable cranial motor neurons as compared to spinal 
motor neurons 

Representative images of oculomotor neurons, trigeminal and facial motor neurons, and lumber 4-5 spinal motor 
neurons from littermates of P66-P97 non-transgenic (NT) and SOD1G93A mice. ChAT antibody stained motor neurons 
in red. p62 antibody stained p62-containing inclusions in green.  (E) Quantification of percentage of cells containing 
p62 inclusions in cranial motor neurons and spinal motor neurons from SOD1G93A mice [n = 4 animals for lumbar and 
trigeminal, 3 for hypoglossal and oculomotor/trochlear, and 2 for facial, mean ± SEM). 
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vagus nerve that sits directly dorsal to the hypoglossal, displayed marked p62 aggregation in 

stark contrast to hypoglossal motor neurons.  Lastly, in all of the ages tested  (P5, P25, P45, 

P65, and P95) and in end-stage SOD1G93A mice, I never observed p62 aggregates in the ALS-

resistant cranial motor neurons within the oculomotor and trochlear nuclei. 

 Though I did observe some p62 aggregation in the trigeminal and facial motor neurons 

at P65, qualitatively it was clear that the number of neurons with aggregates were far fewer than 

the number in the spinal cord.  I next quantified this in P65 SOD1G93A motor neurons by counting 

the number of neurons with p62 aggregates as a percentage of the total number of motor 

neurons.  A third of the spinal motor neurons had aggregates at P65, whereas only ~18% of 

trigeminal motor neurons presented with p62 aggregates.  Fewer yet were seen in the facial 

motor neurons  (though not enough sections were quantified for this figure to run a statistical 

analysis), highlighting further heterogeneity in ALS phenotypes between spinal and cranial 

motor neurons.  

 In Chapter 2, I reported that progressive shortening of the axon initial segment structural 

occurs in spinal motor neurons that display phenotypic markers of stress  (p62 aggregation and 

vacuole formation).  I performed the same analysis here for trigeminal motor neurons and found 

no significant differences between motor neurons with p62 aggregates and those without  (data 

not shown).  However, due to the heterogeneity across ALS-vulnerable cranial nuclei, and the 

low number of motor neurons that contained p62 aggregates, I abandoned that analysis.   

 

ALS-vulnerable cranial motor neurons exhibit minimal somal invasion of vacuoles 

 

 Large vacuoles, believed to arise from swelling and the subsequent degradation of 

mitochondria (Higgins et al., 2003), have been reported in mouse models of ALS (Dal Canto 

and Gurney, 1994).  In the previous chapter, I presented a timeline in spinal motor neurons   
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Figure 3-4: Vacuole localization in cranial motor neurons differs from localization in 
spinal motor neurons 

Top:  Representative images of vacuoles in SOD1G93A spinal motor neurons, visualized by 
immunostaining of TOMM20, as compared to normal TOMM20 staining in Nt spinal motor 
neurons.  Middle:  Representative images of TOMM20-lined vacuoles in the neuropil of 
SOD1G93A hypoglossal motor neurons.  Bottom: Rarely, somal invasion by small vacuoles 
cans be seen as represented here by a facial motor neuron. 
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(Figure 2.5), where vacuole emergence occurs in a small number of motor neurons at P45 and 

is abundantly present by P65.  To continue the phenotypic comparison of spinal and cranial 

motor neurons, I looked in the ALS-vulnerable and resistant populations of motor neurons in the 

midbrain using an antibody targeting the outer-mitochondrial membrane, TOMM20.  Like the 

spinal motor neurons, abundant vacuoles within the ALS-vulnerable cranial motor neurons are 

not seen until P65 and were never observed through end-stage in the ALS-resistant oculomotor 

and trochlear motor nuclei.  However, vacuoles in the cranial motor neurons did not present like 

those in the spinal motor neurons  (Figure 3.4).  Interestingly, where large vacuoles clearly 

invade the soma of spinal motor neurons, most of the vacuoles in the cranial motor neurons are 

found in the neuropil.  As seen in Figure 3.4, the motor neurons of the hypoglossal nucleus do 

not show somal vacuoles.  In this same figure, I included an example of one of the few motor 

neurons of the facial nucleus that had somal vacuoles.  It is notable that the vacuoles that do 

form in the somas of the cranial motor neurons are not nearly as large as what is seen in the 

spinal motor neurons.  Qualitatively, it does not appear that there is a reduction in the 

abundance of vacuoles, only that they do not invade the soma  (Figure 3.5).   

 

Aggregation of misfolded SOD1 succeeds p62 pathology and accompanies somal 

vacuole invasion in spinal motor neurons  

 

 Using the three phenotypes that were highlighted in spinal motor neurons in Chapter 2 

(axon initial segment length, p62 aggregation, somal vacuole formation), I was unable to identify 

tight phenotypic parallels between spinal and cranial motor neurons.  So I looked at a fourth 

phenotype, misfolded SOD1 aggregation, and first characterized its time line in the spinal motor 

neurons.  SOD1 has been reported to aggregate in ALS and accumulate on outer mitochondrial   
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Figure 3-5: Abundant vacuole formation in the neuropil of cranial motor neurons in SOD1G93A mice 

Top:  Nt facial motor neurons stained with ChAT with no abnormalities seen in the neuropil.  Bottom:  
Vacuoles are found throughout the neuropil of ALS-vulnerable cranial motor neurons and can be seen in 
ChAT-positive neurites. 
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membranes in ALS (Mattiazzi et al., 2002; Liu et al., 2004; Vijayvergiya et al., 2005; Bergemalm 

et al., 2006; Deng et al., 2006; Vande Velde et al., 2008).  SOD1 aggregation has also been 

shown in both sporadic and familial forms of ALS (Paré et al., 2018), highlighting its potential 

importance to effect many ALS patients and serve as a robust marker for pathological stress in 

neurons.  Though it has recently been shown that the small soluble trimeric aggregates of 

SOD1 are in fact the toxic moieties (Zhu et al., 2018), the large aggregates are a visual 

downstream event that should mark neurons undergoing pathogenic events.   

 I stained lumbar sections from the preparations performed in Chapter 2.  Sections were 

immunostained with an antibody that specifically recognizes human misfolded SOD1 protein  

(C4F6)  (PMID: 17277077, 20953194) and an antibody against choline acetyltransferase  

(ChAT) to identify motor neurons. By P65, abundant misfolded SOD1 aggregation is observed 

in motor neurons and their projections throughout Lumbar spinal cord segments 4-5  (Figure 

3.6).  The ubiquitous, non-aggregated misfolded SOD1 signal is noticeably higher in ventral 

spinal motor neurons as compared other areas in the dorsal and ventral segments.  Though a 

careful analysis with a pan-neuronal marker was not carried out, the motor neurons clearly 

stood out in the spinal cord segments, where other neurons had relatively low signals.  This 

same observation was true within the motor neuron pool, where small motor neurons likely to be 

γ-motor neurons, had relatively low signals of misfolded SOD1.  To verify the specificity of the 

misfolded SOD1 antibody and to ensure the signal was not reflecting endogenously expressed 

SOD1, I also stained sections from the Nt littermates.  No signal was observed in these sections 

(data not shown).  Within the motor neurons, aggregates were found both within and outside 

vacuoles  (Figure 3.6).  Of note, these small motor neurons with bright ChAT signals, likely to be 

γ-motor neurons do not possess misfolded SOD1 aggregates, though their ubiquitous, non-

aggregated misfolded SOD1 signal was still elevated relative to the background throughout the 

spinal cord sections.  I have also stained for p62 and misfolded SOD1 in the same sections and 

surprisingly, the aggregates of each of these proteins do not seem to co-localize.    
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Figure 3-6: A timeline of misfolded human SOD1 aggregation in spinal motor neurons of SOD1G93A mice 

A)  Misfolded human SOD1 is visualized in neonatal and P25 spinal motor neurons from SOD1G93A mice using 
immunostaining.  Though high ubiquitous signal arises from these neurons, aggregation is absent at these ages.  
B) By P45, a small number of motor neurons display misfolded human SOD1 aggregates, and only those 
neurons with somal vacuoles.  By P70, abundant misfolded human SOD1 aggregates are found in SOD1G93A 
spinal motor neurons. 
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 I proceeded to analyze Lumbar spinal motor neurons from SOD1G93A mice ages P4-6, 

P23-26, and P44-46.  Even in the neonates, the ubiquitous, non-aggregated misfolded SOD1 

signal was elevated as compared to the rest of the spinal cord sections.  This phenotype 

persisted to P23-26, but no aggregates were observed through this young adult age  (Figure 

3.6).  Intriguingly, in P44-46 mice, where copious p62 aggregation is observed, very few motor 

neurons contained misfolded SOD1 aggregates.  Furthermore, misfolded SOD1 aggregates 

thatwere present at this age were only found in the few spinal motor neurons that contained 

somal vacuoles  (Figure 3.6).   

 

Oculomotor neurons maintain reduced SOD1 signal and resist aggregation 

 

 To begin to compare the spinal motor neuron misfolded SOD1 aggregation phenotype to 

cranial motor neurons, I began by looking at the ALS-resistant oculomotor neurons.  100µm 

sagittal sections from the midbrain and transverse sections from Lumbar segments 4-5 were 

taken from postnatal day 100  (P100) SOD1G93A mice. Sections were immunostained with an 

antibody that specifically recognizes human misfolded SOD1 protein  (C4F6)  (PMID: 17277077, 

20953194) and an antibody against choline acetyltransferase  (ChAT) to identify motor neurons.  

I aimed to quantitatively investigate SOD1 aggregation in spinal motor neurons and compare it 

to the ALS-resistant oculomotor and trochlear motor neurons.  

 Interestingly, I found a third of all spinal motor neurons [34% ± 4.2  (SEM); 195 motor 

neurons from 3 mice] contain aggregates of misfolded hSOD1, however, we were unable to 

detect any aggregation within oculomotor or trochlear motor neurons  (328 motor neurons from 

3 mice)  (Figure 3.7). Additionally, oculomotor and trochlear motor neurons exhibited strikingly 

lower overall levels of misfolded hSOD1 compared to spinal motor neurons, necessitating  
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Figure 3-7 Misfolded human SOD1 aggregates are not present in ALS-resistant oculomotor neurons of 
SOD1G93A mice 

A) Representative images of oculomotor neurons and lumber 4-5 spinal motor neurons from P100 SOD1G93A mice. 
Motor neurons were stained by ChAT antibody in red.  Misfolded human SOD1 aggregates were present in spinal 
motor neurons and stained by misfolded human SOD1 antibody in green. Confocal laser intensity used for imaging 
misfolded human SOD1 was 2% in oculomotor neurons and 0.2% in lumber spinal motor neurons (laser intensity for 
ChAT imaging was same for both motor neuron types).  B) Quantification of percentage of cells containing hSOD1 
aggregates in oculomotor neurons and spinal motor neurons from SOD1G93A mice (n= 3 animals, spinal motor 
neurons counted - 195, cranial motor neurons counted - 328, significance by Welch’s t-test).  C) Spinal motor 
neurons from P100 SOD1G93A mice, immunostained by misfolded human SOD1 antibody and imaged with confocal 
laser strengths reflecting the 0.2% laser intensity used to image spinal motor neurons and the same field at the 2.0% 
laser intensity used to image oculomotor neurons. hSOD1 staining of spinal motor neurons imaged with 2% laser 
strength was highly saturated. 
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imaging under 5-10 times higher confocal laser intensity.  Imaging the spinal motor neurons at 

the same intensity produced an image with fully saturated motor neurons  (Figure 3.7). 

	
Misfolded SOD1 aggregation lines vacuoles of the neuropil in vulnerable cranial motor 

neurons 

  

 I found previously that misfolded SOD1 aggregates emerge in spinal motor neurons 

concomitantly with somal invasion of vacuoles.  As it was also previously described that somal 

vacuoles are scarce in ALS-vulnerable cranial motor neurons, it was unclear whether misfolded 

SOD1 aggregates would be detected.  To address this question, I created 100µm sagittal 

sections from the midbrain of postnatal day 100  (P100) and P120 SOD1G93A mice.  Sections 

were immunostained with an antibody that specifically recognizes human misfolded SOD1 

protein  (C4F6)  (PMID: 17277077, 20953194) and an antibody against choline 

acetyltransferase  (ChAT) to identify motor neurons.  Through a qualitative analysis, motor 

neuron degeneration was readily noticeable in the vulnerable cranial motor nuclei, however, 

somal aggregates of misfolded SOD1 were relatively rare  (Figure 3.8).  Comparable to the 

spinal data, only the neurons that possessed somal vacuoles harbored misfolded SOD1 

aggregates  (Figure 3.8).  However, interestingly there were still misfolded SOD1 aggregates in 

the neuropil.  Furthermore, many of the vacuoles in the neuropil were visualized by the 

misfolded SOD1 staining  (Figure 3.8), where the outer membrane appeared to be lined with 

misfolded SOD1.   
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Figure 3-8: Misfolded human SOD1 aggregation follows the pattern of vacuole formation found in cranial motor 
neurons 

Top: ChAT and misfolded human SOD1 immunostained SOD1G93A ambiguus motor neurons that display aggregation of 
misfolded human SOD1 in the neuropil and an accumulation on the outer membranes of vacuoles.  Middle and Bottom:  
Representative image of misfolded human SOD1 aggregate accumulation in the rare somal vacuoles in trigeminal motor 
neurons from SOD1G93A mice, and their similarity to those seen in abundance in spinal motor neurons. 
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Discussion 

 

 Here, in the SOD1G93A mouse model of ALS, I have analyzed multiple phenotypes in 

cranial motor neurons at multiple ages.  Like spinal motor neurons, I observe significant 

structural plasticity in the axon initial segment of ALS-vulnerable cranial motor neurons.  

Surprisingly, the axon initial segment structural changes indicate a dynamic and 

oppositeelectrophysiological landscape in ALS-vulnerable cranial motor neurons as compared 

to spinal motor neurons.  For the ALS-vulnerable cranial motor nuclei, the axon initial segment 

undergoes a lengthening event in adult ages, where spinal motor neurons display axon initial 

segment shortening.  As with γ-motor neurons in the Lumbar spinal cord, I find structural 

plasticity in the axon initial segment of oculomotor neurons in later stages of the disease.  

Interestingly, prior to the axon initial segment lengthening I observed in the adult, neonatal 

hypoglossal motor neurons display a shortening in this subcellular structure. Furthermore, the 

other reported ALS phenotypes, p62 aggregation, vacuole formation, and SOD1 aggregation all 

present heterogeneously across vulnerable cranial motor neuron populations and differently 

than spinal motor neurons.  Noted similarities between spinal and cranial motor neurons were 

the absence of phenotypic markers early in ALS-resistant motor neurons.   

 

Axon initial segment plasticity  

 Perhaps the greatest surprise when collecting this data was the opposite phenotype 

found in cranial motor neurons as compared to spinal motor neurons.  The lengthening seen 

here would indicate that there is a reduction in net excitation onto cranial motor neurons.  

Though notable circuitry differences between spinal and cranial motor neurons have been 

reported (Rekling et al., 2000) and are expected considering the functional differences of cranial 

musculature, if the excitotoxicity phenotype is considered, then this result is counter to what 

would be anticipated.  These results would suggest that by P25, net excitation is reduced in 
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ALS-vulnerable cranial motor neurons. Interestingly at later stages in the disease resistant 

oculomotor neurons display shortening in the axon initial segment, further supporting the 

conclusion increased motor neuron activity is unlikely the key driver of motor neuron 

degeneration in the mouse model of ALS.  While it is not clear what causes circuit changes 

leading to the shortening of axon initial segment in ALS oculomotor neuron, astrogliosis and 

microgliosis surrounds the oculomotor nucleus at end-stage (An et al., 2014) and could be 

affecting oculomotor circuitry. 

 So, if excitotoxicity plays a role in ALS pathology in spinal motor neurons, it may not 

underlie pathophysiology in cranial motor neurons.  These data do not support the hyperactivity 

or hyperexcitation that would be expected to be driving an excitotoxic effect.  It is possible that 

these two populations undergo different pathogenic events and later converge in similar 

downstream events, or alternatively, the early pathogenic events between the two are similar 

and the downstream events diverge.  It is also possible that abnormalities found in motor neuron 

activity and excitability are simply compensatory events that do not contribute to ALS 

pathophysiology.  If that were true, however, the same would have to be considered for at least 

p62 aggregation and possibly vacuole invasion of the soma.  

 

Phenotypic heterogeneity in ALS-vulnerable motor neurons 

 Like the differences in axon initial segment plasticity, all other phenotypes investigated 

here showed heterogeneous presentation throughout the ALS-vulnerable cranial pools, as well 

as when compared to spinal motor neurons.  p62 aggregation has been reported as an indicator 

of ALS pathogenesis (Rudnick et al., 2017).  However, here I show that p62 aggregation is 

significantly less abundant in some ALS-vulnerable cranial motor neurons, and almost 

completely devoid in others.  Considering that all of these nuclei have been reported to undergo 

similar degeneration as compared to spinal motor neurons, then a large number of cranial motor 

neurons undergo degeneration without containing p62 aggregates.     
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 The same holds true for somal vacuoles, where the vast majority of cranial motor 

neurons do not display somal vacuoles.  Since they do, however, have an abundance of 

vacuoles in their neuropil, as do the spinal motor neurons, it is possible that the vacuoles in 

projections of motor neurons confer toxic effects if they do at all.  The true nature, mechanism, 

and roles in ALS that vacuoles play are still highly contested. Perhaps the heterogeneous 

localization of vacuoles in cranial and spinal motor neurons will provide some insight into 

physiological differences between these to populations of neurons.   

 SOD1 aggregation follows a similar profile to the vacuoles, where somal aggregates are 

rare in cranial motor neurons.  SOD1 aggregates, as shown in spinal motor neurons, co-emerge 

with vacuoles and also occupy on their outer membrane.  Considering that the small, trimeric 

aggregates are seemingly the toxic entities in ALS motor neurons (Zhu et al., 2018), perhaps 

more important to disease pathology is the increased SOD1 signal in spinal motor neurons as 

compared to oculomotor neurons.  In future studies, this will be an important phenotype to 

investigate, as a resistance to building up misfolded SOD1 might spare oculomotor neurons 

from degeneration.    

 

Methods 

 

Animals 

 Staining in the lumbar spinal cord was performed on tissue from first generation crosses 

of C57BL/6J females and SOD1G93A transgenic male mice [C57BL/6J, 000664; B6.Cg-Tg 

(SOD1*G93A)1Gur/J, 004435, Jackson Laboratory]. All experiments utilizing laboratory animals 

were performed in accordance with NIH guidelines for the care and use of laboratory animals, 

and with approval of the Institutional Animal Care and Use Committees of Columbia University. 
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Animal Tissue Collection, Immunofluorescence Staining and Imaging 

 SOD1G93A mutant mice and their non-transgenic littermates  (first generation cross only) 

at postnatal days 66 and 100 ± 3 were deeply anesthetized using Avertin  (tribromoethanol, 

Sigma) and fixed by transcardial perfusion with 4% paraformaldehyde  (from 32% stock, 15714, 

Electron Microscopy Sciences) in phosphate-buffered saline  (PBS) pH 7.4  (70011, 

ThermoFisher). The CNS was removed and fixed overnight in the same solution noted above. 

Whole brain and lumbar segments 4 and 5 were dissected, embedded in 4%  (w/v) agar and 

sectioned on a vibratomb  (Leica VT1000 S).  100 µm transverse spinal cord sections and 

sagittal whole brain sections were cut. Sections were blocked overnight in PBS with 10% 

donkey serum  (D9553, Sigma) and 0.4% Triton X-100  (T8787, Sigma). Sections then were 

incubated at room temperature for two days in the above blocking buffer with primary antibodies 

[goat polyclonal anti-ChAT  (1:100; AB144P, Millipore); mouse monoclonal anti-NeuN, clone 

A60  (1:100; MAB377, Millipore); mouse monoclonal anti-SQSTM1 / p62  (1:500; ab56416, 

Abcam); mouse monoclonal anti-misfolded human SOD1  (1:250; MM-0072-02, MédiMabs); 

rabbit polyclonal anti-ankyrin G  (Stock 0.2 µg/mL, 1:100; 386 003, Synaptic Systems)]. After the 

primary incubation, six washes  (>30 minutes each) in PBS with 0.4% Triton were followed by a 

one-day incubation at room temperature in the above wash buffer with donkey anti-mouse and 

anti-goat secondary antibodies  (1.5 µg/mL; Jackson ImmunoResearch). After six more washes  

(as stated above), sections were mounted on microscope slides in Fluoromount G  (OB100, 

ThermoFisher) using 100 µm spacers and allowed to set for >12hrs.  Staining was visualized by 

confocal microscopy  (Zeiss LSM 800). 

 

Axon initial segment analysis  

 For in vivo axon initial segment analysis, sections were imaged using a laser-scanning 

confocal microscope  (LSM 800, Zeiss) and a 40x oil-immersion objective.  The settings were 

adjusted to prevent signal saturation and the images were taken in z-stacks with 1 µm steps.  
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The start and end of the in vivo initial segment is extremely distinct as seen in the reported 

images.  Therefore, the start and end were manually chosen and Simple Neurite Tracer 

(Longair et al., 2011) software through the Fiji platform was used to automatically generate 

lengths of the axon initial segment. 

 

Chapter 4: Aberrant synaptic input drives axon initial segment plasticity in an in vitro 

model of ALS  

 

Summary 

 

 In vitro motor neuron studies in ALS have also reported the effects of excitotoxic 

mechanisms in these models (Wainger et al., 2014).   These reductionist models are great tools 

for parsing out cell-autonomous pathology in diseases.  However, it is unclear whether the 

circuitry level changes that are supported by the data I have presented in the previous chapters 

would manifest in such a model.  Nevertheless, in vitro analyses may mitigate difficulties 

surrounding the investigation into excitotoxicity in spinal motor neurons that arise when trying to 

distinguish between cell-autonomous and non-autonomous effects.  Moreover, 

electrophysiological analysis in adult spinal motor neurons is not yet possible.  Here, I use a 

reductionist model of ALS to try and address whether circuit dysfunction may present in vitro, 

and whether this arises from cell-autonomous mechanisms.  I find that ALS-model motor 

neurons in vitro undergo significant axon initial plasticity, and correspondingly, become 

intrinsically hypoexcitable.  These changes are a compensatory response to increased synaptic 

drive and marked increases in action potential firing.  Furthermore, the increased synaptic drive 

may originate with a subtype of spinal interneuron, but mediated by a cell-autonomous 
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mechanism in the motor neurons themselves that increase synaptic recruitment.  These findings 

suggest that ALS-model spinal motor neurons may receive increased excitatory synaptic input 

early in development and may intrinsically compensate for the increased activity. 

 

Introduction 

 

 From Chapter 2, it appears that aberrant spinal circuitry may affect spinal motor neurons 

in ALS and precedes other phenotypic markers of stress.  Though it is still unclear whether the 

compensatory response seen in spinal motor neurons contributes to ALS pathophysiology, the 

potential increase in excitatory synaptic drive supports the excitotoxicity hypothesis.  In Chapter 

1, I discussed in depth the problems involved in electrophysiological recordings from adult 

spinal motor neurons in ALS.  These issues also pertain to being able to test the possibility of 

increased net excitation in motor neurons.  Therefore, I aimed to find a reductionist model of 

ALS and utilized an in vitro culture system to test whether phenotypes would present that 

paralleled my in vivo findings in spinal motor neurons. 

 In vitro cultures can provide a powerful system with which to model disease and 

examine excitability and synaptic phenotypes. The differentiation technique used in our lab 

(Wichterle and Peljto, 2008) produces not only motor neurons, but also inhibitory and excitatory 

interneurons. Glutamatergic V3 and V2a interneurons identified by the transcription factors Sim1 

and Chx10 respectively, are found in different efficiencies depending on the concentration of 

spinal cord ventralizing signal, smoothened agonist, during motor stem cell differentiation  

(Wichterle et al., 2002; Alaynick et al., 2011; Sternfeld et al., 2017). This culturing method 

provides the multiple neuronal constituents found in in vivo spinal motor networks to form robust 

in vitro synaptic networks that may mimic preferential synaptic connections found in vivo 

(Sternfeld et al., 2017; Hoang et al., 2018).  Another advantage to this system, especially for 
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electrophysiological recording, is the identification of neuronal subtypes by fluorescent 

reporters: motor neurons by endogenous expression of fluorescent proteins driven off of the 

promoter for the motor neuron-specific homeobox protein Hb9 (Wichterle et al., 2002), and V2a 

and V3 interneurons by expression of fluorescent reporters controlled by Chx10-Cre and Sim1-

Cre (Sternfeld et al., 2017).  

 Carrying out this analysis in the mouse embryonic stem cell-derived model rather than 

using motor neurons generated from human induced pluripotent stem cells, is advantageous in 

that the more aggressive onset and progression in the SOD1G93A mouse model of ALS is more 

likely to reveal disease relevant phenotypes.  Furthermore, the mouse embryonic stem cell-

derived motor neurons mature more quickly in culture (Miles et al., 2004; Boulting et al., 2011; 

Turner et al., 2013).  To that point, we do not see synaptic innervation of human induced 

pluripotent stem cell-derived motor neurons until 2-3 months of culture, while mouse stem cell-

derived motor neurons become synaptically active by day 10 in culture. Therefore, using mouse 

embryonic stem cell-derived motor neurons allows for a rapid analysis and removes the 

technical difficulties of long-term culture. Moreover, while for analyzing a novel phenotype, the 

mouse models are better established, thus allowing for comparison and interpretations using 

published literature.  

 Here, I utilized previously established embryonic stem cell lines derived from the same 

high-expressing human SOD1G93A mouse line used for my in vivo analysis, as well as high-

expressing human SOD1WT mice as a control (Thams et al., 2018). I first further investigated the 

effects of axon initial segment manipulation in motor neurons.  I then asked if plasticity in this 

subcellular region would be present in the SOD1G93A embryonic stem cell-derived motor 

neurons.  In turn, were circuitry abnormalities responsible for any observed differences.  Finally, 

I attempted to uncover any cell-autonomous mechanisms that might be altered in this in vitro 

motor neuron preparation.  
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Figure 4-1: Disruption of the axon initial segment alters action potential firing in motor neurons 

Immunostaining and whole-cell patch clamp recordings showing the maximum number of fired action potentials after 
current injection for representative motor neurons 
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Results 

 

Reduction of the axon initial segment integrity in vitro disrupts normal action potential 

properties 

 

 From Chapter 2, motor neurons possess the ability to structurally change their axon 

initial segment in response to a reduction in action potential firing  (Figure 2.1).  This plasticity is 

coupled to what is likely a myriad of homeostatic physiological changes that affect firing 

properties of these neurons.  However, it is unclear what direct effects the axon initial segment 

itself may have on intrinsic firing properties.  To address this, I utilized an embryonic stem cell  

(ESC) line created in Wichterle lab that forced expression of an embryonic isoform of AnkG  

(denoted AnkGins) that results in the impairment of axon initial segment establishment (Jacko et 

al., 2018).  Motor neurons derived from the AnkGins ESC line heterogeneously developed fully 

formed axon initial segments, partially formed axon initial segments, or no axon initial segments  

(Figure 4.1).    

 To determine whether defects in the axon initial segment alone disrupt firing properties 

of maturing neurons, I performed whole-cell patch-clamp recordings of AnkGins motor neurons 

followed by post hoc immunostaining analysis of AnkG, to visualize the axon initial segment, 

and Hb9, to identify motor neurons.  Overall, AnkGins neurons fired fewer action potentials, the 

action potential overshoot was reduced, and the duration was increased as a result of reduction 

in both the action potential rise and fall rates  (Figures 4.1 and 4.2), indicative of a reduction in 

voltage-gated sodium channel densities.  Interestingly, the input resistance and rheobase were 

unchanged in these conditions.  The level of the axon initial segment perturbation, as measured 

by axon initial segment length, correlated well with the degree of the firing reduction  
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Figure 4-2: Action potential firing properties effected by axon initial segment disruption 

A) Full panel of current step output related to the representative motor neurons shown in figure 4.1.  B) 
Correlation of action potential firing and AIS length in WT and AnkGins motor neurons. Post hoc 
quantification of AIS was performed in motor neurons based on AnkG staining after whole-cell patch-clamp 
recording. The gray and the blue data points represent individual WT and AnkGins motor neurons, 
respectively with the dotted lines indicating the average values.  C) Quantification of significantly changed 
electrophysiological characteristics from whole-cell patch-clamp measurements of WT and AnkGins motor 
neurons on day 5. Significance by student t-test. Error bars represent S.E.M.  D) Summary of quantitative 
analysis of electrophysiological recordings for WT and AnkGins neurons on day 5.  E) Illustration showing 
representative analysis of action potential kinetics. 
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(r=0.69, p<3.8×10-5, Pearson correlation test; Figure 4.2).  These data demonstrate that full 

formation of the axon initial segment is required for the establishment of mature neuronal firing 

properties. 

 

Axon initial segment length correlates with action potential firing frequency in in vitro 

motor neurons 

 

 To begin to examine axon initial segment plasticity in SOD1G93A ESC-derived motor 

neurons, I cultured them for 6 days on polyornithine, laminin, and fibronectin coated coverslips.  

I first asked whether the plasticity in axon initial segment observed in Chapter 2  (Figure 2.1) 

correlates with changes in motor neuron spontaneous activity.  I quantified activity in individual 

motor neurons after loading them with the calcium indicator Fluo-4 and imaging the 

fluorescence intensity at a frequency of 5 Hz.  It was determined that the calcium transients 

observed resulted from action potential firing as they were completely abolished by the 

presence of tetrodotoxin  (TTX)  (data not shown).  Following calcium imaging, the motor 

neurons were post-fixed and immunostained to visualize the axon initial segment.  Calcium 

transient frequency was quantified and the length of the axon initial segment was measured in 

each observed motor neuron.  The axon initial segmetn length was plotted versus the frequency 

of spontaneous activity  (Figure 4.3). Using a Pearson correlation analysis, we found a 

significant correlation between the length of the axon initial segment and the frequency of 

activity where the shorter axon initial segments were found in the motor neurons with the higher 

frequency of calcium transients. This observation supports the function of axon initial segment 

plasticity as a compensatory mechanism in motor neurons and is secondary to increased 

spontaneous activity.  
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Figure 4-3: Axon initial segment length correlates with frequency of activity 

Top: Representative image of a field used for calcium imaging where motor neurons are visualized by endogenous 
expression of RFP.  Blown up is a region from this field after post-fixation and immunostaining for AnkyrinG.  Bottom: 
Calcium transient frequency plotted as a function of axon initial segment length.  Each dot represents the transient 
frequency and axon initial segment length from a single neuron. Significance determined by Pearson correlation. 
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An in vitro model of ALS shows marked structural plasticity in the axon initial segment 

and reduction of intrinsic excitability 

 

 Though the ability to utilize an in vitro model of ALS would be incredibly advantageous in 

uncovering the mechanisms that underlie axon initial segment shortening seen in vivo in the 

SOD1G93A mouse model, it was unclear and even unexpected that ALS-model motor neurons in 

such a reduced environment would produce similar phenotypes to their in vivo counterparts.  To 

evaluate the potential of in vitro ALS-model motor neurons to undergo axon initial segment 

structural changes, I used cultured motor neurons generated from transgenic murine ESCs.  As 

considered in Chapter 2, stem cell differentiation yields a complex mixture of ventral spinal 

neurons, primarily composed of motor neurons, V3, V2a and V2b interneurons  (Wichterle et al., 

2002; Alaynick et al., 2011; Sternfeld et al., 2017).  Motor neurons are identified in this milieu of 

spinal neurons by their expression of green or red fluorescent protein  (GFP or RFP) driven off 

the motor neuron-specific promoter for the homeodomain protein Hb9  (Figure 4.4). These ESC 

lines, created in the Wichterle lab (Thams et al., 2018) expressed either the human SOD1G93A 

transgene or a human SOD1WT transgene, and were differentiated, dissociated and cultured 

using identical and simultaneous plating conditions (Wichterle and Peljto, 2008).  

 I looked for structural differences in the axon initial segment between SOD1WT and 

SOD1G93A motor neurons after one week in culture.  After a week in culture, motor neurons 

elaborate complex processes, establish axon initial segments, and exhibit robust synaptic 

activity  (Figure 2.1).  To visualize the axon initial segment, I targeted the structural protein 

AnkyrinG  (AnkG), master organizer of and densely clustered at the axon initial segment  (Zhou 

et al., 1998; Yang et al., 2007; Song et al., 2009; Brachet et al., 2010; Kuba et al., 2014).  

Remarkably, the axon initial segment was found to be significantly shorter in the SOD1G93A 

motor neurons relative to SOD1WT motor neurons  (Figure 4.4).  This modification suggests that  
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Figure 4-4: In vitro SOD1G93A stem cell-derived motor neurons exhibit intrinsic hypoexcitability and 
reduced axon initial segment length  

A and B) Representative images of an ESC-derived motor neuron plated 6-8 days after dissociation.  
Endogenously expressed GFP or RFP is used to identify motor neurons and the axon initial segment is 
visualized by immunostaining for AnkyrinG.  C) Representative quantification from one differentiation.  Similar 
results were seen between SOD1WT and SOD1G93A across multiple differentiations and using two different 
pairs of ESC lines, though the average length from differentiation to differentiation varied.  D and E) 
Quantification of electrophysiological recordings from SOD1WT and SOD1G93A ESC-derived motor neurons 
from two different differentiations.  F) Full table of current clamp recording data.   
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lower intrinsic excitability exists in the SOD1G93A motor neurons, due to a reduced number of 

voltage-gated sodium channels in the shorter axon initial segment  (Kuba et al., 2010).   

 To investigate this likelihood further, I used whole-cell electrophysiology and analyzed 

current-clamp recordings.  In agreement with the axon initial segment data, I found lower 

intrinsic excitability in the SOD1G93A motor neurons relative to SOD1WT motor neurons, based on 

rheobase and input resistance  (Figure 4.4). No significant changes were found in any of the 

other parameters tested including other passive properties, action potential characteristics and 

firing rates.  Rheobase, which measures the propensity of a neuron to fire an action potential in 

response to a fixed-amplitude current injection, is higher in the SOD1G93A motor neurons, a 

hallmark of reduced intrinsic excitability (Zengel et al., 1985). Furthermore, though somal size 

differences will influence input resistance (Fleshman et al., 1981; van Zundert et al., 2012), this 

is not the case here as studies in the lab have found no significant change in somal size 

between SOD1WT and SOD1G93A motor neurons. Additionally, there is no difference in 

capacitance, a measure that would also indicate a change in somal size and influence input 

resistance (Fleshman et al., 1981).  

  

An in vitro model of ALS reveals an early increase in spontaneous action potential firing 

 

 I next asked whether the shortening of the axon initial segment is due to homeostatic 

mechanisms attempting to compensate for increased activity by reducing excitability in the 

SOD1G93A motor neurons, or driving a reduction in activity through aberrant maturation of 

intrinsic physiology.  To address this question, I loaded ESC-derived motor neurons, both 5 and 

10 days after dissociation, with the calcium indicator Fluo-4 and again imaged the fluorescence 

intensity at a frequency of 5 Hz.  Intriguingly, I found ESC-derived SOD1G93A motor neurons 

have a significant increase in spontaneous calcium transients as compared to their SOD1WT  
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Figure 4-5: In vitro SOD1G93A stem cell-derived motor neurons display increased calcium 
transient frequency as compared to SOD1WT 

A) Representative quantification of calcium transient frequency SOD1WT and SOD1G93A ESC-
derived motor neurons from two different differentiations, 5 days after plating.  Significance by 
students t-test.  B) The same analysis as preformed in panel A, but on motor neurons 10 days 
after plating.  Significance by students t-test. 
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counterparts  (Figure 4.5). Additionally, as the ESC-derived motor neurons matured, both the 

SOD1G93A and SOD1WT increased in the frequency of spontaneous activity, however, the 

SOD1G93A still possessed increased activity as compared to SOD1WT.   

 

Spontaneous action potential output increases with maturation in in vitro SOD1G93A 

motor neurons 

 

 It is possible that the increased spontaneous activity seen in SOD1G93A ESC-derived 

motor neurons is an early, transient event, so I aimed to allow additional maturation time for the 

in vitro motor neuron cultures.  Inopportunely though, murine ESC-derived motor neurons are 

difficult to culture on their own for longer than 10 days after dissociation.  Though endogenous 

glial cells form during the differentiation process, they do not consistently become robust 

enough to be supportive of the culture.  Therefore, it the use of a mouse primary cortical 

astrocyte co-culture to maintain the ESC-derived motor neurons is required.  Primary astrocyte 

co-culture are known to be supportive of neuronal culture, synaptogenic and pro-maturation in 

general (Johnson et al., 2007; Tang et al., 2013; Muratore et al., 2014).   

 I attempted to use calcium imaging to evaluate activity of ESC-derived motor neurons on 

the primary astrocyte co-cultures, however, slow intrinsic calcium transients that occur in the 

astrocyte completely obscured the signal from the ESC-derived motor neurons.  To circumvent 

this issue, I employed a loose-patch electrophysiological recording technique.  Unlike the cell-

attached configuration, a low electrical resistance seal  (approx. 50 MΩ) is formed on each cell 

with a wide, 2-3 MΩ patch pipette  (Figure 4.6).  Although the throughput of this technique is not 

as high as with calcium imaging, it is much higher than conventional patch techniques as the 

same pipette can be used to record from multiple cells and the membrane remains intact.  

Moreover, it carries the distinct advantage of being able to resolve single action potentials.   
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Figure 4-6: Loose patch electrophysiological recordings produce single action potential resolution and can 
mitigate issues that arise with calcium imaging 

A) Rendition of a loose patch configuration, where a low resistance seal is formed allowing current leakage around 
the seal, yet still retaining enough current amplitude to record current flux.  Though action potential amplitude has 
little meaning in this configuration, firing frequencies can be analyzed without disrupting the membrane or cytosolic 
ion concentrations.  This technique also carries the advantage of not having to replace the pipette after each 
recording.  Figure adapted from (Malmivuo and Plonsey, 1995).  B) Representative DIC image and endogenous 
motor neuron reporter showing ESC-derived motor neurons, 16-18 days after plating, in a field to be analyzed by 
loose patch recording where the motor neuron can clearly be identified. C) Representative 5-minute loose patch 
recording where action potential waveforms in the voltage clamp configuration are similar to those of traditional 
extracellular recordings. 
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 Using the loose patch technique in the voltage-clamp configuration, I recorded from 

SOD1G93A and SOD1WT ESC-derived motor neurons, 16-18 days after dissociation.  I attempted 

to use this technique to record from younger ESC-derived motor neuron cultures, however, far 

fewer motor neurons were active at these ages rendering the technique ill-suited for gathering 

enough data at these time points.  Of note, in addition to a greater fraction of ESC-derived 

motor neurons displaying spontaneous action potential firing, they also established a burst firing 

profile at the 16-18 day old time point  (Figure 4.7A), arguing that these neurons were 

continuing to mature at that age.  In agreement with the calcium imaging experiments, the 

loose-patch analysis revealed a significant increase in the number of spontaneous action 

potentials that were fired in the SOD1G93A ESC-derived motor neurons as compared to SOD1WT  

(Figure 4.7B).  This technique also allowed for the quantification of intra-burst frequency in 

these motor neurons, measured as the number of action potentials within a burst over the total 

duration of the burst. Remarkably, in addition to the increased activity, the intra-burst frequency 

was two-fold higher in the SOD1G93A ESC-derived motor neurons  (Figure 4.7C).   

 

Increased spontaneous activity in in vitro SOD1G93A motor neurons is mediated by a cell-

autonomous mechanism 

 

 To begin to address the mechanism behind the increased activity, I asked if it was due to 

increased firing in the presynaptic ALS interneurons or due to increased excitability cell intrinsic 

to ALS motor neurons. In an attempt to answer this question, I mixed non-transgenic ESC-

derived motor neurons cultures with the SOD1WT and SOD1G93A cultures at a 10:1 ratio. This 

effectively dilutes any influence of the SOD1G93A presynaptic neurons.  Calcium imaging was 

then used to quantify the spontaneous activity of the SOD1WT and the SOD1G93A ESC-derived 

motor neurons.  The cultures were then post fixed and stained for Hb9 to identify the non-  
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Figure 4-7:  In vitro SOD1G93A stem cell-derived motor neurons have persistently higher activity and develop 
higher burst frequencies 

A) Two representative loose patch recordings with increasingly smaller time scales that show bursting properties of 
ESC-derived motor neurons, 16-18 days after plating.  B) Action potential frequency was quantified from SOD1WT and 
SOD1G93A ESC-derived motor neurons from two different differentiations.  C) From the same recordings quantified in 
panel B, intraburst frequencies were quantified.  Bursts were identified by pClamp analysis software with a threshold 
for minimum number of action potentials set at >2.  In the plots in B and C, each dot represents data from an 
individual motor neuron and the red line marks the mean with SEM.  Significance determined by student’s t-test. 
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transgenic ESC-derived motor neurons so their spontaneous activity could be analyzed as well. 

Interestingly, this allowed me to measure the frequency of spontaneous activity in non-

transgenic and either the SOD1WT or SOD1G93A motor neurons within the same culture dish.  

This way, if the transgenic interneurons happened to still be influencing the synaptic network, it 

would be expected that the non-transgenic motor neurons would also be affected.  Excitingly, 

the SOD1G93A motor neurons retained a significantly greater frequency of spontaneous activity, 

not only relative to the SOD1WT motor neurons in the other culture dishes, but also compared to 

the non-transgenic motor neurons they were co-cultured with  (Figure 4.8). These data suggest 

the process underlying the increased spontaneous activity is indeed cell-autonomous. 

Considering the observation of decreased excitability and shorter axon initial segment in 

cultured ALS motor neurons, these results indicate that ALS motor neurons cell-autonomously 

elicit increased excitatory innervation that results in increased motor neuron activity and 

secondary compensatory decrease in motor neuron excitability.  

 

Calcium permeability of AMPA receptors is reduced in in vitro SOD1G93A motor neurons 

  

 If motor neurons are attempting to compensate for increases in activity, multiple 

homeostatic mechanisms may be coming into play.  In in vivo sections of spinal cords from 

neonatal ALS-model mice, a reduction of dendritic calcium was observed, likely due to L/T-type 

calcium transients (Quinlan et al., 2015).  These findings provide possible further evidence of 

compensation for over-activation within spinal motor neurons.  However, analysis of postmortem 

human spinal tissue showed an RNA editing defect that would lead to increases in calcium-

permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid  (AMPA) receptors 

(Kawahara et al., 2004).  This would effectively increase the calcium flux into dendrites.  
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Figure 4-8: Increased activity in in vitro SOD1G93A stem cell-derived motor neurons is mediated by a cell-
autonomous mechanism 

A) Representative calcium imaging field overlaying a DIC image, endogenous motor neuron-specific fluorescent reporter, 
and immunostaining of Hb9.  B) SOD1WT or SOD1G93A ESC-derived motor neurons were diluted into non-transgenic ESC-
derived motor neurons at a 1:10 ratio and separated into wells (eg Well 1- SOD1WT+Nt 1:10; Well 2- SOD1G93A+Nt 1:10).  
For each calcium imaging field, non-transgenic motor neurons were identified as positive for Hb9 immunostaining but 
negative for the endogenous reporter.  Either SOD1WT or SOD1G93A ESC-derived motor neurons were identified by 
fluorescent reporters.  Regions of interest were drawn around the soma for each neuron identified and calcium transients 
were quantified as described previously.  C) Quantification of calcium transients for each of the example wells, where 
SOD1WT+Nt motor neurons in well 1 do not differ in their calcium transient activity.  In well 2, SOD1G93A motor neurons 
display significantly higher calcium transient frequency relative to the Nt motor neurons that they are co-plated with, and 
relative to the SOD1WT motor neurons in the opposing well.  Each dot represents data from an individual motor neuron and 
the red line marks the mean.  Significance determined by one-way ANOVA and Bonferroni post hoc analysis. 
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 To investigate these possibilities in SOD1G93A ESC-derived motor neurons, I first looked 

for RNA editing defects at the Q/R site of the AMPA subunit GluR2.  GluR2 is the subunit of 

AMPA receptors that typically blocks calcium permeability, however, if RNA editing does not 

convert the encoded Glutamine residue to an Arginine, GluR2 no longer retains the ability to 

block calcium entry due to the loss of the positively charged residue (Whitney et al., 2008).  

Using an established protocol (Kawahara et al., 2003), I performed a BbvI restriction digest of 

the polymerase chain reaction  (PCR) products from the region of GluR2 that contain the Q/R 

editing site. No such defect in GluR2 editing was observed using this method, indicating all 

GluR2 in the SOD1G93A ESC-derived motor neurons was properly edited.  Nevertheless, it is still 

possible that the GluR2 subunit was not incorporated into the AMPA receptors, still rendering 

them permeable to calcium. 

 I addressed this using an established electrophysiological protocol, as well as one of my 

own design.  When analyzing the current-voltage relationship of AMPA channels, calcium-

permeability results in strong inward rectification, due to the presence of the polyamine 

spermine in the internal recording solution (Isa et al., 1995; Morita et al., 2013).  Therefore, I 

used whole-cell patch in the voltage clamp configuration to analyze the current-voltage 

relationship of AMPA channels in SOD1G93A ESC-derived motor neurons as compared to 

SOD1WT.  In the presence of the voltage-gated sodium channel blocker TTX, I used a custom-

made fast perfusion system to bath only the cell that was patched with the AMPA receptor 

agonist Kainate.  Kainate is used as an agonist over glutamate or AMPA in this case as it 

maintains a steady current through AMPA receptors and does not induce channel 

desensitization (Seeburg, 1993).  Kainate was applied while holding the membrane between -60 

mV and +60 mV at 10 mV increments  (Figure 4.9A, B).  The current  (I) was recorded at each 

voltage step and plotted as a function of that voltage, and the rectification index was calculated  

(!"#$%&%#'$%!" !"#$% = ! (!" !")
! (!!" !")) for the recordings from both SOD1WT and SOD1G93A ESC-  
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Figure 4-9:  Fewer calcium-permeable AMPA channels may be present in in vitro SOD1G93A stem cell-
derived motor neurons 

A) Using whole cell patch in the voltage clamp configuration, kainate-induced currents were recorded at 
depolarizing voltage steps followed by a non-perfused normalization step.  Representative trace of whole cell 
recordings.  B) Non-perfused normalization voltage step currents were subtracted from kainate-induced 
currents.  The normalized currents were measured for each voltage step.  C and D) Currents were plotted as a 
function of voltage for each voltage step and the rectification index calculated.  E) Plotted rectification index for 
SOD1WT or SOD1G93A ESC-derived motor neurons.  A total of 9 recordings were made over two differentiations.  
Statistics were not preformed due to the low number of recordings in this preliminary data.   
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derived motor neurons.  Interestingly, I find the SOD1G93A ESC-derived motor neurons have a 

lower rectification index, indicating a reduction in calcium-permeable AMPA channel  (Figure 

4.9C-E).   

 To investigate this further, I designed a more rapid analysis of the presence of calcium-

permeable AMPA channels.  While holding the in vitro motor neurons at -60 mV and applying 

Kainate as before, I also used the fast-perfusion system to deploy 1-naphthyl acetyl spermine  

(NASPM), another polyamine that selectively blocks calcium-permeable AMPA channels (Koike 

et al., 1997)  (Figure 4.10A).  As a control, I used the same small molecule application while 

holding the motor neurons at +60 mV, to ensure there were no off-target effects of the NASPM.  

I then quantified the lost current during the application of NASPM as a percentage of the total 

Kainate induced current.  In agreement with the previous method, I find the SOD1G93A ESC-

derived motor neurons have a significant reduction in current through calcium-permeable AMPA 

channels as compared to SOD1WT, indicating loss of membrane-incorporated calcium-

permeable AMPA channels  (Figure 4.10B, C).    

 

Increased spontaneous action potential firing is driven by increased excitatory synaptic 

input 

 

 Data presented thus far in this chapter suggests that multiple homeostatic mechanisms 

are attempting to compensate for the increase of activity in the SOD1G93A ESC-derived motor 

neurons.  It also indicates that the increased firing is mediated by a cell-autonomous 

mechanism.  Given that electrophysiological analyses have indicated that the SOD1G93A ESC-

derived motor neurons are intrinsically hypoexcitable, or less apt to fire an action potential, I 

hypothesized that these ALS-model motor neurons have increased net excitatory synaptic input.   
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 Figure 4-10:  Further evidence of calcium-permeable AMPA channel reductions in in vitro 
SOD1G93A stem cell-derived motor neurons 

A) Rendition of the activity of NASPM, a polyamine that selectively blocks calcium permeable AMPA 
channels by plugging the pore.  B) Representative trace of a whole cell patch recording in the voltage 
clamp configuration.  Kainate was applied while holding the neuron at ± 60 mV, and a subsequent 
application of NASPM was deployed using a fast-perfusion system and allowed to partially wash.  C) 
Quantification of the reduction of current blocked by NASPM as a percentage of the total kainate-
evoked current.   
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 I tested this possibility by analyzing miniature excitatory post-synaptic currents  

(mEPSCs) to observe synaptic activity in the SOD1WT and SOD1G93A ESC-derived motor 

neurons.  Using whole-cell patch in the voltage clamp configuration, I recorded mEPSCs in the 

presence of TTX  (Figure 4.11A, B).  The mEPSCs were completely abolished by the glutamate 

receptor antagonist CNQX (Honoré et al., 1988)  (Figure 4.11C), mimicking the EPSP and 

action potential block in Chapter 2  (Figure 4.11D).  I used minianalysis software  (Synaptosoft, 

Leonia, New Jersey) (Gu et al., 1998; Beaumont and Zucker, 2000) to analyze waveforms of the 

post-synaptic currents and to quantify the inter-event interval, or frequency of mEPSC events.  

In support of the hypothesis, I find increased mEPSC events in SOD1G93A ESC-derived motor 

neurons as compared to SOD1WT, suggesting an increase in glutamatergic synaptic input onto 

these neurons  (Figure 4.11E).  Of note, while recording, I observed no evidence of inhibitory 

inputs onto motor neurons.  Voltage steps between -80 and 40 mV were recorded for each 

neuron to verify the absence of these inputs (data not shown).   

 

VGluT2-possitive synapses are increased onto in vitro SOD1G93A motor neurons 

 

 Through electrophysiological analyses presented in this thesis, as well as 

immunohistochemical analyses I have performed on these ESC-derived motor neurons, I see 

only excitatory inputs present.  Specifically, I find only glutamatergic inputs marked by VGluT2 

staining at the ages I have investigated.  Therefore, I restricted my exploration here to focus on 

these inputs. 

 To further examine the possibility of an increase in glutamatergic input, I quantified the 

number of VGluT2 positive puncta onto SOD1WT and SOD1G93A ESC-derived motor neurons.  I 

defined a circular region of interest of identical size, centered on each motor neuron soma.  The 

puncta within the region were then counted.  In agreement with the electrophysiological data,   
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Figure 4-11:  Increased numbers of excitatory synapses are found on in vitro SOD1G93A stem 
cell-derived motor neurons 

A and B) Representative recordings of miniature EPSC using whole cell patch in the voltage clamp 
configuration.  Each trace is a recording from a single motor neuron.  C) CNQX blocks miniature 
EPSCs, which return after a wash period.  D) From figure 2.1, a similar CNQX block is seen in a 
recording of EPSPs.  E) Quantification by the minianalysis software.  Each dot reflects miniature 
EPSC frequency in a single motor neuron, red line represents the mean. 
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the number of VGluT2 synaptic puncta were two-fold greater on the SOD1G93A ESC-derived 

motor neurons as compared to SOD1WT  (Figure 4.12). 

V3 interneurons may be selectively enriched onto in vitro SOD1G93A motor neurons 

 

 Previous data presented in this chapter has suggested that cell-autonomous 

mechanisms in in vitro ALS-model motor neurons induce an increase in excitatory synapses 

onto motor neurons.  It is possible that this could either be due to recruitment of greater 

numbers of neurons to make connections, or possibly an increase in sprouting of synapses for 

each monosynaptic connection.  It is also unclear whether this affects all glutamatergic neurons 

or if there is specificity for a particular subtype of spinal interneuron.   

 To address the later part of those questions, I utilized new ESC lines that were 

transgenic for interneuronal reporters.  Both a Chx10::tdTomato and a Sim1::tdTomato ESC line 

were used to identify V2a and V3 interneurons respectively (Alaynick et al., 2011; Sternfeld et 

al., 2017).  I was able to optimize the concentration of Smoothened agonist to attain 

differentiation efficiencies of 12% for V2a interneurons and 30-40% for V3 interneurons, similar 

to the reported efficiencies and protocols (Sternfeld et al., 2017).  For each well, I then plated 

30,000 total cells from the enriched Chx10 or Sim1 cultures, and 20,000 total cells from the 

Hb9::GFP motor neuron culture  (Figure 4.13).  I matured these neurons for 5-6 days after 

dissociation, fixed with paraformaldehyde and visualized the axon initial segment by targeting 

AnkG.  Remarkably, enrichment in excitatory V2a interneurons induced a reduction in axon 

initial segment length.  Furthermore, the V3 interneurons selectively reduced the axon initial 

segment length of SOD1G93A ESC-derived motor neurons but not the SOD1WT  (Figure 4.13). 
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Figure 4-12:  Increased numbers of VGluT2-possitive puncta are found on in vitro SOD1G93A 
stem cell-derived motor neurons 

Representative image of VGluT2 immunostaining in an ESC-derived motor neuron overlaid with the 
motor neuron-specific endogenous reporter.  For this preliminary data, VGluT2-possitive puncta were 
counted within a defined radius from the center of each soma in a total of 20 motor neurons from a 
single differentiation.  An almost two-fold increase in VGluT2-possitive puncta was found in on 
SOD1G93A ESC-derived motor neurons as compared to SOD1WT.  
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Discussion 

 

 Here, I show that the axon initial segment directly influences action potential kinetics in 

motor neurons and that motor neuron action potential firing frequency correlates with axon initial 

segment length.  Remarkably, SOD1G93A ESC-derived motor neurons are spontaneously 

hyperactive, while intrinsically hypoexcitable relative to the SOD1WT ESC-derived motor neuron 

control.  The SOD1G93A ESC-derived motor neurons undergo multiple levels of compensation, 

including axon initial segment shortening, reduction in AMPA receptor-mediated calcium influx, 

and a shift in passive membrane properties.  Downstream of these compensatory events, these 

motor neurons increase the burst frequency of action potentials, suggesting there may be more 

complex intrinsic responses to changes in excitatory input.  In this in vitro model of ALS, the 

synaptically driven hyperexcitability is mediated by a cell-autonomous mechanism that 

modulates synaptic input.  Furthermore, there may in fact be targeted effects on V3 

interneurons in particular, where their enrichment shows no effect on SOD1WT ESC-derived 

motor neurons, but reduces axon initial segment length in SOD1G93A ESC-derived motor 

neurons.   

 

Excitability vs. Activity 

 Astoundingly, the SOD1G93A ESC-derived motor neurons appear to recapitulate the 

same axon initial segment phenotype that was observed in SOD1G93A spinal motor neurons in 

vivo.  Though difficulties exist in quantifying physiological synaptic activity in vivo, I clearly 

demonstrate that there is a significant increase in excitatory synaptic input on to SOD1G93A ESC-

derived motor neurons in vitro.  The increase in input drives the motor neurons to compensate 

for the hyperactivity by becoming hypoexcitable.  It is interesting that only passive membrane 

properties change with the shortening of the axon initial segment in these neurons.  Unlike the 

action potential kinetic differences seen in Chapter 2  (Figure 2.1).  One might expect that the  
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Figure 4-13:  In vitro SOD1G93A stem cell-derived motor neurons exhibit axon initial 
segment shortening in response to enrichment of V3 interneurons in the surrounding 
culture.  

ESC lines were enriched for V3 interneurons or V2a interneurons.  SOD1WT or SOD1G93A ESC-
derived motor neurons were mixed with either the V3 or V2a enriched cultures at a 2:3 ratio.  
Cultures from three differentiation rounds were maintained for 5-6 days after dissociation and 
immunostained for ankyrinG.  The axon initial segment length was quantified in each condition.  
Significance was determined by one-way ANOVA and Bonferroni post hoc analysis. 
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opposite action potential kinetic alterations would occur in the SOD1G93A ESC-derived motor 

neurons as well.  However, it is notable that the ESC-derived motor neurons analyzed in 

Chapter 2 were much older and cultured on astrocytes.  It is also possible that there is an age-

dependent effect on compensatory changes seen in neurons that respond to altered synaptic 

input, or, that the mutant SOD1 expression influences these mechanisms.  Of note, there is a 

small survival phenotype seen in the motor neurons generated from the SOD1G93A embryonic 

stem cells (Thams et al., 2018), however, this analysis was carried out at a very early age in 

these neurons.  It could be interpreted that the motor neurons that die are the most vulnerable 

population and that those that are left represent more resistant subtypes.  However, it could also 

be that the SOD1G93A mutation confers an overall higher level of stress that confers a random 

increase of neuronal death in this population.  Further analyses should be carried out across 

multiple ages in culture and in multiple plating conditions to differentiate between these 

possibilities and to make sure that enrichment of subtypes are not skewing the data.    

 The data, however, suggest that age-dependent physiological compensation may in fact 

occur.  Though input resistance and rheobase measurements determined that SOD1G93A ESC-

derived motor neurons are intrinsically hypoexcitable, after almost 3-weeks in culture, intra-burst 

frequency is increased.  It could be assumed from the data in Chapter 2 that a hyperactive 

neuron might try and decrease maximum firing rate, and this result seems contradictory to that.  

However, future analyses need to address the synaptic input more carefully.  It could be that 

higher amplitude synaptic input is responsible for the increased intra-burst frequency.  A more 

intriguing possibility is that synaptic input dictates, at least in part, subtype specific physiology in 

motor neurons.  Fast α-motor neurons also show hypoexcitability but fire in high frequency 

bursts (Müller et al., 2014). The subtype specification for fast and slow α-motor neurons 

however, seems to be made after muscle contacts are made (Foehring et al., 1986).  Perhaps, 

rather than a muscle-mediated signal, it is proprioceptive feedback to the local spinal circuitry 

and a subsequent alteration in synaptic drive that forces this final differentiation path.  Of 
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course, a more detailed analysis will need to be performed but ESC-derived motor neurons 

prove to be a valuable model for synaptic network analysis and may help to provide these 

answers. 

 

Cell-autonomous restructuring of the synaptic landscape 

 After observing the shortening in the axon initial segment, it was interesting but predicted 

that an increase in synaptic excitation might exist.  However, a cell-autonomous mechanism in 

motor neurons that underlies this phenotype was not expected.  Not only does this point to a 

potential pathophysiological mechanism that could be targeted in ALS, but it also uncovers 

possible mechanisms of synaptic recruitment relevant to basic motor neuron biology.  

Furthermore, it is an intriguing possibility that the alterations in synaptic input onto the SOD1G93A 

ESC-derived motor neurons may be mediated by V3 interneurons.  This could provide 

understanding of a possible disease-relevant mechanism for ALS research, and may also prove 

an intriguing model for the study of synaptic recruitment and specification.   That said, intensive 

future experimentation would need to show that this subtype specific recruitment actually 

occurs.   

 We have proposed several experiments for future analysis.  First, one caveat in the 

present study is the lack of inhibitory, cholinergic and proprioceptive inputs in my culture 

conditions that may influence the synaptic landscape present on motor neurons.  Given that the 

V2 interneurons exist in such low numbers in the regular motor neuron differentiation conditions 

(Sternfeld et al., 2017), I will enrich for V2b and V1 inhibitory interneurons to mix into the motor 

neuron cultures (Sternfeld et al., 2017; Hoang et al., 2018).  Fluorescence activated cell sorting 

can be used to control the exact proportions of motor neurons and interneurons.  Furthermore, 

astrocyte microislands (Lee et al., 2004; Joseph et al., 2010) can be utilized to isolate motor 

neurons and interneurons to ensure for monosynaptic connections.  It is unclear from the 

present study whether increased synaptic inputs from a greater number of presynaptic 
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glutamatergic interneurons, induced synaptic sprouting for each monosynaptic input, or 

increased synaptic efficacy underlie the observed phenotype.  The proposed experimental setup 

will hopefully answer that question.  

 

Methods 

 

Cell Culture 

 Mouse embryonic stem cells  (ESCs) were cultured in EmbryoMax DMEM  (EMD 

Millipore) supplemented with 15% embryonic stem cell screened fetal bovine serum  (HyClone), 

2mM L-glutamine  (Life Technologies), 1x non-essential amino acids EmbryoMax MEM  (EMD 

Millipore), 1x EmbryoMax nucleosides  (EMD Millipore), 0.1mM β-mercapthoethanol  (Sigma-

Aldrich), 1000U/ml ESGRO Leukemia inhibitory factor  (EMD Millipore), 1.25µM GSK-3 inhibitor 

XVI  (EMD Millipore) and 100nM FGF receptor antagonist PD173074  (Tocris).  All cells were 

determined to be negative for mycoplasma using the Venor GeM Mycoplasma detection kit  

(Sigma-Aldrich). 

 

Motor neuron and interneuron differentiation 

 ESCs were differentiated into spinal neurons in embryoid bodies following established 

protocols (Wichterle et al., 2002; Wichterle and Peljto, 2008; Sternfeld et al., 2017). After 6 days 

of differentiation for motor neurons and 8 days of differentiation for interneurons, embryoid 

bodies were dissociated and neurons were plated on polyornithine/laminin/fibronectin coated 

plates in maturation media [Neurobasal medium  (Life Technologies), 500µM L-glutamine  (Life 

Technologies), 1x B-27 Supplement  (serum free)  (Life Technologies), 1:1000 β-mercapto 

ethanol  (Chemicon ES-007-E), 2% heat-inactivated horse serum, containing neurotrophic 

factors  (10ng/mL BDNF  (R&D Systems), 10ng/mL GDNF  (R&D Systems), 10ng/mL CNTF  
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(R&D Systems), 10ng/mL IGF-1  (R&D Systems), 10µM Forskolin  (Sigma), and 100µM IBMX  

(R&D Systems)]. The media was replaced every 2-3 days starting from two days after plating.  

Motor neuron differentiations were consistently around 40% efficient.  

 

Fixation and immunostaining 

 In vitro motor neurons were fixed with 4% paraformaldehyde  (from 16% stock, 15710, 

Electron Microscopy Sciences) in phosphate-buffered saline  (PBS) pH 7.4  (70011, 

ThermoFisher). Equal volume paraformaldehyde was first added to the media of each well and 

incubated for 2 minutes.  This ~2% paraformaldehyde solution was then aspirated and the 4% 

paraformaldehyde added and incubated at 4°C for 20 minutes.  After the incubation, three 

washes  (>5 minutes each) in PBS were performed.  Cultures were blocked for >30 minutes in 

PBS with 10% donkey serum  (D9553, Sigma) and 0.1% Triton X-100  (T8787, Sigma). In vitro 

motor neurons were then were incubated at 4°C overnight in the above blocking buffer with 

primary antibodies [mouse monoclonal anti-vesicular glutamate transporter 2  (1:100; MAB5504, 

EMD Millipore or rabbit polyclonal anti-ankyrin G  (Stock 0.2 µg/mL, 1:100; 386 003, Synaptic 

Systems)]. After the primary incubation, three washes  (>5 minutes each) in PBS with 0.1% 

Triton were followed by a 1.5hr incubation at room temperature in the above wash buffer with 

donkey anti-mouse or anti-rabbit secondary antibodies  (1.5 µg/mL; Jackson ImmunoResearch). 

After three more washes  (as stated above), coverslips were mounted on microscope slides in 

Fluoromount G  (OB100, ThermoFisher) and allowed to set for >12hrs. 

 

Axon initial segment analysis 

 Motor neurons plated on polyornithine/laminin/fibronectin coated coverslips or primary 

cortical astrocytes were imaged using either a standard fluorescence microscope  (Zeiss), or a 

laser-scanning confocal microscope  (LSM 800, Zeiss) using a 40x oil-immersion objective.  The 

settings were adjusted to prevent signal saturation and the confocal images were taken in z-
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stacks with 1 µm steps. Z-stack images were projected into a single plane using maximum 

intensity projections and intensity across the length of the axon initial segment was quantified 

using the image analysis software Fiji (Schindelin et al., 2012).   Briefly, two methods were 

used: 1) the start and end points were manually chosen and NeuronJ (Meijering et al., 2004) 

software determined the path length or 2) the cutoff intensity for axon initial segment start/end 

was 1/3 of the maximum intensity similar to methods used previously (Grubb and Burrone, 

2010).  AnkyrinG signal in the soma at times was quite high, therefore the axon initial segment 

starting point was manually determined. 

 

Whole cell current clamp 

 Excitability was assessed using conventional whole cell current clamp technique. Briefly, 

astrocytes were prepared as previously described (Albuquerque et al., 2009) and plated on 15-

mm diameter coverslips at a density of 100,000 cells per well in a 24-well plate. 4-6 days 

following astrocyte plating, non-sorted motor neurons added to the wells at a density of 50,000 

total cells per well. Cultures were maintained for 5 days before recording. Membrane potential 

recordings were performed using a Multiclamp 700B amplifier and a Digidata 1550 digital-to-

analog converter. Signals were recorded at a 10-kHz sample rate using pClamp 10 software  

(all equipment from Molecular Devices). Patch pipettes were fabricated with a P-97 pipette 

puller  (Sutter Instruments) using 1.5 mm outer diameter, 1.28 mm inner diameter filamented 

capillary glass  (World Precision Instruments). Pipette resistance was 2-5 MΩ when filled with 

the pipette solution. The external recording solution contained 145 mM NaCl, 5 mM KCl, 10 mM 

HEPES, 10 mM glucose, 2 mM CaCl2 and 2 mM MgCl2. The pH was adjusted to 7.3 using 

NaOH and the osmolality adjusted to 325 mOsm with sucrose. The pipette solution contained 

130 mM CH3KO3S, 10 mM CH3NaO3S, 1 mM CaCl2, 10 mM EGTA, 10 mM HEPES, 5 mM 

MgATP and 0.5 mM Na2GTP  (pH 7.3, 305 mOsm). Experiments were performed at room 

temperature  (21–23 °C). During recordings, current was injected to hold the cells at -60 mV. 
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The liquid junction potential between pipette and external solutions was calculated empirically, 

and the correction applied before the experiment. Resting membrane potential was measured 

immediately following establishment of the whole-cell configuration. Membrane resistance and 

capacitance were calculated from the membrane potential changes in response to 1 s duration 

hyperpolarizing current steps that increased incrementally by 5 pA. Action potentials were 

evoked and rheobase obtained using 1 s duration depolarizing current steps that increased 

incrementally by 5 pA.   

 An action potential was defined as a transient depolarization of the membrane which had 

a minimum rise rate > 10 mV/ms and reached a peak amplitude > 0 mV. Action potential 

characteristics were measured from the first action potential at rheobase. The threshold 

potential was measured at the point where the voltage increases at a rate greater than 10 

ms/mV. The duration was calculated from the full width at the half maximum voltage. For this 

calculation, the amplitude was measured from the threshold potential to the maximum potential. 

The maximum number of action potentials was measured from a 1 s current step. The 

amplitude of the step was dependent on the individual cell. Quantification was carried out using 

custom written scripts for Igor Pro v. 6  (Wavemetrics, USA). Outliers within Rheobase, Input 

Resistance, and Capacitance, that would indicate a poor seal, were identified using the ROUT 

method  (Q = 0.5%) in GraphPad Prism version 7.0a for Mac, GraphPad Software, La Jolla 

California USA  (www.graphpad.com). For each outlier detected, data from the entire neuron 

was removed from the analysis. Statistical comparisons were made using unpaired Student’s t-

test in GraphPad Prism. P-values < 0.05 were considered significant. 

 

Whole cell voltage clamp 

 AMPA channel calcium conductance and the miniEPSC analysis were assessed using 

conventional whole cell voltage clamp techniques. Briefly, 15-mm diameter coverslips were 

coated with polyornithine/laminin/fibronectin. Non-sorted motor neurons were added to the wells 
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at a density of 50,000 total cells per well. Cultures were maintained for 5-6 days before 

recording. Recordings were performed using a Multiclamp 700B amplifier and a Digidata 1550 

digital-to-analog converter. Signals were recorded at a 10-kHz sample rate using pClamp 10 

software  (all equipment from Molecular Devices). Patch pipettes were fabricated with a P-97 

pipette puller  (Sutter Instruments) using 1.5 mm outer diameter, 1.28 mm inner diameter 

filamented capillary glass  (World Precision Instruments). Pipette resistance was 2-5 MΩ when 

filled with the pipette solution. The external recording solution contained 145 mM NaCl, 5 mM 

KCl, 10 mM HEPES, 10 mM glucose, 2 mM CaCl2 and 2 mM MgCl2. The pH was adjusted to 

7.3 using NaOH and the osmolality adjusted to 325 mOsm with sucrose. Prior to the 

experiments, tetrodotoxin was added to the external recording solution for a final concentration 

of 500 nM.  The pipette solution contained 130 mM CH3CsO3S, 10 mM CH3NaO3S, 1 mM 

CaCl2, 10 mM EGTA, 10 mM HEPES, 0.1 mM Spermine, 5 mM MgATP and 0.5 mM Na2GTP  

(pH 7.3, 305 mOsm). Experiments were performed at room temperature  (21–23 °C). During the 

miniEPSC analysis, voltage was clamped at -60 mV. 

 

Loose patch voltage clamp 

 Long-term action potential was assessed using a conventional whole cell voltage clamp 

configuration. Briefly, astrocytes were prepared as previously described (Albuquerque et al., 

2009) and plated on 15-mm diameter coverslips at a density of 100,000 cells per well in a 24-

well plate. 4-6 days following astrocyte plating, non-sorted motor neurons added to the wells at 

a density of 50,000 total cells per well. Cultures were maintained for 16-18 days before 

recording. Membrane current recordings were performed using a Multiclamp 700B amplifier and 

a Digidata 1550 digital-to-analog converter. Signals were recorded at a 10-kHz sample rate 

using pClamp 10 software  (all equipment from Molecular Devices). Patch pipettes were 

fabricated with a P-97 pipette puller  (Sutter Instruments) using 1.5 mm outer diameter, 1.28 mm 

inner diameter filamented capillary glass  (World Precision Instruments). Pipette resistance was 
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1-3 MΩ when filled with the pipette solution. Both the external recording solution and the pipette 

solution contained 145 mM NaCl, 5 mM KCl, 10 mM HEPES, 10 mM glucose, 2 mM CaCl2 and 

2 mM MgCl2. The pH was adjusted to 7.3 using NaOH and the osmolality adjusted to 325 

mOsm with sucrose.  A low resistance seal  (~50 MΩ) was established and the voltage was 

clamped at 0 mV.  5-minute recordings of spontaneous action potential firing were taken for 

each neuron.   

 

Calcium Imaging 

 Calcium transient frequency was assessed using a conventional calcium imaging 

technique. Briefly, 15-mm diameter coverslips were coated with 

polyornithine/laminin/fibronectin. Non-sorted motor neurons were added to the wells at a density 

of 50,000 total cells per well. Cultures were maintained for 5-6 days before imaging.  The 

external imaging solution contained 145 mM NaCl, 5 mM KCl, 10 mM HEPES, 10 mM glucose, 

2 mM CaCl2 and 2 mM MgCl2. The pH was adjusted to 7.3 using NaOH and the osmolality 

adjusted to 325 mOsm with sucrose.  Calcium indicator  (Fluo-4, F23917, ThermoFisher) was 

loaded into the cells using external solution supplemented with 2.5 µM Fluo-4 and 0.02% 

Pluronic acid, and incubating at room temperature for 30 minutes.  A subsequent 30-minute 

wash in external solution was conducted.   Coverslips were loaded into a slow perfusion 

chamber and imaged on a Nikon Eclipse TE300 inverted scope with a high numerical aperture 

20x objective.  An sCMOS camera was used to take a constant stream of images at 200 ms 

exposures for 5 minutes.  Regions of interest based on fluorescent reporters were manually 

drawn in Fiji (Schindelin et al., 2012) and the florescence intensities for each image across the 

entire recording quantified.  Waveforms of the intensity versus time plots were analyzed using 

custom written scripts for Igor Pro v. 6  (Wavemetrics, USA).   
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Chapter 5: Increasing STEM access to underprivileged high school students through the 

Science Matters Research Internship  (SMRI) 

 

Summary 

 

Purpose 

 The existing disparities for low-income and underrepresented minority groups in the 

sciences underscore the need for outreach programs to help engage young men and women 

from low-income and minority families in scientific research. Inadequate resources throughout 

their K-12 years disadvantage students from low-income families who have the potential to 

succeed in STEM fields and, furthermore, many students are unaware of great career 

opportunities in STEM research.  

 The purpose of this internship is to encourage high-school students from low-income 

families to explore their potential in scientific research and to engage graduate students, 

postdocs and faculty who have been successful in scientific career tracks.  

 

Internship 

 The Science Matters Research Internship  (Figure 5.1) provides access to enhanced 

scientific learning and experience through a two-part yearlong program throughout an academic 

year.  Our internship includes a “Bio Boot Camp” where Columbia University graduate students 

and postdocs deliver an eight part lecture series, as well as a three-month laboratory project 

where interns are mentored one-on-one.   
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Figure 5-1: Website for the Science Matters Research Internship 
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Participants 

 The target group for the internship is high achieving low-income high school juniors that 

attend underfunded schools.  These students are vetted by the established national non-profit 

organization, Minds Matter NYC.  They must maintain a minimum 3.0 GPA  (their average is 

3.4).  90% of the low-income students are from underrepresented minority groups and the mean 

family income is $23,000 per year.   

 

Introduction 

 

Problem 

 The National Academies, U.S. Congress Joint Economic Committee, Bureau of Labor 

Statistics, and President Obama’s Council of Advisors on Science and Technology have all 

cautioned that increases in need for STEM professionals will not be met by current rates of U.S. 

citizen enrollment in STEM graduate schools.  Of additional concern is the disparity between 

low-income/minority students, and their more affluent counterparts when it comes to entrance 

and completion of STEM degrees.  Research by Change the Equation suggests that highest-

poverty communities welcome and benefit from top-quality afterschool STEM programs that fill 

gaps left from underfunded high schools.   

 

Solution 

 SMRI provides a two-step approach to increase success within low-income 

communities.  Our interns join with varying backgrounds in science.  Underfunded schools can 

lack means to provide substantial science and math courses, and often do not offer AP courses 

for their high achieving students.  To ensure a level starting point, SMRI provides access to a 

college-level cellular and molecular biology text, and lectures on biochemistry, neuroscience, 
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biology, and development.  This bio boot camp garners enthusiasm for learning in a collegiate 

setting, and prepares the interns for a high-paced laboratory project requiring rapid syntheses of 

knowledge.    

 Secondly, the interns dive into their laboratory projects.  Spending two to three evenings 

a week  (6-10 hrs), they work one-on-one with their mentor, a senior graduate student or 

postdoc.  SMRI interns practice the scientific method, and importantly, experience how their 

coursework applies to real-world careers.  In addition to developing skills in a variety of scientific 

techniques, the interns obtain valuable networks of prominent professionals in the sciences.  It 

will prove most valuable to have gained experience and to yield letters of recommendations 

from these sources. 

 

SMRI Interns 

 SMRI interns are selected from rising juniors who participate in the Minds Matter NYC 

program.  This has proven a valuable collaboration that provides students within our target 

population, as well as support for those students throughout their high school career.  Minds 

Matter also ensures access to tracking information for our interns who have gone on to attend 

STEM programs at institutions including Washington University, Smith College, Johns Hopkins 

and MIT.  See attached information regarding Minds Matter NYC.  
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Figure 5-2: Sample syllabus for the SMRI Bio Bootcamp 
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Results 

 

Principal Members 

 

• Oversight 

- John Smerdon – Founding Director 

- Katherine Xu – Founding Director 

- CUMC Graduate Affairs  

- Women in Science @ Columbia 

• Current Directors 

- Elise Flynn 

- Christian Garcia 

 

Internship Framework  

 

• Application and admission 

- Applications are accepted from rising juniors within the Minds Matter NYC program.  

After an interview session and application review, students are selected based on 

merit and interest in the STEM fields.   

 

• Mentor selection and intern pairing 

- Mentors volunteer and are selected based on experience and a group interview.  

Students are paired with a mentor whose expertise lies within their field of 

prospective interest. 
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• Kick-off meeting and mentor/intern introductions 

 

• Bio Boot Camp, an eight-part lecture series on cellular and molecular biology  (Figure 

5.2) 

 

• Orientation day 

- Final exam to gauge students understanding of the lecture material 

- EH&S training 

- ID card issuance  

- Laboratory orientation  

 

• Research project  

- Working with a mentor one-on-one, the interns preform a three-month project from 

February through April where they must form a hypothesis, perform applicable 

experiments, and interpret the results.  

 

• Biotech Field Trip 

- Interns take part in a daylong trip to Regeneron Pharmaceuticals where they tour 

multiple facilities on the Regeneron campus as well as take part in open discussions 

with current Regeneron scientists. 

 

• Oral presentations and final symposium  

- Interns perform a mid-project practice presentation to introduce their project, as well 

as a final presentation during the SMRI symposium 
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Discussion  

  

 The Science Matters Research internship has successfully mentored 25 high school 

juniors over the past 4 years.  Now in its 5th year, SMRI and its nine current interns will mark half 

a decade of training for underprivileged New York youth.  Our partnership with Minds Matter 

NYC provides detailed tracking information for the students through their completion of their 

bachelor’s degrees.  Though our first cohort has not yet graduated, we will soon start compiling 

data that will allow us to analyze our success empirically.  Qualitatively, all of our interns thus far 

have enrolled in science or premedical programs at their undergraduate institutions.  Many of 

them have received full scholarships, including to Washington University in St. Louis, to the 

Neuroscience program at Smith College, and to the Massachusetts Institute of Technology.  

SMRI looks forward to monitoring all of the interns’ future STEM career success.   
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Chapter 6: Conclusions and Future Directions 

 

 The goal of presenting and discussing the data in this thesis was to uncover potential 

pathophysiology in ALS that may help to elucidate disease-relevant mechanisms.  Amyotrophic 

lateral sclerosis was described well over a century ago and the first mouse model created more 

than two decades ago, and yet, we still have a poor understanding of the pathophysiology in the 

disease.  It seems likely that motor neuron non-autonomous pathways exacerbate the disease, 

however, it is unclear whether these pathways are involved in the pathogenesis of ALS.  To that 

point, there is a coincidence between ALS and frontal temporal dementia, and indeed, there 

may be some cell-autonomous mechanistic overlap (Ferrari et al., 2011).  Alternately, it is 

possible for non-autonomous mechanisms, such as neuroinflammation, to be initiated by one 

disease but then aggravate the neurodegenerative processes in other neuronal subtypes.  In 

fact, it seems that many of the cell non-autonomous pathways reported may not occur until 

post-symptomatic stages and therefore they may be downstream effects.  These hypotheses 

are difficult to investigate though, as researchers have little access to pre-symptomatic patients.  

For the effects of neuroinflammatory pathways, however, it has been reported in patients and in 

the SOD1 mouse models that motor neuron dysfunction precedes the onset of these cell-

nonautonomous effectors (Boillée et al., 2006; Oeckl et al., 2018).  Regardless, intrinsic 

mechanisms specific to vulnerable motor neurons would have to either be selectively 

responsive to these extrinsic stressors, or they underlie the main driving element to ALS 

pathogenesis.  Thus, I have focused on these intrinsic mechanisms for my investigations into 

ALS pathophysiology.   

 

Homeostatic mechanisms 

 As humans and other species age, up to 40% of muscle mass is lost, resulting in a 

reduction of force output (Brooks and Faulkner, 1994) and a concurrent loss of motor neurons.  
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However, the loss of muscle mass is not equally divided amongst the different subtypes of 

muscle fibers. Interestingly, in rats it was found that type II fibers are lost first in aging, and at 

least in rats, is accompanied by a loss in the α-motor neuron subtype (Kadhiresan et al., 1996).  

Furthermore, compensatory sprouting of motor neurons that innervate type I fibers occurs 

attempting to maintain functionality of the motor system.  This process of homeostatic 

compensation displays far from subtle similarities to the clinical presentations in ALS.  That is 

not to say that the underlying mechanisms are the same, but certainly the homeostatic process 

of maintaining motor functionality in aging may parallel was is seen in the disease.  It is also 

worth considering that some of the mechanisms involved in ageing are simply sped up in ALS. 

 Throughout this thesis, I have discussed homeostasis in motor neurons as an indicator 

of aberrant synaptic input.  Yet, these mechanisms may have an even larger role in ALS 

pathogenesis.  The data in this thesis would argue that increased synaptic excitation is pushing 

a hypoexcitable response in spinal motor neurons that manifests as a structural change in the 

axon initial segment.  There are some clues from the ESC-derived motor neurons as to the 

other intrinsic changes in excitability that may coincide with the axon initial segment 

shortening/lengthening; however, it is unclear if the mature adult motor neurons in vivo will 

undergo the exact same responses.  Similar to the titration plot of a buffer, homeostatic 

mechanisms likely have a range in which they work well, where rapid and devastating effects for 

the neurons reside outside that range, a concept predicted by modeling (Nijhout et al., 2014).  

Regardless, pushing homeostatic mechanisms to engage more robustly would likely place a 

greater metabolic demand on a cell, at the very least.   

 Furthermore, axon initial segment disruption may have direct consequences on motor 

neurons in ALS.  In previous analyses however, where the axon initial segment length was 

increased by two-fold, there was a somewhat modest consequence on action potential 

threshold (Kuba et al., 2010).  For the small shift in motor neuron axon initial segment length in 

ALS reported here, I would not expect to find a measurable shift in threshold.  That is not to say 
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that subtle effects on threshold or action potential kinetics would not be important, but they 

would likely not be measurable.  It is also possible that plasticity in the axon initial segment is 

coupled to shifts in ion channel subtype compositions that could elicit a more pronounced effect 

on action potential kinetics and threshold, but such mechanism have not yet been reported.  Of 

additional interest is the shift in intra-burst frequency observed in the loose-patch recordings 

presented in Chapter 4.  This result suggests motor neurons increase their firing frequency in 

response to increased excitation.  Though they are otherwise intrinsically hypoexcitable, they 

elicit higher frequency bursts that may lead to a greater influx of calcium.  If this response 

reflects physiological mechanism in in vivo motor neurons, it could exacerbate excitotoxicity.  It 

also may point toward mechanisms used in subtype specification between fast and slow α-

motor neurons.  As described in the introduction, fast α-motor neurons are hypoexcitable but fire 

in high frequency bursts (Müller et al., 2014).  It has also been shown that the boundary 

between these two subtypes is plastic, where after axotomy, they dedifferentiate and then 

redifferentiate after reinnervation (Foehring et al., 1986).  It is possible that the redifferentiation 

process is driven by circuit feedback after muscle innervation where the motor neurons 

innervating type II fibers receive greater excitatory input that evokes a physiological response 

toward a fast α-motor neuron profile.  Future studies that control input to ESC-derived motor 

neurons may uncover such a mechanism.   

 Another intriguing possibility surrounding the structural changes in the axon initial 

segment is the effect it might have on neuronal polarity.  There is evidence in Alzheimer’s 

disease that the axon initial segment is poorly maintaining polarity (Sun et al., 2014a).  While in 

ALS, neurofilament accumulations at the hillock and axonal transport defects have both been 

reported (Sasaki and Maruyama, 1992; Sasaki et al., 2005).  Of interest in these reports is that 

they observed an increased diameter of the hillock region.  It could be argued that shortening of 

the axon initial segment might occur if the axon is of greater diameter to maintain a similar 

number of ion channels.  However, it would likely be more complicated as a larger diameter 
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would also increase capacitance and therefore a larger number of sodium channels would need 

to be present to maintain a similar threshold.  This is also complicated by the cranial data where 

the axon initial segment increases in length.  Nevertheless, investigation of the diameter of the 

axon initial segment would be an interesting direction for future analysis.  Also for future study, 

and one that may be well suited for ESC-derived neurons, would be to investigate whether long-

term homeostatic plasticity in the axon initial segment disrupts neuronal polarity.   

 Lastly, more systematic analysis of homeostatic mechanisms within the local spinal 

circuitry is warranted.  Amazingly, symptoms do not present in ALS until over 30% of the motor 

neurons have degenerated (Brownstone and Lancelin, 2018), evidence of significant 

reorganization in the spinal circuitry.  Plasticity in spinal circuitry is well documented and 

clinically exploited in treatment programs such as neuromuscular reeducation (Judd et al., 

2016), used by physical therapists to reprogram firing order of particular muscle groups.  So, it 

seems feasible that the profound homeostatic circuit level changes are in play long before the 

first muscle weakness is detected in ALS patients.  Interestingly, it has been reported in 

symptomatic SOD1 mice that remaining alpha and gamma motor neurons lose over a third of 

their synaptic inputs (Zang et al., 2005).  This finding is supported by what is seen in the axon 

initial segment data presented in Chapter 2 showing that in P65 SOD1G93A mice, both the 

“normal” α-motor neurons as well as the γ-motor neurons have longer axon initial segments.  

However, all of these dynamic changes are occurring late in the disease, after neuromuscular 

junction retraction and as motor neuron degeneration is emerging. The presence of circuit level 

defects observed in these later stages, then, are not surprising.  Nor would it be unanticipated 

that they may exacerbate the already existent pathophysiology.  The remaining question here is 

whether the early circuit level changes predicted by the data presented in this thesis contribute 

to the pathogenesis of ALS.  However, using these data to support the hypothesis of 

excitotoxicity is complicated by the opposite nature of the circuit level changes in cranial motor 

neurons. 
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The cranial quandary 

 Perhaps the most perplexing finding in these studies was the phenotypic heterogeneity 

that was observed in the cranial motor neurons.  Considering all of the discussion of 

homeostatic changes in spinal motor neurons examined in the previous section, these results 

clearly complicate any support to an excitotoxicity hypothesis.  Though structural changes in 

either direction still support an early shift in synaptic excitation.  Furthermore, the disruptions to 

neuronal polarity addressed in the previous section may still apply here.  Nevertheless, this 

unexpected result suggests that ALS-vulnerable cranial motor neurons undergo a decrease in 

net excitation.   

 Considering the more widespread heterogeneity in ALS phenotypes that I observed in 

the cranial motor neurons, it could be argued that cranial and spinal motor neurons exhibit 

distinct pathophysiology from one another.  Certainly, there are distinct functional differences 

between cranial and spinal motor neurons (Chandrasekhar, 2004) that may underlie this 

phenomenon, but to my knowledge, it is not a hypothesis that has been previously proposed.  It 

could also be argued that some of these phenotypes do not underlie the pathophysiology in 

ALS, at least for p62 aggregation and excitotoxicity.  Since vacuole formation still occurs in the 

neuropil, it was not included in this list.  Certainly, if the axon initial segment changes are 

accepted to be a proxy for excitation in motor neurons, then it has to be assumed that ALS-

vulnerable cranial motor neurons have lower net excitation, and therefore unlikely to suffer from 

excitotoxic effects.  Another caveat here, however, is that the ESC-derived motor neurons used 

to verify a compensatory response of axon initial segment plasticity, are models of spinal motor 

neurons.  It is a possibility that the axon initial segment in cranial motor neurons does not 

respond to excitation in the same way, though it would be extremely unlikely as such behavior is 

unprecedented in all other excitatory neurons investigated thus far.  
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 It should also be noted that the hypoglossal motor neurons exhibit a shorter neonatal 

axon initial segment, before becoming longer as a young adult.  This is interesting bearing in 

mind the increased synaptic input reported in neonatal hypoglossal motor neurons, as well as 

other electrophysiological differences seen that would lead to hyperactivity in this population 

(van Zundert et al., 2012).  Hypoglossal motor neurons may be unique here due to the 

importance of early circuit formation required for suckling (Fukushima et al., 2007).  Perhaps 

this early shift in excitation is evidence of abnormalities in local circuitry that occur during 

development, or that like corticospinal neurons, corticobulbar neurons are also hyperactive at 

that age.  The shift in axon initial segment from short to long relative to the Nt littermates may 

reflect the dynamic development of dendritic morphology in the first two to three postnatal 

weeks (Kanjhan et al., 2016).  Nevertheless, this shift may reflect interesting developmental 

mechanisms unique hypoglossal motor neurons.  

 Consistent with other reports, oculomotor neurons were spared from most of the 

phenotypes investigated in this report.  Interestingly, there is a shortening of the axon initial 

segment in the oculomotor neurons at later disease stages.  As discussed in the introduction, 

oculomotor neurons are likely quite resistant to excitotoxicity, but this is still a surprising result 

that suggests these neurons have increased net excitation.  A late change in axon initial 

segment length in γ-motor neurons is understandable considering its intimate link with α-motor 

neuron circuitry.  However, oculomotor neurons seem relatively isolated from the other cranial 

motor nuclei.  Perhaps axon initial segment shortening in these motor neurons is a reflection of 

hyperactive premotor circuitry, or an effect of the astrogliosis and microgliosis in the glia 

surrounding their nucleus (An et al., 2014).  It would be worth further investigation to verify an 

increase in synaptic input and to understand the driving mechanism.  
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 Excitability and activity in ALS 

 The most basic question asked by this thesis was if adult motor neurons in ALS suffer 

from hyperactivity that could lead to excitotoxicity.  For spinal motor neurons, I would argue that 

this might be the case.  Very early in the disease, just after circuitry maturation, I have observed 

a shortening in the axon initial segment, indicative of higher levels of net excitation.  Behavioral 

assays would show major alterations in motor neuron firing, therefore, it would seem that the 

spinal motor neurons are able to compensate for the change in input.  However, the act of 

compensation itself may be putting undue stress on the motor neurons.  Additionally, increased 

calcium influx from subthreshold depolarization (Magee et al., 1995) may also be adding to an 

excitotoxic effect, though it would seem unlikely to produce the calcium influx required to elicit 

toxicity.  Regardless, these data would support that hyperexcitation exists in ALS-vulnerable 

spinal motor neurons, though it cannot be concluded that this is contributing to excitotoxicity.  

Furthermore, as discussed in the previous section, it seems the opposite, hypoexcitation, exists 

in ALS-vulnerable cranial motor neurons.  It is important to note that axon initial segment 

plasticity occurs long before motor neuron death in these mice (Turner and Talbot, 2008), and is 

therefore reflecting true changes throughout the entire population of motor neurons.   

 I discussed the controversy over excitability in depth in the introduction.  My data has 

addressed this question indirectly in adult motor neurons at different ages throughout the ALS 

disease course.   Interestingly in neonates, I do not find a difference in axon initial segment 

length in ALS, though they are longer than adult suggestive of lower activity and excitation.  This 

might agree with recent reports that have claimed neonatal α-motor neurons are not 

hyperexcitable in and that early intrinsic excitability does not contribute to ALS pathophysiology 

(Leroy and Zytnicki, 2015).  Though I would agree with their overall conclusions, some of the 

assumptions made are somewhat problematic considering contradictions throughout the 

literature.  The first assumption, is that slow and fast α-motor neurons undergo the same 

pathogenic pathway that leads to degeneration.  Heterogeneity shown here in the phenotypic 
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presentation of ALS in cranial motor neurons might question whether that assumption is 

appropriate, and perhaps further analysis should establish this to be true.  Second, they claim 

most of the previously reported electrophysiological data must be inaccurate, as these reports 

do not take into account differential sensitivities of motor neuron subtypes.  This claim implies 

that intrinsic hyperexcitability reported in these studies may be skewed by the influence of data 

from multiple motor neuron subtypes.  Yet, for subtype specific intrinsic excitability to have a 

major influence across most of these studies, then there would have to be a significant number 

of slow α-motor neurons represented in the recordings from the random picking of neurons to 

patch.  In their study, there was good correlation between their electrophysiological 

categorization of slow and fast α-motor neurons using the fast α-motor neuron specific 

expression of chondrolectin (Leroy et al., 2014).  However, reports have shown that there are 

limited numbers of type I muscle fibers in small mammals such as mice (Peters et al., 1999), 

indicating that the total number of slow α-motor neurons may be quite small in the spinal 

population.  For example, the majority of the muscles innervated by motor neurons that originate 

in Lumbar segments 4-5  (L4-5) are reported to be almost entirely type II fibers (Burkholder et 

al., 1994; Augusto et al., 2004; Bácskai et al., 2014).  A commonly used source muscle for slow 

α-motor neuron innervation is the soleus muscle (Kaplan et al., 2014).  This crural muscle 

innervated by L4-5 motor neurons is well known for its composition of ~50% type I fibers (Peters 

et al., 1999), the highest proportion of all L4-5 muscles, however, one report suggests that ~20 

slow α-motor neurons innervating the soleus muscle (Fladby and Jansen, 1987).  If this were 

true, then it would be unlikely that the studies reporting changes in intrinsic excitability are 

simply being influenced by a preponderance of slow α-motor neuron contamination in their data.  

However, given the paradoxical literature of high numbers of slow α-motor neurons yet low 

numbers of Type I fibers, it is possible that slow α-motor neuron numbers may not directly 

correlate with the fiber composition and indeed be skewing the electrophysiological data.  This 

is also important when interpreting the axon initial segment data.  It would not be appropriate to 



	

	 135	

compare structural changes in the axon initial segment from one subtype to another in order to 

make conclusions regarding the intrinsic excitability.  For instance, γ-motor neurons are 

considerably smaller than α-motor neurons and have known differences in their intrinsic 

excitability, yet the axon initial segment length in these two subtypes are the same length.  It 

would seem that the utility of this sub-cellular structure is tuned to the demands of the particular 

neuronal subtype.  Given the uncertainty in the fast and slow α-motor neuron composition in 

these mice, it could mark a caveat in the axon initial segment length comparisons between non-

transgenic and ALS-model mice.  This would hold especially true at later stages of the disease if 

fast α-motor neurons are first to degenerate, leaving an enrichment of the slow α-motor neuron 

subtype.  This could in fact be an interesting possibility considering that the motor neurons at 

postnatal day 65 that were deemed “normal” had longer axon initial segments as compared to 

the non-transgenic animals (Figure 2.6).  Future studies should probe the contradictory findings 

between fiber types and electrophysiological analyses to uncover the basis of these 

inconsistencies.   

 It seems possible, however, that the discrepancies found in many of the 

electrophysiological analyses are due to the variety of models being used and differences in the 

experimental parameters employed.  Dissociation into primary cultures and spinal sectioning are 

known to have major detrimental effects on motor neurons (Bucchia et al., 2018) and therefore 

may be skewing results.  Additionally, it is difficult to reconcile how changes reported in 

immature motor neurons will manifest as the neurons mature.  I have also posed the question of 

how intrinsic excitability is interpreted.  Many studies view intrinsic excitability as a driving force 

of activity.  However, as pointed out by the many studies looking into axon initial segment 

plasticity including those presented in this thesis, it seems that intrinsic excitability dynamics are 

compensatory in response to changes in input.  So it may be appropriate to consider that 

intrinsic excitability may reflect homeostatic shifts in response to excitation, rather than underlie 

the driving force, thus inversely proportional to their amplitude of excitation.   
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 Though this thesis did not serve as the final answer to an ongoing debate over 

excitability and activity in ALS patients, the experiments presented here do support an early 

change in motor circuitry and intrinsic excitability.  It would be misrepresentative to conclude 

that the early circuit level defects contribute to the pathophysiology that leads to motor neuron 

degeneration, though the association between these circuitry defects and neuronal stress in the 

spinal motor neurons posits this as an intriguing possibility.  However, the divergent changes in 

net excitation between spinal and cranial motor neurons extrapolated from the analyses 

presented in this thesis are unharmonious with the simple view of excitotoxicity postulated 

decades ago. 
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